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Abstract

We consider the problem of allocating some amount of an infinitely divisible and homogeneous resource
among agents having claims on this resource that cannot be jointly honored. A “rule” associates with each
such problem a feasible division. Our goal is to uncover the structure of the space of rules. For that purpose,
we study “operators” on the space, that is, mappings that associate to each rule another one. Duality, claims
truncation, and attribution of minimal rights are the operators we consider. We first establish a number
of results linking them. Then, we determine which properties of rules are preserved under each of these
operators, and which are not.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

We address the problem of allocating an endowment of an infinitely divisible and homoge-
neous resource among agents having claims on this resource that cannot be jointly honored.
A primary example is when the liquidation value of a bankrupt firm has to be allocated among its
creditors. A “division rule” is a function that associates with each situation of this kind, which we
call a “claims problem,” a division of the endowment. We call this division an “awards vector.”
It is interpreted as the choice that a judge or arbitrator could make. In the search for the most
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desirable rules, the literature,1 initiated by O’Neill [12], has proceeded on several fronts, much
recent progress having been made on the axiomatic front.

We will consider the issue from a higher perspective than is standard however, and exam-
ine the space of rules itself, our goal being to contribute to the understanding of its structure.
When surveying the literature, one is struck by the richness of the inventory of rules that have
been proposed. Such richness is intriguing but also confusing, and one feels the need to orga-
nize this inventory in some fashion. Several approaches can be taken for that purpose. The first
approach simply consists in searching for resemblances between rules, in the formulas or algo-
rithms defining them, and in the geometry of their graphs. Rules can be usefully organized in
families exploiting these resemblances. The parametric family introduced by Young [25], as well
as certain families defined by Thomson [21], collect a number of important rules that can be
described in a common way. The identification of these families allows us to relate rules to one
another, and also to understand what is unique to each of them. A second approach is to orga-
nize rules in classes by referring to the properties they share. Axiomatic analysis is the principal
methodology here. Of course, these two approaches are related. The fact that a general formula
can be written down to gather rules among which one has recognized patterns will underlie why
all members of the family share certain properties.

The approach we follow here is based on a third way of relating rules. It exploits and general-
izes a phenomenon one quickly notices, namely that one can often pass from one rule to another
by means of a simple algebraic or geometric operation. Let us define an “operator” on the space
of rules as a mapping that associates with each rule another one. We propose to undertake a
systematic study of such objects. We consider three of them. First is a duality operator. When
looking at a claims problem, two perspectives can be taken: we can think of the issue as dividing
what is available; or, as dividing the deficit (the difference between the sum of the claims and the
endowment). Let S be a rule. The rule associated with S by the duality operator, its “dual,” treats
what is available in the same way as S treats the deficit. The second operator associates with S

the rule defined for each problem by first truncating claims at the endowment and then applying S

to the problem so revised. The rule associated with S by the third operator calculates the awards
vector for each problem in two steps: first, each claimant is attributed the difference between the
endowment and the sum of the claims of the other agents (or 0 if this difference is negative); this
difference is an obvious minimum to which he is entitled; second, S is applied to allocate what
remains, the part that is truly contested, claims being adjusted down by the “minimal rights” of
the first step.

We uncover a number of links between the three operators. Obviously the duality operator
composed with itself is the identity; also, the claims truncation operator composed with itself is
equivalent to itself; somewhat less obvious is that a similar statement holds for the attribution of
minimal rights operator. We then show that if two rules are dual, then the version of one obtained
by subjecting it to the attribution of minimal rights operator is dual to the version of the other
obtained by subjecting it to the claims truncation operator. Next, we study the composition of
the claims truncation and attribution of minimal rights operators (a composition on which a rule
suggested by Curiel et al. [5] is based). We show that the order in which they are composed
does not matter: the rule that results is independent of the order. Second, in the two-claimant
case, starting from any two rules satisfying the basic property that agents with equal claims
should receive equal amounts, subjecting them to the composition of the two operators always

1 For surveys, see Thomson [22,24].
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produces the same rule. Third, this rule is not just any rule, but it is one that has been central
in the literature. We refer to it as “concede-and-divide” because it emerges from the following
natural two-step scenario: each claimant first concedes to the other the difference between the
endowment and his own claim (or 0 if this difference is negative); what remains, the part that
we described earlier as being truly contested, is divided equally (Aumann and Maschler [1]; the
name is proposed by Thomson [22]).

Given a property that a rule may have, a natural question is whether the property is also
satisfied by the rule obtained by subjecting it to a certain operator. The fact that a property is
preserved under an operator is an interesting and very useful feature it may have. We show
that, of the properties that have been frequently discussed in the literature, most are preserved
under the duality operator, but our main results concerning this operator pertain to two basic
monotonicity properties, which somewhat surprisingly, are not. One is “claims monotonicity”: if
an agent’s claim increases, his award should be at least as large as it was initially. The other is
“population monotonicity”: upon the arrival of additional claimants, the award to each claimant
initially present should be at most as large as it was initially.

Next, we turn to the claims truncation and attribution of minimal rights operators. These op-
erators tend to be more disruptive, but they are disruptive in “symmetric” ways. We also study
their composition and find that the central property of “self-duality”—invariance under the dual-
ity operator—which is preserved by neither operator, is preserved under their composition.

Our results have a number of benefits. First, as was our goal, they allow us to structure the
existing inventory of rules available to solve claims problems, and to help ensure that no impor-
tant rule has been missed. The structural relations between the operators we uncover also allow
us to provide easy proofs that certain properties hold for particular rules (examples are the prop-
erties established by Curiel et al. [5] for the rule they define), and they should also be useful
in identifying which properties each newly constructed rule may or may not satisfy. Finally, the
operators—the duality operator is particularly useful in this regard—allow us to derive new char-
acterizations from existing ones. (For an earlier example of such a derivation, see Herrero and
Villar [8].) Altogether, they should help clarify the literature and keep it organized as it develops
further.

2. Model

There is a finite set of claimants, N . Each agent i ∈ N has a claim ci ∈ R+ over an endow-
ment E ∈ R+. The endowment is insufficient to honor all of the claims. Altogether, a claims
problem is a pair (c,E) ∈ R

N+ × R+ such that
∑

N ci � E.2 Let CN denote the class of all
claims problems. An awards vector of (c,E) is a point of R

N+ bounded above by c and whose
coordinates add up to E, a condition we call “efficiency.” Let X(c,E) be the set of awards vec-
tors of (c,E). A rule is a function defined on CN that associates with each (c,E) ∈ CN an awards
vector of (c,E). Let S be our generic notation for rules. For the two-claimant case, a rule can be
conveniently described in a two-dimensional space, for each claims vector, by means of the path
followed by the awards vector as the endowment increases from 0 to the sum of the claims. We
refer to this path as the path of awards of the rule for this claims vector. We denote by p(S, c)

the path of awards of S for c.

2 By the notation R
N we mean the Cartesian product of |N | copies of R indexed by the members of N . Vector

inequalities: x � y, x � y, and x > y.
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We also consider a variable-population version of the model. There is a population of “po-
tential” claimants, either N, the set of natural numbers, or some subset of it. However, only a
finite number of claimants are present at any given time. Let N be the class of finite subsets
of the set of potential claimants. To specify a claims problem, we first choose N ∈ N , then
(c,E) ∈ CN . A rule is a function defined over

⋃
N∈N CN , which associates with each N ∈ N

and each (c,E) ∈ CN , an awards vector of (c,E).

3. Operators

Next, we define our operators, the duality operator, Od , the claims truncation operator, Ot ,
and the attribution of minimal rights operator, Om. Then, we illustrate them by means of exam-
ples. Given any rule S, the rule obtained by subjecting it to operator Op , for p = d, t , or m, is
denoted Sp .

1. Duality. The dual of a rule S treats what is available for division in the same way as S treats
what is missing. Formally, given (c,E) ∈ CN , we replace E by

∑
ci − E; we use S to di-

vide this difference, and then subtract the result from c. The idea is suggested by Aumann and
Maschler [1], who provide motivation for it, as well as note passages in the Talmud to support
their thesis that its seed was already there:

Dual of S, Sd : For each (c,E) ∈ CN , Sd(c,E) ≡ c − S(c,
∑

ci − E).

It is easy to check that the pair (c,
∑

ci − E) is a well-defined problem and that Sd is a well-
defined rule. The operator Od has a convenient geometric interpretation: for each c ∈ R

N+ , p(S, c)

and p(Sd, c) are symmetric of each other with respect to c
2 . Also, since (Sd)d = S, we can speak

of rules being “dual.” Examples of dual rules are the constrained equal awards rule, CEA,
which equates the amounts received by all claimants subject to no one receiving more than his
claim, and the constrained equal losses rule, CEL, which equates the losses experienced by all
claimants subject to no one receiving a negative amount: formally, CEA(c,E) ≡ (min{ci, α})i∈N ,
and CEL(c,E) ≡ (max{0, ci − α})i∈N , where in each case, α ∈ R+ is chosen so as to achieve
efficiency. Fig. 1a illustrates the definitions, and this duality, for |N | = 2.3

A rule is self-dual if it treats the problem of dividing what is available symmetrically to the
problem of dividing what is missing (Aumann and Maschler [1]).4 To say that a rule is self-dual is
to say that it is invariant under Od . For such a rule S, and for each c ∈ R

N+ , p(S, c) is symmetric
with respect to c

2 . A number of rules are self-dual. An obvious example is the proportional
rule, P , which chooses awards proportional to claims. However, other important rules share
this property. One of them is the Talmud rule, Tal, (Aumann and Maschler [1]), which can

be described as a hybrid of CEA and CEL: if E �
∑

ci

2 , Tal(c,E) = CEA( c
2 ,E) and otherwise,

Tal(c,E) = c
2 + CEL( c

2 ,E −
∑

ci

2 ). Another is the random arrival rule, RA (O’Neill [12]; see
Thomson, [24], for a proof), which assigns to each claimant the expected value of what he would

3 We write the formal definitions of rules for the fixed-population case. To obtain their variable-population versions, it
suffices to add a universal quantification over N .

4 Aumann and Maschler [1] note a number of passages in the Talmud where the idea that the two perspectives should
be equivalent is implicit.
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(a) (b) (c)

Fig. 1. Illustrating the three operators. (a) The operator Od applied to CEA produces CEL: for each c ∈ R
N+ , p(CEA, c)

and p(CEL, c) are symmetric of each other with respect to c
2 . (b) The operator Ot applied to P . (c) The operator Om

applied to P .

obtain on a first-come first-serve basis, assuming that all orders of arrival of claimants occur with
equal probabilities.5

2. Claims truncation. The second operator truncates claims: given (c,E) ∈ CN , each claim
that is greater than E is replaced by E. The operator Ot is critical for the study of claims
problems as “games with transferable utility” (O’Neill [12]). Indeed, if a rule is such that for
each problem, the awards vector it recommends is the payoff vector chosen by a solution to
TU games for the game associated with the problem in the manner first suggested by O’Neill
[12]6, then it is invariant under Ot (Curiel et al. [5]). Formally, for each (c,E) ∈ CN and each
i ∈ N , let ti (c,E) ≡ min{ci,E} denote agent i’s truncated claim at the endowment, and
t (c,E) ≡ (ti(c,E))i∈N the vector of truncated claims. Fig. 1b illustrates Ot applied to P for
|N | = 2.

Rule S operated from truncated claims, St : For each (c,E) ∈ CN , St (c,E) ≡ S(t (c,E),E).

The inequality between
∑

ci and E is not reversed by the truncation: after carrying it out, we
still have a well-defined claims problem.

5 For references to the relevant ancient literature, see O’Neill [12], Aumann and Maschler [1], Young [25], and Da-
gan [6]. Both CEA and CEL are discussed by Maimonides. Proportionality is explicitly advocated by Aristotle as the
basis for “just” distribution. The Talmud rule is defined by Aumann and Maschler [1] to rationalize numerical examples
given in the Talmud. We should also mention the “minimal overlap rule,” MO (O’Neill [12]; Chun and Thomson [4]),
which calculates awards by arranging claims over the endowment so as to minimize in a lexicographic way the extent to
which they conflict, and then dividing each unit equally among all agents claiming it. Remarkably, RA, MO, and Tal all
coincide for |N | = 2; moreover, they coincide with “concede-and-divide,” defined below. For further discussion of these
relationships, see Thomson [22]. We will see below that many other rules share this feature.

6 Given (c,E) ∈ CN , and S ⊆ N , the “worth of S” is defined to be max{E − ∑
i∈N\S ci ,0}. “Correspondences”

between rules and solutions to coalitional games have proved to be very useful tools in the literature on the problem of
claims resolution.
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If a rule is invariant under Ot , it is invariant under claims truncation: for each (c,E) ∈ CN ,
one can equivalently calculate the awards vector (i) directly, or (ii) after truncating claims at E

(Dagan [6], Herrero and Villar [9]).

3. Attribution of minimal rights. Given (c,E) ∈ CN and i ∈ N , it is natural to think of the
difference E−∑

N\{i} cj (or 0 if this difference is negative), as a minimal amount that agent i can
reasonably expect. There should be no dispute about this payment. Given any rule S, a version of
it can be defined by first attributing to each claimant his minimal amount; then after adjusting all
claims down by these “first-round awards,” applying S to divide the remainder. This remainder is
what is truly disputed. Formally, for each (c,E) ∈ CN and each i ∈ N , let mi(c,E) ≡ max{E −∑

N\{i} cj ,0} denote claimant i’s minimal right and m(c,E) ≡ (mi(c,E))i∈N the vector of
these rights. Fig. 1c illustrates the operator Om applied to P for |N | = 2.

Rule S operated from minimal rights, Sm: For each (c,E) ∈ CN , Sm(c,E) ≡ m(c,E)+S(c−
m(c,E),E − ∑

mi(c,E)).

Since E −∑
mi(c,E) � 0 (Curiel et al. [5]), and

∑
(ci −mi(c,E)) � E −∑

mi(c,E), here
too, at the second round, we obtain a well-defined claims problem.

If a rule is invariant under Om, it satisfies minimal rights first: for each problem, one can
equivalently calculate the awards vector (i) directly, or (ii) in two steps, first attributing to each
claimant his “minimal right,” and after adjusting down each agent’s claim by his minimal right,
dividing what remains (Curiel et al. [5]).

4. Relating the operators

Given any rule S, the rule obtained by subjecting it to the operator Op and then to the oper-
ator Op′

is denoted Sp′◦p .7 It is obvious that for each rule S, we have Sd◦d = S and St◦t = St .
Also, Sm◦m = Sm. To prove this, let (c,E) ∈ CN . We need to show that, in the problem obtained
from (c,E) by attributing minimal rights, namely (c − m(c,E),E − ∑

mj(c,E)), minimal
rights are all 0. Let i ∈ N , and note that claimant i’s minimal right in this revised problem
is max{E − ∑

mj(c,E) − ∑
N\{i}(cj − mj(c,E)),0}. After canceling out terms, we obtain

max{E − ∑
N\{i} cj − mi(c,E),0}, which is easily seen to be equal to 0, by using the definition

of mi(c,E).
For |N | = 2, straightforward calculations reveal that CEA subjected to Om and CEL subjected

to Ot are dual. Indeed, they both coincide with concede-and-divide, CD. This rule is defined
only for |N | = 2 but it is very important because a large number of ways of looking at the
issue of adjudicating conflicting claims lead to it.8 Formally, setting N ≡ {i, j}, CD(c,E) ≡
(max{E − cj ,0} + E−∑

N max{E−ck,0}
2 ,max{E − ci,0} + E−∑

N max{E−ck,0}
2 ). This duality result

7 We find this notation a little easier in formulas than Op′ ◦ Op(S).
8 The following scenario, which provided the reason for the name we chose for the rule, is one of them (Aumann and

Maschler [1]): agent i, by claiming ci , is implicitly conceding to claimant j the difference E − ci , or 0 if this difference
is negative, namely max{E − ci ,0}. Similarly, by claiming cj , agent j can be understood as conceding max{E − cj ,0}
to agent i. Let us first attribute to each claimant the amount conceded to him by the other (this can be done because the
sum of these concessions is at most as large as the endowment), and in a second step, let us divide the remainder, the
“contested part,” equally (no agent ends up with more than his claim).
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between CEAm and CELt is not an accident. It is a consequence of the following theorem, which
holds for any number of claimants:

Theorem 1. Let S and R be two dual rules. Then Sm and Rt are dual too.

Proof. We need to show that for each (c,E) ∈ CN , Sm(c,E) = c −Rt(c,
∑

N ci −E), or equiv-
alently that

m(c,E) + S

(
c − m(c,E),E −

∑
N

mi(c,E)

)

= c − R

(
t

(
c,

∑
N

ci − E

)
,
∑
N

ci − E

)
. (∗)

Since S is dual to R,

S

(
c − m(c,E),E −

∑
N

mi(c,E)

)

= c − m(c,E) − R

(
c − m(c,E),

∑
N

(
ci − mi(c,E)

) −
(

E −
∑
N

mi(c,E)

))
,

and substituting in (∗), we obtain

R

(
c − m(c,E),

∑
N

ci − E

)
= R

(
t

(
c,

∑
N

ci − E

)
,
∑
N

ci − E

)
.

We prove this equality by showing that for each i ∈ N , ci − mi(c,E) = t (c,
∑

N ci − E),
equivalently, that

ci − max

{
E −

∑
N\{i}

cj ,0

}
= min

{
ci,

∑
N

cj − E

}
. (∗∗)

If E �
∑

N\{i} cj , then max{E − ∑
N\{i} cj ,0} = 0 and the left-hand side of (∗∗) is ci ; the

right-hand side is also ci . If
∑

N\{i} cj < E, the left-hand side of (∗∗) is ci − E + ∑
N\{i} cj =

−E + ∑
N cj , and so is the right-hand side. �

We give two other illustrations of Theorem 1 for |N | = 2. First, an implication of this the-
orem is that if a rule S is such that Sm is self-dual and R ≡ Sd , then Rt = Sm. This is what
occurs for Piniles’ rule, Pin, which is defined, for each (c,E) ∈ CN , as follows: if E �

∑
ci

2 ,

Pin(c,E) = CEA( c
2 ,E) and otherwise Pin(c,E) = c

2 + CEA( c
2 ,E −

∑
ci

2 ).9 The rule is repre-
sented for |N | = 2 in Fig. 2b and its dual in Fig. 2e. It is easy to calculate that for |N | = 2,
Pinm = CD (Fig. 2a). Since CD is self-dual, Theorem 1 implies that Pint◦d = CD, as is also
easily verified (Fig. 2d).

As a final illustration of Theorem 1, once again we consider Pin for |N | = 2, but this time
we subject it to Ot . The resulting rule is shown in Fig. 2c. The rule obtained by subjecting

9 Piniles’ [16] rule is an only partially successful attempt to explain the recommendations made in the Talmud for the
numerical examples given there. On the other hand, the rule obtained from Pin by subjecting it to Ot is not self-dual. We
return to this example to illustrate a later theorem.
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Fig. 2. Illustrating Theorem 1. (a) Piniles’ rule subjected to Om. (b) Piniles’ rule. (c) Piniles’ rule subjected to Ot .
(d) The dual of Piniles’ rule subjected to Ot . (e) The dual of Piniles’ rule. (f) The dual of Piniles’ rule subjected to Om.
The dual of each rule in the top row is the rule below it.

Pind to Om is shown in Fig. 2f. For each c ∈ R
N+ , the symmetry of p(Pint , c) and p(Pinm◦d , c)

announced by Theorem 1 can be verified on panels (c) and (f).
When a rule is subjected to both Ot and Om, the question arises whether the order in which

these operators are applied matters. It is an important question since neither order appears more
compelling than the other. Fortunately, the answer is no. We give the proof of this invariance
first for |N | = 2, as it is very transparent, and also because then, not only is the resulting rule
independent of the order, but it is also independent of which rule is taken as a starting point,
provided the rule assigns equal awards to agents with equal claims. This is the property of equal
treatment of equals: for each (c,E) ∈ CN and each pair {i, j} ⊆ N , if ci = cj , then Si(c,E) =
Sj (c,E). Moreover, the end-result is CD. This feature of CD is in fact one of the reasons why
we feel that this rule is so important.

A preliminary observation is worth making. Consider a rule S satisfying equal treatment of
equals. Then, for each problem in which the endowment is at most as large as the smallest claim,
the rule obtained by subjecting S to Ot chooses equal division. Also, for each problem in which
the endowment is at least as large as the sum of the n − 1 largest claims, the rule obtained by
subjecting S to Om imposes equal losses on all claimants.
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Theorem 2. For |N | = 2. For each rule S satisfying equal treatment of equals, St◦m = Sm◦t =
CD.

Proof. We assume, without loss of generality, that c1 � c2.

Case 1. E � c1. The amount conceded to each claimant (also his minimal right) is 0. First-round
awards are all 0, and no adjustment of claims is needed. Truncation of claims at E yields revised
claims both equal to E. By equal treatment of equals, equal division prevails.

Case 2. c1 < E � c2. Claimant 1 concedes to claimant 2 the amount E − c1, and claimant 2
concedes nothing to claimant 1. Claims are adjusted down to c1 and c2 − (E − c1). After these
first-round awards, what remains to divide is c1. Truncating claims at c1 yields new claims both
equal to c1. In the second round, by equal treatment of equals, each claimant receives half of the
remaining endowment, namely c1

2 . Altogether, claimant 1 receives c1
2 and claimant 2 what is left.

Case 3. c2 < E. The amounts conceded are E − c2 and E − c1. Claims are adjusted down to
c1 − (E −c2) and c2 − (E −c1), and the amount that remains is E −∑

(E −ci). After truncation
at this revised endowment, claims are equal (and in fact, equal to the revised endowment c1 +
c2 −E). Then, in the second round, by equal treatment of equals, equal division of the remaining
endowment prevails.

It is easy to see that the awards made in each of the three cases are those specified by CD, and
that reversing the order in which the two operators are composed also yields CD. �

If in Theorem 2, equal treatment of equals is dropped, order independence still holds but
now a family of rules is obtained (defined in Hokari and Thomson [10]). If the rule is such that
multiplying all data of a problem by some positive number results in a problem whose awards
vector is obtained from the awards vector of the original problem by the same multiplication
(see below for a more formal statement of this property of “homogeneity”), a one-parameter
subfamily is obtained. In the general n-claimant case, we lose uniqueness also, but not order
independence.

Theorem 3. For each rule S, we have Sm◦t = St◦m.

Proof. The proof is in three steps. Let (c,E) ∈ CN be given.

Step 1. m(c,E) = m(t(c,E),E).
Let i ∈ N . If there is j ∈ N\{i} such that cj � E, then mi(c,E) = 0. Also, tj (c,E) = E,

so mi(t (c,E),E) = 0. Thus, mi(c,E) = mi(t (c,E),E). If for each j ∈ N\{i}, cj < E, then
for each j ∈ N\{i}, tj (c,E) = cj , and thus, mi(t (c,E),E) ≡ max{E − ∑

N\{i} tj (c,E),0} =
max{E − ∑

N\{i} cj ,0} ≡ mi(c,E).

Step 2. t (c − m(c,E),E − ∑
mi(c,E)) = t (c,E) − m(t(c,E),E).

By Step 1, we only need to show that for each i ∈ N ,

ti

(
c − m(c,E),E −

∑
mk(c,E)

)
= ti (c,E) − mi(c,E). (†)
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Using the definitions of t (·,·) and m(·,·), (†) reads:

min

{
ci − max

{
E −

∑
N\{i}

cj ,0

}
,E −

∑
h∈N

max

{
E −

∑
N\{h}

cj ,0

}}

= min{ci,E} − max

{
E −

∑
N\{i}

cj ,0

}
.

Adding max{E − ∑
N\{i} cj ,0} to both sides, we have to prove that

min

{
ci,E −

∑
h∈N\{i}

max

{
E −

∑
N\{h}

cj ,0

}}
= min{ci,E}. (∗)

If, for each h ∈ N \ {i}, E − ∑
N\{h} cj � 0, the desired conclusion follows directly. Otherwise,

there is h∗ ∈ N \ {i} such that E − ∑
N\{h∗} cj > 0. Then, obviously ci < E and

E −
∑

h∈N\{i}
max

{
E −

∑
N\{h}

cj ,0

}

= E −
(

E −
∑

N\{h∗}
cj

)
−

∑
h∈N\{i,h∗}

max

{
E −

∑
N\{h}

cj ,0

}

= ci +
∑

j∈N\{i,h∗}
cj −

∑
h∈N\{i,h∗}

max

{
E −

∑
N\{h}

cj ,0

}

= ci +
∑

h∈N\{i,h∗}
min

{∑
N

cj − E,ch

}

� ci .

Hence, both left- and right-hand sides of (∗) are equal to ci .

Step 3. Conclusion. Using Step 2 and Step 1 in turn, we obtain,

St◦m(c,E) ≡ m(c,E) + S

(
t

(
c − m(c,E),E −

∑
mi(c,E)

)
,E −

∑
mi(c,E)

)

= m(c,E) + S

(
t (c,E) − m

(
t (c,E),E

)
,E −

∑
mi(c,E)

)

= m
(
t (c,E),E

) + S

(
t (c,E) − m

(
t (c,E),E

)
,E −

∑
mi

(
t (c,E),E

))

≡ Sm◦t (c,E). �
What would happen if the operators Ot and Om were reapplied? The answer is: nothing. We

have already noted that once minimal rights are attributed, claims adjusted down by the minimal
rights, and the endowment adjusted down by the sum of the minimal rights, the minimal rights
in the problem that results are all 0. In other words, the minimal rights in (c − m(c,E),E −∑

mj(c,E)) are all 0. But consider the problem obtained from the above by truncating claims
at the endowment E − ∑

mj(c,E). In this new problem, namely
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(c′,E′) ≡
(

t

(
c − m(c,E),E −

∑
mj(c,E)

)
,E −

∑
mj(c,E)

)
,

we assert that minimal rights are still all 0. Formally:

Proposition 1. For each problem, consider the problem obtained from it by attributing minimal
rights, revising claims down by these minimal rights and the endowment down by the sum of the
minimal rights. Then, after claims truncation, minimal rights are all 0.

Proof. Let (c,E) ∈ CN . We need to show that for each i ∈ N , mi(c
′,E′) ≡ max{E′ −∑

N\{i} c′
j ,0} = max{E′ − ∑

N\{i} tj (c − m(c,E),E′),0} = 0. Replacing E′ by its value, this
is equivalent to showing that

E −
∑

mj(c,E) �
∑
N\{i}

tj

(
c − m(c,E),E −

∑
mk(c,E)

)
,

and using the equality established in the proof of Theorem 3 ((†) written for claimant j ),

tj

(
c − m(c,E),E −

∑
mk(c,E)

)
= tj (c,E) − mj(c,E),

showing that E − mi(c,E) �
∑

N\{i} tj (c,E), and equivalently that

E −
∑
N\{i}

tj (c,E) � mi(c,E). (∗)

To prove (∗), we distinguish two cases. (i) If there is j ∈ N\{i} such that cj � E, then the
left-hand side of (∗) is at most 0, whereas the right-hand side is 0. The desired inequality holds.
(ii) Otherwise, the left-hand side of (∗) is equal to E − ∑

N\{i} cj and the right-hand side is the
maximum of that same expression and 0. Here too, the desired inequality holds. �

Thanks to Theorem 3, we conclude that parallel statements can be made when Ot and Om are
applied in reverse order.

5. Preservation of properties under operators

In this section we undertake a systematic investigation of which properties are preserved under
the operators defined in the previous section. The properties we consider have a straightforward
interpretation, and to save space we refer readers to earlier literature for motivation and formal
definitions. For the same reason, we do not consider properties that have been less frequently
discussed.10 We apologize for the enumeration, which nevertheless has the advantage of gather-
ing all the material we need. Formal definitions can be found in Thomson [22]. The proofs are
available from the authors upon request.

Order preservation (Aumann and Maschler [1]): if agent i’s claim is at least as large as
agent j ’s claim, his award should be at least as large as agent j ’s award; also, his loss should
be at least as large as agent j ’s loss; group order preservation (Thomson [20]; Chambers and
Thomson [2]) is a parallel statement for groups of agents, obtained by comparing the aggregate

10 Additional results are listed in Thomson [24].
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claims of two groups, which pertains to the aggregate amounts awarded to them and the aggre-
gate losses imposed on them; anonymity: any “renaming” of claimants should be accompanied
by a parallel reassignment of awards; homogeneity: if claims and endowment are multiplied by
the same positive number, so should all awards; continuity, which is self-explanatory; claims
monotonicity: if an agent’s claim increases, his award should be at least as large as it was ini-
tially; resource monotonicity: if the endowment increases, each claimant’s award should be at
least as large as it was initially.11 No advantageous transfer (Moulin [13]; Ju et al. [11]): no
group of claimants should receive more in the aggregate by redistributing their claims among
themselves. Two “composition” properties follow. If the endowment decreases from some initial
value, this decrease can be dealt with in either one of two ways: (i) by canceling the initial divi-
sion and recalculating the awards for the final endowment; (ii) by taking the awards calculated on
the basis of the initial endowment as claims in dividing the final endowment. Composition down
(Moulin [14]) says that (i) and (ii) should result in the same awards vector. Now, suppose that
instead, the endowment increases from some initial value. Here too, we can handle this increase
in either one of two ways: (i) by canceling the initial division and recalculating the awards for the
final endowment; (ii) by letting claimants keep their initial awards, revising their claims down by
these awards, and reapplying the rule to divide the incremental amount (the difference between
the final and initial endowments). Composition up (Young [25]) says that (i) and (ii) should give
the same awards vector. Population monotonicity (Thomson [17,18]): if new claimants arrive,
the award to each of the claimants initially present should be at most as large as it was initially;12

consistency (Young [25]): if some claimants leave with their awards and the problem of divid-
ing among the remaining claimants what is left is considered, these claimants should receive the
same awards as initially; converse consistency (see Chun [3] and Thomson [23], for discussions
of the property in this context): suppose that an awards vector x is such that its restriction to
each two-claimant group is chosen for the problem of dividing between them the sum of their
components of x; then, x should be chosen.13

A property is preserved under an operator if whenever a rule S satisfies it, so does the rule
obtained by subjecting S to the operator. In the following pages, we discuss which properties
are preserved under our operators, and which are not. The results are summarized in Table 1.
Appendix A contains the proofs of those results that are more difficult.

1. Duality operator. The properties that are preserved under Od are numerous. Two properties
are dual if whenever a rule satisfies one of them, its dual satisfies the other. A simple example
of a pair of dual properties are the two parts of order preservation. This is most easily seen for
|N | = 2, thanks to the convenient geometric interpretation of self-duality. Let N ≡ {1,2} and
c ∈ R

N+ be such that c1 � c2, say. Then, p(S, c) lies above the 45◦ line (the first part of order
preservation) if and only if p(Sd, c) lies below the line of slope 1 passing through c (the second
part of order preservation). A property is self-dual if it is preserved under Od .

Two basic monotonicity properties are not preserved under Od (the proofs of these facts
are in Appendix A), and we state their duals. First is claims monotonicity. Its dual says that
if an agent’s claim and the endowment increase by the same amount γ , this claimant’s award

11 For the “inequality conditions,” a “strict” version is obtained by requiring that the conclusion should be strict if the
inequality appearing in the hypothesis is strict.
12 For a survey of the literature on population monotonicity, see Thomson [19].
13 For a survey of the literature on consistency and its converse, see Thomson [23].



W. Thomson, C.-H. Yeh / Journal of Economic Theory 143 (2008) 177–198 189
Table 1
Showing which properties are preserved under the operators

Prop\operators Duality Truncation Min rights

Equal treat of equals + + +
Order pres + + +
Anonymity + + +
Group order pres + − (P ) − (P )
Continuity + + +
Claims mon − (Prop 3) + − (Prop 4)
Resource mon + − (CEL) (Prop 6) − (CEA)
Homogeneity + + +
Claims trunc inv − (CEA) + +
Min rights first − (CEL) + +
Comp down − (ESu) (Prop 2) − (P ) − (P )
Comp up − (ESu) (Prop 2) − (P ) − (P )
Self-duality + − (P ) − (P )
No adv trans + − (P ) − (P )
Pop mon − (Prop 5) + − (CEA)
Consistency + − (P ) − (P )
Conv cons + − (P ) − (P )

In each cell for which a negative result holds, we indicate in parenthesis a rule allowing to prove the assertion. For
instance, the notation (P ) at the intersection of the row labeled “group order preservation” and of the column labeled
“truncation” means that P satisfies the property but that P t does not.

should not increase by more than γ .14 We include the derivation, to show how one performs
this operation. It is obtained by simply replacing every occurrence of E by

∑
ci − E and every

occurrence of S(c,E) by c−S(c,
∑

ci −E). Indeed, let i ∈ N , and note that Si(ci +γ, c−i ,E) �
Si(c,E) is equivalent to ci +γ −Sd

i (ci +γ, c−i ,
∑

cj +γ −E) � ci −Sd
i (c,

∑
cj −E).15 After

canceling out ci from both sides of this inequality and replacing
∑

cj − E by E′, we obtain
γ � Sd

i (ci + γ, c−i ,E
′ + γ ) − Sd

i (c,E′), as announced.
Second is population monotonicity. Its dual says that if new claimants arrive and the endow-

ment increases by an amount equal to the sum of their claims, then the award to none of the
claimants initially present should decrease.

2. Claims truncation and minimal rights operators. Many properties are preserved under Ot .
Having at hand such a list, the concept of duality of properties, together with the following theo-
rem, allows us to easily determine which properties are preserved under Om. The only properties
whose case cannot be settled by invoking these theorems are claims monotonicity and population
monotonicity, and direct proofs are needed (see Appendix A).

Theorem 4. A property is preserved under Ot if and only if its dual is preserved under Om.

Proof. Let A be a property that is preserved under Ot , Ad its dual, and let S be a rule satisfy-
ing Ad . We need to show that Sm satisfies Ad . Since A is dual to Ad , Sd satisfies A. Since A is

14 This property is independently formulated by Moulin [15] for a discrete version of the model of claims resolution.
15 The notation c−i designates the vector c from which the ith coordinate has been deleted and (c′

i
, c−i ) the vector c in

which the ith coordinate has been replaced by c′ .

i
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preserved under Ot , St◦d satisfies A. Since Ad is dual to A, Sd◦t◦d satisfies Ad . We will show
that Sd◦t◦d = Sm.

Recall that Theorem 1 asserts that if R is the dual of S, then Rt is the dual of Sm. Thus,
Rd◦t = Sm. Since R = Sd , then Sd◦t◦d = Sm.

We have therefore shown that Sd◦t◦d = Sm, and since Sd◦t◦d was assumed to satisfy Ad , so
does Sm. This completes the proof of the theorem in one direction.

We omit the “dual” proof for the other direction. �
Theorem 4 suggests an additional definition: two operators are dual if whenever a property

is preserved under the first one, the dual property is preserved under the second one. Theorem 4
says that Ot and Om are dual.

3. Composition of the claims truncation and attribution of minimal rights operators. The
next theorem says that the composition of Ot and Om preserves duality of rules (according to
Theorem 3, the operators can be composed in either order):

Theorem 5. If two rules S and R are dual, then so are St and Rm.

Proof. Let S and R be a pair of dual rules. By Theorem 1, St and Rm are dual too. Applying The-
orem 1 to this second pair, we deduce that Sm◦t and Rt◦m are dual. By Theorem 3, Rt◦m = Rm◦t .
Thus, Sm◦t and Rm◦t are dual (and of course, so are St◦m and Rt◦m). �

If a property is preserved under both Ot and Om separately, then clearly it is preserved un-
der Ot◦m. However, a property may be preserved under neither Ot nor Om and yet be preserved
under Ot◦m. An example is self-duality, for which we obtain the following result, a corollary of
Theorem 5.

Corollary 1. If a rule S is self-dual, so is Sm◦t .

Curiel et al. [5] start from P and define a new rule by first attributing minimal rights and
then truncating claims. They show that their rule is self-dual by invoking a game-theoretic argu-
ment. Since P is self-dual, this conclusion can be obtained by applying Corollary 1. Typically
however, when a property is preserved under neither Ot nor Om, it is not recovered under their
composition.

Acknowledgments

Thomson acknowledges support from NSF under grant SBR-9731431. We thank Diego
Dominguez and a referee for their comments.

Appendix A

In this appendix, we provide the proofs of selected results presented in Table 1. We use the
following additional notation. Given x1, x2, . . . , xk ∈ R

N , seg[x1, x2] denotes the segment con-
necting them and seg]x1, x2] ≡ seg[x1, x2] \ {x1}; also bro.seg[x1, x2, . . . , xk] ≡ seg[x1, x2] ∪
seg[x2, x3] ∪ · · · ∪ seg[xk−1, xk].
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Proposition 2. The following properties are not preserved under the duality operator but they
come in dual pairs: invariance under claims truncation and minimal rights first; composition
down and composition up.

For the proof of the second part of this proposition, we use the following “equal sacrifice rule”
(Young [26]; Moulin [14]). Let u : R → R be the function defined by u(x) ≡ −1

x
and ESu the

rule that selects for each (c,E) ∈ CN the vector x ∈ X(c,E) such that for each pair {i, j} ⊆ N ,
u(ci)−u(xi) = u(cj )−u(xj ). (This is equivalent to setting xi = ci

1+βci
, where β ∈ R+ is chosen

so as to achieve efficiency.)

Proof. The duality between invariance under claims truncation and minimal rights first is
proved by Herrero [7] (Dagan [6] proves a related result).

Minimal rights first: CEL can be used to make the point. One can also appeal to the example
used to prove that invariance under claims truncation is not preserved and to the fact that this
property and minimal rights first are dual properties.

Composition down: We assert first that ESu satisfies composition down. To see this, let
(c,E) ∈ CN be given and E′ < E. Let x ≡ ESu(c,E), x′ ≡ ESu(c,E′), and y ≡ ESu(x,E′).
We show that x′ = y. Let i ∈ N . Let βx ∈ R+ be such that

∑ ci

1+βxci
= E. Let βx′ and βy be sim-

ilarly defined. By definition of ESu, xi = ci

1+βxci
and yi = xi

1+βyxi
. Thus, yi = ci

1+(βy+βx)ci
. Since∑

yi = ∑
x′
i = E′ and βx′ is uniquely determined, βx′ = βy + βx . Thus, x′

i = yi , as announced.
Next, we assert that (ESu)d violates composition down. Let N ≡ {1,2}, (c,E) ∈ CN be de-

fined by (c,E) ≡ (1,3; 68
21 ), and E′ = 11

4 . Then, (ESu)d(c,E) = ( 2
3 , 18

7 ) and (ESu)d(c,E′) =
( 1

2 , 9
4 ). Let c′ ≡ ( 2

3 , 18
7 ) and x ≡ (ESu)d(c′,E′). We claim that x 
= ( 1

2 , 9
4 ). Suppose that

x = ( 1
2 , 9

4 ). Since x ≡ c′ − (ESu)(c′,
∑

c′
i − E′), then (ESu)(c′,

∑
c′
i − E′) = ( 1

6 , 9
28 ). Let

β ∈ R+ be such that
∑

(ESu)i(c
′,

∑
c′
i − E′) = ∑ c′

i

1+βc′
i

= ∑
c′
i − E′. We obtain β = 9

2 but

also 49
18 . This is impossible since β is uniquely determined.

The duality between the two composition properties is proved by Moulin [14]. �
Our next result concerns claims monotonicity, a property that is satisfied by every rule en-

countered in the literature.16 Unfortunately we have:

Proposition 3. Claims monotonicity is not preserved under Od .

The proof is by means of an example. It is of interest that the example is anonymous, order-
preserving, homogeneous, and resource monotonic (and therefore resource continuous; it is in
fact fully continuous, that is, jointly continuous with respect to the claims and the endowment).
This shows that these properties do not help preserve claims monotonicity.

Proof. We define a rule S on CN , where N ≡ {1,2}. The rule is depicted in Figs. 3 and 4. We
show that S is claims monotonic whereas Sd is not.

16 Here too, few of the standard rules satisfy the stronger requirement that an agent whose claim increases should receive
more, unless E = 0 of course (equality is not permitted any more). The rule P is a rare example that does. However, it is
easy to construct rules that do. Most “parametric rules” (Young [25]) do.
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(a) (b)

Fig. 3. Claims-monotonicity is not preserved under Od (Proposition 3). (a) Sample paths of awards of the rule S defined
in the proof. (b) Paths p(Sd , c∗) and p(Sd , c∗∗). If the endowment is E, as agent 1’s claim increases from c∗

1 = a
4 to

c∗∗
1 = a

2 , he receives less (follow the arrows).

Fig. 4. The rule S of Proposition 3 is claims monotonic. Sample paths p(S, c) for c ≡ (c1, a) when c1 ∈ [0,∞[. For
each c ∈ seg[(a,0), c̄], where c̄ ≡ (a, a), p(S, c) is obtained by symmetry from the path for the symmetric image of c

with respect to the 45◦ line. The paths for two critical claims vectors, c̄∗ and c̄∗∗, the symmetric images of c∗ and c∗∗,
are represented. For each c ∈ J3 ∪ J2 ∪ J1, p(S, c) is obtained by homothetic expansion of the path for the homothetic
image of c that belongs to seg[(a,0), c̄]. For each endowment, as agent 1’s claim increases, he receives at least as much
as he did initially.

Let a > 0, c ≡ (0, a), c∗ ≡ ( a
4 , a), c∗∗ ≡ ( a

2 , a), and c̄ ≡ (a, a). We first specify p(S, c)

for each c ∈ seg[c, c̄]. We then choose p(S, c) for each c ∈ seg[(a,0), c̄] as the symmetric im-
age with respect to the 45◦ line of p(S, (c2, c1)). Finally, we choose p(S, c) for each other
c ∈ R

N+ by first calculating μ such that μc ∈ bro.seg[(a,0), c̄, (0, a)] and subjecting p(S,μc) to
a homothetic transformation of ratio 1

μ
. This construction guarantees that S is anonymous and

homogeneous.
For each c ∈ I1 ≡ seg[c, c∗] (Fig. 3a illustrates I1 and I2 and I3 defined below), p(S, c) =

p(CEL, c). For each c ∈ I2 ≡ seg]c∗, c∗∗], p(S, c) is piecewise linear in two pieces: given 0 �
λ � 1, p(S,λc∗ + (1−λ)c∗∗) = bro.seg[(0,0), λ(0, 3

4a),λc∗ + (1−λ)c∗∗]. (Note that for λ = 0,
the path is that of P .) For each c ∈ I3 ≡ seg]c∗∗, c̄], p(S, c) = p(P, c).
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Fig. 4 illustrates that when agent 2’s claim is fixed at a, and as agent 1’s claim increases from
0 to ∞, agent 1’s award does not decrease. The claims monotonicity of S is a consequence of
this fact and of its being anonymous and homogeneous. The figure indicates some paths of S for
c ∈ R

N+ such that c2 = a. We show that these paths never cross. For each c1 ∈ [a,∞[, there is a
claims vector on seg[(a,0), c̄] that is proportional to c ≡ (c1, a). We call μ � 1 the expansion
factor required to pass from (c1, a) to the former, using the same superscript to keep track of this
pairing, c̄∗ and μ∗c̄∗ being an example of a pair so defined.

1. For each c ∈ J3 ≡ seg]c̄,μ∗∗c̄∗∗] (Fig. 4), where c̄∗∗ is the symmetric image of c∗∗,
p(S, c) = p(P, c) (examples are p(S,μ1c1) and p(S,μ2c2)).

2. For each c ∈ J2 ≡ seg]μ∗∗c̄∗∗,μ∗c̄∗], p(S, c) is obtained by a homothetic expansion of the
path for the reduced image of c that belongs to seg[(a,0), c̄]. For example, consider two
points in J2, such as μ3c3 and μ4c4 in the figure, where μ4c4 is to the right of μ3c3. Then,
the paths for these points are obtained by homothetic expansions of the paths for c3 and c4,
with c4 below c3. The slope of the oblique segment in p(S, c4) is greater than the slope of
the oblique segment in p(S, c3). Therefore the same statement can be made about the slopes
of the oblique segments in p(S,μ4c4) and p(S,μ3c3), which imply that they do not cross.

3. Finally, for each c ∈ J1 ≡ {(c1, a): c1 ∈]4a,∞[} (J1 is the open half-line {μ∗c̄∗ + t (1,0):
t > 0} in the figure), p(S, c) consists of a horizontal segment from the origin and a segment
of slope 1.

The fact that Sd violates claims monotonicity can be seen by considering p(Sd, c∗) and
p(Sd, c∗∗). These paths are obtained by symmetry of p(S, c∗) and p(S, c∗∗). Inspection of
Fig. 3b reveals that the paths cross: in fact, for each endowment in the interval ]0, 3

4a[, agent 1
loses as his claim increases from c∗

1 = a
4 to c∗∗

1 = a
2 , agent 2’s claim being kept fixed at a. �

The strengthening of claims monotonicity obtained by requiring that if an agent’s claim in-
creases, he should receive more, is not preserved under the duality operator either. To see this,
it suffices to modify the example used to prove Proposition 3. Informally, for each c ∈ I1 ∪ I2,
replace the vertical segment of p(S, c) by a very steep segment whose slope varies continuously
and monotonically between ∞ and 2 as c varies in I1 ∪ I2 from c to c∗∗.

Proposition 4. Claims monotonicity is not preserved under Om.

We prove this result by exhibiting a rule that is claims monotonic, but the rule obtained from
it by applying Om is not. The rule is also order preserving, anonymous, resource monotonic, and
continuous.

Proof. The proof is by means of an example of a rule S defined on CN where N ≡ {1,2}. It is
depicted in Fig. 5a.

Step 1. Construction of S. We first consider c ∈ R
N+ with c1 � c2. If c2 � 2, then p(S, c) =

p(P, c). If c2 � 4, then p(S, c) = p(CEL, c). If 2 < c2 < 4 (the shaded region), then p(S, c)

is a linear combination of p(P, c) and p(CEL, c). The construction uses an arbitrary con-
tinuous and monotone function g: [0,1] → [0,1] such that for each t ∈ [0,1], g(t) � t ,
and g(0) = 0, g( 1

2 ) = 1
4 , and g(1) = 1. Now, let k(c) ≡ g( c2−2

2 )(c2 − c1), and p(S, c) ≡
bro.seg[(0,0), (0, k(c)), c].
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(a) (b)

Fig. 5. Claims monotonicity is not preserved under the attribution of minimal rights operator (Proposition 4). (a) Sample
paths of awards of the rule S defined in the proof. The path for c in the shaded region is a linear combination of p(P, c)

and p(CEL, c). (b) Paths p(Sm, c) and p(Sm, c′). If E = 2, as agent 1’s claim increases from 1 to 2, he receives less.

We then choose p(S, c) for each c ∈ R
N+ with c1 > c2 as the symmetric image with respect to

the 45◦ line of p(S, (c2, c1)). This guarantees that S is anonymous.

Step 2. S is claims monotonic. Since S is anonymous, it is enough to examine the rule in
the region {c ∈ R

N+ : c1 � c2}. First, let c2 > 0 and let c1, c
′
1 ∈ [0, c2] be such that c′

1 < c1.
Let c′

2 ≡ c2 and c′ ≡ (c′
1, c

′
2). There are three subcases. If c2 � 2, then p(S, c) = p(P, c) and

p(S, c′) = p(P, c′), and since P satisfies claims monotonicity, we are done. If c2 � 4, then
p(S, c) = p(CEL, c) and p(S, c′) = p(CEL, c′), and since CEL satisfies claims monotonic-
ity, we are done. If 2 < c2 < 4, then p(S, c) = bro.seg[(0,0), (0, k(c)), c]. Also, p(S, c′) =
bro.seg[(0,0), (0, k(c′)), c′]. The conclusion follows from the fact that c2 − c1 < c′

2 − c′
1, and

since c′
2 = c2, g( c2−2

2 ) = g(
c′

2−2
2 ), so that altogether k(c) ≡ g( c2−2

2 )(c2 − c1) < g(
c′

2−2
2 )(c′

2 −
c′

1) ≡ k(c′).
Next, let c1 > 0 and let c2, c

′
2 ∈ [c1,∞[ be such that c2 < c′

2. Let c′
1 ≡ c1 and c′ ≡ (c′

1, c
′
2).

We have p(S, c) = bro.seg[(0,0), (0, k(c)), c]; also, p(S, c′) = bro.seg[(0,0), (0, k(c′)), c′]. The
conclusion follows from the fact that since c′

2 > c2 and c′
1 = c1, then c2 − c1 < c′

2 − c′
1, and since

g is increasing, g( c2−2
2 ) � g(

c′
2−2
2 ), so that altogether k(c) ≡ g( c2−2

2 )(c2 − c1) < g(
c′

2−2
2 )(c′

2 −
c′

1) ≡ k(c′).

Step 3. Sm is not claims monotonic (Fig. 5b). To see this, let c ≡ (1,4), c′ ≡ (2,4), and
E = 2. Note that m(c,E) = (0,1) and m(c′,E) = (0,0). We have Sm(c,E) = m(c,E) +
S(c − m(c,E),E − ∑

mi(c,E)). Let c∗ ≡ c − m(c,E). To calculate the second term in this
sum, we note that c∗ = (1,3) and E − ∑

mi(c,E) = 1. Then, p(S, c∗) is seg[(0,0), k(c∗), c∗],
where k(c∗) ≡ g(

c∗
2−2
2 )(c∗

2 − c∗
1). Since g(

c∗
2−2
2 ) = g( 1

2 ) = 1
4 , we have k(c∗) = 1

4 (c∗
2 − c∗

1) =
1
2 < 1 = E − ∑

mi(c,E). So, S1(c
∗,E − ∑

mi(c,E)) > 0. This implies Sm
1 (c,E) > 0. Also,

Sm
1 (c′,E) = S1(c

′,E) = CEL1(c
′,E) = 0. Thus, as agent 1’s claim increases from c1 = 1 to

c′ = 2, he receives less, in violation of claims monotonicity. �
1
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Next, we turn to population monotonicity for which a negative result also holds. We prove this
fact by exhibiting a rule S that is anonymous, homogeneous, resource monotonic, and population
monotonic, but Sd is not population monotonic. (Since resource monotonicity implies resource
continuity, S is also resource continuous.)

Proposition 5. Population monotonicity is not preserved under Od .

Proof. The proof is by means of an example of a rule S defined on
⋃

N ′⊆N CN ′
where N ≡

{1,2,3}. Sample paths of awards of S are plotted in Figs. 6a and 6b. We show that S is population
monotonic but Sd is not.

Step 1. Construction of S. On the subdomain of two-claimant problems, S ≡ P . Let Q be the
unit cube in R

N+ , and for each t ∈ {1,2,3}, let Ft be the face of Q consisting of all c ∈ R
N+

such that ct = 1. Given c ≡ (c1,1, c3) 
= (1,1,1), a typical claims vector in F2, let L be the
line passing through c and e ≡ (1,1,1). Also, let x ≡ L ∩ seg[( 2

3 ,1,1), (1,1, 2
3 )] and y ≡ L ∩

seg[(0,1,1), (1,1,0)] (we use the notation L′, x′, y′ for the corresponding objects calculated for
the claims vector c′). If 0 < c1 + c3 � 1, then p(S, c) = p(P, c) (c in Fig. 6a). If 1 < c1 + c3 �
1 + 2

3 , then p(S, c) = bro.seg[(0,0,0), y, c] (c′ in Fig. 6a). If 1 + 2
3 < c1 + c3 � 2, then p(S, c)

is piecewise linear in two pieces defined as follows: let 0 � λ � 1 be such that c = λx + (1−λ)e.
Then p(S, c) = seg[(0,0,0), d, c] where d ≡ λy + (1 − λ) 2

3e (Fig. 6b). Finally, if c = e, then
p(S, c) = p(P, c). We deduce p(S, c) for each c ∈ F1 by symmetry with respect to the plane
of equation x1 = x2 of p(S, c′) where c′ is the symmetric image of c with respect to that plane;
similarly we deduce p(S, c) for each c ∈ F3 by symmetry with respect to the plane of equation
x2 = x3 of p(S, c′) where c′ is the symmetric image of c with respect to that plane. If c is not in
any of the faces F1, F2, and F3, let μ ∈ R+ be such that μc does belong to such a face. Then,
p(S, c) is obtained from p(S,μc) by the homothetic transformation of ratio 1

μ
. This construction

guarantees that S is anonymous and homogeneous.

Step 2. S is population monotonic. Let E > 0 and c ≡ (c1,1, c3) be an arbitrary point in F2. We
distinguish three cases.

Case 1. 0 < c1 + c3 � 1. Then, S(c,E) ≡ P(c,E). Since S(cN ′ ,E) ≡ P(cN ′ ,E) for each N ′
with |N ′| = 2 and P is population monotonic, the population-monotonicity inequalities hold.

Case 2. 1 < c1 + c3 � 1 + 2
3 . We imagine the departure of each agent in turn (Fig. 6c).

Subcase 2.1. Claimant 1 leaves. We have to compare z ≡ S(c,E) and z′ ≡ S(c{2,3},E).
We assume that E � 1 + c3 since otherwise there is nothing to check. Since y = L ∩
seg[(0,1,1), (1,1,0)], then y1 + 1 + y3 = 2. Note that y belongs to the simplex in the plane of
equation

∑
vi = 2. Thus z = (

y1E
2 , E

2 ,
y3E

2 ). Also z′ = ( E
1+c3

,
c3E

1+c3
). Then z′

3 −z3 = c3E
1+c3

− y3E
2 .

Since c3 � y3 and 1 + c3 � 2, then z′
3 − z3 � 0.

Also z′
2 − z2 = E

1+c3
− E

2 . Since 1 + c3 � 2, then z′
2 − z2 � 0.

Subcase 2.2. Claimant 2 leaves. We have to compare z ≡ S(c,E) and z′ ≡ S(c{1,3},E).
We assume that E � c1 + c3 since otherwise there is nothing to check. Since y = L ∩
seg[(0,1,1), (1,1,0)], as already calculated, y1 +1+y3 = 2. Thus z = (

y1E
2 , E

2 ,
y3E

2 ). Also z′ =
( c1E ,

c3E ). Thus z′ − z1 = c1E − y1E . Since c1 � y1 and c1 + c3 � 2, then z′ − z1 � 0.

c1+c3 c1+c3 1 c1+c3 2 1
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Fig. 6. Population monotonicity is not preserved under the duality operator (Proposition 5). (a) Construction of p(S, c)

for c such that c2 = 1 and 0 � c1 + c3 � 1, and for c′ such that c′
2 = 1 and 1 < c′

1 + c′
3 � 1 + 2

3 . (b) Construction of

p(S, c) for c such that c2 = 1 and 1 + 2
3 < c1 + c3 � 2. (c) The rule S is population monotonic. Given c in F2, we

determine p(S, c) (it consists of two line segments), and the paths of awards of S for each of the projections of c onto
the three two-dimensional coordinates subspaces (these paths are segments connecting the origin to these projections).
Then, given E, we calculate the awards vectors selected by S for the resulting problems. (d) The rule Sd is not population
monotonic. For (c,E) ≡ (1,1, 1

2 ; 1
2 ), it selects (0,0, 1

2 ), but for the problem that results from the departure of claimant 2,

it selects ( 1
3 , 1

6 ). Claimant 3 loses.
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Also, z′
3 − z3 = c3E

c1+c3
− y3E

2 . Since c3 � y3 and c1 + c3 � 2, then z′
3 − z3 � 0.

Subcase 2.3. Claimant 3 leaves. We apply the same argument as in Subcase 2.1.

Case 3. 1 + 2
3 < c1 + c3 � 2. Let λ be such that c = λx + (1 − λ)e and d ≡ λy + (1 − λ) 2

3e.
Since x � y and e > 2

3e, then c � d .

Subcase 3.1. Claimant 1 leaves. We have to compare z ≡ S(c,E) and z′ ≡ S(c{2,3},E). We
assume that E � 1 + c3 since otherwise there is nothing to check. Note that d1 + d2 + d3 = 2
and E � 1 + c3 � d1 + d2 + d3, so z = ( d1E

2 , d2E
2 ,

d3E
2 ) and z′ = ( E

1+c3
,

c3E
1+c3

). Thus z′
3 − z3 =

c3E
1+c3

− d3E
2 . Since c3 � d3 and 1 + c3 � 2, then z′

3 − z3 � 0.

Also, z′
2 − z2 = E

1+c3
− d2E

2 . Since 1 � d2 and 1 + c3 � 2, z′
2 − z2 � 0.

Subcase 3.2. Claimant 2 leaves. We have to compare z ≡ S(c,E) and z′ ≡ S(c{1,3},E). We
assume that E � c1 + c3 since otherwise there is nothing to check. Note that d1 + d2 + d3 = 2
and E � c1 + c3 � d1 + d2 + d3, so z = ( d1E

2 , d2E
2 ,

d3E
2 ) and z′ = ( c1E

c1+c3
,

c3E
c1+c3

). Thus z′
1 − z1 =

c1E
c1+c3

− d1E
2 . Since c1 � d1 and c1 + c3 � 2, then z′

1 − z1 � 0.

Also, z′
3 − z3 = c3E

c1+c3
− d3E

2 . Since c3 � d3 and c1 + c3 � 2, then z′
3 − z3 � 0.

Subcase 3.3. Claimant 3 leaves. We apply the same argument as in Subcase 3.1.

Step 3. Sd is not population monotonic (Fig. 6d). Let (c,E) ≡ (1,1, 1
2 ; 1

2 ). We have p(S, c) =
bro.seg[(0,0,0), (1,1,0), (1,1, 1

2 )]. The path p(Sd, c) is obtained from p(S, c) by symmetry
with respect to c

2 . Thus, p(Sd, c) = bro.seg[(0,0,0), (0,0, 1
2 ), (1,1, 1

2 )]. Then, Sd(1,1, 1
2 ; 1

2 ) =
(0,0, 1

2 ).
Let claimant 2 leave. Then c{1,3} ≡ (1, 1

2 ). By definition of S, S(1, 1
2 ; 1

2 ) = P(1, 1
2 ; 1

2 ) =
( 1

3 , 1
6 ). Since P is self-dual, Sd(1, 1

2 ; 1
2 ) = ( 1

3 , 1
6 ). Since claimant 3 receives less in the two-

claimant problem than in the three-claimant problem, Sd violates population monotonicity. �
Proposition 6. Resource monotonicity is not preserved under Ot .

Proof. The rule CEL satisfies the property but CELt does not. To see this, let N ≡ {1,2,3}
and (c,E) ∈ CN be defined by (c,E) ≡ (10,20,30;10). Then CELt (c,E) = ( 10

3 , 10
3 , 10

3 ). How-
ever, for E′ ≡ 20, we obtain CELt (c,E′) = (0,10,10). Claimant 1 loses when the endowment
increases from E to E′.

Since for |N | = 2, CELt coincides with CD, which is resource monotonic, this negative re-
sult can be proved by means of CEL only with an example involving at least three claimants.
However, rules can be constructed to make the point that the property is not preserved under the
claims truncation operator for |N | = 2. Any such rule has to fail claims monotonicity, a prop-
erty that CEL satisfies. The proof is by means of an example S. Let c ≡ (4,7), c′ ≡ (4,6),
p(S, c) ≡ bro.seg[(0,0), (3.5,3.5), c], and p(S, c′) ≡ bro.seg[(0,0), (2,4), c′]. Both of these
paths are monotone, and to obtain a resource monotonic rule, it suffices to choose p(S, c̃) to
be a monotone path for any other c̃. Let E = 7 and E′ = 6. Now, note that St (c,E) = (3.5,3.5)

but St (c,E′) = S(t (c,E′),E′) = S(c′,E′) = (2,4). Claimant 2 gains when the endowment in-
creases from E to E′. �
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