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Abstract

In the multi-dimensional spatial model of elections with two policy-motivated candidates, we
prove that the candidates must adopt the same policy platform in equilibrium. Moreover, when the
number of voters is odd, if the gradients of the candidates’ utility functions point in different direc-
tions, then they must locate at some voter’s ideal point and a strong symmetry condition must be
satisfied: in particular, it must be possible to pair some voters so that their gradients point in exactly
opposite directions. If the number of dimensions is more than two, then our condition is knife-edge.
When the number of voters is even, the situation is worse: such equilibria never exist, regardless of
the dimensionality of the policy space.
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1. Introduction

What policy positions should candidates adopt in running for office? Will they choose
identical positions? Or will stable choices even exist? These questions have been the central
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focus of the literature on spatial modeling that dates back to the famous work of (Downs,
1957). Downs’ assumption that candidates care about winning and not about policies is
standard in this literature. With such office-motivated candidates, the main findings of the
spatial model of voting are well known. If the policy space is one dimensional, then the
Median Voter Theorem holds: candidates choose identical positions at the median of the
voters’ ideal points (Downs, 1957; Black, 1958). On the other hand, if the issue space is
multidimensional, then there is almost always no such unbeatable position, or “core point,”
and therefore equilibria almost never exist (Plott, 1967). In this paper, we reconsider the
basic questions posed by spatial theory under the alternative assumption that candidates
are policy-motivated.

A central paper in the literature that addresses these issues is Calvert (1985). Build-
ing on work by Wittman (1977, 1983), Calvert considers policy-motivated candidates and
shows that in one dimension, convergence to the median still holds, and more generally (in
any number of dimensions), if a core point exists, then the unique electoral equilibrium is
for both candidates to locate at the core point. However, the assumption that a core point
exists severely restricts the applicability of Calvert's result. As is well known, the exist-
ence of a core point entails a symmetry condition on voter preferences that is extremely
demanding in two or more dimensions: Plott (1967) shows that a core point must be the
ideal point of some voter, and the gradients of the other voters’ utility functions must be
paired so that, for every voter with a gradient pointing in one direction, there is exactly
one voter whose gradient points in the opposite directifs.a consequence, core points
almost always fail to exist, and when one does exist, it will be vulnerable to even slight
variations in preferencésCalvert’s result also assumes that voters have Euclidean pref-
erences (circular indifference curves). He conjectures (pp. 78—79) that, if the assumption
of Euclidean preferences is weakened, then other types of equilibria, in which candidates
do not locate at the core point, may be created. The questions of existence and location of
equilibrium points with policy-motivated candidates are left open in the general cases of
non-Euclidean preferences and an empty core. We provide answers to these questions.

Under office-motivation, candidates must locate at core points in equilibrium: if one
candidate were to locate at a beatable position, the other would move to exploit that op-
portunity. Thus, in the absence of a core point, there will be no equilibrium of the game
between the candidates. Why might the assumption of policy-motivation yield different
answers for the multidimensional case? The answer lies in the observation that a majority-
preferred position may have undesirable policy implications for a candidate, mitigating the
incentive to locate there. In other words, a change to a winning position that is beneficial to
an office-motivated candidate, by definition, may not be so to a policy-motivated candidate
if the winning position is a less desirable policy. Therefore, a model with policy-motivated
candidates offers fewer potential profitable deviations and this suggests that we may find
equilibria where none were present under office-motivation. We show that this is true only
to a very limited extent. In particular, the symmetry conditions required for existence are

1 see also McKelvey and Schofield (1987).

2 see Rubinstein (1979), Schofield (1983), Cox (1984), Le Breton (1987). When the number of voters is even,
the results are almost as negative: existence of core points may be robust to variations in preferences in two
dimensions, but not in more.
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weaker than Plott’s. They are still demanding enough that equilibria will usually fail to
exist in high-dimensional policy spaces, but now “high” means at least three dimensions,
rather than two.

Our main results develop necessary conditions that must be satisfied by the equilibrium
platforms of the candidates. We first show that in any equilibrium with neither candidate at
her own ideal point, the candidates must take identical policy positions. This phenomenon
is called “policy coincidence” or “policy convergence.” We next consider the smaller set
of equilibria in which the candidates’ gradients point in different directions, so that the
candidates have distinct policy preferences near the equilibrium point. Theorem 2 gives
necessary conditions for existence of such an equilibrium when the voters are odd in num-
ber. Specifically, in equilibrium, the candidates must locate at the ideal point of some voter,
and a type of symmetry on the voters’ gradients must hold: for every voter whose gradi-
ent lies between the candidates’ gradients, there must be exactly one voter whose gradient
points in exactly the opposite direction.

Somewhat surprisingly, the restrictiveness of this symmetry condition turns out to de-
pend on the dimensionality of the policy space. Indeed, for a two-dimensional issue space,
we give a simple sufficient condition under which there exists an electoral equilibrium with
policy-motivated candidates that is robust to small changes in the preferences of voters and
candidates, even though the core may be empty. Thus, in two dimensions, the negative con-
clusions of Plott (1967) for office-motivated candidates do not carry over with full force.
For three or more dimensions and an odd number of voters, however, we show in Theo-
rem 3 that the existence of equilibria is knife-edge. In particular, the following symmetry
condition is necessary: for every voter whose gradient does not lie on the plane spanned
by the candidates’ gradients, there must be exactly one voter whose gradient points in the
opposite direction. In other words, if we remove the voters whose gradients lie on that
plane, then the equilibrium platform must be a core point of the modified majority voting
game. Because the plane is a lower-dimensional subspace, we would not expect it to con-
tain the gradients of all voters. Typically, therefore, we must have some pairs of voters with
diametrically opposed gradients, and this suggests that electoral equilibria will be rare and
that, when existence does obtain, it will be vulnerable to even slight variations of voter or
candidate preferences. Thus, with three or more dimensions, we conclude that equilibria
with policy-motivated candidates almost never exist.

Theorem 4 takes up the case of an even number of voters and shows that existence is
not even knife-edge: equilibria of the type we consider do not ever exist. Thus, the result
in this case is even stronger than the result with an odd number of voters. This finding
is worth noting because an even number of voters is the “optimistic” case in models of
office-motivated candidates: core points and thus equilibria may be robust. But with policy-
motivated candidates, these observations no longer hold.

The results we have discussed are proved in the framework of pure policy-motivation
and deterministic voters, which is of course a stylized view of real elections. We focus
on this polar case for several reasons. First, as our results are mainly negative, we seek to
strengthen them by considering an environment amenable to existence, in contrast to the
“mixed motivation” case: when office-motivation has positive weight in the candidates’
payoffs, a significant (even if small) additional discontinuity is introduced into the game,
and we then run the risk that nonexistence is an artifact of this discontinuity. Second, taking
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our model as a benchmark, we are able to show that our negative conclusions carry over
even if we introduce a small amount of probabilistic voting into the model, smoothing out
the payoff functions of the candidates, and even if we allow for a small benefit of win-
ning the election (which may take a quite arbitrary form). Thus, though our main results
are stated in terms of a particular model, they inform us about a “neighborhood” of mod-
els containing it. As a byproduct of this robustness result, we conclude that nonexistence
of equilibrium in our model is not the product of discontinuities in candidate payoffs,
but rather is the product of nonconvexities, which are unavoidable when candidates are
well-informed about the behavior of voters. Last, our focus facilitates comparison to the
literature on electoral competition.

The assumption of policy-motivation has been used in a significant number of appli-
cations. Surveys of this literature include Wittman (1990), Shepsle (1991), and Oshorne
(1995). Another line of literature combines policy-motivation with uncertainty, usually via
probabilistic voting (Wittman, 1983; Calvert, 1985). These papers show that policy coinci-
dence breaks down as soon as uncertainty about voting behavior is introduced, and that the
extent of the divergence of the candidates’ platforms varies continuously with the amount
of policy-motivation added to the objective functions of office-motivated candidates. Our
robustness results for probabilistic voting point to an issue that has gone somewhat unno-
ticed in this literature: equilibria need not exist in these models when there are multiple
policy dimensions; indeed, when voting is close to deterministic and weight on office is
small, equilibria will almost never exist. Finally, in the literature on “citizen candidates,”
candidates are assumed, along with other voters, to possess policy preférBotésese
models differ from the spatial model of elections in that candidates cannot commit to
policies prior to an election; rather, office holders choose policies optimally given their
preferences and, in some models, given the effects of policy choices on future electoral
prospects. In contrast, our paper contributes to the understanding of the effects of policy
motivation by maintaining the other basic assumptions, commitment among them, of the
spatial model.

The remainder of the paper is organized as follows. In Section 2, we present the model
of elections with policy-motivated candidates. In Section 3, we give two-dimensional ex-
amples of robust equilibria in the model with policy-motivated candidates, and we give a
simple sufficient condition that generalizes the examples. In Section 4, we state our results
on necessary conditions for existence of equilibria of two types: equilibria in which neither
candidate locates at her ideal point, and the subset of equilibria in which the candidates’
gradients point in different directions. In Section 5, we give conditions under which there
are no other equilibria. In Section 6, we establish the robustness of our negative conclu-
sions, showing that equilibrium nonexistence extends if a small amount of probabilistic
voting and office-motivation are introduced. In Section 7, we briefly consider a simple
model of mixed motives, where candidates put a fixed weight on holding office, in addition
to policy concerns. The final section concludes, and Appendix A contains proofs of our
results.

3 See Osborne and Slivinski (1996), Besley and Coate (1997, 1998), Duggan (2000), Banks and Duggan (2000).
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2. Themode€

We consider two candidates,and B, competing for the votes of an electoratg, con-
taining a numben of voters. The candidates simultaneously choose policy platforms from
X, a nonempty, convex subset éfdimensional Euclidean spadg?.* We denote candi-
dateC'’s platform choice byrc. Each voteli has a preference relation dhrepresented
by a strictly quasi-concave, differentiable utility functiap: X — R, with interior ideal
point x; that uniquely satisfie¥u; (x) = 0. We assume that no two voters have the same
ideal point:Vu; (x) = Vu j(x) =0 for nox, i, andj # i. We say votei’s preferences are
Euclidean if i has an ideal point; and, for some strictly decreasing functignR — R,

u;(x) = f(lx — %), i.e., voteri has circular indifference curves.

We use the notatio® for weak majority preference? for strict preference, and for
indifference:x Ry if and only if u; (x) > u; (y) for at least half of the voters; Py if and
only if u; (x) > u;(y) for more than half of the voters (i.e., noRx); andx !y if and only
if xRy andyRx. We denote the number of voters who strictly prefeo y by na(x, y),
the number who strictly prefer to x by np(x, y), and the number who are indifferent by
ny(x,y). Thus,x Py ifand only if n4(x, y) > n/2, for example. In Appendix A, we state
alemma on the “star-shapedness” of majority preference®yf then any point between
x andy will be weakly majority-preferred tg, strictly so if the number of voters is odd.

We define thecore as the set of platforms weakly majority-preferred to all other
platforms: for ally € X, xRy. If the number of voters is odd, then a standard result under
our assumptions is that the core, when nonempty, consists of a single point;,sayd
that, for ally £ x*, x* Py. Moreoverx* is the ideal point of some voter, s& If all voters
have Euclidean preferences, it is known that the majority preference relation coincides with
the preferences of the “core votei”, i.e.,x Ry if and only if u;+(x) > u;+(y) (Davis et al.,
1972). Thus, in that case, the majority weak preference relation is complete and transitive,
with circular indifference curves. None of these conclusions holds generally wh&n
even.

We assume each candidafehas a preference relation dhrepresented by a strictly
guasi-concave, differentiable utility functiorr : X — R, with interior ideal pointi¢ that
uniquely satisfie¥u ¢ (x) = 0. We assume that the candidates are policy-motivated, which
means that a candidate may face a tradeoff between desirable and successful policy plat-
forms. As is standard, we assume that candidates evaluate this tradeoff using expected
utility.® Specifically, whemA chooses platforme and B chooses platforny, A’s expected
utility is

Ua(x,y) = P(x, uax) + (1= P(x,y)ua(y) 1)

4 We use the notatiod for an arbitrary candidate; j, k, etc., for an arbitrary voter; and, y, z, etc., for
arbitrary policies.

5 See Duggan and Fey (2001) for a version of this model with more general assumptions on candidate prefer-
ences that do not impose the expected utility form.
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(and similarly forB), whereP (x, y) is the probability that candidaté wins. When voters

with strict preferences vote deterministicall(x, y) is equal to 1 ifx Py and 0 if y Px.
Whenx Iy, its value is normally specified by some assumptions on how ties are broken
and how voters make choices when indifferent, such as flipping fair coins.

Because our equilibrium existence results are ultimately negative, it is important to
maintain a degree of generality with respect to the behavior of indifferent voters: other-
wise, we would leave open the possibility that our conclusions were an artifact of our
assumptions on voter behavior. Therefore, instead of choosing a particular specification
of tie-breaking probabilities, we allow for quite arbitrary voting behavior when voters are
indifferent® Our assumptions are formalized in the following condition.

(Al) P(x,y)=1ifxPy; P(x,y)=0if yPx;and O< P(x,y) <1if xIy.

Essentially, we require of indifferent voters only that they vote for each candidate with
positive probability. These probabilities may vary arbitrarily with the particular platforms
over which the voter is indifferedtWhenn is even, majority indifference may hold even

if no voters are themselves indifferent, so we impose an additional condition on the form
of P(x, y) in this case.

(A2) If nis even andig(x,y) =np(x,y) =n/2 andnu(z,y) =np(z,y) =n/2, then
P(x,y) = P(z,y). If nis even andng(x,y) = ng(z,y) =n/2 andny(x,y) <
na(z,y), thenP(x,y) < P(z, y) (and likewise forB).

This assumption requires two things. First, all ties in which there are no indifferent voters
are broken the same way. Second, if exactly half of the voters strictly pBefaosition,
then the chance that wins is increasing in the number of voters with a strict preference
for A8

The game between the candidates is thus defined by the strategy &mteach can-
didate and the payoff functions given by Eq. (1). We use (pure strategy) Nash equilibrium
as our equilibrium conceptWe say that an equilibriunix 4, x3) is anonsatiated equi-
libriumif x4 andxp are interior toX and neither candidate’'s chosen platform is at her
ideal point:Vu(x4) # 0 andVug(xp) # 0. We say an equilibriuntx4, xp) is a non-
aligned equilibrium if the platforms are interior and the candidates’ gradients do not
point in the same direction: there do not exist8 > 0, at least one nonzero, such that
aVus(xa) = BVup(xp). Note that every nonaligned equilibrium is nonsatigted.

6 This approach is similar to that of Simon and Zame (1990).

7 In fact, we even allow indifferent voters to abstain from voting with any probability (possibly one), as long as
the winner in case of a tie is determined randomly with each candidate receiving positive probability.

8 Again, see Duggan and Fey (2001) for a version of this model with more general assumptions on candidate
preferences in the case of ties.

9 In other words(x 4, xg) is an equilibrium if neither candidate can deviate to a different platform to produce
a preferred pair: there does not e)cigte X such thatU 4 (x;‘,xB) > Uy (xa, xp) (and likewise forB).

10 7o see this, suppose 4, xp) is an equilibrium withVu 4 (x4) = 0. Then choosing > 0 andg = 0 implies
aVus(xa) =BVupg(xp). So(xya, xp) is not a nonaligned equilibrium.
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3. Sufficient conditions

We begin by illustrating that, unlike the case of office-motivated candidates, equilibria
can exist in the absence of a core point. In Fig. 1, the ideal points of three voters are
arranged in a triangle, and we give the voters and candidates Euclidean preferences. It
is a (nonaligned) equilibrium for the candidates to locate at voter 3's ideal point in this
example, because the weakly majority-preferred platforms are those weakly preferred by
voters 1 and 2. This set, being the intersection of two circles, is sufficiently kinked—so that
no such platforms are preferred by either candidate—as long as 1's and 2's ideal points are
far enough apart. Obviously, as this configuration of voter ideal points has no majority
core, no such equilibrium exists in the case of office-motivated candidates. Moreover, it is
easy to see that this equilibrium is also robust to small variations in the preferences of the
players.

Policy motivation can have a substantial effect even when the core is nonempty. In this
case, when candidates are office-motivated, there can be no equilibria other than at the core
point. This is not true when candidates are policy-motivated, as illustrated in Fig. 2. In this
example, we give voters 1 and 3 Euclidean preferences but, as evidenced by voter 2’s in-
difference curve, we give that voter non-Euclidean preferences. Voter 2's ideal point is the
core point, but it is a nonaligned equilibrium for both candidates to locate at voter 3's ideal
point: none of the platforms weakly majority-preferreditg in the region described by
hash marks, are preferredigby either candidate. Once again, note that the equilibrium in
this example is robust, in the sense that it survives small enough variations in the gradients
of the voters and candidates. The non-Euclidean preferences of voter 2 are necessary in
this example, as Calvert (1985) shows that when voters’ preferences are Euclidean and the
core is nonempty, there can be no nonaligned equilibria other than the core. Thus, Fig. 2

Vup(Zs)

Fig. 1. A nonaligned equilibrium with no core.
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V’U,A(.’Zg)

. :

Fig. 2. A nonaligned equilibrium not at the core.

confirms Calvert’s conjecture that equilibria can be supported at points other than the core
when preferences are non-Euclidean.

Next, we move away from these specific examples and present a simple condition that
ensures the existence of an equilibrium in a two-dimensional policy space. This condition
requires that the two candidates locate at the ideal point of some voter and that each voter
can be paired with another voter whose preferences are generally opposed. In order to
formally state the result, we need the following definitions. For vegtogse R?, we use
the notation conlg, g} = {ap + Bq | «, B > 0 anda + B > 0} to denote the convex cone
generated by andg and we refer to the cone generated-by and—q as the “opposed
cone” of p andg. For any nonempty s&f C N, a functionz : G — G is apairing on G
if 7 is one-to-one and, foralle G, 7 (w(i)) =1i.

Proposition 1. Assume n is odd, d = 2, and assume (Al). If x4 = xp = x, where
Vuy(x) = 0 for some voter k, and there exists a pairing = on N \ {k} such that, for all
ieN\{k}andforal C=A, B,

Vui(X) - Vuc(®) #0 = Vg (R) € cond—Vue(R), —Vu;(¥)}, (2)

then (x4, xp) isan equilibrium.

The restriction expressed in condition (2) is illustrated in Fig. 3. In the figure, the op-
posed cone of the gradients of candidéteand voteri is pictured, and the condition
requires that the gradient of the voter paired witmust lie in this opposed cone. In
other words, votei must be “blocked” by some voter (i), in that any alternative that
candidateC and voteri prefer tox must make voterr (i) worse off. Thus, this condition
is equivalent to requiring that be Pareto optimal relative to votersaand (i) and can-
didateC. It is easy to see that this sufficient condition is satisfied by the two examples
presented above, and it is satisfied at the core point, if it exists.
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V'Zl,i ('f?)

*VUc(‘i)

Vir) (&)

V’LLC (

=
=

Fig. 3. Opposed cone &fu¢ (x) andVu; (x).

The proof of the proposition is as follows. Suppose that= xg = x is not an equi-
librium. Then, asz is odd, there must be an alternatiyehat is majority-preferred t@
such that¢ (y) > uc(x) for some candidat€'. If we denote the vector from to y by g,
then by strict quasi-concavity, any alternativa sufficiently small distance fror in di-
rectiong must also satisfg Px anduc(z) > uc(x). Clearly, voterk prefersx to z, and
thus(n 4+ 1)/2 of the remaining: — 1 voters must prefer to x. This implies that for any
pairingz on N \ {k}, there must be a pair of voterg,and (j), that both prefer to x.

But thenx is not Pareto optimal relative to votefsaandr (j) and candidat€’, as required
by the condition of the proposition.

While Proposition 1 gives conditions sufficient for existence of equilibria, it is possible
that some of these equilibria may be fragile, in the sense that arbitrarily small perturbations
of voter or candidate preferences may lead to nonexistence. However, if we strengthen
the condition of Proposition 1 so that blocking gradients are required to be in the “open”
opposed cone (whereandp are restricted to be strictly positive), then it is clear that the
equilibria established in the proposition will be robust to such perturbations.

The proposition requires that condition (2) holds for both candidates. That is, the gradi-
ent of the voter paired with must lie in the intersection of the opposed cones afd A
andi and B. Now, it is easy to see that if the gradient of vatés between the gradients of
the two candidates, then the opposed conearfd A intersects with the opposed conei of
and B in exactly one direction, namely; Vu; (x). In other words, the sufficient condition
requires that voters whose gradients lie between the gradients of the candidates must be
paired with voters whose gradients point in exactly the opposite direction. As we show in
the next section, this condition on voter gradients in this region is actually necessary for
nonaligned equilibria to exist.

4. Necessary conditions

In this section, we present necessary conditions for the existence of particular types
of equilibria in our model. By doing so, we shed light on whether such equilibria are
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TA B

Ta Tp T

Fig. 4. A “satiated” equilibrium without policy coincidence.

likely to exist or not for a typical choice of preferences. We first establish that, in every
nonsatiated equilibrium, the candidates must choose the same platform, a phenomenon
termed “policy coincidence.” Thus, if neither candidate is at her optimal position, then
the incentives of electoral competition lead to a unique policy choice for the voters, even
though the candidates might have starkly different policy preferences.

Theorem 1. Assume (A1) and (A2). If (x4, xp) isanonsatiated equilibrium, then x4 = x3.

As a consequence of this theoremaity equilibrium of the candidate positioning game,
either one (or both) of the candidates is at her ideal point or they choose identical positions.
It is easy to find examples of the first sort of “satiated” equilibria that violate policy co-
incidence. Fig. 4 gives an example of such an equilibrium with one dimension and one
voter with Euclidean preferences. Here, candiddteideal point,x 4, is to the left of can-
didateB’s, which is to the left of the voter’s ideal poiri; . If candidateB’s platform,xp,
is at her ideal pointyp, and if candidated locates anywhere to the left &, then neither
candidate can deviate profitaBfyIn this example of a satiated equilibrium, one candidate
happens to lose with probability one; in fact, this can be shown to be a general feature of
satiated equilibria. Proposition 2, in the next section, gives a condition that rules out the
possibility of such equilibria when is odd. In the one-dimensional case, the condition is
simply that the candidates’ ideal points lie on opposite sides of the median ideal point.

We can say considerably more about equilibria in which the gradients of the candi-
dates do not point in the same direction. We establish that, when the number of voters
is odd, the candidates must locate at some voter’s ideal point; sBoreover, a lim-
ited version of Plott's (1967) symmetry condition must hold: it must be possible to pair
voters whose gradients are between the candidates’ gradients with voters whose gra-
dients point in exactly opposite directions. For vectprg; € R?, we use the notation
con€{p,q}={ap+ Bq | a, B > 0} to denote the open cone generatecplgndg.

Theorem 2. Assume n is odd, and assume (Al). If (x4, xp) isa nonaligned equilibrium,
thenx4 = xp = X, where Vuy (x) = 0 for somevoter k. If Vu4(x) and Vug (x) arelinearly
independent, then for every p € con€{Vu(x), Vug(x)},

}{i € N |3Ja > 0: Vu;(x) =otp}} = |{z €N |3a <0: Vu;(x) =ozp}|. 3)
If Vua (%) and Vu (%) arelinearly dependent, then Eq. (3) holds for all p € R9.

In this theorem, Eq. (3) is the formal expression requiring voters to be matched with
other voters with opposing gradients. This requirement is limited, in that it need only hold

11 A similar example with: even can be constructed simply by placing a second voter's ideal point to the right
of voter 1’s.
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Vul (TA,')

Vug(2)

VU3(QA7)

Fig. 5. The symmetry condition of Theorem 2.

for voters with gradients in a prescribed region. This is depicted in Fig. 5. Here, the can-
didates locate at voter 5's ideal point. The gradients of voters 1 and 3 point in opposite
directions. The gradients of voters 2 and 4 are not matched in this way, but, because nei-
ther gradient (or its opposite) lies in the open cone generated by the candidates’ gradients,
the symmetry condition of the theorem is preserid.

By the first part of the theorem, the candidates must locate at some ideal poifitjisay
a nonaligned equilibrium. The proof of the remainder of the theorem is largely concerned
with the case in which the candidates’ gradients are linearly independent. We show that
the set of platforms weakly majority-preferred tpthe region described by hash marks
in Fig. 6, must lie below the hyperplanes defined by the gradients of the candidates. This
implies a kind of “kink” in the boundary of that set, one that is not possible when the
core is nonempty and the preferences of the voters are Euclidean. Under those conditions,
the majority preference relation would coincide with the preference relation of the core
voter, so the majority indifference curves would simply be circles and obviously could not
have kinks. Thus, in Calvert’s (1985) model, the only platform weakly preferrédgo
itself, i.e., the candidates must locate at the core point, and then symmetry of the voters’
gradients follows from Plott's (1967) theorem. In the proof of Theorem 2, we show, without
assuming Euclidean preferences or the existence of a core point, that the boundary of the
set of platforms weakly majority-preferred fois “kinked enough” only if the symmetry
condition of the theorem holds.

Figure 7 demonstrates that the necessary conditions for equilibrium presented in Theo-
rem 2 are not sufficient. In particular, if the candidates are located at voter 3's ideal point
with candidate gradients as depicted, then the conditions of the theorem are satisfied, but
candidateA can move to a more desirable platform preferred by voters 1 and 2. Therefore,
this choice of candidate positions is not an equilibrium.

12 |n fact, the condition of Proposition 1 is satisfied, so that it is indeed an equilibrium to locate at
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VUA(.’IA:)
qu(JA?)

Fig. 6. A kink in the boundary of the majority-preferred-to set.

Vua(Zs)

V’MB (5?3)

Fig. 7. Disequilibrium satisfying the necessary condition.

Theorem 2 applies only to nonaligned equilibria. That it cannot be applied to “aligned
equilibria,” even those in which the candidates adopt the same platform, can be seen by
modifying the example of Fig. 4. Suppose both candidates have the same platforim, say
anywhere between candidagés ideal point,x g, and the voter’sy;. This is a nonsatiated,
aligned equilibrium: for each candidate, the only platforms majority-preferrécte less
desirable thart. Clearly, the candidates are not located at the ideal point of any voter, and
the symmetry condition of the theorem is violated. Proposition 3, in the next section, gives
a condition under which no such aligned equilibria will exist. In the one-dimensional case,
the condition there is simply that the candidates’ ideal points lie on opposite sides of the
median.

There is a limitation of Theorem 2: the symmetry condition, Eq. (3), applies only to vot-
ers with gradients in the plane defined by the candidates’ gradients. Thus, in more than two
dimensions, this condition only applies to voters with gradients that are precisely co-planar
with the gradients of the candidates, an event that generically never occurs. In such multi-
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dimensional spaces, then, a direct application of Theorem 2 yields a negligible restriction
on voter's preferences. However, we can use this theorem to prove the next, which imposes
a severe restriction on voters with gradients thatrateco-planar with the candidates’
gradients. Precisely, Theorem 3 says that, given a nonaligned equilibtiuin for every

voter whose gradient does not lie on the plane spanned by the candidates’ gradients, there
must be a voter whose gradient points in exactly the opposite direction. Alternatively, if
we delete the voters whose gradients lie on the plane spanned by the candidates’ gradients,
but leaving thex voter, then the platforri must be a core point of the resulting majority
preference relation.

Theorem 3. Assume n is odd, and assume (Al). If (x4, xp) isa nonaligned equilibrium,
then x4 = xp = %, where Vuy (X) = 0 for some voter k. Moreover, for every p € R? such
that p ¢ spafVu (%), Vug(3)},

i e N|3a>0: Vu;(}) =ap}|=|{i € N| 3o <0: Vu; (}) = ap}|.

As with Theorem 2, Theorem 3 applies only to nonaligned equilibria and it cannot be ex-
tended to aligned equilibria, even those in which the candidates adopt the same ptétform.
An example is given in Fig. 8. Here, we assume three voters and Euclidean preferences
over a multidimensional policy space, with the ideal points of the voters arranged in an
isosceles triangle, voter 1's ideal point at the apex. Candiiat&leal point is above that,
and candidatet’s ideal point is above that, both coplanar with the voters’ ideal points. In
this example, it is an equilibrium for both candidates to adopt the same platform anywhere
between voter 1's and candidakés ideal points. One possible location is indicated in the
figure. Clearly, in this equilibrium the candidates locate at no voter’s ideal point. Moreover,
the span of the candidate’s gradients is the line through their ideal points, and neither voter

|

|

¢

|

|

|
-TB+
|

VU;;

Fig. 8. A nonsatiated aligned equilibrium violating the conditions of Theorem 3.

13 To be clear, Theorem 2 limits voters’ gradients that are in the open cone of (and thus co-planar with) the can-
didates’ gradients, and Theorem 3 limits the gradients that are not co-planar with the gradients of the candidates.
The latter theorem is therefore nonvacuous only in more than two dimensions.
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2's nor voter 3's gradients can be opposed to voter 1's in the required way, violating the
symmetry condition of the theorem.

The following corollary of Theorem 3 gives a general condition on the gradients of vot-
ers under which nonaligned equilibria fail to exist. The condition holds quite widely when
the dimension of the policy space is at least three. It suggests that, for “most” specifica-
tions of differentiable, strictly quasi-concave voter utility functions, we would not expect
nonaligned equilibria to exist—and that, if existence did obtain, it would be sensitive to
even slight variations of voter or candidate preferences.

Corollary 1. Assumen isodd, and assume (Al). Assumethat for all votersi, the dimension
of sparfVu;(x;) | j € N} isat least three. And assumethat, for all voters j and k, Vu ; (X;)
and Vuy (x;) arelinearly independent. Then there does not exist a nonaligned equilibrium.

The proof the corollary is simple. Theorem 3 tells us that, given a nonaligned
equilibrium (x4, xp), the candidates must locate at the ideal point of some voter,
say i. Since spafVu,(%;), Vupg(X;)} is a two-dimensional space and the dimension
of sparfVu;(x;) | j € N} is at least three, there is some votesuch thatVu; (X;) ¢
spafVua(x;), Vup(x;)}. But, under the assumptions of the corollary, there is no voter
whose gradient points in the direction opposite that of vgigra contradiction.

Thus, withn odd, the “typical” case is that no nonaligned equilibria exist. An even
stronger result holds if is even: nonaligned equilibria never exist. Existence in this case
hinges on the possibility that the candidates’ gradients point in exactly the same direction
in equilibrium (as in Fig. 8, if we add a voter below voter 1), or, as shown in the next
section, both candidates locate at their own ideal point.

Theorem 4. Assume n is even, and assume (A1) and (A2). There does not exist a non-
aligned equilibrium.

In the proof of the theorem, we first verify that, as in Theorem 2, the candidates would
have to locate at the ideal point, s&yof some voter, say. Deleting that voter fromv,
we are left with an electorat@&y’, with an odd number of voters. Furthermore, there is no
voter in N’ with ideal pointz, violating a necessary condition in Theorem 2 for equilibrium
in the reduced model. Thus, one of the candidates can move to a better platform, say
preferred by a majority of voters iN’ to x. Addingi back to the electorate; still weakly
beatsx. Under condition (A2), this still gives the candidate a profitable deviation, and we
conclude that nonaligned equilibria cannot exist whes even.

5. Additional types of equilibria

In the preceding section, we gave several results for nonsatiated and nonaligned equi-
libria. But what about equilibria of this game that are not nonaligned or nonsatiated? For
example, Theorem 1 establishes that nonsatiated equilibria exhibit policy coincidence, but
as the example in Fig. 4 demonstrates, there can exist equilibria that are not nonsatiated
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and that do not exhibit policy coincidence. In this case, then, without a more detailed equi-
librium selection argument, we cannot state unequivocally that policy coincidence will or
will not occur. To deal with these issues, in this section we provide conditions under which
satiated and aligned equilibria will not exist. Specifically, we present two results. The first
gives a sufficient condition under which all equilibria must be nonsatiated, and the second
gives stronger conditions under which all equilibria must be nonaligned.

Ouir first result is Proposition 2. It uses the condition that, given either candidate’s ideal
point, there exists a majority-preferred platform that the other candidate also prefers. This
extends the condition, frequently assumed in one-dimensional models, that the candidates
ideal points are on opposite sides of the median (or medians, wieeven). We discuss
the plausibility of a stronger condition at the end of the section.

Proposition 2. Assume (A1) and (A2). Assume that there exists platforms x, y € X such
that x Px4 and upg(x) > up(xs) andthat yPxg and us(y) > ua(xp). If (x4, xp) isan
interior equilibrium, then either itisnonsatiated or: n isevenand x4 = x4 and xp = Xp.

Returning to the issue discussed at the beginning of this section, this proposition and
Theorem 1 imply that policy coincidence must hold wheis odd and the condition given
in the proposition holds. Obviously, the example in Fig. 4 does not satisfy this condition,
as both candidates’ ideal points are to the left of the voter’s ideal point.

Whenn is even, Proposition 2 leaves open the possibility of a satiated equilibrium, as
long as both candidates locate at their ideal points. This possibility is depicted in Fig. 9,
where the ideal points of the two voters are between those of the candidates. It is easy
to see that the condition of Proposition 2 is satisfied: the ideal point of votér, s
preferred tax4 by both voters and by candidaBs similarly, x» is preferred totp by the
voters and by candidaté. Note that there exist open intervalsandZ aroundx, andxg,
respectively, such that every platform ¥nis majority-indifferent to every platform ix.

Thus, because there are no small moves for either candidate to platforms that will beat her
opponent, our argument for Theorem 1 (in Appendix A) that one candidate will have a
profitable deviation does not go through. Indeed, there is no compelling reason why one of
the candidates must have a profitable deviation in this situation—that will depend on the
exact specification of the candidates’ utility functions.

The next proposition gives a condition, strengthening that of Proposition 2, under which
all equilibria are nonaligned. Once again, the condition extends the familiar one from one-
dimensional models that the candidates’ ideal points are on opposite sides of the median.
We will say that an interior platformx satisfies thealignment condition if aVu(x) =
BVup(x) for someqa, 8 > 0, at least one nonzero.

TA Tp

TA z1 T2 B

Fig. 9. A satiated equilibrium with even, as in Proposition 2.



J. Duggan, M. Fey / Games and Economic Behavior 51 (2005) 490-522 505

Proposition 3. Assume (A1) and (A2). Assume that, for each x € X satisfying the align-
ment condition, there exists a platform y € X such that y Px and, for some candidate C,
uc(y) > uc(x). If (x4, xp) isanonsatiated equilibrium, then it is nonaligned.

The proof is trivial and omitted. To see that the condition in this proposition is indeed
stronger than that of Proposition 2, set X 4; then the condition of Proposition 3 yields
C andy such that¢(y) > uc(x); and then, of course, we must have= B, fulfilling the
condition of Proposition 2. Therefore, whenis odd,all equilibria are nonaligned under
the condition of Proposition 3.

The condition of Proposition 3 is hot completely transparent, and so it is of interest
to understand when it (and therefore the condition of Proposition 2) might hold. As an
illustration, we give a sufficient condition for the antecedent condition in Proposition 3 to
apply. In doing so, we establish that if preferences are “close” to having a core point, then
all nonsatiated equilibria will be nonaligned and thus the stringent symmetry conditions of
Theorem 3 must be satisfied.

To begin, suppose that > 2, thatn is odd, and that voter and candidate preferences
are Euclidean. LeY C X denote theolk, the smallest closed ball intersecting all median
hyperplanes (McKelvey, 1986). Thus, if the hyperplane

Hew={z€R!|2z- (u=v)=@+v)- -]

bisecting two platformsy andv, does not intersedt, then majority indifference between
u andv cannot hold. WhetherPv or v Pu depends on whethét is on thex-side orv-side
of H, ,. Suppose further that there exists R? such that, for alw € Y,

t-Xpa<t-w<t-Xxp.

For simplicity, we normalize so that|¢|| = 1. Note that, sinc& is compact, the minimum
value ofr - w overY, denoted mim- Y, exists and - X4 < minz - Y. Likewise, max - Y <

t - Xp. Also note the implication that- (xp — X4) > 0. Obviously, this situation, depicted

in Fig. 10, is more plausible when the yolk is small, i.e., when the core is “close” to being

Fig. 10. The yolk “separating” the candidates’ ideal points.
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nonempty. When the core is nonempty, it is equal to the yolk and the above condition holds
as long as the candidates’ ideal points are not colinear with (and to the same side of) the
core point.

When such a exists, the assumption of Proposition 3 holds. To see this, note that the set
of platforms that satisfy the alignment condition must lie on the line §pan X5} + x4
spanned by the candidates’ ideal points, but not strictly between them. Lettiaguch a
platform, that means

x=oaxa+ A —a)xp=xp+a(xs —Xp)

fora >1ora<—1.1fa>1, then

t-x=t-xp+t-(xa—xp)+ QA —a)t-(Xp—Xxa)

=t-Xa+A—a)-(Xp —%xa)

<t Xa.
Similarly, t - x > ¢ - xp if « < —1. Suppose without loss of generality that> 1, as in
Fig. 10. Definex, = x + €(Xp — X4), and picke > 0 small enough that- x. < minz - Y.
With z - x <t -X4 < mint - Y, this implies that the bisecting hyperplafg , does not
intersect the yolk. And since the yolk is on theside of the hyperplane, we havePx.
Finally, note that

up(xe) —up(x) =€(2a —€)(xp —x4) - (Xp — xa),

which is positive for small enough> 0, as required.

6. Local robustness of nonexistence

Our analysis has so far been confined to environments in which voters vote in a de-
terministic fashion (with only indifferent voters possibly randomizing between the candi-
dates) and in which candidates are motivated solely by policy preferences. This model is,
of course, a stylized representation of real-world elections, and it is best viewed as a bench-
mark, rather than taken literally. It is therefore important to consider whether our results
on equilibrium nonexistence persist when the model is subject to perturbations, of which
we consider two types: we allow for uncertainty in voting behavior, as in the literature on
probabilistic voting, and we allow for more general candidate incentives.

The introduction of noise into voting behavior alters the structure of the electoral game,
smoothing the candidates’ payoffs and eliminating discontinuities present in the determin-
istic model. Nonconvexities in the candidates’ payoffs may remain, however, and existence
of (pure strategy) equilibria is not guaranteed. Indeed, we show that when equilibria fail
to exist in our benchmark model, as is often the case, equilibria will also fail to exist in
probabilistic voting models “close” to the benchmark. This remains true even if we give
the candidates a small positive benefit from holding office, even if that benefit can vary
with the platforms of the candidates. Thus, adding a small amount of randomness into
voter behavior and perturbing the incentives of the candidates will not solve the nonexist-
ence problem of Corollary 1 and Theorem 4. An added insight from the result is that it
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is the nonconvexities—not discontinuities in candidate payoffs—that drive the problem of
nonexistence in the benchmark model.

To extend our analysis, we imbed our model in a spacevhere each model € A
corresponds to a functioR (x, y|A), which represents candidatgs probability of win-
ning, and functionsv4 (x, y|A) andwg (x, yA), which represent any benefits of winning to
the candidates. We assume these functions take non-negative values, but we do not impose
continuity or any other restrictions. These benefits could capture the prestige of holding
office, or monetary rents due to salary or bribes, or the cooperation of interest groups or
party members. More generally,4 (x, y|1) could be interpreted as reflecting the prefer-
ences of constituency groups that the office holder, as a representative, may feel obligated
to serve. Whem chooses platforry and B chooses platforny in modeli, A’s expected
utility is then

Ua(x, yI2) = Px, yIA) (ua(x) + walx, yI2) 4+ (1= P(x, y|0)ua(y)

(and similarly for B). The definitions of equilibrium for an arbitrary modelremain as
above. We designate the modélas the model with pure policy motivation and determinis-
tic voting studied above, so th&t(x, y|A*) = P(x, y) andwa (x, y|A*) = wg(x, y|]A*) =0
for all x, y € X, and we letP* denote the strict majority preference relatioriin

We say a sequenda™} approximates A* if

(i) forall x,y e X, we have O< P(x, y|]A™) < 1,
(i) wa(-|]A™) — 0 andwp(-|A™) — 0 uniformly, and
(iii) foreveryx,y € X such thate P*y, there exist open neighborhoo@f x andH of y
such thatP (-|A") — 1 uniformly onG x H and P (-|A™) — 0 uniformly onH x G.

While condition (i) formalizes the idea that voting is indeed probabilistic, condition (ii) re-
quires that benefits of winning become negligible in the limit, as they are in the rbdel
Condition (iii) stipulates that the candidates’ probability of winning satisfies a certain con-
tinuity condition. In contrast to (ii), uniform convergence is required only in the case of a
majority strict preference, and then only in an open set around the candidates’ platforms.
Though technical in nature, the condition is weak: we show later in the context of the two
most widely used models of probabilistic voting that our definition captures the intuitive
meaning of being “close” to deterministic.

The next proposition establishes, essentially, that if there is no equilibrium in the bench-
mark model, as we have shown is often the case, then there is an open set of models
containingA*® in which equilibria fail to exist. For simplicity, we have chosen to phrase
the result in terms of equilibria, rather than nonsatiated or nonaligned equilibria, but the
logic of the proof holds fairly generally: by a similar proof, for example, we can show
that if there is no nonaligned equilibrium in the deterministic model, then there are no

14 These restrictions are critical for the interpretation of our results, as a sequence of continuous functions
cannot converge uniformly to a discontinuous function. Without them, since the probability of winning function
is discontinuous in model*, we would not be able to approximaté& with a sequence of continuous probability

of winning functions.
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nonaligned equilibria in nearby probabilistic voting mod&ls.ikewise, for simplicity we
restrict attention to the case of an odd number of votérs.

Theorem 5. Assume n isodd and X is compact. Let {1} approximate A*. If there is no
equilibriumin A*, then, for m high enough, there is no equilibriumin A™.

Put contrapositively, the proof of Theorem 5 establishes the closed graph property of
the equilibrium correspondence at the benchmark model: the limit point of equilibria in
models close ta.* must be an equilibrium in*. Ordinarily, this property of equilibrium
correspondences is to be expected. In our case, however, the limiting model is discontinu-
ous, and then the conventional wisdom does not apply. We use the structure of candidate
and voter utilities, along with some uniform convergence along the sequence of probabilis-
tic voting models (which, as we see next, is quite natural), to prove the result. In these
respects, Theorem 5 is similar to Corollary 8 from Banks and Duggan (2005), who show
that, when the core is empty, equilibria in probabilistic voting models close to deterministic
do not existt’

We have formulated the idea of “approximation” in abstract terms in order to capture
the intuitive meaning of “close” to the benchmark model. While conditions (i) and (ii)
are not controversial, condition (iii) is less transparent. Next, we establish that the con-
dition is permissive in one of the most commonly used probabilistic voting frameworks,
which captures uncertainty about voters’ preferences for nonpolicy characteristics of the
candidates: in the additive bias model, the voters’ utilities from candidate platforms are
subject to random utility increments. We show that a sequence of additive bias models in
which voting behavior becomes arbitrarily close to deterministic, in intuitive terms, will
necessarily satisfy our condition.

In the additive bias model, each voteri has policy preferences given by, as in
Section 2. In addition, each voter’s utilities are modified by an additive utility shock to
each candidate. Without loss of generality, we normalize the shock for candidtate
zero and consider only a “bias,” denotggd for candidateB. The bias termg; is sto-
chastic and independent of the other voters’ biases and the platforms of the candidates.
Given the candidates’ platforms and biés we assume votar votes for candidat® if
u;i(xa) <u;(xp)—+ B;, votes for candidatd if this inequality is reversed, and votes for each
candidate with probability one half if equality holds. Here, a mada identified with a
distribution functionF; (-|1) for each votei from which the voter’s bias term is drawn. We
assumeF; (-|A) is continuous and strictly increasing for all Thus, the probability voter
votes for candidatd is

Pi(xa,xp|A) = Fi(ui(xa) —ui(xp)[A),

15 e would then need to add some technical conditions. We would require that utility functions have continuous
gradients, and we would restrict attention to sequences of equilibria that do not converge to a boundary point of
the policy space and such that the candidates’ gradients do not become arbitrarily close to aligned.

16 A similar result holds fom even, but the appropriate definition of approximation becomes somewhat more
involved.

17 Banks and Duggan (2005) restrict attention to a specific model of probabilistic voting, the “additive bias
model,” and they consider expected plurality maximizing candidates.
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and the probability thatt wins is

P(xa,xglh)= Y <H P,-<xA,xB|A>> (H(l— P,-<xA,xB|x)>,

CeM “ieC i¢C
where M denotes the subsets of voters with greater thghmembers.

Proposition 4. Let {#"} be a sequence of additive bias models such that, for each voter i,
the sequence F; (-|A) converges weak* to the point mass on zero.18 Then {3} satisfies
condition (i) in the definition of approximation.

We also illustrate the role of condition (iii) in another common probabilistic voting
framework, which captures uncertainty about voters’ policy preferences: in the random
preference model, policy preferences of voters are themselves random variables. Again, we
show that condition (iii) is consistent with the intuitive meaning of “close” to deterministic
voting.

In the random preference model, each voter’s policy preferences are givenubyx|0),
whered is a preference parameter lying in a metric sp@end whereas; : X x ® - R
is jointly continuous. Here, a modglis identified with a Borel probability measure over
®, which in turn generates probabilistic voter preferences. For eachivatefine

1
Pi(xa, xglx) = A({0 | ui(xal0) > ui(xgl0)}) + EK({Q | ui(xal0) = u;i (xp16)}),

and define candidat’s probability of winning as we have above.

Proposition 5. Let {1} be a sequence of random preference models such that A™ con-
vergesto A* in the weak* topology, where A* puts probability one on some 6* € ©.1° Then
{A"} satisfies condition (iii) in the definition of approximation.

Condition (iii) captures the notion of “close” to deterministic voting in other frame-
works as well, extending the scope of Theorem 5. For example, in the quantal response
voting model, considered by McKelvey and Patty (2003), when the distribution on voters’
error terms converges to zero, voting behavior approximates voting in our deterministic
model, and again condition (iii) is satisfied. For another example, if each voter observes
the candidates’ platforms with some noise (and votes as though the observed platforms
were correct), then condition (iii) is satisfied as the noise goes to®ero.

7. Mixed motivations

Theorem 5 of the previous section demonstrated a neighborhood containing our ori-
ginal model in which our negative results hold: despite small perturbations of the model

18 That s, for every bounded, continuogisR — R, the integralsf ¢ (z) F; (dz|»™) converge tap(0).

19 Thatis, for every bounded, continuogis® — R, the integralsf ¢ (6)A™ (d9) converge tap (6*).

20 This claim does not hold if the voters are strategic, as in the model of Lagerléf (2003). There, because candi-
date deviations are unobservable, candidates must locate at their ideal points in equilibrium.
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in a rich variety of directions (allowing for probabilistic voting and office benefits of a
quite arbitrary form), equilibrium nonexistence carries over. Here, we introduce a degree
of office-motivation in the simplest way possible, in the form of a fixed, positive benefit of
winning. We letw > 0 denote the benefit of winning, in which case candidgssexpected

utility is given by

Uax,y) =P, y)(uax) +w)+ (1= Px,y))ua(y). (4)

As a consequence of our results for policy-motivated candidates, this functional form per-
mits a global characterization of nonsatiated equilibria. For simplicity, we assume the
number of voters is odd.

Proposition 6. Assume n is odd, preferences are given by Eq. (4), and (A1) holds. Then
(x4, xp) isanonsatiated equilibriumif and only if x4 = xp = x*, wherex™ isa core point.

The proof is straightforward. Clearly, it is an equilibrium for both candidates to locate
at the core point. To prove the converse, the arguments of Theorem 1 can be modified to
obtain the result that, in a nonsatiated equilibrium, the candidates must adopt the same
platform, sayx. To show thatt must be a core point, suppose not. Then there is spme
majority-preferred to it. That platform may be a worse policy outcome from a candidate’s
point of view, but every platform betweeh and y is also majority-preferred té. By
picking such a platform close enough i¢ the candidate can make the disutility of the
policy change less tham, the utility from winning, a contradiction. Thus, in this mixed
model, an equilibrium must exhibit the symmetry of the voters’ gradients from Plott’s
(1967) theorem, and we again conclude that equilibria will rarely exist. Given the policy
coincidence result of Theorem 1, the argument for this case is drastically simplified by the
discontinuity implied by the fixed reward. Our results for pure policy-motivation show,
however, that the negative conclusion is not merely an artifact of this discontinuity.

In the n even case, no strong symmetry condition is required of core points, and thus
equilibria with purely office-motivated candidates need not be rare or fragile. Under mixed
motivations, however, this observation no longer holds. In particular, if we impose some
additional structure o (x, y) in the case of majority indifference, such as the assumption
that all ties are broken equiprobably, then we can prove that no nonaligned equilibria exist.
The argument is similar to the proof of Theorem 4. Thus, the robustness of equilibria
possible with office-motivation does not extend to the mixed case, at least when considering
nonaligned equilibria.

8. Conclusion

Although our conclusions are negative, they nevertheless have important consequences
for formal models of politics. Our results illustrate how the findings of the standard spatial
model carry over to a setting with a natural alternative assumption about candidate prefer-
ences. Indeed, the equilibrium existence problem runs much deeper than previously real-
ized: even after we remove many of the discontinuities created by pure office-motivation
in multiple dimensions, policy-motivated candidates typically have a sufficient number of
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deviations to break any potential equilibrium. The nonexistence problem persists even if
we smooth the candidates’ payoffs by adding a small amount of uncertainty about vot-
ing behavior, demonstrating the role of nonconvexities in the failure of existence. Our
results emphasize the importance of modeling elections in richer detail, whence equilibria
may emerge from additional structure, whether institutional (parties, interest groups, the
media), informational (through reputational concerns), or dynamic (within or across elec-
tions). As these modeling approaches will likely include a component of policy-motivation,
the techniques developed in this paper may inform future research by shedding light on the
intricacies of policy-oriented incentives.
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Appendix A. Proofs of results

Many of the arguments of this appendix will use the following standard lemma, which
follows in a straightforward way from the strict quasi-concavity of the voters’ utility func-
tions.

Lemma 1. If xRy then, for all @ € (0,1), ax + (1 — a)yRy; if n is odd, moreover, then
ax+ (1—a)yPy.

We now state and prove the results of Sections 3 through 6.
Theorem 1. Assume (A1) and (A2). If (x4, xp) isanonsatiated equilibrium, then x4, = x.

Proof. Supposgxy4, xg) is a nonsatiated equilibrium and that # xz. Without loss of
generality, suppose Rxg. By (Al), this implies thatP (x4, xp) > 0. We first deal with
the case ofi odd. We begin by establishing thaf (x4) > ua(xp). If ua(xp) > ua(xa),
then, becaus® (x4, xp) > 0, A can gain by moving tag. This contradicts the supposition
that(xa, xp) is an equilibrium. fu s (xa) =ua(xp), thenUa(xa, xp) =ua(xa). Letx' =
(1/2)x4 + (1/2)xp, so by Lemma 1y’ Pxg. Thus (Al) implies that/4 (x', xg) = ua(x').
Sinceu 4 is strictly quasi-concave, we hawg (x") > ua(xa) = us(xp). So deviating to
x' is profitable forA, a contradiction. Therefore, it must be that(x4) > ua (xp).

Next, we rule out the casey Ixp. In this case, (Al) requires th#t(xs,xp) < 1. Let
{a,,} be a sequence increasing to one, and define «;, x4 + (1 —a,,)xp. By Lemma 1,
xmPxp forallm, and thud/s (x,,, xg) = ua(x). ASx,;,, — x4 andu (x4) > ua(xp), we
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haveUga (x,,, xg) > Ua(xa, xp) for large enoughn, a contradiction. Therefore,4 Pxp
must hold.

By continuity of theu;’s, there is an open sét C R containingx, such that, for
all x e XNY, xPxp. Since(xy, xp) is nonsatiatedVu 4 (x4) # 0. Lettingxe = x4 +
€Vua(xy) for € > 0, and choosing close enough to zero, we havee X because:4 is
interior to X, andu 4 (x¢) > ua(x4) andx. Pxp. Therefore A can gain by deviating to.,
a contradiction. Sa 4 # xg cannot hold.

We now deal with the: even case, maintaining the supposition thaRx . Again, we
start by showing that 4 (x4) > u4 (xp). The same argument as above rulesigutcg) >
ua(xa). If uga(xa) =ua(xp), then, as above, let’' = (1/2)x4 + (1/2)xg, and note that
ua(x’) >uas(xa) =ua(xp) =Ua(xa, xp). INnthen even case, Lemma 1 implies only that
x'Rxpg. But (A1) still implies thatP(x’, xg) > 0 and soU4 (x", xg) > Ua(x4,xp). SOA
can gain by deviating t®’. Thereforepu(x4) > ua(xg) holds.

Once again, we next rule out the casgl x. In this case, by definitiom 4 (x4, xp) +
ny(x4,xg) > n/2. For sufficiently largen (with x,,, defined as above), thgy (x4, xp) vot-
ers who prefer4 to xp will also preferx,, to xp and then; (x4, xp) indifferent voters will
strictly preferx,, to xg, by strict quasi-concavity. Thereforeify (x4, xg) +n;(xa, xg) >
n/2, deviating tax,, results inA winning for sure, which is profitable for,, close enough
toxs. Soitmustbethats(xa, xp) +n7(xa, xp) =n/2 whichimpliesig (x4, xp) =n/2.
If na(xa,xp) < n/2, then assumption (A2) and the argument just given imply that
P(x;,, xg) > P(xa,xp) for sufficiently largem. So this is a profitable deviation fof.
If na(xa,xp) =n/2, then continuity yields an open setc R¢ such thatforalk e XNY
and alli € N, u;(x4) > u;(xp) if and only if u;(x) > u;(xg). Defining x. as above,
(A2) then requires thaP (x., xp) = P(x4, xp), for sufficiently smalle. Therefore, since
(x4, xp) is nonsatiatedA can profitably deviate ta.. Thereforex4 Pxp, and the final
contradiction follows as in the odd case. O

Theorem 2. Assume n is odd, and assume (Al). If (x4, xp) isa nonaligned equilibrium,
then x4, = xp = x, where Vuy (x) = 0 for somevoter k. If Vu 4 (x) and Vu g (%) arelinearly
independent, then for every p € con€{Vu,(x), Vug(x)}:

Hi € N |3a > 0: Vu; (x) =osz = |{z €N |3a <0: Vu; (x) =ap}|. 3)
If Vuy (%) and Vug (%) arelinearly dependent, then Eq. (3) holds for all p € R?.

Proof. Consider any nonaligned equilibriutw4, xg). As every nonaligned equilibrium
is nonsatiated, we know from Theorem 1 thagt= xp = x for somex € X. To simplify
notation, letpy = Vu,(x) andpp = Vug(x), and normalize both vectors so thata || =
lpsll = 1. We first claim that, for both candidat€s we must have)¢ - y < p¢ - x for all
platformsy # x such thaty Rx. Otherwise, we would havge - y > p¢ - x for somey # x
such thatyRx. It follows from Lemma 1 that, = ax + (1 — a)yPx for all @ € (0, 1).
Also, pc - x4 > pc - X. Using the assumption thatis interior to X, we takex close enough
to one thatx, is also interior taX. Since thes; are continuous, there is an open Bet X
containingx, such that, for alk € ¥, zPX. Definingzg = x, + Bpc, we takep small
enough thatg € Y, and thereforeg Px. By construction,

pc-(zg —%) = pc - (x¢ —X) + Bpc - pc > 0.
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Finally, definew, = y X+ (1—y)zg. Again using Lemma 1w, Px forall y € (0, 1). Since
pc - (w, —X) > 0, we may take close enough to one that (w, ) > uc(x). But then, by
assumption (A1), we havls(w,, %) > Ua(%, %) or Ug(X, w,) > Up(%, %) (depending
on the identity ofC), a contradiction. This establishes the claim.

If the gradients of the candidates are linearly dependent at the equilibrium platform
then, since they are nonzero and do not point in the same direction, it follows that the
gradients point in opposite directiongps = pp for somea < 0. Take anyy # X such
that yRx. From the above claimp, -y < pa - X and pg - y < pp - x. But, since the
gradients of the candidates point in opposite directions, the latter ypalds > pa - X,

a contradiction. Thereforg,Py for all y # x, which impliesx is a core point. Then Plott's
(1967) theorem implies thdtis the ideal point of at least one voter and that the symmetry
condition holds for allp € R?.

Now consider the case in which the candidates’ gradients are linearly independent, and
suppose that, for all voteis Vu; (¥) # 0. Let p € con€{p4, pp} be any vector satisfying
p =apa + Bpp for somea, B > 0. To deduce a contradiction, we will first find a vector
geR?suchthatp-¢g =0, pa-g>0,andpp - g <0. Construcy as follows. Sincep4
andpp are linearly independent, we hapg - p < ||p|l. Letg be p4 minus the projection
of p4 onto the one-dimensional subspace spanneg, .,

(pa - p)p

(r-p

Then, sincepy - pa =1 and(p4 - p)/lipll < 1, we havep, - g > 0. Furthermoreg -
p =0, implying pg - g = —(a/B)pa - g < 0. This gives us a vectar with the desired
properties. In fact, there is an open gktontainingg such that, foralk € 0, pa -s >0
andpp - s < 0. BecauseV is finite andVu; (x) # 0 for all votersi, we may choose € Q
so thatr - Vu; (x) # 0 for all i. Therefore, since the voters are odd in number, either

q=pA—

{ieN|r-Vui(x)>0} or {ieN|r- Vuj®) <0}

contains a majority of voters. Suppose, without loss of generality, that this is true for the
first group of voters, and define = x + ¢r for € > 0. Sincex is interior to X, we may
choose: small enough that. € X. Furthermore, sinc®u; (x) - (xc —x) > 0 for a majority
of voters,x Px for e close enough to zero. And, sinpg - (xe —x) = €pa -r > 0, we have
ua(xe) > ua(x) for e close enough to zero. But then there is a small eneugiich thatd
can profitably deviate t®., a contradiction. Therefor&u; (x) = 0 for some votek.

Now take anyp € con€{p4, pg}, and suppose the symmetry condition of the theorem
is violated. We will show that one of the candidates has a profitable deviation, a contradic-
tion. Leto =1 if

)

!{i €N |3a>0: Vu,-()?):(xp}! > Hl €N |3Ja <O: Vu,-()?)zozp}

and leto = —1 if the opposite inequality holds. As above, pigk R? such thap - ¢ =0,
pa-q>0,andpp -g < 0. Let Q be an open set containingon which the two strict
inequalities hold, and le®)’ = {s € Q | p - s = 0} be the elements of that set orthog-
onal to p. Forr € Q/, let O(r) = {s € R? | s - r = 0} denote the subspace orthogonal
to r. We claim thatﬂ,eQ/ O(r) = sparip}. To see this, letb1,...,b,s_1} be a basis for
the (d — 1)-dimensional subspace orthogonalgpand taker € Q' ande > 0 such that
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{r +eba,...,r +eby_1} is linearly independent and contained@h. By linear indepen-
dence, the dimension of

d-1

() O +eby)

h=1
is one. Of coursep € O(r) for all r € Q’, establishing the claim.

Then, sinceV is finite andk is the only voter with ideal point, choose- € Q' so that
r-Vu;(x) =0 ifand only ifi =k or, for someax # 0, Vu; (x) = ap. PartitionN \ {k} into
four sets,

I={ieN|r Vu%) >0}
J={ieN|r-Vux) <0}
K {i €N |3a > 0: Vu; (x) :oap}
L={ieN|3a <0: Vu;(X) =cap},

and note thatiK| > |L|. Without loss of generality, supposé| > |J|. SinceN \ {k}
containsn — 1 voters, we haveK| + |I| > (n — 1)/2, and this implieg K| + |I| >
(n+1)/2 > n/2. We will user to construct a profitable deviation for candidate (If
the inequality|/| < |J| held instead, we would user to construct a profitable devia-
tion for B.) Letxs = x + 8r for § > 0. ThenVu;(x) - (xs — x) = 8Vu;(x) - r > 0 for all
iel,andpy - (xs — X) =8pa -r > 0. Choose’ close enough to zero thajf is interior
to X. Definex, = x5 + €op for € > 0, and choose close enough to zero that, for all
iel, Vu;(x) - (xc — x) > 0; and small enough that,s - (xc — x) > 0. Note that, since
Vu;(x)-r=0foralli € K, we have

Vu;(X) - (xe —X)=8Vu;(x) -r+eVu;(x)-op >0

for all i € K. Picking e close enough to zero, we hawg € X and, for alli € I U K,
u;(xe) > u;(x), which impliesx. Px. Furthermoreu 4 (x¢) > u4(x). But then once again
there is a small enoughsuch thatA can profitably deviate ta., a contradiction. There-
fore, the symmetry condition of the theorem must holdi

Theorem 3. Assume r is odd, and assume (Al). If (x4, xp) is a nonaligned equilibrium,
then x4 = xp = X, where Vi (*) = 0 for some voter k. Moreover, for every p € R such
that p ¢ sparfVua (), Vupg (%)},

!{i €N |3a>0: Vu,-()?):(xp}! = Hl €N |3Ja <O: Vu,-()?):cxp}’.

Proof. Let (x4, xg) be a nonaligned equilibrium. From Theorem 2, it follows that=

xpg = X, whereVuy(x) = 0 for some votek. As shown in the proof of Theorem 2, if

the gradients of the candidates are linearly dependent, thisna core point, and the
symmetry condition of the theorem is satisfied. We assume, then, that their gradients are
linearly independent. As above, lgty = Vu,(x) and pp = Vug(x) and normalize so
that||pall = || p&ll = 1. Moreover, for every voter, let p; = Vu; (). Giveng, r € RY, let

S(gq,r) = spargq, r} denote the subspace spanned;bgndr. We will takeq andr to be
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linearly independent, implying th&ft(q, r) is a two-dimensional subspace, i.e., a plane.
Givenp,q,r e R?, let

p(q,r) =Projsi » P

denote the projection gf onto the span ofg, r}. Thus,pc (g, r) would be the projection
of candidateC’s gradient onto that plane. Givgne R?, let

o(p)={qeR?|q-p=0}

denote the subspace orthogonaptdGiven p € R, let

S(p) = sparnprojg ) pa, Projo () Pa}

denote the subspace spanned by the projections of the candidates’ gradients onto the space
orthogonal top. Givenp, g € R?, let

q(p) = Projs., q

denote the projection ef onto that plane. Note that, since g}, pc € S(p) andS(p) <
O(p), we have

pc(p) = Projs(,y pc = Projo(,) Pcs

so pc(p) is just the gradient of candidate projected onto the subspace orthogonagpto
That, in turn, impliesS(pa(p), pe(p)) = S(p). Finally, note the further implication that
q(p) =q(pa(p), pe(p))-

Let ¢, r € R? be vectors such that the gradients of the candidates, projected onto the
plane S(g, r), point in different directions, i.e., there do not exists > 0, at least one
nonzero, such thatp, (¢, r) = Bpp(q, r). Clearly, if we restrict the candidates’ platforms
to the two-dimensional spade+ S(q, r), then the paicx, x) is a nonaligned equilibrium
of the restricted game. Take apye con€{pa(q,r), ps(q, r)} in the open cone generated
by the candidates’ projected gradients, so that the antecedent conditions of Theorem 2 hold
in the restricted game. We claim that

Hi €N |3da > 0: p,-(q,r):otp(q,r)” = |{l €N |da <O0: pi(q,r)zap(q,r)H.

If not, then, by Theorem 2, one of the candidates has a profitable deviation in the restricted
game, and therefore the candidate has a profitable deviation in the original game, a contra-
diction. This establishes the claim.

To prove the theorem, take apy¢ sparfipa, pgp}, normalize sd|p| =1, let

I:{i€N|EIa>O: Vu,'(ﬁ):ap}
J={ieN |3 <0: Vu;(£) =ap},

and suppose thaf | # |J|. Without loss of generality, suppos$g| > |J]. In light of the
above claim, a contradiction is proved if we find vectgendr satisfying three conditions:

(1) there do not exist, 8 > 0, at least one nonzero, such thats (¢, ) = Bpg(q,r);
(2) p(q.r)econ€{palq.r), pplq,r)};
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(3) the symmetry condition of Theorem 2 in the game restrictedaS (¢, ) is violated,
specifically,
1= {i € N |3Ja>0: pi(g,r) :ap(q,r)}
J={ieN|3a<0: pi(g,r)=ap(g,n).
We first consider the possibility of settirg= p4(p) andr = pg(p). As noted above,
we would then havev4 (¢, 7) = pa(p) andpg(q,r) = pp(p), So condition (1) is satisfied

if pa(p) and pp(p) are linearly independent, and we claim that is indeed the case. To
show this, note that there exist unique, nonzerendg such that

pa=pa(p)tap and pg=pp(p)+Bp.
If pa(p) andpp(p) were linearly dependent, then there would exisindé, at least one
nonzero, such thatp (p) + dpp(p) = 0. But then

ypa+8pp = (ay + BS)p,

which implies

_(_ (8
p_<w+ﬂ8)pA <ay+ﬂ8>p8’

contradictingp ¢ sparipa, pg}. Therefore, the projected gradients of the candidates are
linearly independent, as claimed.
We cannot simply set = p4(p) andr = pp(p), however, because then we would have

p(q.r)=p(pa(p), p(p)) =0,

violating condition (2). Next, we establish the existence of a perturbatjaf,p such that
conditions (1) and (2) are both satisfied by= pa(s) andr = pp(s). As noted above,
p(s) = p(pa(s), pp(s)) and pc(s) = pc(pa(s), pp(s)) for each candidate, so condi-
tion (2) can be written ag(s) € con€{p4(s), pp(s)}. To construct the perturbation, let
se =p—(€/2)(pa + pp) for e > 0. Note that, by linearity of the projection mapping and
Se(se) =0,

p(se) = (Se +(e/2)pa + (6/2)173)(5'6)
= (€/2)pa(se) + (€/2) pp(se)-

Thus, p(s¢) € con€{pa(sc), pp(se)}. Taking e close enough to zero thats(s¢) and
pB(se¢) are linearly independent, we set s, for the desired perturbation.

We now wish to find perturbationg,andr, of p4 (s) andp g (s) that satisfy condition (3)
as well as (1) and (2). Let voter satisfy p;(s) = ap(s) for somea < 0 but p; # ap.
That is, although the voter’s gradient appears to point intpedirection when projected,
the voter is not a member df. Note the immediate implication that; and p are linearly
independent. We will find arbitrarily close vectarandw such thatp ; (v, w) =o' p(v, w)
for noa’ < 0. Note that
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pj-pas)=(pj = pj(s)) - pa(s) + pj(s) - pals)
=pj(s)-pa(s)
=ap(s) - pa(s)
=a(p(s) — p) - pals) +ap-pals)
=ap - pa(s),
where the second equality follows fro(p; — p;(s)) - pa(s) = 0 and the fourth equality
from (p(s) — p) - pa(s) =0. Similarly, p; - pp(s) =ap - pp(s). These equalities imply
Pj - pa(s) _ p-pa(s)
pj-pB(s) p-pp(s)

Since p; and p are linearly independent, there existe R? such thatp; - + > 0 and
p -t <0.Defineve = pa(s) + er andwe = pp(s) — et for e > 0, and note that

Dj Ve D-Ve
—_ > —.
Pj-We P-We

Thus, p;(ve, we) =o' p(ve, we) for noo’ < 0. That is, the gradient of voter, projected

onto the plane spanned by andw,, no longer appears to point in thep direction. Since
conditions (1) and (2) hold on open sets aroynds) and pg(s), we can choose small
enough that (1) and (2) hold fex andw.. SinceN is finite, we can perturb, andw, a

finite number of times, if needed, so that the only voters whose projected gradients point in
the — p(ve, we) direction are the members @t By a similar argument, we can perturb
andw, so that the only voters whose projected gradients point irpilae, we) direction

are the members df, fulfilling condition (3). O

Theorem 4. Assume n is even, and assume (A1) and (A2). There does not exist a hon-
aligned equilibrium.

Proof. To prove the theorem, consider any nonaligned equilibriwm x). By Theo-
rem 1, the candidates must locate at the same platformy say, = xp. We claim that
Vuy (%) = 0 for some votek, for suppose not. As in the proof of Theorem 2,Aet R? be
suchthatps -r > 0> pp - r and such that - Vu; (x) = 0 for no voteri. Then either

lieN|r-Vui(x)>0} or |ieN|r- Vuj#) <0}

contains at least half of the voters. Suppose, without loss of generality, that this is true for
the first group of voters, and defing = X + er for € > 0. Sincex is interior to X, we
may choose small enough that, € X. Furthermore, sinc&u; (x) > 0 for at least half
of the votersx. Rx for ¢ close enough to zero. And, singg, - (xe — X) = €pa - r > 0,
we haveu(x¢) > ua(x) for € close enough to zero. But then, by assumption (Al), we
haveU4(x., x) > Ua(x, X), asxcRx, so candidateA has an incentive to deviate. This
contradiction implies tha¥u; (x) = 0 for some votek.

Now consider the model with removed from the set of voters, i.e., let the set of voters
be N’ = N\ {k}, now odd in number. Because we assumed the votehs rad distinct
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ideal points, there is no voter with ideal point &tin the modified model (withk re-
moved). Following the proof of Theorem 2, one of the candidates,Asagan move to
some platformx’ such thatu 4 (x”) > u(x) andx’ P'x, where P’ represents the strict ma-
jority preference relation in the modified model. That is, a majority of votesg'istrictly
preferx’ to x. Returning to the original model, that means that at least half of the voters
in N strictly preferx’ to x. Therefore, we haves (x’) > u4(x) andx’Rx. As above, this
impliesUy4 (x', x) > U4 (X, X), a contradiction. O

Proposition 2. Assume (A1) and (A2). Assume that there exists platforms x, y € X such
that x Px4 and upg(x) > up(x4) andthat yPxg and us(y) > ua(xp). If (x4, xp) isan
interior equilibrium, then either itisnonsatiated or: n isevenand x4 = x4 and xp = Xp.

Proof. Itis sufficient to show that the only interior equilibria in which one candidate, say
A, adopts her ideal point occur whenis even andB also adopts her ideal point. We
first assume: is odd. Supposéiy, xg) is an interior equilibrium. There are three cases
to check. Firstxs Pxp. Lettingx PX4 andup(x) > ug(X4), candidateB can deviate to

x and do strictly better, a contradiction. Secoid/xg. As in the proof of Theorem 1,
up(xp) > up(x4) andB can gain by moving toward, a small amount, a contradiction.
Third, xp Px 4. By continuity of theu;’s, there is an open set of platforms containing
that are majority-preferred t6,. So candidaté can gain by moving toward his ideal point
by a small amount, unless; = x. If this is true, then, just a8 could in the first case,
candidateA can gain by moving to a platform such thaty Pxg andua(y) > ua(xp),

a contradiction.

If n is even, then we need to modify the above argument only in the second case
(XalIxp). Once again, the arguments given in the proof of Theorem 1 establish that
ug(xg) > ug(x4) and eitherB can win outright by moving a small amount towa¥g
or all such moves will maintain a tie. In the former case, a small enough mow& iby
profitable. In the latter, by assumption (A2) candid&tean gain by moving toward his
ideal point by a small amount, unlesg = Xg. So it must be the case that both candidates
are at their ideal points. O

Theorem 5. Assume n isodd and X is compact. Let {1} approximate A*. If there is no
equilibriumin A*, then, for m high enough, there is no equilibriumin A™.

Proof. If not, then we can extract a subsequeri¢céy, x%)} (still indexed bym, for
convenience) such that'y, x7) is an equilibrium inA™ and, for somex4, xp € X,
(x¥, x%) = (xa,xp). Note thatu s (x4) > ua(xp), for otherwiseu s (x4) < ua(xp). Then

UA(le,x%’Mm) — UA(x;‘",ngm)
= P(xf xg 12") (ua(xF) —ua(xy)) + P(xg, x5 1A )wa (x, x5 12")
— P(xj xF I Ywa (2, X 1A™),

which, using (i), is positive if and only if

uaxg) —ua(xy)
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g, XA

> P(x0, xB I )wa (x, xF ™) —
( A B| ) A( A B| ) P(xX’,xZ’M’")

wa (X, xFIA").

By continuity, we have linu 4 (x) — ua(x{) > 0, and sincevs converges uniformly to
zero by (ii), we see that the inequality must hold fothigh enough. But this, of course,
contradicts the assumption th@ty, x%) is a equilibrium.

We claim that eithex s P*xp or xg P*x4 Or x4 = xp. Otherwise, we have, # xp
andx,Ixp. For eachmn, given platforms(x’, x%), one of the candidates must win with
probability less than or equal to one half. Assume without loss of generality that this is
true of candidated for infinitely manym, and consider the subsequence (still indexed
by m) for which this holds. ThusP (x'{, x7 |A"™) < 1/2 for allm. For anye € (0, 1), define
x4 = (1 —€)xa + exp, and note thaky P*xp by Lemma 1. Using continuity and strict
quasi-concavityy 4 (x4) > u4(xpg) implies that there exists € (0, 1) such that

.1 1
ua(xy) > EMA(XA) + EMA(XB)- )

By (iii), P(x4.-|A™) converges to one uniformly on some open set containgso we
haveP (x§, x% [A™) — 1. With (ii), it follows that

UA(xj,xZ’Mm)—)uA(xf‘). (6)

On the other hand, sinaes(x4) > ua(xp) and sinceA wins with probability no more
than one half i, we have for als > 0,

U (3 X5IA") =5 < Sua(ef) + ua (<) +wa(f x510"),

for m high enough. This implies

. 1 1
lim SupUA(xf,leMm) < EMA(XA) + EuA(xB). @)

Combining (5), (6), and (7), we havBa(x§, x5 |A") > Ua(xy, xg|A™) for m high
enough, a contradiction.
We now claim that

Ua(xy, xFIA") = Ua(xa, xpl2*). (8)

If xaP*xp,thenP (x4, xp|A*) =1, and (i) implies that? (x}, x |A™) — 1. In this case,
the claim holds. A symmetric argument addresses the case in whihx 4. If x4 = x5,
then limu 4 (x{) =limu (x%y) =ua(xa) =ua(xp), establishing the claim.

By assumption(x, xg) is not an equilibrium im*, so some candidate, say, as a
profitable deviation, say/,, i.e.,

Ua(xly, xg|2*) > Ua(xa, xp|25). 9)

We will show that form high enough, this leads to a profitable deviation foin 1™,
a contradiction.

Note thatu 4 (x/,) > ua(xp), for otherwise, we have (x,) < ua(xp), which implies
Ua(x'y, xpIA*) <ua(xp). But then (9) implies that 4 (x4) < ua(xp), contradicting our
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earlier claim. For € (0, 1), definez§ = (1 — €)x/, + exp. By strict quasi-concavity, we
haveu,(z§) > ua(xp). By Lemma 1,P(z5, xg|A*) > P(x/,, xg|1*). Then we have

lim inf Ua (2§, xpIA*) (10)
e—0
=us(xg) +lim 6igfoP(zfA, x|A*) (ua(zh) —ualxp))
> us(xp) + P(x)y, xp|A") (ua(x)y) —ua(xp))
=Ux(x)y, xp|1").
Using (9) and (10), choosesmall enough that
Ua (24, xBI1*) > Ua(xa, xp[2"). (11)
Furthermore, use Lemma 1 to choesso thatz, P*xp or xg P*z5.
We claim that
lim inf P (5. x51A") > P(f, x5127). (12)

If xp P*z¢, thenP(z5, xp|1*) =0, and the claim clearly holds. if, P*xp, then, by (iii),
lim P(z5, x|1A™) = 1, establishing the claim.
Finally, we claim that

lim inf Ua(cfy. x5IA") > Ua(ch. x5127). (13)
Usingua(z§) > ua(xp), we apply (i) and (12) to the expression
Ua(2h, x5 10") = ua(xg) + P(5, x5 1A") (a(2h) —ua(x5))
+ wa (25, xF A",

to deduce that
lim inf Ua(z5. x5 IM") 2 uaxp) + P(z5, xBIA") (ua(zy) —ualxp))

=Ua(z%. xBI1Y),

as claimed. Combining (8), (11), and (13), we find that, #ohigh enough, we have
Ua(z§, x5 IA™) > Ua(x'y, x [A™). This contradiction establishes the theoremm

Proposition 4. Let {1} be a sequence of additive bias models such that, for each voter i,
the sequence F;(-|]A™) converges weak* to the point mass on zero. Then {1} satisfies
condition (iii) in the definition of approximation.

Proof. Supposexs P*xg, and letA > 0 be such that, for each voterwith u;(x4) >
u;i(xp), we haveA < u;(x4) —u;(xg). Let G and H be open neighborhoods aroung
and xp, respectively, such that, for ajl e G and allz € H, A < u;(y) — u;(z). Since
F; (-]A*) is continuous atj, it follows that F; (A|A™) — F;(A|L*) = 1. Therefore, for
everyi with u; (x4) > u;(xp), we have
lim inf  Fi(ui(y) —ui()A") > lim F(AA") =1,
m—0o0

m—oQ0 yEG,ZEH

and thenx 4 P*xp delivers the claim. O
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Proposition 5. Let {A"™} be a sequence of random preference models such that A™ con-
verges to A* in the weak* topology, where 1* puts probability one on some 6* € ®. Then
{A™} satisfies condition (iii) in the definition of approximation.

Proof. Supposexs P*xg. Let C € N consist of the voters such thatu;(x4|0*) >
u;(xp|6*). By continuity, there exist open neighborhoa@s H, and® aroundxy, x3,
ando*, respectively, such that for alle C, all y € G, all z € H, and alld € &, we have
ui(y|0) > u;(z|6). By weak* convergence,” (@) — 1. Therefore, for every € C, we
have
lim inf  Pi(y,z]A") > lim A"(6) =1,
m— o0

m—o0 yeG,zeH

and thenx 4 P*xp delivers the claim. O
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