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Abstract

In the multi-dimensional spatial model of elections with two policy-motivated candidates
prove that the candidates must adopt the same policy platform in equilibrium. Moreover, wh
number of voters is odd, if the gradients of the candidates’ utility functions point in different d
tions, then they must locate at some voter’s ideal point and a strong symmetry condition m
satisfied: in particular, it must be possible to pair some voters so that their gradients point in e
opposite directions. If the number of dimensions is more than two, then our condition is knife
When the number of voters is even, the situation is worse: such equilibria never exist, regard
the dimensionality of the policy space.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

What policy positions should candidates adopt in running for office? Will they ch
identical positions? Or will stable choices even exist? These questions have been the
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focus of the literature on spatial modeling that dates back to the famous work of (D
1957). Downs’ assumption that candidates care about winning and not about poli
standard in this literature. With such office-motivated candidates, the main findings
spatial model of voting are well known. If the policy space is one dimensional, the
Median Voter Theorem holds: candidates choose identical positions at the median
voters’ ideal points (Downs, 1957; Black, 1958). On the other hand, if the issue sp
multidimensional, then there is almost always no such unbeatable position, or “core
and therefore equilibria almost never exist (Plott, 1967). In this paper, we reconsid
basic questions posed by spatial theory under the alternative assumption that can
are policy-motivated.

A central paper in the literature that addresses these issues is Calvert (1985).
ing on work by Wittman (1977, 1983), Calvert considers policy-motivated candidate
shows that in one dimension, convergence to the median still holds, and more gener
any number of dimensions), if a core point exists, then the unique electoral equilibr
for both candidates to locate at the core point. However, the assumption that a cor
exists severely restricts the applicability of Calvert’s result. As is well known, the e
ence of a core point entails a symmetry condition on voter preferences that is extr
demanding in two or more dimensions: Plott (1967) shows that a core point must
ideal point of some voter, and the gradients of the other voters’ utility functions mu
paired so that, for every voter with a gradient pointing in one direction, there is ex
one voter whose gradient points in the opposite direction.1 As a consequence, core poin
almost always fail to exist, and when one does exist, it will be vulnerable to even
variations in preferences.2 Calvert’s result also assumes that voters have Euclidean
erences (circular indifference curves). He conjectures (pp. 78–79) that, if the assu
of Euclidean preferences is weakened, then other types of equilibria, in which cand
do not locate at the core point, may be created. The questions of existence and loc
equilibrium points with policy-motivated candidates are left open in the general cas
non-Euclidean preferences and an empty core. We provide answers to these questi

Under office-motivation, candidates must locate at core points in equilibrium: if
candidate were to locate at a beatable position, the other would move to exploit th
portunity. Thus, in the absence of a core point, there will be no equilibrium of the g
between the candidates. Why might the assumption of policy-motivation yield diff
answers for the multidimensional case? The answer lies in the observation that a m
preferred position may have undesirable policy implications for a candidate, mitigatin
incentive to locate there. In other words, a change to a winning position that is benefi
an office-motivated candidate, by definition, may not be so to a policy-motivated can
if the winning position is a less desirable policy. Therefore, a model with policy-motiv
candidates offers fewer potential profitable deviations and this suggests that we m
equilibria where none were present under office-motivation. We show that this is tru
to a very limited extent. In particular, the symmetry conditions required for existenc

1 See also McKelvey and Schofield (1987).
2 See Rubinstein (1979), Schofield (1983), Cox (1984), Le Breton (1987). When the number of voters

the results are almost as negative: existence of core points may be robust to variations in preference

dimensions, but not in more.
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weaker than Plott’s. They are still demanding enough that equilibria will usually fa
exist in high-dimensional policy spaces, but now “high” means at least three dimen
rather than two.

Our main results develop necessary conditions that must be satisfied by the equi
platforms of the candidates. We first show that in any equilibrium with neither candid
her own ideal point, the candidates must take identical policy positions. This phenom
is called “policy coincidence” or “policy convergence.” We next consider the smalle
of equilibria in which the candidates’ gradients point in different directions, so tha
candidates have distinct policy preferences near the equilibrium point. Theorem 2
necessary conditions for existence of such an equilibrium when the voters are odd in
ber. Specifically, in equilibrium, the candidates must locate at the ideal point of some
and a type of symmetry on the voters’ gradients must hold: for every voter whose
ent lies between the candidates’ gradients, there must be exactly one voter whose g
points in exactly the opposite direction.

Somewhat surprisingly, the restrictiveness of this symmetry condition turns out t
pend on the dimensionality of the policy space. Indeed, for a two-dimensional issue
we give a simple sufficient condition under which there exists an electoral equilibrium
policy-motivated candidates that is robust to small changes in the preferences of vot
candidates, even though the core may be empty. Thus, in two dimensions, the negat
clusions of Plott (1967) for office-motivated candidates do not carry over with full fo
For three or more dimensions and an odd number of voters, however, we show in
rem 3 that the existence of equilibria is knife-edge. In particular, the following symm
condition is necessary: for every voter whose gradient does not lie on the plane sp
by the candidates’ gradients, there must be exactly one voter whose gradient point
opposite direction. In other words, if we remove the voters whose gradients lie o
plane, then the equilibrium platform must be a core point of the modified majority v
game. Because the plane is a lower-dimensional subspace, we would not expect it
tain the gradients of all voters. Typically, therefore, we must have some pairs of voter
diametrically opposed gradients, and this suggests that electoral equilibria will be ra
that, when existence does obtain, it will be vulnerable to even slight variations of vo
candidate preferences. Thus, with three or more dimensions, we conclude that eq
with policy-motivated candidates almost never exist.

Theorem 4 takes up the case of an even number of voters and shows that exis
not even knife-edge: equilibria of the type we consider do not ever exist. Thus, the
in this case is even stronger than the result with an odd number of voters. This fi
is worth noting because an even number of voters is the “optimistic” case in mod
office-motivated candidates: core points and thus equilibria may be robust. But with p
motivated candidates, these observations no longer hold.

The results we have discussed are proved in the framework of pure policy-moti
and deterministic voters, which is of course a stylized view of real elections. We
on this polar case for several reasons. First, as our results are mainly negative, we
strengthen them by considering an environment amenable to existence, in contras
“mixed motivation” case: when office-motivation has positive weight in the candid
payoffs, a significant (even if small) additional discontinuity is introduced into the g

and we then run the risk that nonexistence is an artifact of this discontinuity. Second, taking
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our model as a benchmark, we are able to show that our negative conclusions car
even if we introduce a small amount of probabilistic voting into the model, smoothin
the payoff functions of the candidates, and even if we allow for a small benefit of
ning the election (which may take a quite arbitrary form). Thus, though our main re
are stated in terms of a particular model, they inform us about a “neighborhood” of
els containing it. As a byproduct of this robustness result, we conclude that nonexi
of equilibrium in our model is not the product of discontinuities in candidate pay
but rather is the product of nonconvexities, which are unavoidable when candidat
well-informed about the behavior of voters. Last, our focus facilitates comparison
literature on electoral competition.

The assumption of policy-motivation has been used in a significant number of
cations. Surveys of this literature include Wittman (1990), Shepsle (1991), and Os
(1995). Another line of literature combines policy-motivation with uncertainty, usually
probabilistic voting (Wittman, 1983; Calvert, 1985). These papers show that policy c
dence breaks down as soon as uncertainty about voting behavior is introduced, and
extent of the divergence of the candidates’ platforms varies continuously with the am
of policy-motivation added to the objective functions of office-motivated candidates
robustness results for probabilistic voting point to an issue that has gone somewha
ticed in this literature: equilibria need not exist in these models when there are mu
policy dimensions; indeed, when voting is close to deterministic and weight on offi
small, equilibria will almost never exist. Finally, in the literature on “citizen candida
candidates are assumed, along with other voters, to possess policy preferences.3 But these
models differ from the spatial model of elections in that candidates cannot comm
policies prior to an election; rather, office holders choose policies optimally given
preferences and, in some models, given the effects of policy choices on future el
prospects. In contrast, our paper contributes to the understanding of the effects of
motivation by maintaining the other basic assumptions, commitment among them,
spatial model.

The remainder of the paper is organized as follows. In Section 2, we present the
of elections with policy-motivated candidates. In Section 3, we give two-dimensiona
amples of robust equilibria in the model with policy-motivated candidates, and we g
simple sufficient condition that generalizes the examples. In Section 4, we state our
on necessary conditions for existence of equilibria of two types: equilibria in which ne
candidate locates at her ideal point, and the subset of equilibria in which the cand
gradients point in different directions. In Section 5, we give conditions under which
are no other equilibria. In Section 6, we establish the robustness of our negative c
sions, showing that equilibrium nonexistence extends if a small amount of probab
voting and office-motivation are introduced. In Section 7, we briefly consider a si
model of mixed motives, where candidates put a fixed weight on holding office, in ad
to policy concerns. The final section concludes, and Appendix A contains proofs o
results.
3 See Osborne and Slivinski (1996), Besley and Coate (1997, 1998), Duggan (2000), Banks and Duggan (2000).
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2. The model

We consider two candidates,A andB, competing for the votes of an electorate,N , con-
taining a numbern of voters. The candidates simultaneously choose policy platforms
X, a nonempty, convex subset ofd-dimensional Euclidean space,R

d .4 We denote candi
dateC ’s platform choice byxC . Each voteri has a preference relation onX represented
by a strictly quasi-concave, differentiable utility functionui :X → R, with interior ideal
point x̃i that uniquely satisfies∇ui(x) = 0. We assume that no two voters have the sa
ideal point:∇ui(x) = ∇uj (x) = 0 for nox, i, andj �= i. We say voteri ’s preferences ar
Euclidean if i has an ideal point̃xi and, for some strictly decreasing functionf :R+ → R,
ui(x) = f (‖x − x̃i‖), i.e., voteri has circular indifference curves.

We use the notationR for weak majority preference,P for strict preference, andI for
indifference:xRy if and only if ui(x) � ui(y) for at least half of the voters;xPy if and
only if ui(x) > ui(y) for more than half of the voters (i.e., notyRx); andxIy if and only
if xRy andyRx. We denote the number of voters who strictly preferx to y by nA(x, y),
the number who strictly prefery to x by nB(x, y), and the number who are indifferent b
nI (x, y). Thus,xPy if and only if nA(x, y) > n/2, for example. In Appendix A, we sta
a lemma on the “star-shapedness” of majority preferences: ifxRy, then any point betwee
x andy will be weakly majority-preferred toy, strictly so if the number of voters is odd

We define thecore as the set of platformsx weakly majority-preferred to all othe
platforms: for ally ∈ X, xRy. If the number of voters is odd, then a standard result un
our assumptions is that the core, when nonempty, consists of a single point, sayx∗, and
that, for ally �= x∗, x∗Py. Moreover,x∗ is the ideal point of some voter, sayi∗. If all voters
have Euclidean preferences, it is known that the majority preference relation coincide
the preferences of the “core voter”i∗, i.e.,xRy if and only if ui∗(x) � ui∗(y) (Davis et al.,
1972). Thus, in that case, the majority weak preference relation is complete and tran
with circular indifference curves. None of these conclusions holds generally whenn is
even.

We assume each candidateC has a preference relation onX represented by a strictl
quasi-concave, differentiable utility functionuC :X → R, with interior ideal pointx̃C that
uniquely satisfies∇uC(x) = 0. We assume that the candidates are policy-motivated, w
means that a candidate may face a tradeoff between desirable and successful pol
forms. As is standard, we assume that candidates evaluate this tradeoff using e
utility.5 Specifically, whenA chooses platformx andB chooses platformy, A’s expected
utility is

UA(x, y) = P(x, y)uA(x) + (
1− P(x, y)

)
uA(y) (1)

4 We use the notationC for an arbitrary candidate;i, j , k, etc., for an arbitrary voter; andx, y, z, etc., for
arbitrary policies.

5 See Duggan and Fey (2001) for a version of this model with more general assumptions on candidat

ences that do not impose the expected utility form.
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(and similarly forB), whereP(x, y) is the probability that candidateA wins. When voters
with strict preferences vote deterministically,P(x, y) is equal to 1 ifxPy and 0 ifyPx.
WhenxIy, its value is normally specified by some assumptions on how ties are b
and how voters make choices when indifferent, such as flipping fair coins.

Because our equilibrium existence results are ultimately negative, it is importa
maintain a degree of generality with respect to the behavior of indifferent voters: o
wise, we would leave open the possibility that our conclusions were an artifact o
assumptions on voter behavior. Therefore, instead of choosing a particular specifi
of tie-breaking probabilities, we allow for quite arbitrary voting behavior when voters
indifferent.6 Our assumptions are formalized in the following condition.

(A1) P(x, y) = 1 if xPy; P(x, y) = 0 if yPx; and 0< P(x, y) < 1 if xIy.

Essentially, we require of indifferent voters only that they vote for each candidate
positive probability. These probabilities may vary arbitrarily with the particular platfo
over which the voter is indifferent.7 Whenn is even, majority indifference may hold eve
if no voters are themselves indifferent, so we impose an additional condition on the
of P(x, y) in this case.

(A2) If n is even andnA(x, y) = nB(x, y) = n/2 andnA(z, y) = nB(z, y) = n/2, then
P(x, y) = P(z, y). If n is even andnB(x, y) = nB(z, y) = n/2 and nA(x, y) <

nA(z, y), thenP(x, y) < P (z, y) (and likewise forB).

This assumption requires two things. First, all ties in which there are no indifferent v
are broken the same way. Second, if exactly half of the voters strictly preferB ’s position,
then the chance thatA wins is increasing in the number of voters with a strict prefere
for A.8

The game between the candidates is thus defined by the strategy setsX for each can-
didate and the payoff functions given by Eq. (1). We use (pure strategy) Nash equili
as our equilibrium concept.9 We say that an equilibrium(xA, xB) is a nonsatiated equi-
librium if xA andxB are interior toX and neither candidate’s chosen platform is at
ideal point:∇uA(xA) �= 0 and∇uB(xB) �= 0. We say an equilibrium(xA, xB) is a non-
aligned equilibrium if the platforms are interior and the candidates’ gradients do
point in the same direction: there do not existα,β � 0, at least one nonzero, such th
α∇uA(xA) = β∇uB(xB). Note that every nonaligned equilibrium is nonsatiated.10

6 This approach is similar to that of Simon and Zame (1990).
7 In fact, we even allow indifferent voters to abstain from voting with any probability (possibly one), as lo

the winner in case of a tie is determined randomly with each candidate receiving positive probability.
8 Again, see Duggan and Fey (2001) for a version of this model with more general assumptions on ca

preferences in the case of ties.
9 In other words,(xA,xB) is an equilibrium if neither candidateC can deviate to a different platform to produ

a preferred pair: there does not existx′
A

∈ X such thatUA(x′
A

,xB) > UA(xA,xB) (and likewise forB).
10 To see this, suppose(xA,xB) is an equilibrium with∇uA(xA) = 0. Then choosingα > 0 andβ = 0 implies

α∇uA(xA) = β∇uB(xB). So(xA,xB) is not a nonaligned equilibrium.
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3. Sufficient conditions

We begin by illustrating that, unlike the case of office-motivated candidates, equ
can exist in the absence of a core point. In Fig. 1, the ideal points of three vote
arranged in a triangle, and we give the voters and candidates Euclidean prefere
is a (nonaligned) equilibrium for the candidates to locate at voter 3’s ideal point in
example, because the weakly majority-preferred platforms are those weakly prefer
voters 1 and 2. This set, being the intersection of two circles, is sufficiently kinked—s
no such platforms are preferred by either candidate—as long as 1’s and 2’s ideal po
far enough apart. Obviously, as this configuration of voter ideal points has no ma
core, no such equilibrium exists in the case of office-motivated candidates. Moreove
easy to see that this equilibrium is also robust to small variations in the preferences
players.

Policy motivation can have a substantial effect even when the core is nonempty.
case, when candidates are office-motivated, there can be no equilibria other than at
point. This is not true when candidates are policy-motivated, as illustrated in Fig. 2. I
example, we give voters 1 and 3 Euclidean preferences but, as evidenced by voter
difference curve, we give that voter non-Euclidean preferences. Voter 2’s ideal point
core point, but it is a nonaligned equilibrium for both candidates to locate at voter 3’s
point: none of the platforms weakly majority-preferred tox̃3, in the region described b
hash marks, are preferred tox̃3 by either candidate. Once again, note that the equilibriu
this example is robust, in the sense that it survives small enough variations in the gra
of the voters and candidates. The non-Euclidean preferences of voter 2 are nece
this example, as Calvert (1985) shows that when voters’ preferences are Euclidean
core is nonempty, there can be no nonaligned equilibria other than the core. Thus,
Fig. 1. A nonaligned equilibrium with no core.
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Fig. 2. A nonaligned equilibrium not at the core.

confirms Calvert’s conjecture that equilibria can be supported at points other than th
when preferences are non-Euclidean.

Next, we move away from these specific examples and present a simple conditio
ensures the existence of an equilibrium in a two-dimensional policy space. This con
requires that the two candidates locate at the ideal point of some voter and that eac
can be paired with another voter whose preferences are generally opposed. In o
formally state the result, we need the following definitions. For vectorsp,q ∈ R

d , we use
the notation cone{p,q} = {αp + βq | α,β � 0 andα + β > 0} to denote the convex con
generated byp andq and we refer to the cone generated by−p and−q as the “opposed
cone” ofp andq. For any nonempty setG ⊆ N , a functionπ :G → G is apairing on G

if π is one-to-one and, for alli ∈ G, π(π(i)) = i.

Proposition 1. Assume n is odd, d = 2, and assume (A1). If xA = xB = x̂, where
∇uk(x̂) = 0 for some voter k, and there exists a pairing π on N \ {k} such that, for all
i ∈ N \ {k} and for all C = A,B ,

∇ui(x̂) · ∇uC(x̂) �= 0 ⇒ ∇uπ(i)(x̂) ∈ cone
{−∇uC(x̂),−∇ui(x̂)

}
, (2)

then (xA, xB) is an equilibrium.

The restriction expressed in condition (2) is illustrated in Fig. 3. In the figure, the
posed cone of the gradients of candidateC and voteri is pictured, and the conditio
requires that the gradient of the voter paired withi must lie in this opposed cone.
other words, voteri must be “blocked” by some voterπ(i), in that any alternative tha
candidateC and voteri prefer tox̂ must make voterπ(i) worse off. Thus, this condition
is equivalent to requiring that̂x be Pareto optimal relative to votersi andπ(i) and can-
didateC. It is easy to see that this sufficient condition is satisfied by the two exam

presented above, and it is satisfied at the core point, if it exists.
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Fig. 3. Opposed cone of∇uC(x̂) and∇ui(x̂).

The proof of the proposition is as follows. Suppose thatxA = xB = x̂ is not an equi-
librium. Then, asn is odd, there must be an alternativey that is majority-preferred tôx
such thatuC(y) > uC(x̂) for some candidateC. If we denote the vector from̂x to y by q,
then by strict quasi-concavity, any alternativez a sufficiently small distance from̂x in di-
rectionq must also satisfyzP x̂ anduC(z) > uC(x̂). Clearly, voterk prefersx̂ to z, and
thus(n + 1)/2 of the remainingn − 1 voters must preferz to x̂. This implies that for any
pairingπ on N \ {k}, there must be a pair of voters,j andπ(j), that both preferz to x̂.
But thenx̂ is not Pareto optimal relative to votersj andπ(j) and candidateC, as required
by the condition of the proposition.

While Proposition 1 gives conditions sufficient for existence of equilibria, it is pos
that some of these equilibria may be fragile, in the sense that arbitrarily small perturb
of voter or candidate preferences may lead to nonexistence. However, if we stre
the condition of Proposition 1 so that blocking gradients are required to be in the “o
opposed cone (whereα andβ are restricted to be strictly positive), then it is clear that
equilibria established in the proposition will be robust to such perturbations.

The proposition requires that condition (2) holds for both candidates. That is, the
ent of the voter paired withi must lie in the intersection of the opposed cones ofi andA

andi andB. Now, it is easy to see that if the gradient of voteri is between the gradients o
the two candidates, then the opposed cone ofi andA intersects with the opposed cone oi
andB in exactly one direction, namely,−∇ui(x̂). In other words, the sufficient conditio
requires that voters whose gradients lie between the gradients of the candidates m
paired with voters whose gradients point in exactly the opposite direction. As we sh
the next section, this condition on voter gradients in this region is actually necessa
nonaligned equilibria to exist.

4. Necessary conditions

In this section, we present necessary conditions for the existence of particular

of equilibria in our model. By doing so, we shed light on whether such equilibria are
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Fig. 4. A “satiated” equilibrium without policy coincidence.

likely to exist or not for a typical choice of preferences. We first establish that, in e
nonsatiated equilibrium, the candidates must choose the same platform, a pheno
termed “policy coincidence.” Thus, if neither candidate is at her optimal position,
the incentives of electoral competition lead to a unique policy choice for the voters,
though the candidates might have starkly different policy preferences.

Theorem 1. Assume (A1) and (A2). If (xA, xB) is a nonsatiated equilibrium, then xA = xB .

As a consequence of this theorem, inany equilibrium of the candidate positioning gam
either one (or both) of the candidates is at her ideal point or they choose identical pos
It is easy to find examples of the first sort of “satiated” equilibria that violate policy
incidence. Fig. 4 gives an example of such an equilibrium with one dimension an
voter with Euclidean preferences. Here, candidateA’s ideal point,x̃A, is to the left of can-
didateB ’s, which is to the left of the voter’s ideal point,x̃1. If candidateB ’s platform,xB ,
is at her ideal point,̃xB , and if candidateA locates anywhere to the left ofB, then neither
candidate can deviate profitably.11 In this example of a satiated equilibrium, one candid
happens to lose with probability one; in fact, this can be shown to be a general fea
satiated equilibria. Proposition 2, in the next section, gives a condition that rules o
possibility of such equilibria whenn is odd. In the one-dimensional case, the conditio
simply that the candidates’ ideal points lie on opposite sides of the median ideal poi

We can say considerably more about equilibria in which the gradients of the c
dates do not point in the same direction. We establish that, when the number of
is odd, the candidates must locate at some voter’s ideal point, sayx̂. Moreover, a lim-
ited version of Plott’s (1967) symmetry condition must hold: it must be possible to
voters whose gradients are between the candidates’ gradients with voters who
dients point in exactly opposite directions. For vectorsp,q ∈ R

d , we use the notatio
cone◦{p,q} = {αp + βq | α,β > 0} to denote the open cone generated byp andq.

Theorem 2. Assume n is odd, and assume (A1). If (xA, xB) is a nonaligned equilibrium,
then xA = xB = x̂, where ∇uk(x̂) = 0 for some voter k. If ∇uA(x̂) and ∇uB(x̂) are linearly
independent, then for every p ∈ cone◦{∇uA(x̂),∇uB(x̂)},∣∣{i ∈ N | ∃α > 0: ∇ui(x̂) = αp

}∣∣ = ∣∣{i ∈ N | ∃α < 0: ∇ui(x̂) = αp
}∣∣. (3)

If ∇uA(x̂) and ∇uB(x̂) are linearly dependent, then Eq. (3) holds for all p ∈ R
d .

In this theorem, Eq. (3) is the formal expression requiring voters to be matched
other voters with opposing gradients. This requirement is limited, in that it need only

11 A similar example withn even can be constructed simply by placing a second voter’s ideal point to the

of voter 1’s.



500 J. Duggan, M. Fey / Games and Economic Behavior 51 (2005) 490–522

can-
posite
se nei-
dients,

y
erned
w that
ks
s. This

the
ditions,
core

d not

voters’
thout
y of the
y

Theo-
point
ed, but
efore,
Fig. 5. The symmetry condition of Theorem 2.

for voters with gradients in a prescribed region. This is depicted in Fig. 5. Here, the
didates locate at voter 5’s ideal point. The gradients of voters 1 and 3 point in op
directions. The gradients of voters 2 and 4 are not matched in this way, but, becau
ther gradient (or its opposite) lies in the open cone generated by the candidates’ gra
the symmetry condition of the theorem is preserved.12

By the first part of the theorem, the candidates must locate at some ideal point, sax̂, in
a nonaligned equilibrium. The proof of the remainder of the theorem is largely conc
with the case in which the candidates’ gradients are linearly independent. We sho
the set of platforms weakly majority-preferred tox̂, the region described by hash mar
in Fig. 6, must lie below the hyperplanes defined by the gradients of the candidate
implies a kind of “kink” in the boundary of that set, one that is not possible when
core is nonempty and the preferences of the voters are Euclidean. Under those con
the majority preference relation would coincide with the preference relation of the
voter, so the majority indifference curves would simply be circles and obviously coul
have kinks. Thus, in Calvert’s (1985) model, the only platform weakly preferred tox̂ is x̂

itself, i.e., the candidates must locate at the core point, and then symmetry of the
gradients follows from Plott’s (1967) theorem. In the proof of Theorem 2, we show, wi
assuming Euclidean preferences or the existence of a core point, that the boundar
set of platforms weakly majority-preferred tôx is “kinked enough” only if the symmetr
condition of the theorem holds.

Figure 7 demonstrates that the necessary conditions for equilibrium presented in
rem 2 are not sufficient. In particular, if the candidates are located at voter 3’s ideal
with candidate gradients as depicted, then the conditions of the theorem are satisfi
candidateA can move to a more desirable platform preferred by voters 1 and 2. Ther
this choice of candidate positions is not an equilibrium.
12 In fact, the condition of Proposition 1 is satisfied, so that it is indeed an equilibrium to locate atx̂.
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Fig. 6. A kink in the boundary of the majority-preferred-to set.

Fig. 7. Disequilibrium satisfying the necessary condition.

Theorem 2 applies only to nonaligned equilibria. That it cannot be applied to “ali
equilibria,” even those in which the candidates adopt the same platform, can be s
modifying the example of Fig. 4. Suppose both candidates have the same platform,x̂,
anywhere between candidateB ’s ideal point,x̃B , and the voter’s,̃x1. This is a nonsatiated
aligned equilibrium: for each candidate, the only platforms majority-preferred tox̂ are less
desirable than̂x. Clearly, the candidates are not located at the ideal point of any vote
the symmetry condition of the theorem is violated. Proposition 3, in the next section,
a condition under which no such aligned equilibria will exist. In the one-dimensional
the condition there is simply that the candidates’ ideal points lie on opposite sides
median.

There is a limitation of Theorem 2: the symmetry condition, Eq. (3), applies only to
ers with gradients in the plane defined by the candidates’ gradients. Thus, in more th
dimensions, this condition only applies to voters with gradients that are precisely co-

with the gradients of the candidates, an event that generically never occurs. In such multi-
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dimensional spaces, then, a direct application of Theorem 2 yields a negligible rest
on voter’s preferences. However, we can use this theorem to prove the next, which im
a severe restriction on voters with gradients that arenot co-planar with the candidate
gradients. Precisely, Theorem 3 says that, given a nonaligned equilibrium(x̂, x̂), for every
voter whose gradient does not lie on the plane spanned by the candidates’ gradient
must be a voter whose gradient points in exactly the opposite direction. Alternativ
we delete the voters whose gradients lie on the plane spanned by the candidates’ gr
but leaving thex̂ voter, then the platform̂x must be a core point of the resulting major
preference relation.

Theorem 3. Assume n is odd, and assume (A1). If (xA, xB) is a nonaligned equilibrium,
then xA = xB = x̂, where ∇uk(x̂) = 0 for some voter k. Moreover, for every p ∈ R

d such
that p /∈ span{∇uA(x̂),∇uB(x̂)},∣∣{i ∈ N | ∃α > 0: ∇ui(x̂) = αp

}∣∣ = ∣∣{i ∈ N | ∃α < 0: ∇ui(x̂) = αp
}∣∣.

As with Theorem 2, Theorem 3 applies only to nonaligned equilibria and it cannot b
tended to aligned equilibria, even those in which the candidates adopt the same plat13

An example is given in Fig. 8. Here, we assume three voters and Euclidean prefe
over a multidimensional policy space, with the ideal points of the voters arranged
isosceles triangle, voter 1’s ideal point at the apex. CandidateB ’s ideal point is above tha
and candidateA’s ideal point is above that, both coplanar with the voters’ ideal points
this example, it is an equilibrium for both candidates to adopt the same platform any
between voter 1’s and candidateB ’s ideal points. One possible location is indicated in
figure. Clearly, in this equilibrium the candidates locate at no voter’s ideal point. More
the span of the candidate’s gradients is the line through their ideal points, and neithe

Fig. 8. A nonsatiated aligned equilibrium violating the conditions of Theorem 3.

13 To be clear, Theorem 2 limits voters’ gradients that are in the open cone of (and thus co-planar with) t
didates’ gradients, and Theorem 3 limits the gradients that are not co-planar with the gradients of the can

The latter theorem is therefore nonvacuous only in more than two dimensions.
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ce, but
2’s nor voter 3’s gradients can be opposed to voter 1’s in the required way, violatin
symmetry condition of the theorem.

The following corollary of Theorem 3 gives a general condition on the gradients o
ers under which nonaligned equilibria fail to exist. The condition holds quite widely w
the dimension of the policy space is at least three. It suggests that, for “most” spe
tions of differentiable, strictly quasi-concave voter utility functions, we would not ex
nonaligned equilibria to exist—and that, if existence did obtain, it would be sensiti
even slight variations of voter or candidate preferences.

Corollary 1. Assume n is odd, and assume (A1). Assume that for all voters i, the dimension
of span{∇uj (x̃i) | j ∈ N} is at least three. And assume that, for all voters j and k, ∇uj (x̃i)

and ∇uk(x̃i) are linearly independent. Then there does not exist a nonaligned equilibrium.

The proof the corollary is simple. Theorem 3 tells us that, given a nonali
equilibrium (xA, xB), the candidates must locate at the ideal point of some v
say i. Since span{∇uA(x̃i),∇uB(x̃i)} is a two-dimensional space and the dimens
of span{∇uj (x̃i) | j ∈ N} is at least three, there is some voterj such that∇uj (x̃i) /∈
span{∇uA(x̃i),∇uB(x̃i)}. But, under the assumptions of the corollary, there is no v
whose gradient points in the direction opposite that of voterj ’s, a contradiction.

Thus, withn odd, the “typical” case is that no nonaligned equilibria exist. An e
stronger result holds ifn is even: nonaligned equilibria never exist. Existence in this c
hinges on the possibility that the candidates’ gradients point in exactly the same dir
in equilibrium (as in Fig. 8, if we add a voter below voter 1), or, as shown in the
section, both candidates locate at their own ideal point.

Theorem 4. Assume n is even, and assume (A1) and (A2). There does not exist a non-
aligned equilibrium.

In the proof of the theorem, we first verify that, as in Theorem 2, the candidates w
have to locate at the ideal point, sayx̂, of some voter, sayi. Deleting that voter fromN ,
we are left with an electorate,N ′, with an odd number of voters. Furthermore, there is
voter inN ′ with ideal pointx̂, violating a necessary condition in Theorem 2 for equilibri
in the reduced model. Thus, one of the candidates can move to a better platform,x′,
preferred by a majority of voters inN ′ to x̂. Adding i back to the electorate,x′ still weakly
beatsx̂. Under condition (A2), this still gives the candidate a profitable deviation, an
conclude that nonaligned equilibria cannot exist whenn is even.

5. Additional types of equilibria

In the preceding section, we gave several results for nonsatiated and nonaligne
libria. But what about equilibria of this game that are not nonaligned or nonsatiated
example, Theorem 1 establishes that nonsatiated equilibria exhibit policy coinciden

as the example in Fig. 4 demonstrates, there can exist equilibria that are not nonsatiated
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and that do not exhibit policy coincidence. In this case, then, without a more detailed
librium selection argument, we cannot state unequivocally that policy coincidence w
will not occur. To deal with these issues, in this section we provide conditions under
satiated and aligned equilibria will not exist. Specifically, we present two results. Th
gives a sufficient condition under which all equilibria must be nonsatiated, and the s
gives stronger conditions under which all equilibria must be nonaligned.

Our first result is Proposition 2. It uses the condition that, given either candidate’s
point, there exists a majority-preferred platform that the other candidate also prefer
extends the condition, frequently assumed in one-dimensional models, that the cand
ideal points are on opposite sides of the median (or medians, whenn is even). We discus
the plausibility of a stronger condition at the end of the section.

Proposition 2. Assume (A1) and (A2). Assume that there exists platforms x, y ∈ X such
that xP x̃A and uB(x) > uB(x̃A) and that yPxB and uA(y) > uA(x̃B). If (xA, xB) is an
interior equilibrium, then either it is nonsatiated or: n is even and xA = x̃A and xB = x̃B .

Returning to the issue discussed at the beginning of this section, this propositio
Theorem 1 imply that policy coincidence must hold whenn is odd and the condition give
in the proposition holds. Obviously, the example in Fig. 4 does not satisfy this cond
as both candidates’ ideal points are to the left of the voter’s ideal point.

Whenn is even, Proposition 2 leaves open the possibility of a satiated equilibriu
long as both candidates locate at their ideal points. This possibility is depicted in F
where the ideal points of the two voters are between those of the candidates. It
to see that the condition of Proposition 2 is satisfied: the ideal point of voter 1,x̃1, is
preferred tox̃A by both voters and by candidateB; similarly, x̃2 is preferred tox̃B by the
voters and by candidateA. Note that there exist open intervalsY andZ aroundx̃A andx̃B ,
respectively, such that every platform inY is majority-indifferent to every platform inZ.
Thus, because there are no small moves for either candidate to platforms that will b
opponent, our argument for Theorem 1 (in Appendix A) that one candidate will ha
profitable deviation does not go through. Indeed, there is no compelling reason why
the candidates must have a profitable deviation in this situation—that will depend o
exact specification of the candidates’ utility functions.

The next proposition gives a condition, strengthening that of Proposition 2, under
all equilibria are nonaligned. Once again, the condition extends the familiar one from
dimensional models that the candidates’ ideal points are on opposite sides of the m
We will say that an interior platformx satisfies thealignment condition if α∇uA(x) =
β∇uB(x) for someα,β � 0, at least one nonzero.
Fig. 9. A satiated equilibrium withn even, as in Proposition 2.
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Proposition 3. Assume (A1) and (A2). Assume that, for each x ∈ X satisfying the align-
ment condition, there exists a platform y ∈ X such that yPx and, for some candidate C,
uC(y) > uC(x). If (xA, xB) is a nonsatiated equilibrium, then it is nonaligned.

The proof is trivial and omitted. To see that the condition in this proposition is in
stronger than that of Proposition 2, setx = x̃A; then the condition of Proposition 3 yield
C andy such thatuC(y) > uC(x); and then, of course, we must haveC = B, fulfilling the
condition of Proposition 2. Therefore, whenn is odd,all equilibria are nonaligned unde
the condition of Proposition 3.

The condition of Proposition 3 is not completely transparent, and so it is of int
to understand when it (and therefore the condition of Proposition 2) might hold. A
illustration, we give a sufficient condition for the antecedent condition in Proposition
apply. In doing so, we establish that if preferences are “close” to having a core poin
all nonsatiated equilibria will be nonaligned and thus the stringent symmetry conditio
Theorem 3 must be satisfied.

To begin, suppose thatd � 2, thatn is odd, and that voter and candidate preferen
are Euclidean. LetY ⊆ X denote theyolk, the smallest closed ball intersecting all med
hyperplanes (McKelvey, 1986). Thus, if the hyperplane

Hu,v = {
z ∈ R

d | 2z · (u − v) = (u + v) · (u − v)
}

bisecting two platforms,u andv, does not intersectY , then majority indifference betwee
u andv cannot hold. WhetheruPv or vPu depends on whetherY is on theu-side orv-side
of Hu,v . Suppose further that there existst ∈ R

d such that, for allw ∈ Y ,

t · x̃A < t · w < t · x̃B .

For simplicity, we normalizet so that‖t‖ = 1. Note that, sinceY is compact, the minimum
value oft · w overY , denoted mint · Y , exists andt · x̃A < mint · Y . Likewise, maxt · Y <

t · x̃B . Also note the implication thatt · (x̃B − x̃A) > 0. Obviously, this situation, depicte
in Fig. 10, is more plausible when the yolk is small, i.e., when the core is “close” to b
Fig. 10. The yolk “separating” the candidates’ ideal points.
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nonempty. When the core is nonempty, it is equal to the yolk and the above condition
as long as the candidates’ ideal points are not colinear with (and to the same side
core point.

When such at exists, the assumption of Proposition 3 holds. To see this, note that t
of platforms that satisfy the alignment condition must lie on the line span{x̃A − x̃B} + x̃A

spanned by the candidates’ ideal points, but not strictly between them. Lettingx be such a
platform, that means

x = αx̃A + (1− α)x̃B = x̃B + α(x̃A − x̃B)

for α � 1 orα � −1. If α � 1, then

t · x = t · x̃B + t · (x̃A − x̃B) + (1− α)t · (x̃B − x̃A)

= t · x̃A + (1− α)t · (x̃B − x̃A)

� t · x̃A.

Similarly, t · x � t · x̃B if α � −1. Suppose without loss of generality thatα � 1, as in
Fig. 10. Definexε = x + ε(x̃B − x̃A), and pickε > 0 small enough thatt · xε < mint · Y .
With t · x � t · x̃A < mint · Y , this implies that the bisecting hyperplaneHx,xε does not
intersect the yolk. And since the yolk is on thexε -side of the hyperplane, we havexεPx.
Finally, note that

uB(xε) − uB(x) = ε(2α − ε)(x̃B − x̃A) · (x̃B − x̃A),

which is positive for small enoughε > 0, as required.

6. Local robustness of nonexistence

Our analysis has so far been confined to environments in which voters vote in
terministic fashion (with only indifferent voters possibly randomizing between the ca
dates) and in which candidates are motivated solely by policy preferences. This mo
of course, a stylized representation of real-world elections, and it is best viewed as a
mark, rather than taken literally. It is therefore important to consider whether our re
on equilibrium nonexistence persist when the model is subject to perturbations, of
we consider two types: we allow for uncertainty in voting behavior, as in the literatu
probabilistic voting, and we allow for more general candidate incentives.

The introduction of noise into voting behavior alters the structure of the electoral g
smoothing the candidates’ payoffs and eliminating discontinuities present in the dete
istic model. Nonconvexities in the candidates’ payoffs may remain, however, and exi
of (pure strategy) equilibria is not guaranteed. Indeed, we show that when equilibr
to exist in our benchmark model, as is often the case, equilibria will also fail to ex
probabilistic voting models “close” to the benchmark. This remains true even if we
the candidates a small positive benefit from holding office, even if that benefit can
with the platforms of the candidates. Thus, adding a small amount of randomnes
voter behavior and perturbing the incentives of the candidates will not solve the non

ence problem of Corollary 1 and Theorem 4. An added insight from the result is that it
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is the nonconvexities—not discontinuities in candidate payoffs—that drive the probl
nonexistence in the benchmark model.

To extend our analysis, we imbed our model in a spaceΛ, where each modelλ ∈ Λ

corresponds to a functionP(x, y|λ), which represents candidateA’s probability of win-
ning, and functionswA(x, y|λ) andwB(x, yλ), which represent any benefits of winning
the candidates. We assume these functions take non-negative values, but we do no
continuity or any other restrictions. These benefits could capture the prestige of h
office, or monetary rents due to salary or bribes, or the cooperation of interest gro
party members. More generally,wA(x, y|λ) could be interpreted as reflecting the pref
ences of constituency groups that the office holder, as a representative, may feel ob
to serve. WhenA chooses platformx andB chooses platformy in modelλ, A’s expected
utility is then

UA(x, y|λ) = P(x, y|λ)
(
uA(x) + wA(x, y|λ)

) + (
1− P(x, y|λ)

)
uA(y)

(and similarly forB). The definitions of equilibrium for an arbitrary modelλ remain as
above. We designate the modelλ∗ as the model with pure policy motivation and determin
tic voting studied above, so thatP(x, y|λ∗) = P(x, y) andwA(x, y|λ∗) = wB(x, y|λ∗) = 0
for all x, y ∈ X, and we letP ∗ denote the strict majority preference relation inλ∗.

We say a sequence{λm} approximates λ∗ if

(i) for all x, y ∈ X, we have 0< P(x, y|λm) < 1,
(ii) wA(·|λm) → 0 andwB(·|λm) → 0 uniformly, and

(iii) for every x, y ∈ X such thatxP ∗y, there exist open neighborhoodsG of x andH of y

such thatP(·|λm) → 1 uniformly onG × H andP(·|λm) → 0 uniformly onH × G.

While condition (i) formalizes the idea that voting is indeed probabilistic, condition (ii
quires that benefits of winning become negligible in the limit, as they are in the modλ∗.
Condition (iii) stipulates that the candidates’ probability of winning satisfies a certain
tinuity condition. In contrast to (ii), uniform convergence is required only in the case
majority strict preference, and then only in an open set around the candidates’ platfo14

Though technical in nature, the condition is weak: we show later in the context of th
most widely used models of probabilistic voting that our definition captures the intu
meaning of being “close” to deterministic.

The next proposition establishes, essentially, that if there is no equilibrium in the b
mark model, as we have shown is often the case, then there is an open set of
containingλ∗ in which equilibria fail to exist. For simplicity, we have chosen to phr
the result in terms of equilibria, rather than nonsatiated or nonaligned equilibria, b
logic of the proof holds fairly generally: by a similar proof, for example, we can s
that if there is no nonaligned equilibrium in the deterministic model, then there a

14 These restrictions are critical for the interpretation of our results, as a sequence of continuous fu
cannot converge uniformly to a discontinuous function. Without them, since the probability of winning fun
is discontinuous in modelλ∗, we would not be able to approximateλ∗ with a sequence of continuous probabil

of winning functions.
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nonaligned equilibria in nearby probabilistic voting models.15 Likewise, for simplicity we
restrict attention to the case of an odd number of voters.16

Theorem 5. Assume n is odd and X is compact. Let {λm} approximate λ∗. If there is no
equilibrium in λ∗, then, for m high enough, there is no equilibrium in λm.

Put contrapositively, the proof of Theorem 5 establishes the closed graph prope
the equilibrium correspondence at the benchmark model: the limit point of equilib
models close toλ∗ must be an equilibrium inλ∗. Ordinarily, this property of equilibrium
correspondences is to be expected. In our case, however, the limiting model is disc
ous, and then the conventional wisdom does not apply. We use the structure of ca
and voter utilities, along with some uniform convergence along the sequence of prob
tic voting models (which, as we see next, is quite natural), to prove the result. In
respects, Theorem 5 is similar to Corollary 8 from Banks and Duggan (2005), who
that, when the core is empty, equilibria in probabilistic voting models close to determi
do not exist.17

We have formulated the idea of “approximation” in abstract terms in order to ca
the intuitive meaning of “close” to the benchmark model. While conditions (i) and
are not controversial, condition (iii) is less transparent. Next, we establish that the
dition is permissive in one of the most commonly used probabilistic voting framew
which captures uncertainty about voters’ preferences for nonpolicy characteristics
candidates: in the additive bias model, the voters’ utilities from candidate platform
subject to random utility increments. We show that a sequence of additive bias mo
which voting behavior becomes arbitrarily close to deterministic, in intuitive terms,
necessarily satisfy our condition.

In the additive bias model, each voteri has policy preferences given byui , as in
Section 2. In addition, each voter’s utilities are modified by an additive utility shoc
each candidate. Without loss of generality, we normalize the shock for candidateA to
zero and consider only a “bias,” denotedβi , for candidateB. The bias termβi is sto-
chastic and independent of the other voters’ biases and the platforms of the cand
Given the candidates’ platforms and biasβi , we assume voteri votes for candidateB if
ui(xA) < ui(xB)+βi , votes for candidateA if this inequality is reversed, and votes for ea
candidate with probability one half if equality holds. Here, a modelλ is identified with a
distribution functionFi(·|λ) for each voteri from which the voter’s bias term is drawn. W
assumeFi(·|λ) is continuous and strictly increasing for allλ. Thus, the probability voteri
votes for candidateA is

Pi(xA, xB |λ) = Fi

(
ui(xA) − ui(xB)|λ)

,

15 We would then need to add some technical conditions. We would require that utility functions have con
gradients, and we would restrict attention to sequences of equilibria that do not converge to a boundary
the policy space and such that the candidates’ gradients do not become arbitrarily close to aligned.
16 A similar result holds forn even, but the appropriate definition of approximation becomes somewhat
involved.
17 Banks and Duggan (2005) restrict attention to a specific model of probabilistic voting, the “additiv

model,” and they consider expected plurality maximizing candidates.
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and the probability thatA wins is

P(xA,xB |λ) =
∑

C∈M

( ∏
i∈C

Pi(xA, xB |λ)

)( ∏
i /∈C

(1− Pi(xA, xB |λ)

)
,

whereM denotes the subsets of voters with greater thann/2 members.

Proposition 4. Let {λm} be a sequence of additive bias models such that, for each voter i,
the sequence Fi(·|λm) converges weak* to the point mass on zero.18 Then {λm} satisfies
condition (iii) in the definition of approximation.

We also illustrate the role of condition (iii) in another common probabilistic vo
framework, which captures uncertainty about voters’ policy preferences: in the ra
preference model, policy preferences of voters are themselves random variables. Ag
show that condition (iii) is consistent with the intuitive meaning of “close” to determin
voting.

In the random preference model, each voter’s policy preferences are given byui(x|θ),
whereθ is a preference parameter lying in a metric spaceΘ , and whereui :X × Θ → �
is jointly continuous. Here, a modelλ is identified with a Borel probability measure ov
Θ , which in turn generates probabilistic voter preferences. For each voteri, define

Pi(xA, xB |λ) = λ
({

θ | ui(xA|θ) > ui(xB |θ)
}) + 1

2
λ
({

θ | ui(xA|θ) = ui(xB |θ)
})

,

and define candidateA’s probability of winning as we have above.

Proposition 5. Let {λm} be a sequence of random preference models such that λm con-
verges to λ∗ in the weak* topology, where λ∗ puts probability one on some θ∗ ∈ Θ .19 Then
{λm} satisfies condition (iii) in the definition of approximation.

Condition (iii) captures the notion of “close” to deterministic voting in other fram
works as well, extending the scope of Theorem 5. For example, in the quantal res
voting model, considered by McKelvey and Patty (2003), when the distribution on vo
error terms converges to zero, voting behavior approximates voting in our determ
model, and again condition (iii) is satisfied. For another example, if each voter obs
the candidates’ platforms with some noise (and votes as though the observed pla
were correct), then condition (iii) is satisfied as the noise goes to zero.20

7. Mixed motivations

Theorem 5 of the previous section demonstrated a neighborhood containing o
ginal model in which our negative results hold: despite small perturbations of the m

18 That is, for every bounded, continuousφ :R → R, the integrals
∫

φ(z)Fi(dz|λm) converge toφ(0).
19 That is, for every bounded, continuousφ :Θ → R, the integrals

∫
φ(θ)λm(dθ) converge toφ(θ∗).

20 This claim does not hold if the voters are strategic, as in the model of Lagerlöf (2003). There, becaus

date deviations are unobservable, candidates must locate at their ideal points in equilibrium.
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in a rich variety of directions (allowing for probabilistic voting and office benefits o
quite arbitrary form), equilibrium nonexistence carries over. Here, we introduce a d
of office-motivation in the simplest way possible, in the form of a fixed, positive bene
winning. We letw > 0 denote the benefit of winning, in which case candidateA’s expected
utility is given by

UA(x, y) = P(x, y)
(
uA(x) + w

) + (
1− P(x, y)

)
uA(y). (4)

As a consequence of our results for policy-motivated candidates, this functional form
mits a global characterization of nonsatiated equilibria. For simplicity, we assum
number of voters is odd.

Proposition 6. Assume n is odd, preferences are given by Eq. (4), and (A1) holds. Then
(xA, xB) is a nonsatiated equilibrium if and only if xA = xB = x∗, where x∗ is a core point.

The proof is straightforward. Clearly, it is an equilibrium for both candidates to lo
at the core point. To prove the converse, the arguments of Theorem 1 can be mod
obtain the result that, in a nonsatiated equilibrium, the candidates must adopt the
platform, sayx̂. To show thatx̂ must be a core point, suppose not. Then there is somy

majority-preferred to it. That platform may be a worse policy outcome from a candid
point of view, but every platform between̂x and y is also majority-preferred tôx. By
picking such a platform close enough tox̂, the candidate can make the disutility of t
policy change less thanw, the utility from winning, a contradiction. Thus, in this mixe
model, an equilibrium must exhibit the symmetry of the voters’ gradients from P
(1967) theorem, and we again conclude that equilibria will rarely exist. Given the p
coincidence result of Theorem 1, the argument for this case is drastically simplified
discontinuity implied by the fixed rewardw. Our results for pure policy-motivation show
however, that the negative conclusion is not merely an artifact of this discontinuity.

In the n even case, no strong symmetry condition is required of core points, and
equilibria with purely office-motivated candidates need not be rare or fragile. Under m
motivations, however, this observation no longer holds. In particular, if we impose
additional structure onP(x, y) in the case of majority indifference, such as the assump
that all ties are broken equiprobably, then we can prove that no nonaligned equilibria
The argument is similar to the proof of Theorem 4. Thus, the robustness of equ
possible with office-motivation does not extend to the mixed case, at least when cons
nonaligned equilibria.

8. Conclusion

Although our conclusions are negative, they nevertheless have important conseq
for formal models of politics. Our results illustrate how the findings of the standard s
model carry over to a setting with a natural alternative assumption about candidate
ences. Indeed, the equilibrium existence problem runs much deeper than previous
ized: even after we remove many of the discontinuities created by pure office-moti

in multiple dimensions, policy-motivated candidates typically have a sufficient number of
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deviations to break any potential equilibrium. The nonexistence problem persists e
we smooth the candidates’ payoffs by adding a small amount of uncertainty abou
ing behavior, demonstrating the role of nonconvexities in the failure of existence
results emphasize the importance of modeling elections in richer detail, whence equ
may emerge from additional structure, whether institutional (parties, interest group
media), informational (through reputational concerns), or dynamic (within or across
tions). As these modeling approaches will likely include a component of policy-motiva
the techniques developed in this paper may inform future research by shedding light
intricacies of policy-oriented incentives.
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Appendix A. Proofs of results

Many of the arguments of this appendix will use the following standard lemma, w
follows in a straightforward way from the strict quasi-concavity of the voters’ utility fu
tions.

Lemma 1. If xRy then, for all α ∈ (0,1), αx + (1 − α)yRy; if n is odd, moreover, then
αx + (1− α)yPy.

We now state and prove the results of Sections 3 through 6.

Theorem 1. Assume (A1) and (A2). If (xA, xB) is a nonsatiated equilibrium, then xA = xB .

Proof. Suppose(xA, xB) is a nonsatiated equilibrium and thatxA �= xB . Without loss of
generality, supposexARxB . By (A1), this implies thatP(xA,xB) > 0. We first deal with
the case ofn odd. We begin by establishing thatuA(xA) > uA(xB). If uA(xB) > uA(xA),
then, becauseP(xA,xB) > 0,A can gain by moving toxB . This contradicts the suppositio
that(xA, xB) is an equilibrium. IfuA(xA) = uA(xB), thenUA(xA,xB) = uA(xA). Let x′ =
(1/2)xA + (1/2)xB , so by Lemma 1,x′PxB . Thus (A1) implies thatUA(x′, xB) = uA(x′).
SinceuA is strictly quasi-concave, we haveuA(x′) > uA(xA) = uA(xB). So deviating to
x′ is profitable forA, a contradiction. Therefore, it must be thatuA(xA) > uA(xB).

Next, we rule out the casexAIxB . In this case, (A1) requires thatP(xA,xB) < 1. Let
{αm} be a sequence increasing to one, and definexm = αmxA + (1−αm)xB . By Lemma 1,

xmPxB for all m, and thusUA(xm,xB) = uA(xm). Asxm → xA anduA(xA) > uA(xB), we



512 J. Duggan, M. Fey / Games and Economic Behavior 51 (2005) 490–522

t
at

that

,

haveUA(xm,xB) > UA(xA,xB) for large enoughm, a contradiction. Therefore,xAPxB

must hold.
By continuity of theui ’s, there is an open setY ⊆ R

d containingxA such that, for
all x ∈ X ∩ Y , xPxB . Since(xA, xB) is nonsatiated,∇uA(xA) �= 0. Letting xε = xA +
ε∇uA(xA) for ε > 0, and choosingε close enough to zero, we havexε ∈ X becausexA is
interior toX, anduA(xε) > uA(xA) andxεPxB . Therefore,A can gain by deviating toxε ,
a contradiction. SoxA �= xB cannot hold.

We now deal with then even case, maintaining the supposition thatxARxB . Again, we
start by showing thatuA(xA) > uA(xB). The same argument as above rules outuA(xB) >

uA(xA). If uA(xA) = uA(xB), then, as above, letx′ = (1/2)xA + (1/2)xB , and note tha
uA(x′) > uA(xA) = uA(xB) = UA(xA,xB). In then even case, Lemma 1 implies only th
x′RxB . But (A1) still implies thatP(x′, xB) > 0 and soUA(x′, xB) > UA(xA,xB). SoA

can gain by deviating tox′. Therefore,uA(xA) > uA(xB) holds.
Once again, we next rule out the casexAIxB . In this case, by definition,nA(xA, xB) +

nI (xA, xB) � n/2. For sufficiently largem (with xm defined as above), thenA(xA, xB) vot-
ers who preferxA to xB will also preferxm to xB and thenI (xA, xB) indifferent voters will
strictly preferxm to xB , by strict quasi-concavity. Therefore, ifnA(xA, xB)+nI (xA, xB) >

n/2, deviating toxm results inA winning for sure, which is profitable forxm close enough
to xA. So it must be thatnA(xA, xB)+nI (xA, xB) = n/2 which impliesnB(xA, xB) = n/2.
If nA(xA, xB) < n/2, then assumption (A2) and the argument just given imply
P(xm,xB) > P (xA,xB) for sufficiently largem. So this is a profitable deviation forA.
If nA(xA, xB) = n/2, then continuity yields an open setY ⊆ R

d such that for allx ∈ X ∩Y

and all i ∈ N , ui(xA) > ui(xB) if and only if ui(x) > ui(xB). Defining xε as above
(A2) then requires thatP(xε, xB) = P(xA,xB), for sufficiently smallε. Therefore, since
(xA, xB) is nonsatiated,A can profitably deviate toxε . Therefore,xAPxB , and the final
contradiction follows as in then odd case. �
Theorem 2. Assume n is odd, and assume (A1). If (xA, xB) is a nonaligned equilibrium,
then xA = xB = x̂, where ∇uk(x̂) = 0 for some voter k. If ∇uA(x̂) and ∇uB(x̂) are linearly
independent, then for every p ∈ cone◦{∇uA(x̂),∇uB(x̂)}:∣∣{i ∈ N | ∃α > 0: ∇ui(x̂) = αp

}∣∣ = ∣∣{i ∈ N | ∃α < 0: ∇ui(x̂) = αp
}∣∣. (3)

If ∇uA(x̂) and ∇uB(x̂) are linearly dependent, then Eq. (3) holds for all p ∈ R
d .

Proof. Consider any nonaligned equilibrium(xA, xB). As every nonaligned equilibrium
is nonsatiated, we know from Theorem 1 thatxA = xB = x̂ for somex̂ ∈ X. To simplify
notation, letpA = ∇uA(x̂) andpB = ∇uB(x̂), and normalize both vectors so that‖pA‖ =
‖pB‖ = 1. We first claim that, for both candidatesC, we must havepC · y < pC · x̂ for all
platformsy �= x̂ such thatyRx̂. Otherwise, we would havepC · y � pC · x̂ for somey �= x̂

such thatyRx̂. It follows from Lemma 1 thatxα = αx̂ + (1 − α)yP x̂ for all α ∈ (0,1).
Also,pC ·xα � pC · x̂. Using the assumption thatx̂ is interior toX, we takeα close enough
to one thatxα is also interior toX. Since theui are continuous, there is an open setY ⊆ X

containingxα such that, for allz ∈ Y , zP x̂. Defining zβ = xα + βpC , we takeβ small
enough thatzβ ∈ Y , and thereforezβP x̂. By construction,
pC · (zβ − x̂) = pC · (xα − x̂) + βpC · pC > 0.
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Finally, definewγ = γ x̂+(1−γ )zβ . Again using Lemma 1,wγ P x̂ for all γ ∈ (0,1). Since
pC · (wγ − x̂) > 0, we may takeγ close enough to one thatuC(wγ ) > uC(x̂). But then, by
assumption (A1), we haveUA(wγ , x̂) > UA(x̂, x̂) or UB(x̂,wγ ) > UB(x̂, x̂) (depending
on the identity ofC), a contradiction. This establishes the claim.

If the gradients of the candidates are linearly dependent at the equilibrium platfox̂,
then, since they are nonzero and do not point in the same direction, it follows th
gradients point in opposite directions:αpA = pB for someα < 0. Take anyy �= x̂ such
that yRx. From the above claim,pA · y < pA · x̂ and pB · y < pB · x̂. But, since the
gradients of the candidates point in opposite directions, the latter yieldspA · y > pA · x̂,
a contradiction. Therefore,x̂Py for all y �= x̂, which impliesx̂ is a core point. Then Plott’
(1967) theorem implies that̂x is the ideal point of at least one voter and that the symm
condition holds for allp ∈ R

d .
Now consider the case in which the candidates’ gradients are linearly independe

suppose that, for all votersi, ∇ui(x̂) �= 0. Letp ∈ cone◦{pA,pB} be any vector satisfying
p = αpA + βpB for someα,β > 0. To deduce a contradiction, we will first find a vec
q ∈ R

d such thatp · q = 0, pA · q > 0, andpB · q < 0. Constructq as follows. SincepA

andpB are linearly independent, we havepA · p < ‖p‖. Let q bepA minus the projection
of pA onto the one-dimensional subspace spanned byp, i.e.,

q = pA − (pA · p)

(p · p)
p.

Then, sincepA · pA = 1 and(pA · p)/‖p‖ < 1, we havepA · q > 0. Furthermore,q ·
p = 0, implying pB · q = −(α/β)pA · q < 0. This gives us a vectorq with the desired
properties. In fact, there is an open setQ containingq such that, for alls ∈ Q, pA · s > 0
andpB · s < 0. BecauseN is finite and∇ui(x̂) �= 0 for all votersi, we may chooser ∈ Q

so thatr · ∇ui(x̂) �= 0 for all i. Therefore, since the voters are odd in number, either{
i ∈ N | r · ∇ui(x̂) > 0

}
or

{
i ∈ N | r · ∇ui(x̂) < 0

}
contains a majority of voters. Suppose, without loss of generality, that this is true fo
first group of voters, and definexε = x̂ + εr for ε > 0. Sincex̂ is interior toX, we may
chooseε small enough thatxε ∈ X. Furthermore, since∇ui(x̂) · (xε − x̂) > 0 for a majority
of voters,xεP x̂ for ε close enough to zero. And, sincepA · (xε − x̂) = εpA · r > 0, we have
uA(xε) > uA(x̂) for ε close enough to zero. But then there is a small enoughε such thatA
can profitably deviate toxε , a contradiction. Therefore,∇uk(x̂) = 0 for some voterk.

Now take anyp ∈ cone◦{pA,pB}, and suppose the symmetry condition of the theo
is violated. We will show that one of the candidates has a profitable deviation, a cont
tion. Letσ = 1 if∣∣{i ∈ N | ∃α > 0: ∇ui(x̂) = αp

}∣∣ >
∣∣{i ∈ N | ∃α < 0: ∇ui(x̂) = αp

}∣∣,
and letσ = −1 if the opposite inequality holds. As above, pickq ∈ R

d such thatp · q = 0,
pA · q > 0, andpB · q < 0. Let Q be an open set containingq on which the two strict
inequalities hold, and letQ′ = {s ∈ Q | p · s = 0} be the elements of that set ortho
onal to p. For r ∈ Q′, let O(r) = {s ∈ R

d | s · r = 0} denote the subspace orthogon
to r . We claim that

⋂
r∈Q′ O(r) = span{p}. To see this, let{b1, . . . , bd−1} be a basis for
the (d − 1)-dimensional subspace orthogonal top, and taker ∈ Q′ andε > 0 such that
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{r + εb1, . . . , r + εbd−1} is linearly independent and contained inQ′. By linear indepen-
dence, the dimension of

d−1⋂
h=1

O(r + εbh)

is one. Of course,p ∈ O(r) for all r ∈ Q′, establishing the claim.
Then, sinceN is finite andk is the only voter with ideal point̂x, chooser ∈ Q′ so that

r · ∇ui(x̂) = 0 if and only if i = k or, for someα �= 0, ∇ui(x̂) = αp. PartitionN \ {k} into
four sets,

I = {
i ∈ N | r · ∇ui(x̂) > 0

}
J = {

i ∈ N | r · ∇ui(x̂) < 0
}

K = {
i ∈ N | ∃α > 0: ∇ui(x̂) = σαp

}
L = {

i ∈ N | ∃α < 0: ∇ui(x̂) = σαp
}
,

and note that|K| > |L|. Without loss of generality, suppose|I | � |J |. SinceN \ {k}
containsn − 1 voters, we have|K| + |I | > (n − 1)/2, and this implies|K| + |I | �
(n + 1)/2 > n/2. We will user to construct a profitable deviation for candidateA. (If
the inequality|I | < |J | held instead, we would use−r to construct a profitable devia
tion for B.) Let xδ = x̂ + δr for δ > 0. Then∇ui(x̂) · (xδ − x̂) = δ∇ui(x̂) · r > 0 for all
i ∈ I , andpA · (xδ − x̂) = δpA · r > 0. Chooseδ close enough to zero thatxδ is interior
to X. Definexε = xδ + εσp for ε > 0, and chooseε close enough to zero that, for a
i ∈ I , ∇ui(x̂) · (xε − x̂) > 0; and small enough thatpA · (xε − x̂) > 0. Note that, since
∇ui(x̂) · r = 0 for all i ∈ K , we have

∇ui(x̂) · (xε − x̂) = δ∇ui(x̂) · r + ε∇ui(x̂) · σp > 0

for all i ∈ K . Picking ε close enough to zero, we havexε ∈ X and, for all i ∈ I ∪ K ,
ui(xε) > ui(x̂), which impliesxεP x̂. Furthermore,uA(xε) > uA(x̂). But then once agai
there is a small enoughε such thatA can profitably deviate toxε , a contradiction. There
fore, the symmetry condition of the theorem must hold.�
Theorem 3. Assume n is odd, and assume (A1). If (xA, xB) is a nonaligned equilibrium,
then xA = xB = x̂, where ∇uk(x̂) = 0 for some voter k. Moreover, for every p ∈ R

d such
that p /∈ span{∇uA(x̂),∇uB(x̂)},∣∣{i ∈ N | ∃α > 0: ∇ui(x̂) = αp

}∣∣ = ∣∣{i ∈ N | ∃α < 0: ∇ui(x̂) = αp
}∣∣.

Proof. Let (xA, xB) be a nonaligned equilibrium. From Theorem 2, it follows thatxA =
xB = x̂, where∇uk(x̂) = 0 for some voterk. As shown in the proof of Theorem 2,
the gradients of the candidates are linearly dependent, thenx̂ is a core point, and th
symmetry condition of the theorem is satisfied. We assume, then, that their gradie
linearly independent. As above, letpA = ∇uA(x̂) andpB = ∇uB(x̂) and normalize so
that‖pA‖ = ‖pB‖ = 1. Moreover, for every voteri, let pi = ∇ui(x̂). Givenq, r ∈ R

d , let

S(q, r) = span{q, r} denote the subspace spanned byq andr . We will takeq andr to be
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linearly independent, implying thatS(q, r) is a two-dimensional subspace, i.e., a pla
Givenp,q, r ∈ R

d , let

p(q, r) = projS(q,r) p

denote the projection ofp onto the span of{q, r}. Thus,pC(q, r) would be the projection
of candidateC ’s gradient onto that plane. Givenp ∈ R

d , let

O(p) = {
q ∈ R

d | q · p = 0
}

denote the subspace orthogonal top. Givenp ∈ R
d , let

S(p) = span{projO(p) pA,projO(p) pB}
denote the subspace spanned by the projections of the candidates’ gradients onto th
orthogonal top. Givenp,q ∈ R

d , let

q(p) = projS(p) q

denote the projection ofq onto that plane. Note that, since projO(p) pC ∈ S(p) andS(p) ⊆
O(p), we have

pC(p) = projS(p) pC = projO(p) pC,

sopC(p) is just the gradient of candidateC projected onto the subspace orthogonal top.
That, in turn, impliesS(pA(p),pB(p)) = S(p). Finally, note the further implication tha
q(p) = q(pA(p),pB(p)).

Let q, r ∈ R
d be vectors such that the gradients of the candidates, projected on

planeS(q, r), point in different directions, i.e., there do not existα,β � 0, at least one
nonzero, such thatαpA(q, r) = βpB(q, r). Clearly, if we restrict the candidates’ platform
to the two-dimensional spacêx + S(q, r), then the pair(x̂, x̂) is a nonaligned equilibrium
of the restricted game. Take anyp ∈ cone◦{pA(q, r),pB(q, r)} in the open cone generate
by the candidates’ projected gradients, so that the antecedent conditions of Theorem
in the restricted game. We claim that∣∣{i ∈ N | ∃α > 0: pi(q, r) = αp(q, r)

}∣∣ = ∣∣{i ∈ N | ∃α < 0: pi(q, r) = αp(q, r)
}∣∣.

If not, then, by Theorem 2, one of the candidates has a profitable deviation in the res
game, and therefore the candidate has a profitable deviation in the original game, a
diction. This establishes the claim.

To prove the theorem, take anyp /∈ span{pA,pB}, normalize so‖p‖ = 1, let

I = {
i ∈ N | ∃α > 0: ∇ui(x̂) = αp

}
J = {

i ∈ N | ∃α < 0: ∇ui(x̂) = αp
}
,

and suppose that|I | �= |J |. Without loss of generality, suppose|I | > |J |. In light of the
above claim, a contradiction is proved if we find vectorsq andr satisfying three conditions

(1) there do not existα,β � 0, at least one nonzero, such thatαpA(q, r) = βpB(q, r);

(2) p(q, r) ∈ cone◦{pA(q, r),pB(q, r)};
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(3) the symmetry condition of Theorem 2 in the game restricted tox̂ + S(q, r) is violated,
specifically,

I = {
i ∈ N | ∃α > 0: pi(q, r) = αp(q, r)

}
J = {

i ∈ N | ∃α < 0: pi(q, r) = αp(q, r)
}
.

We first consider the possibility of settingq = pA(p) andr = pB(p). As noted above
we would then havepA(q, r) = pA(p) andpB(q, r) = pB(p), so condition (1) is satisfie
if pA(p) andpB(p) are linearly independent, and we claim that is indeed the cas
show this, note that there exist unique, nonzeroα andβ such that

pA = pA(p) + αp and pB = pB(p) + βp.

If pA(p) andpB(p) were linearly dependent, then there would existγ andδ, at least one
nonzero, such thatγpA(p) + δpB(p) = 0. But then

γpA + δpB = (αγ + βδ)p,

which implies

p =
(

γ

αγ + βδ

)
pA +

(
δ

αγ + βδ

)
pB,

contradictingp /∈ span{pA,pB}. Therefore, the projected gradients of the candidates
linearly independent, as claimed.

We cannot simply setq = pA(p) andr = pB(p), however, because then we would ha

p(q, r) = p
(
pA(p),pB(p)

) = 0,

violating condition (2). Next, we establish the existence of a perturbation,s, of p such that
conditions (1) and (2) are both satisfied byq = pA(s) and r = pB(s). As noted above
p(s) = p(pA(s),pB(s)) and pC(s) = pC(pA(s),pB(s)) for each candidate, so cond
tion (2) can be written asp(s) ∈ cone◦{pA(s),pB(s)}. To construct the perturbation, l
sε = p − (ε/2)(pA + pB) for ε > 0. Note that, by linearity of the projection mapping a
sε(sε) = 0,

p(sε) = (
sε + (ε/2)pA + (ε/2)pB

)
(sε)

= (ε/2)pA(sε) + (ε/2)pB(sε).

Thus, p(sε) ∈ cone◦{pA(sε),pB(sε)}. Taking ε close enough to zero thatpA(sε) and
pB(sε) are linearly independent, we sets = sε for the desired perturbation.

We now wish to find perturbations,q andr , of pA(s) andpB(s) that satisfy condition (3
as well as (1) and (2). Let voterj satisfypj (s) = αp(s) for someα < 0 but pj �= αp.
That is, although the voter’s gradient appears to point in the−p direction when projected
the voter is not a member ofJ . Note the immediate implication thatpj andp are linearly
independent. We will find arbitrarily close vectorsv andw such thatpj (v,w) = α′p(v,w)
for noα′ < 0. Note that
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pj · pA(s) = (
pj − pj (s)

) · pA(s) + pj (s) · pA(s)

= pj (s) · pA(s)

= αp(s) · pA(s)

= α
(
p(s) − p

) · pA(s) + αp · pA(s)

= αp · pA(s),

where the second equality follows from(pj − pj (s)) · pA(s) = 0 and the fourth equality
from (p(s) − p) · pA(s) = 0 . Similarly,pj · pB(s) = αp · pB(s). These equalities imply

pj · pA(s)

pj · pB(s)
= p · pA(s)

p · pB(s)
.

Sincepj and p are linearly independent, there existst ∈ R
d such thatpj · t > 0 and

p · t < 0. Definevε = pA(s) + εt andwε = pB(s) − εt for ε > 0, and note that

pj · vε

pj · wε

>
p · vε

p · wε

.

Thus,pj (vε,wε) = α′p(vε,wε) for no α′ < 0. That is, the gradient of voterj , projected
onto the plane spanned byvε andwε , no longer appears to point in the−p direction. Since
conditions (1) and (2) hold on open sets aroundpA(s) andpB(s), we can chooseε small
enough that (1) and (2) hold forvε andwε . SinceN is finite, we can perturbvε andwε a
finite number of times, if needed, so that the only voters whose projected gradients p
the−p(vε,wε) direction are the members ofJ . By a similar argument, we can perturbvε

andwε so that the only voters whose projected gradients point in thep(vε,wε) direction
are the members ofI , fulfilling condition (3). �
Theorem 4. Assume n is even, and assume (A1) and (A2). There does not exist a non-
aligned equilibrium.

Proof. To prove the theorem, consider any nonaligned equilibrium(xA, xB). By Theo-
rem 1, the candidates must locate at the same platform, sayx̂ = xA = xB . We claim that
∇uk(x̂) = 0 for some voterk, for suppose not. As in the proof of Theorem 2, letr ∈ R

d be
such thatpA · r > 0 > pB · r and such thatr · ∇ui(x̂) = 0 for no voteri. Then either{

i ∈ N | r · ∇ui(x̂) > 0
}

or
{
i ∈ N | r · ∇ui(x̂) < 0

}
contains at least half of the voters. Suppose, without loss of generality, that this is tr
the first group of voters, and definexε = x̂ + εr for ε > 0. Sincex̂ is interior toX, we
may chooseε small enough thatxε ∈ X. Furthermore, since∇ui(x̂) > 0 for at least half
of the voters,xεRx̂ for ε close enough to zero. And, sincepA · (xε − x̂) = εpA · r > 0,
we haveuA(xε) > uA(x̂) for ε close enough to zero. But then, by assumption (A1),
haveUA(xε, x̂) > UA(x̂, x̂), asxεRx̂, so candidateA has an incentive to deviate. Th
contradiction implies that∇uk(x̂) = 0 for some voterk.

Now consider the model withk removed from the set of voters, i.e., let the set of vo

be N ′ = N \ {k}, now odd in number. Because we assumed the voters inN had distinct
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ideal points, there is no voter with ideal point atx̂ in the modified model (withk re-
moved). Following the proof of Theorem 2, one of the candidates, sayA, can move to
some platformx′ such thatuA(x′) > uA(x̂) andx′P ′x̂, whereP ′ represents the strict ma
jority preference relation in the modified model. That is, a majority of voters inN ′ strictly
preferx′ to x̂. Returning to the original model, that means that at least half of the v
in N strictly preferx′ to x̂. Therefore, we haveuA(x′) > uA(x̂) andx′Rx̂. As above, this
impliesUA(x′, x̂) > UA(x̂, x̂), a contradiction. �
Proposition 2. Assume (A1) and (A2). Assume that there exists platforms x, y ∈ X such
that xP x̃A and uB(x) > uB(x̃A) and that yPxB and uA(y) > uA(x̃B). If (xA, xB) is an
interior equilibrium, then either it is nonsatiated or: n is even and xA = x̃A and xB = x̃B .

Proof. It is sufficient to show that the only interior equilibria in which one candidate,
A, adopts her ideal point occur whenn is even andB also adopts her ideal point. W
first assumen is odd. Suppose(x̃A, xB) is an interior equilibrium. There are three cas
to check. First,x̃APxB . Letting xP x̃A anduB(x) > uB(x̃A), candidateB can deviate to
x and do strictly better, a contradiction. Second,x̃AIxB . As in the proof of Theorem 1
uB(xB) > uB(x̃A) andB can gain by moving toward̃xA a small amount, a contradictio
Third, xBP x̃A. By continuity of theui ’s, there is an open set of platforms containingxB

that are majority-preferred tõxA. So candidateB can gain by moving toward his ideal poi
by a small amount, unlessxB = x̃B . If this is true, then, just asB could in the first case
candidateA can gain by moving to a platformy such thatyPxB anduA(y) > uA(xB),
a contradiction.

If n is even, then we need to modify the above argument only in the second
(x̃AIxB ). Once again, the arguments given in the proof of Theorem 1 establish
uB(xB) > uB(x̃A) and eitherB can win outright by moving a small amount towardx̃A

or all such moves will maintain a tie. In the former case, a small enough move byB is
profitable. In the latter, by assumption (A2) candidateB can gain by moving toward hi
ideal point by a small amount, unlessxB = x̃B . So it must be the case that both candida
are at their ideal points.�
Theorem 5. Assume n is odd and X is compact. Let {λm} approximate λ∗. If there is no
equilibrium in λ∗, then, for m high enough, there is no equilibrium in λm.

Proof. If not, then we can extract a subsequence{(xm
A ,xm

B )} (still indexed bym, for
convenience) such that(xm

A ,xm
B ) is an equilibrium inλm and, for somexA,xB ∈ X,

(xm
A ,xm

B ) → (xA, xB). Note thatuA(xA) � uA(xB), for otherwiseuA(xA) < uA(xB). Then

UA

(
xm
B ,xm

B |λm
) − UA

(
xm
A ,xm

B |λm
)

= P
(
xm
A ,xm

B |λm
)(

uA

(
xm
B

) − uA

(
xm
A

)) + P
(
xm
B ,xm

B |λm
)
wA

(
xm
B ,xm

B |λm
)

− P
(
xm
A ,xm

B |λm
)
wA

(
xm
A ,xm

B |λm
)
,

which, using (i), is positive if and only if( ) ( )

uA xm

B − uA xm
A
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e,

th
his is
xed

ct

,

> P
(
xm
A ,xm

B |λm
)
wA

(
xm
A ,xm

B |λm
) − P(xm

B ,xm
B |λm)

P (xm
A ,xm

B |λm)
wA

(
xm
B ,xm

B |λm
)
.

By continuity, we have limuA(xm
B ) − uA(xm

A ) > 0, and sincewA converges uniformly to
zero by (ii), we see that the inequality must hold form high enough. But this, of cours
contradicts the assumption that(xm

A ,xm
B ) is a equilibrium.

We claim that eitherxAP ∗xB or xBP ∗xA or xA = xB . Otherwise, we havexA �= xB

andxAIxB . For eachm, given platforms(xm
A ,xm

B ), one of the candidates must win wi
probability less than or equal to one half. Assume without loss of generality that t
true of candidateA for infinitely many m, and consider the subsequence (still inde
by m) for which this holds. Thus,P(xm

A ,xm
B |λm) � 1/2 for all m. For anyε ∈ (0,1), define

xε
A = (1 − ε)xA + εxB , and note thatxε

AP ∗xB by Lemma 1. Using continuity and stri
quasi-concavity,uA(xA) � uA(xB) implies that there existsε ∈ (0,1) such that

uA(xε
A) >

1

2
uA(xA) + 1

2
uA(xB). (5)

By (iii), P(xε
A, ·|λm) converges to one uniformly on some open set containingxB , so we

haveP(xε
A, xm

B |λm) → 1. With (ii), it follows that

UA

(
xε
A, xm

B |λm
) → uA

(
xε
A

)
. (6)

On the other hand, sinceuA(xA) � uA(xB) and sinceA wins with probability no more
than one half inλm, we have for allδ > 0,

UA

(
xm
A ,xm

B |λm
) − δ � 1

2
uA

(
xm
A

) + 1

2
uA

(
xm
B

) + wA

(
xm
A ,xm

B |λm
)
,

for m high enough. This implies

limsupUA

(
xm
A ,xm

B |λm
)
� 1

2
uA(xA) + 1

2
uA(xB). (7)

Combining (5), (6), and (7), we haveUA(xε
A, xm

B |λm) > UA(xm
A ,xm

B |λm) for m high
enough, a contradiction.

We now claim that

UA

(
xm
A ,xm

B |λm
) → UA(xA,xB |λ∗). (8)

If xAP ∗xB , thenP(xA,xB |λ∗) = 1, and (ii) implies thatP(xm
A ,xm

B |λm) → 1. In this case
the claim holds. A symmetric argument addresses the case in whichxBP ∗xA. If xA = xB ,
then limuA(xm

A ) = lim uA(xm
B ) = uA(xA) = uA(xB), establishing the claim.

By assumption,(xA, xB) is not an equilibrium inλ∗, so some candidate, sayA, as a
profitable deviation, sayx′

A, i.e.,

UA(x′
A,xB |λ∗) > UA(xA,xB |λ∗). (9)

We will show that form high enough, this leads to a profitable deviation forA in λm,
a contradiction.

Note thatuA(x′
A) > uA(xB), for otherwise, we haveuA(x′

A) � uA(xB), which implies

UA(x′

A,xB |λ∗) � uA(xB). But then (9) implies thatuA(xA) < uA(xB), contradicting our
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earlier claim. Forε ∈ (0,1), definezε
A = (1 − ε)x′

A + εxB . By strict quasi-concavity, we
haveuA(zε

A) > uA(xB). By Lemma 1,P(zε
A, xB |λ∗) � P(x′

A,xB |λ∗). Then we have

lim inf
ε→0

UA

(
zε
A, xB |λ∗) (10)

= uA(xB) + lim inf
ε→0

P
(
zε
A, xB |λ∗)(uA

(
zε
A

) − uA(xB)
)

� uA(xB) + P(x′
A,xB |λ∗)

(
uA(x′

A) − uA(xB)
)

= UA(x′
A,xB |λ∗).

Using (9) and (10), chooseε small enough that

UA

(
zε
A, xB |λ∗) > UA(xA,xB |λ∗). (11)

Furthermore, use Lemma 1 to chooseε so thatzε
AP ∗xB or xBP ∗zε

A.
We claim that

lim inf
m→∞P

(
zε
A, xm

B |λm
)
� P

(
zε
A, xB |λ∗). (12)

If xBP ∗zε
A, thenP(zε

A, xB |λ∗) = 0, and the claim clearly holds. Ifzε
AP ∗xB , then, by (iii),

lim P(zε
A, xm

B |λm) = 1, establishing the claim.
Finally, we claim that

lim inf
m→∞UA

(
zε
A, xm

B |λm
)
� UA

(
zε
A, xB |λ∗). (13)

UsinguA(zε
A) > uA(xB), we apply (ii) and (12) to the expression

UA

(
zε
A, xm

B |λm
) = uA

(
xm
B

) + P
(
zε
A, xm

B |λm
)(

uA

(
zε
A

) − uA

(
xm
B

))
+ wA

(
zε
A, xm

B |λm
)
,

to deduce that

lim inf
m→∞UA

(
zε
A, xm

B |λm
)
� uA(xB) + P

(
zε
A, xB |λ∗)(uA

(
zε
A

) − uA(xB)
)

= UA

(
zε
A, xB |λ∗),

as claimed. Combining (8), (11), and (13), we find that, form high enough, we hav
UA(zε

A, xm
B |λm) > UA(xm

A ,xm
B |λm). This contradiction establishes the theorem.�

Proposition 4. Let {λm} be a sequence of additive bias models such that, for each voter i,
the sequence Fi(·|λm) converges weak* to the point mass on zero. Then {λm} satisfies
condition (iii) in the definition of approximation.

Proof. SupposexAP ∗xB , and let
 > 0 be such that, for each voteri with ui(xA) >

ui(xB), we have
 < ui(xA) − ui(xB). Let G andH be open neighborhoods aroundxA

and xB , respectively, such that, for ally ∈ G and all z ∈ H , 
 < ui(y) − ui(z). Since
Fi(·|λ∗) is continuous at
, it follows that Fi(
|λm) → Fi(
|λ∗) = 1. Therefore, for
everyi with ui(xA) > ui(xB), we have

lim
m→∞ inf

y∈G,z∈H
Fi

(
ui(y) − ui(z)|λm

)
� lim

m→∞Fi

(

|λm

) = 1,
and thenxAP ∗xB delivers the claim. �
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Proposition 5. Let {λm} be a sequence of random preference models such that λm con-
verges to λ∗ in the weak* topology, where λ∗ puts probability one on some θ∗ ∈ Θ . Then
{λm} satisfies condition (iii) in the definition of approximation.

Proof. SupposexAP ∗xB . Let C ⊆ N consist of the votersi such thatui(xA|θ∗) >

ui(xB |θ∗). By continuity, there exist open neighborhoodsG, H , andΘ̂ aroundxA, xB ,
andθ∗, respectively, such that for alli ∈ C, all y ∈ G, all z ∈ H , and allθ̂ ∈ Θ̂ , we have
ui(y|θ̂ ) > ui(z|θ̂ ). By weak* convergence,λm(Θ̂) → 1. Therefore, for everyi ∈ C, we
have

lim
m→∞ inf

y∈G,z∈H
Pi

(
y, z|λm

)
� lim

m→∞λm
(
Θ̂

) = 1,

and thenxAP ∗xB delivers the claim. �
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