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ABSTRACT 

 

Water pollution levels in many developing countries remain significantly higher than in the 

developed world. While such pollution is often a byproduct of economic activity, it also imparts a 

health burden on the population. We study this health burden in the context of domestic water 

pollution in India’s rivers, focusing on infant mortality as a measure of health outcomes. In 

particular, we quantify two impacts: The mortality burden of river pollution in the district of its 

measurement; and the persistence of that burden in neighboring, downstream districts. To avoid 

endogeneity problems, we construct an instrument for water quality in a given Indian district using 

water quality upstream of that district. Two-stage least squares (2SLS) regression reveals a 

positive district-level association between one-month infant mortality and the concentration of 

fecal coliforms in river water. This association strongly holds for both national demographic 

surveys that we use to compile infant mortality data. We interpret the association to be causal: The 

average effect of a one-percent increase in fecal coliforms is an additional 3-5 deaths per 100,000 

births in a given month. In comparison, the corresponding downstream infant mortality impact is 

approximately 1-2 deaths per 100,000 births. 
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I. INTRODUCTION 

 

River pollution imposes geographically-widespread costs: The burden of reduced water quality is 

felt not just by the community in the immediate vicinity of its production, but by a continuum of 

downstream communities as well. The socially-efficient level of water quality at a given point 

along a river therefore depends on the associated welfare impacts at both that point and all 

affected points downstream (Oates, 2001, Lipscomb and Mobarak, 2007). 

 

We set out to quantify and compare such impacts in the context of Indian rivers. India is 

currently characterized by alarmingly high levels of domestic water pollution in its surface 

waters (Central Pollution Control Board, 2013) and expensive clean-up policy whose effects 

have been ambiguous (Greenstone and Hanna, 2012). This characterization, coupled with 

extensive data on water quality levels all over the country, creates an opportune setting for a 

study of water pollution and health. In particular, we focus on infant mortality, given the 

vulnerability of infants to toxins and the large loss of life represented by that measure. 

 

Since a comparison of overall pollution and health outcomes in Indian districts is susceptible to 

omitted variable bias, we use the geography of rivers to isolate exogenous variation in water 

pollution. Our basic strategy is to instrument for water quality in a given district with water 

quality upstream of that district. The intuition for this instrument is that upstream “decisions” to 

pollute have downstream health consequences due to the flow of rivers but are uncorrelated with 

all other determinants of health.  

 

We thus construct a two-stage least squares (2SLS) estimator for the relationship between 

domestic water quality and infant mortality. Our instrumental-variables results quantify the 

within-district externality – i.e., the association of infant mortality in a district with river water 

quality in that same district. Meanwhile, our reduced-form results quantify the persistence of 

water quality impacts in downstream districts. Our findings indicate that the pollution-mortality 

relationship is strongly positive and significant in the first month of life. Furthermore, this 

relationship holds even when pollution is compared with mortality in the next district 

downstream. The predictive, within-district effect of a one-percent increase in fecal coliforms is 

an additional 3-5 deaths per 100,000 births in a given month, or a 0.09-0.14% rise in the 

probability of neonatal (first-month) mortality. The corresponding effect in downstream districts 
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is 1-2 deaths, or a 0.03-0.09% rise the likelihood of neonatal mortality. Strikingly, these results 

hold for two entirely different samples of Indian children – those with mothers surveyed for the 

District-Level Household Survey II (DLHS-2; 2002-2005), and those with mothers surveyed for 

the Demographic and Health Survey II (DHS-2; 1998-2000). 

 

Methodologically, we contribute a novel identification strategy that is replicable in any country 

where river water quality is monitored. Empirically, we provide three findings that contribute to 

the general understanding of river pollution’s relationship with infant mortality (IM) in India. 

First, we quantify a mortality impact of acute, one-month shocks to domestic water quality. 

Second, we show that the first month of life is by far the most risky for infants when it comes to 

water quality and safety. Third, we confirm the persistence of the mortality burden in 

downstream communities, suggesting that the downstream IM externality is as much as one-third 

the size of the within-district externality. Taken together, the size and downstream persistence of 

water pollution’s harm should be strong motivation for discussion of new policies to improve 

water quality and protect Indian infants. 

 

 

II. EXISTING LITERATURE 

 

Our research agenda is founded upon three assertions: First, that water pollution exposure is bad 

for health, and in particular for infant survival; second, that the current level of river water 

quality in India is socially inefficient; and third, that water pollution persists at dangerous levels 

even at significant distances downstream of its incidence. 

 

The first assertion is backed by a long literature in epidemiology, starting with John Snow 

(1854). Snow was the first to correctly suggest that the cause of the “Broad Street cholera 

outbreak” in London was caused by leakage of sewage (in the form of fecal bacteria) into a 

public well. Since then, epidemiology research has advanced to produce evidence linking water 

pollution to a host of pathogens (E. coli, rotavirus, etc.) and illnesses (cholera, diarrhea, etc.) 

(Fewtrell and Bartram, 2001). Furthermore, it is not just drinking of contaminated water that 

conveys a health burden; Cifuentes et al (2000) identify irrigation to be a link between water 

pollution and health, while Carr (2001) highlights bathing, food, and person-to-person contact as 

modes of disease transmission from polluted water. 
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The recent economics literature zeros in on the causal impacts of water pollution. Program 

evaluation has linked various public health-type initiatives – such as water filtration and 

chlorination (Cutler and Miller, 2005), piped water access (Gamper-Rabindran et al, 2010), 

spring protection (Kremer et al, 2011), deep-water tube wells (Field et al, 2011), privatization of 

water provision (Galiani et al, 2005), and general sanitation projects (Watson, 2006) – to infant 

health impacts. Moreover, two recent developing-country studies link water pollution directly to 

health outcomes. Ebenstein (2010) finds that a one-grade deterioration in Chinese river water 

quality is associated with a 9.7% increase in digestive cancer incidence. Brainerd and Menon 

(2011) find that a ten-percent increase in agrichemical levels in Indian rivers during the month of 

conception is associated with an 11% (15%) increase in the likelihood of one-year (one-month) 

mortality. To provide further context, Appendix Table 1 summarizes the findings of these 

articles. 

 

Among works focusing on air pollution, Currie and Neidell (2005) rely on a detailed set of fixed 

effects to uncover a causal link between air quality and infant health outcomes in Los Angeles; 

Chay and Greenstone (2003) use instrumental variables to determine the infant health impacts of 

air pollution reductions caused by a U.S. economic recession; and Currie and Walker (2011) 

employ a difference-in-differences specification to assess whether the introduction of E-ZPass 

automated tolls affects infant wellbeing. In a developing-country setting, Jayachandran (2009) 

estimates that Indonesian forest fires in 1997 are associated with 15,600 ‘missing’ children. 

 

The second assertion – that Indian surface-water quality levels are socially inefficient – is 

legitimized by economics-type research coming directly out of India. In this vein, there are 

several existing estimates of the impact of water pollution on health and welfare. Dasgupta 

surveys a sample of Delhi households and their water quality and then estimates a health 

production function from the data. She finds a per-household cost of diarrheal illness (in terms of 

treatment cost and man-days lost) of 1,094 Rupees per year (for context, Delhi’s population was 

about twelve million as of 2009). Brandon and Homman (1995) estimate the impact of domestic 

water pollution on a broader swath of illnesses. They find that providing clean water supply and 

sanitation to the whole of India would avoid between 3 billion and 8 billion U.S. dollars of 

foregone earnings. In particular, they suggest that 59% of annual environmental costs in India are 
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incurred by surface water pollution. In addition to these types of revealed preference studies, 

there are several contingent valuations of water pollution in the Indian literature. Markyanda and 

Murty (2000), for instance, survey households within one kilometer of the Ganga River and 

record an average willingness-to-pay of 582 Rupees for bathing-quality river water. 

 

Finally, our third assertion is backed by the strand of economics research devoted to regional 

environmental spillovers. This literature focuses primarily on how incentives for pollution 

abatement depend on the spatial incidence of the associated environmental benefits (Gray and 

Shadbegian, 2004, Helland and Whitford, 2003). Early work by Sigman (2002, 2005) on 

interstate and international water quality spillovers finds evidence of free-riding: River pollution 

monitors upstream of state and country borders have worse water quality than other monitors, all 

else equal. Lipscomb and Mobarak (2007) more recently exploit county-splitting in Brazil to 

identify the same free-riding phenomenon, and they find that water pollution increases by 2.3 

percent for every kilometer closer a river gets to an exiting border. Our research builds on these 

studies by connecting the phenomenon of upstream free-riding to downstream water quality and 

health impacts. 

 

The primary challenge faced in the literature on both the pollution-health nexus and regional 

environmental spillovers is the endogeneity of pollution exposure. Pollution is not randomly 

assigned. This means that an ordinary least squares regression of health outcomes on pollution 

levels across regions and time may be biased due to omitted time-varying factors such as income 

or infrastructure (in health or sanitation, for instance). It also means that upstream and 

downstream water quality may be correlated in time and space through more than just river flow. 

The research detailed above employs a combination of experimental variation, fixed effects, and 

instrumental variables to try to circumvent this problem of bias. In what follows, we do the same, 

utilizing panel data and the natural flow of rivers to isolate exogenous variation in water 

pollution levels in our sample. 
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III. THE INDIAN CONTEXT 

 

Water pollution in India is overwhelmingly an issue of domestic sewage. While industrial water 

pollution (Central Pollution Control Board, 1989) and agricultural water pollution (Brainerd and 

Menon, 2011) are present, it is domestic water pollution that is most prevalent. The Central 

Pollution Control Board (CPCB, 2013) reports that the total sewage load among Indian cities 

with at least 50,000 inhabitants is 29,129 million liters per day (MLD), while current installed 

capacity to treat is a mere 6,190 MLD – a 78.7% shortfall. A World Bank (2006) study on 

sanitation in India underscores the country’s problems. Urban areas are plagued by unreliability: 

Blocked sewers and non-functioning pumping stations lead to raw sewage overflow into rivers. 

Meanwhile, rural areas suffer from low access: Only 35% of the rural population had access to 

basic sanitation as of 2006. 

 

Water quality is monitored and regulated by the Ministry of Environment and Forests (MoEF), 

the CPCB, and the associated State Pollution Control Boards. Early environmental legislation 

(beginning in the 1970s) has given way to an extensive water quality monitoring network, which 

includes 1,019 monitors along rivers, lakes, ponds, and wells in India. Surface water quality at 

these monitors is judged by its “Designated Best Use” (DBU) according to standard pollution 

metrics, as displayed below in Table 1. 

 

 

Class Designated Best Use Water Quality Criteria

A Dissolved Oxygen - 6.0 mg/l or more

Biochemical Oxygen Demand - 2.0 mg/l or less

Total Coliform - 50 MPN/100 ml

B Dissolved Oxygen - 5 mg/l or more

Biochemical Oxygen Demand - 3 mg/l or less

Fecal Coliform - 500 MPN/100 ml or less

C Dissolved Oxygen - 4 mg/l or more

Biochemical Oxygen Demand - 3 mg/l or less

Total Coliform - 5000 MPN/100 ml or less

D Dissolved Oxygen - 4 mg/l or more

Free ammonia - 1.2 mg/l or less

E Electrical Conductivity - 2,250 mhos/cu

Sodium Absorption Ratio - 26 or less

Boron - 2 mg/l or less

Notes

1. Source: Ministry of Environment and Forests. "Water Quality Criteria for Designated Best Use 

Classification of CPCB: Factsheet." 11/6/2009. <http://pib.nic.in/newsite/erelease.aspx?relid=53897>

Table 1. Surface Water Quality Classification System, India

Drinking water source without 

conventional treatment but 

after disinfection

Outdoor bathing

Drinking water source with 

conventional treatment 

followed

Propagation of wildlife and 

fisheries

Irrigation, industrial cooling, 

and controlled waste disposal
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In 1985, the Indian government launched the Ganga Action Plan (GAP) to clean up the Ganga 

River, India’s longest. By 1987, the precise goal of GAP was crystallized: Restore the Ganga 

River to the ‘Bathing Class’ standard, as defined by the DBU classification in Table 1 (National 

River Conservation Directorate, 2013). In the ensuing three decades, GAP was extended first to 

other rivers in the Ganga Basin, and later to rivers all over India. Currently, 190 towns in twenty 

states along 41 rivers are regulated under what is now known as the National River Conservation 

Plan (NRCP), India’s flagship water pollution cleanup policy. 

 

NRCP has the stated objective of “interception, diversion, and treatment” of sewage 

(Government of India, 2003); it is therefore a program focused mainly on domestic pollution. To 

that end, 4,704 MLD of sewage treatment capacity have been created since its inception in 1985 

(MoEF, 2013). New infrastructure for intercepting and diverting sewage towards treatment 

plants has accompanied these capacity expansions. Furthermore, improvements to riverside 

bathing ghats, crematoria, toilets have also been a part of NRCP interventions (MoEF, 2013). 

Unfortunately, the policy has been panned in the media for reasons such as poor inter-agency 

cooperation, funding imbalances across sites, and inability to keep pace with growing sewage 

loads (Suresh, 2007). Using data from the water quality monitors described above, Greenstone 

and Hanna (2012) find that NRCP has had no statistically-significant impact on surface water 

quality.  

 

 

IV. DATA 

 

A. Pollution Data 

For our own work, we use the same water quality data as Greenstone and Hanna (2012). These 

data were originally gathered from a combination of CPCB online and print records and are a 

subset of the universe of data collected under India’s national monitoring program. We limit our 

analysis to the sixteen years between 1986 and 2004; this is because our infant health data only 

extend to 2004, while we do not have access to pollution data from before 1986. These sixteen 

years of data cover 472 unique monitors along 139 rivers, yielding 39,731 total monitor-month 
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observations with non-missing domestic pollution measures1. 66 of these rivers have more than 

one monitor; the greatest number of monitors along a single river is 29, on the Ganga River. All 

pollution monitors are mapped below in Figure 1. 

 

 

 

As many as 46 different measures of water quality are recorded at these monitoring stations, but 

only a few measures are consistently recorded over the whole sample timeframe2. Among these, 

we choose to focus primarily on Fecal Coliforms (FCOLI), since it is the best indicator of 

domestic water pollution specifically. FCOLI measures the concentration of water-borne bacteria 

in units of Most Probable Number per 100 ml (MPN). It is exclusively caused by human and 

animal waste, so it is not an indicator of industrial pollution. Finally, it is not in and of itself a 

threat to health, but it is highly correlated with the presence of organisms that are a health 

hazard. In analysis, we use a moving average of FCOLI over the current month and the two 

months prior, in order to fill in some of the gaps in our panel. Additionally, we take the 

                                                      
1 Monitors record pollution at either the monthly or quarterly frequency. 
2 These are: Fecal Coliforms; Total Coliforms; Biochemical Oxygen Demand; Chemical Oxygen Demand; Dissolved 
Solids; pH; Alkalinity; Conductivity; Hardness; Turbidity; Total Dissolved Solids; Calcium; Chlorine; Magnesium; 
Sodium; Sulfates; and Nitrogen. 

Notes

Figure 1. Pollution Monitors along Indian Rivers

1. Black points denote river pollution monitors.
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logarithm of this moving average, since FCOLI appears to be log-normally distributed in our 

data (see Appendix Figure 1 for this distribution). 

 

Though our water pollution data are recorded at the monitor level, we use district averages for 

our main regression analysis. This is because we can only identify the location of infants at the 

district level; we do not know where, within a district, each infant lives. However, in our tests of 

instrument validity, we are able to utilize monitor-level measurements. Thus, Table 2 below 

displays summary statistics for river pollution at both the monitor-month and district-month 

level. Our primary independent variable, the logarithm of FCOLI, takes a mean value of 5.5-5.7 

but has a long right tail. Its maximum value of 14.56 (corresponding to 2.1 million organisms per 

100 ml) is reached in fourteen months by a monitor along the Sabarmati River in Ahmadabad, 

Gujarat. 

 

 

 

B. Health Data 

In quantifying the health cost of the inter-district pollution externality, we choose infant 

mortality as our metric. This choice is motivated by several considerations. First, epidemiology 

research shows that infants are highly susceptible to water-borne pathogens (Fewtrell and 

Bartram, 2001). Second, infant mortality is a very significant measure of life lost, especially in 

India, where infant mortality rates remain high relative to the global average (United Nations, 

2011). Third, the measure has the advantage of limiting concerns about prior exposure to 

Table 2. Summary Statistics for Environmental Variables

Monitor-Month District-Month

(1) (2)

FCOLI Mean 21,557 22,089

(Most Probable Number / 100 ml) Std. Dev. 127,967 115,843

[Min, Max] [1, 2,100,000] [1, 2,100,000]

N 51,973 27,221

Log(FCOLI) Mean 5.53 5.72

(unitless) Std. Dev. 2.84 2.75

[Min, Max] [0, 14.56] [0, 14.56]

N 51,973 27,221

Notes

1. Column (1) provides statistics compiled from monitor-month observations, while Column 

(2) provides statistics compiled from district-month observations.

2. Pollution values are computed as the moving average of the current month and the three 

previous ones.
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pollution, as noted by Chay and Greenstone (2003). Fourth, we have two long, panel datasets of 

infant survival outcomes in India, whereas we have only a small number of repeated cross-

sections of other health variables, such as diarrhea incidence and low birth weight.  

 

Our infant health data come from two national demographic surveys. The first of these is the 

Reproductive and Child Health II (RCH-2) module of the District-Level Household Survey II 

(DLHS-2), conducted in two phases from 2002 to 2005. In this module, mothers report age and 

survival for all of their children, which allows for creation of a “pseudo”-panel of birth-month 

observations. In all, there are 1,393,431 births from 1967 to 2004 in RCH-2. After merging with 

our pollution data, we have 264,375 births with matched pollution data from 1986 through 2004. 

From this sample, we expand out each birth to create an observation for each month of life up to 

the first of three events: (a) death; (b) one year of survival; or (c) the month of survey. This 

procedure nets us 2.65 million child-month observations with pollution and survival data. 

 

We similarly create a panel of child-month observations from the National Family Health Survey 

II (NFHS-2) module of the Demographic and Health Survey II (DHS-2), which was carried out 

from 1998 to 2000. 268,834 total births from 1961 to 1999 in NFHS-2 are cut to 39,125 with 

matched pollution data from 1986-1999. After expanding out to child-months in the same 

fashion as with RCH-2, we are left with 388,301 observations containing both pollution and 

survival data. Summary statistics for infants from both surveys are provided below in Table 3.  

 

Among RCH-2 children born between 1986 and 2004 with non-missing pollution data, the 

probability of dying in the first month is 0.039 (0.037 for NFHS-2). This translates to 39 (37) 

deaths per 1,000 live births. The corresponding one-year infant mortality rate, in both samples, is 

57 deaths per 1,000 live births. In comparison, the United Nations (UN) Population Division 

reports India’s IM rate to be 60.6 for the years 2000-2005 (UN, 2011). However, the 

conventional infant mortality rate is not our precise dependent variable; what we study is instead 

the acute probability of an infant’s death in each month of its first year of life. That variable is 

summarized in the Table 2 row labeled “1[Died this month]”. Its mean in both samples is 0.006, 

which corresponds to a 0.6% average likelihood of death over all child-months in our merged 

sample.   
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C. Other Data 

We include severable types of variables as controls in many of our regression analyses. The main 

body of these controls are cross-sectional survey answers about birth, mother, and child 

characteristics taken from RCH-2 and NFHS-2. We add to that climate data graciously provided 

by Sam Asher and Paul Novosad. These include monthly, gridded rainfall averages from the 

University of Delaware and air temperature averages from the Indian Meteorological Institute. 

We use the climate grids to interpolate rainfall and temperature values at each monitor location. 

Finally, we employ a dummy variable for the incidence of major river cleanup policy (NRCP, 

described above in Section III). Table 4 below provides a full list of control variables employed 

in our regression analyses. 

 

 

 

Table 3. Summary Statistics for Infants

RCH-2 NFHS-2

(1) (2)

1-Month Mortality Mean 0.039 0.037

(0/1) Std. Dev. 0.194 0.189

N 264,375 39,125

1-Year Mortality Mean 0.057 0.057

(0/1) Std. Dev. 0.232 0.233

N 264,375 39,125

1[Died this month] Mean 0.006 0.006

(0/1) Std. Dev. 0.077 0.08

N 2,653,310 388,301

Notes

1. Column (1) provides statistics from the RCH-2 survey module, while Column (2) 

provides statistics from the NFHS-2 survey module.

2. All statistics are compiled from samples composed only of infants in districts 

for which there is matching pollution data.

3. Stats for the variable "1[Died this month]" are calculated across child-months; 

stats for the other two variables are calculated across children (not child-months).
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D. A Note on Water Source 

Ideally, we would augment our pollution and health data with detailed, time-varying information 

on individuals’ usage of all the types of water available to them. This information would greatly 

aid us in explaining the mechanism underlying any relationship identified between river 

pollution and infant mortality. Unfortunately, the only data we possess on water usage at the 

individual level is a cross-sectional answer to the question “What is your primary source of 

drinking water?”, available in both RCH-2 and NFHS-2. The data provided by this question do 

not say anything about drinking water choices made before the date of survey; they do not speak 

to secondary (i.e., alternative) drinking water choices; and they do not reveal anything about 

non-drinking water usage, such as bathing, irrigation, and food preparation. 

 

We nonetheless display ‘primary drinking water source’ statistics (for RCH-2; the corresponding 

statistics for NFHS-2 are qualitatively similar) below in Figure 2. Notably, only 1.2 percent of 

infants are from households citing ‘Rivers’ as their primary source of drinking water. On its own, 

this statistic suggests that drinking river water is not likely to be the primary mechanism through 

which river pollution is related to infant health. However, the aforementioned caveats about 

these data mean that we cannot rule out the mechanism of drinking river water.    

Table 4. Full List of Control Variables Used in Regressions

Variable Data Source

Female (Dummy) RCH-2 and NFHS-2

Twin (Dummy) NFHS-2 only

Birth Order (Dummies) NFHS-2 only

Mother Age (Years) RCH-2 and NFHS-2

Mother Schooling (Years) RCH-2 and NFHS-2

Mother Literacy (Dummy) RCH-2 only

Mother Religion (Dummies) RCH-2 and NFHS-2

Mother Caste/Tribe (Dummies) RCH-2 and NFHS-2

Primary Drinking Water Source (Dummies) RCH-2 and NFHS-2

Type of Toilet Facility (Dummies) RCH-2 only

Standard of Living Index (Dummies) RCH-2 only

Electricity (Dummy) NFHS-2 only

Sanitation (Dummy) NFHS-2 only

Total Rainfall (mm) IMD

Average Temperature (degrees Celsius) University of Delaware

National River Conservation Plan (Dummy) CPCB
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IV. METHODS 

 

We seek to causally link domestic river pollution to infant mortality. We are interested in both 

the “within-district” relationship – i.e. how river pollution in a given district affects infant 

mortality in that same district – and the downstream spillover – i.e. how much the mortality 

impact persists in the next district downstream of pollution incidence. For both of these 

relationships, we require a dataset that links upstream and downstream observations on water 

quality. Thus, the first step in our analysis is to pair every pollution monitor in our dataset with 

an “upstream” counterpart. Since there are frequently several monitors along a given river, we 

have some flexibility with respect to the choice of upstream monitor. Our goal in choosing is to 

strengthen both the relevance and the validity of the instrument. Relevance is an issue because 

water pollution decays over time; water quality 500 km upstream, for instance, is not a good 

instrument for downstream pollution because little to no pollution will persist after a distance of 

500 km traveled. Validity is an issue because water pollution exhibits spatial correlation: Two 

Notes

Figure 2. Primary Drinking Water Source, RCH-2

1. The counts above are taken from all births, rather than all households.



- 14 - 

 

monitors that are very near each other may be highly correlated for reasons having nothing to do 

with river flow. 

 

These concerns prompt us to bound the distance between upstream-downstream pairs. The lower 

bound mitigates the spatial correlation issue, and the upper bound ensures monitor pairings for 

which it is reasonable to expect upstream pollution to persist downstream. In practice, we use the 

following algorithm, for each monitor in our dataset: 

 

1. Identify the river on which the monitor resides. 

2. Follow that river upstream until it enters a new district3. 

3. Find the next monitor upstream. If its distance from the original monitor falls 

within [𝑋, 𝑌], assign it as the upstream monitor. If it is not, continue upstream 

until a monitor is found that is.4 If no monitor is found within [𝑋, 𝑌], drop that 

monitor from the sample. 

 

In the above algorithm, we vary the value of 𝑋 between 20 and 100 km and the value of 𝑌 

between 200 and 300 km. We then test the relevance and validity of the instrument with each 

range permutation and choose the range that is empirically most promising. 

 

The first stage of our two-stage least squares (2SLS) estimation strategy, which captures regional 

water pollution spillovers, is described by Equation 1: 

 

𝑃𝑘𝑦𝑚 = 𝛼0 + 𝛼1𝑃(𝑘−1)𝑦𝑚 + 𝛼𝑋𝑋𝑘𝑦𝑚 + 𝜙𝑘 + 𝜋𝑦𝑚 + 𝜏𝑠𝑦 + 𝜀𝑘𝑦𝑚 (1) 

 

Here, 𝑃𝑘𝑦𝑚 denotes average pollution at monitor 𝑘 in year 𝑦 and month 𝑚. 𝑃(𝑘−1)𝑦𝑚 thus 

denotes the average pollution in the same month at the next monitor upstream. 𝑋𝑘𝑦𝑚 is a vector 

of monitor-level time-varying covariates – rainfall and air temperature interpolated at each 

monitor location, in practice. Finally, 𝜙𝑘 is a vector of monitor-pair fixed effects, 𝜋𝑦𝑚 is a vector 

                                                      
3 Without this step, district-aggregated pollution may be mechanically correlated with its upstream analog due to 

some monitors being used in both the downstream and upstream calculations. 
4 If a river splits during this algorithm, then the original monitor is given two upstream assignments – one for each 

river arm – and the values at these two upstream locations are averaged. 



- 15 - 

 

of year-month fixed effects, and 𝜏𝑠𝑦 is a vector of state-year fixed effects. The first vector of 

fixed effects controls for the time-invariant components of monitor-pair-specific water-quality 

determinants – such as local soil quality and natural resource endowment. The second controls 

for those determinants of water quality which vary from month to month but affect the whole 

country in the same way – such as national trends in economic output and technological 

development. The third controls for annual determinants of water quality that are specific to 

states – such as state-year shocks to the economy. 

 

The model in Equation 1 will capture the average pollution spillover at downstream locations in 

our sample, as long as we control for all other (non-river) factors that jointly determine upstream 

and downstream water quality. Instrument relevance requires that 𝛼1 in Equation 1 is positive 

and statistically significant. Importantly, we can estimate Equation 1 at the monitor level as 

shown and at the district level as well. 

 

To assess the validity of our upstream instrument, we construct a test that takes advantage of the 

logic of river flow. Consider the simplistic diagram below, with three towns situated along a 

single river: 

 

 

 
 

    

     

     

     

According to our identification strategy, water quality in Town 1 can be predicted by water 

quality in Town 2 or in Town 3; they are both upstream of Town 1. If our upstream assignment is 

valid, then, conditional on control covariates, Town 3 water quality is only correlated with Town 

1 water quality through the flow of the river. But in that case, the entire pollution spillover from 

Town 3 to Town 1 is captured by Town 2 water quality levels. Thus, instrument validity requires 

that both (a) Town 1 water quality is correlated with Town 3 water quality, and (b) conditional 

on Town 2 water quality, Town 1 water quality is uncorrelated with Town 3 water quality. In 

mathematical terms, the dual condition is 
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 Cov(𝑃𝑘𝑦𝑚 ∗ 𝑃(𝑘−2)𝑦𝑚) > 0 (2.1) 

 Cov(𝑃𝑘𝑦𝑚 ∗ 𝑃(𝑘−2)𝑦𝑚|𝑃(𝑘−1)𝑦𝑚) = 0 (2.2) 

 

The advantage of using this condition as a test of validity is that it follows logically from the 

physical laws of river flow. Its disadvantage is that it is a difficult condition to satisfy – as soon 

as measurement error is introduced into the data, it becomes likely that water quality in Town 2 

will not purge all of the correlation between water quality in Towns 1 and 3. 

 

We test the degree to which this condition holds by estimating two regression equations5: 

 

𝑃𝑘𝑦𝑚 = 𝜃0 + 𝜃2𝑃(𝑘−2)𝑦𝑚 + 𝜃𝑋𝑋𝑘𝑦𝑚 + 𝜙𝑘 + 𝜋𝑦𝑚 + 𝜏𝑠𝑦 + 𝜀𝑘𝑦𝑚 (3.1) 

𝑃𝑘𝑦𝑚 = 𝛽0 + 𝛽1𝑃(𝑘−1)𝑦𝑚 + 𝛽2𝑃(𝑘−2)𝑦𝑚 + 𝛽𝑋𝑋𝑘𝑦𝑚 + 𝜙𝑘 + 𝜋𝑦𝑚 + 𝜏𝑠𝑦 + 𝜀𝑘𝑦𝑚 (3.2) 

 

The coefficient 𝜃2 should be positive and statistically significant, while the coefficient 𝛽2 should 

be a statistical zero. If this test is passed, then our estimate of 𝛼1 in Equation 1 can be interpreted 

as the average magnitude of the per-unit river pollution externality. 

 

With a valid instrument, we can focus on quantifying and comparing the health impacts of river 

pollution at different relative locations. It is, however, important to note households may adapt to 

variations in river water quality, depending on the visibility of such variation. They may switch 

their primary water source, or change their investment in water treatment, or even possibly 

migrate away. Our estimates should thus be interpreted as lower bounds on the dose-response 

mortality effect of water quality shocks. 

 

Because we do not know the location of infants within their listed district, each infant can only 

be assigned its district-aggregated measures of pollution and weather. The within-district 

mortality impact of river pollution is thus captured by the following 2SLS model: 

 

 

 

                                                      
5 As with Equation 1, estimation of Equations 3.1 and 3.2 can be done at both the monitor- and district-level. 
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𝑃𝑑𝑖𝑦𝑚 = 𝛿0 + 𝛿1𝑃(𝑑−1)𝑖𝑦𝑚 + 𝛿𝑋𝑋𝑑𝑖𝑦𝑚 + 𝛼𝑍𝑍𝑑𝑖 + 𝜙𝑑 + 𝜋𝑦𝑚 + 𝜏𝑠𝑦 + 𝜀𝑑𝑖𝑦𝑚 (4.1) 

𝐼𝑀𝑑𝑖𝑦𝑚 = 𝜑0 + 𝜑1𝑃𝑑𝑖𝑦𝑚̂ + 𝜑𝑋𝑋𝑑𝑖𝑦𝑚 + 𝛾𝑍𝑍𝑑𝑖 + 𝜙𝑑 + 𝜋𝑦𝑚 + 𝜏𝑠𝑦 + 𝜂𝑑𝑖𝑦𝑚 (4.2) 

 

Above, 𝐼𝑀 is a dummy variable for infant mortality which varies with district 𝑑, infant 𝑖, year 𝑦, 

and month 𝑚. 𝑋 remains a vector of climate variables, varying by district and month. 𝑍 is a 

vector of demographic characteristics at the infant, mother, and household levels (the precise 

characteristics are listed in Table 2 above). Meanwhile, the reduced-form analog of the IV model 

above captures the downstream impact of river pollution: 

 

𝐼𝑀𝑑𝑖𝑦𝑚 = 𝛾0 + 𝛾1𝑃(𝑑−1)𝑖𝑦𝑚 + 𝛾𝑋𝑋𝑑𝑦𝑚 + 𝛾𝑍𝑍𝑑𝑖 + 𝜙𝑑 + 𝜋𝑦𝑚 + 𝜂𝑑𝑖𝑦𝑚 (5) 

 

If the mortality risk imparted by water pollution varies with age, such variation will be obscured 

by the models described by Equations 4.1/4.2 and Equation 5. We are particularly interested in 

modeling age-specific mortality risk in light of the numbers in Table 3 of Section IV above: In 

both of our survey samples, the majority of infant mortality in the first year comes in the first 

month of life (approximately 65%). To examine the possibility of a pollution-health relationship 

that varies with age, we add an interaction term to the IV and reduced-form systems above. This 

interaction takes the form 𝑃𝑑𝑖𝑦𝑚 × 1[𝐴𝑔𝑒 = 1 𝑚𝑜𝑛𝑡ℎ]𝑑𝑖𝑦𝑚 – a single term that is non-zero only 

for neonates (infants in their first month of life). Age (in months) fixed effects are added to 

complete the specification. 

 

 

V. RESULTS 

 

A. Pollution regressions 

The first results we show are basic estimates of the first stage. Table 5 below displays point 

estimates of Equation 1 at both the monitor level and district level. We show only the results 

using upstream bounds of [50 km, 300 km] (Panel A) and [75 km, 300 km] (Panel B), for which 

our empirical results are soundest. Results with the other ranges considered are, however, 

qualitatively similar. All regressions employ year-month, monitor-pair, and state-year fixed 

effects, controls for rainfall and air temperature, and standard errors clustered at the monitor-pair 

level. Columns 1 and 3 reflect Equation 1 as is, at the monitor and district levels, respectively. 



- 18 - 

 

Column 2 adds an interaction term to allow the association of upstream and downstream to vary 

with distance. The un-interacted distance term is subsumed by monitor-pair fixed effects; that is 

why it is not shown in Table 5.  

 

 

 

The results in Table 5 show that our first stage is very relevant: The magnitude of the upstream 

coefficient is large and its significance is high. According to column 1, a one-percent rise in 

upstream FCOLI is associated with a 0.259-percent rise in downstream FCOLI. Meanwhile, 

column 2 shows that this association weakens as the distance between two monitors increases: 

The sign on the interaction term is negative and significant. Together, the pollution coefficients 

above are a first check on the validity of our identification strategy. If our identification is 

coming from actual pollution flow (as we desire), then increasing distance should be found to 

weaken the upstream-downstream relationship6. Indeed it does, according to Table 5. 

 

                                                      
6 However, off-river spatial correlation might be expected to have a similar relationship with distance. 

Table 5. First-Stage Pollution Regressions

DISTRICT

(1) (2) (3)

Panel A. Bound of [50 km, 300 km]

Upstream Log(FCOLI) 0.259*** 0.358*** 0.309***

(0.051) '(0.078) (0.049)

Upstream Log(FCOLI)*Distance (km) -0.0009*

(0.0005)

R
2

0.81 0.81 0.83

N 55,700 55,700 19,900

Panel B. Bound of [75 km, 300 km]

Log(FCOLI) 0.195*** 0.387*** 0.229***

(0.053) (0.097) (0.047)

Upstream Log(FCOLI)*Distance (km) -0.0014**

(0.0006)

R
2

0.79 0.80 0.82

N 57,200 57,200 19,000

Notes

4. Pollution values are computed as the moving average of the current month and 

the three previous ones.

MONITOR

1. The dependent variable in all regressions is (downstream) Log(FCOLI).

2. All regressions include total rainfall and average air temperature as controls, as 

well as fixed effects by monitor-pair (or district) , year-month, and state-year.

3. All regressions cluster standard errors by monitor-pair.
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The next results we show are from the test of validity proposed in the preceding section. Table 6 

below displays point estimates for Equations 1, 3.1, and 3.2 in columns 1, 2, and 3, respectively. 

For this table, the pollution sample is restricted to all monitor-months for which there is non-

missing data at downstream, 1st-upstream, and 2nd-upstream locations. Control variables, fixed 

effects, and clustering choices are exactly the same as in Table 5 above. 

 

 

 

Recall that we are looking for evidence that (a) both first-upstream pollution and second-

upstream pollution are predictors of downstream pollution; and (b) second-upstream pollution 

loses its predictive strength once first-upstream pollution is included in the same regression. 

Table 6 provides just this evidence. Columns 1 and 2 indicate that both measures of upstream 

pollution are significant predictors of downstream levels, regardless of whether the lower bound 

is 50 km (Panel A) or 75 km (Panel B). Further, the second-upstream coefficient has a smaller 

magnitude than the first-upstream coefficient. This makes sense, since second-upstream monitors 

are significantly further away from downstream monitors than their first-upstream counterparts. 

Table 6. First-Stage Validity Test Results

(1) (2) (3)

Panel A. Bound of [50 km, 300 km]

1st-Upstream Log(FCOLI) 0.200*** 0.197***

(0.048) (0.048)

2nd-Upstream Log(FCOLI) 0.045** 0.019

(0.020) (0.015)

R
2

0.84 0.84 0.84

N 30,400 30,400 30,400

Panel B. Bound of [75 km, 300 km]

1st-Upstream Log(FCOLI) 0.150*** 0.149***

(0.051) (0.051)

2nd-Upstream Log(FCOLI) 0.020* 0.010

(0.012) (0.012)

R
2

0.83 0.83 0.83

N 28,900 28,900 28,900

Notes

4. All regressions cluster standard errors at the monitor-pair level.

1. The sample is restricted to all monitor-months for which there is pollution data 

at downstream, 1st-upstream, and 2nd-upstream locations.

5. Pollution values are computed as the moving average of the current month 

and the three previous ones.

3. All regressions include total rainfall and average air temperature as controls, 

as well as fixed effects by monitor-pair (or district) , year-month, and state-year.

2. The dependent variable in all regressions is (downstream) Log(FCOLI).
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Column 3 depicts the results of regressions with both upstream monitors as explanatory 

variables, yielding exactly the result we would like to see. The first-upstream coefficient remains 

highly significant and decreases only negligibly in magnitude, while the second-upstream 

coefficient loses both its size and significance. Put another way, second-upstream water quality 

is not correlated with downstream water quality conditional on first-upstream water quality. This 

result suggests that our instrument does what we want: It isolates upstream pollution that drives 

downstream pollution only via the transmission of pollutants along rivers. 

 

More than simply validating our instrument, the results of Table 6 contribute to the economics 

literature on regional pollution spillovers. Column 6 provides hard evidence that upstream 

pollution spills over into downstream districts, suggesting a very real cost to the free-riding 

pollution behavior identified by Sigman (2002, 2005) and Lipscomb and Mobarak (2007). As 

yet, however, this cost is expressed in terms of changes in water quality, which are difficult to 

value. This, of course, is exactly why we estimate 2SLS and reduced-form models of infant 

health – such analysis translates water quality costs into human health terms. Admittedly, infant 

mortality is only a partial measure of human health costs, and human health is in turn merely one 

component of the total costs of water pollution – ecosystem health, recreation, and non-use 

values being some of the others. Nonetheless, infant mortality carries with it a huge swath of life-

loss for a particularly vulnerable sub-population.  

 

B. Health regressions 

Table 7 displays our main estimation results for econometric models of infant mortality. For this 

table, we use RCH-2 as its infant mortality sample, since that survey is by far the larger one. 

Columns 1 and 2 correspond to an OLS model where downstream infant mortality is regressed 

on downstream pollution. Thus, upstream pollution is omitted from consideration entirely in 

these regressions; this is our “naïve” estimator. Columns 3 and 4 correspond to our IV model and 

thus depict estimates of Equations 4.1 and 4.2. The IV estimator is key for identifying the within-

district negative externality of river pollution. Finally, columns 5 and 6 correspond to our 

reduced-form (RF) model and thus show estimates of Equation 5, which captures the spillover of 

pollution-induced harm at downstream districts. 
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An observation here is a child-month; however, pollution and weather values reflect district-

averages as mentioned earlier, since children are identified only by their district of origin and not 

their village. All regressions include year-month, state-district, and state-year fixed effects, 

standard errors clustered at the district level, and weights provided by DLHS-2. Columns 1, 3, 

and 5 represent estimation results from models that do not allow the pollution-health relationship 

to vary by age. In contrast, columns 2, 4, and 6 represent models that allow for a different 

pollution-health relationship among neonatal infants.  

  

 

 

The first observation we make about the results in Table 7 is that the point estimates in columns 

1, 3, and 5 are very small and statistically insignificant7. That is, the average association between 

fecal coliforms concentration and infant mortality over our whole sample is very weak. Omitted 

variable bias does not explain this finding, since the point estimates are insignificant even with 

quasi-random variation in water quality and a large set of controls and fixed effects. However, 

                                                      
7 In fact, we are unable to estimate standard errors (SEs) for our OLS point estimates. Removing state-year fixed 

effects allows SE computation and confirms that none of the pollution coefficients are statistically significant. 

Table 7. Health Regression Results, RCH-2

(1) (2) (3) (4) (5) (6)

Panel A. Bound of [50 km, 300 km]

Log(FCOLI) -0.065 -0.07 0.041 -0.291 0.052 -0.057

(.) (.) (0.194) (0.248) (0.051) (0.055)

Log(FCOLI)*1[Age=1 month] 0.051 3.676*** 1.272***

(.) (1.158) (0.376)

Implied elasticity for one-month-olds 0.09 0.03

R
2

0.03 0.03 0.03 0.03 0.03 0.03

N 1,870,000 1,870,000 1,790,000 1,790,000 2,190,000 2,190,000

Panel B. Bound of [75 km, 300 km]

Log(FCOLI) -0.08 -0.102 0.17 -0.088 0.062 -0.045

(.) (.) (0.280) (0.281) (0.052) (0.056)

Log(FCOLI)*1[Age=1 month] 0.254 3.557*** 1.256***

(.) (1.143) (0.368)

Implied elasticity for one-month-olds 0.09 0.03

R
2

0.03 0.03 0.03 0.03 0.03 0.03

N 1,780,000 1,780,000 1,700,000 1,700,000 2,100,000 2,100,000

Notes

1. An observation is a child-month.

6. Pollution values are computed as the moving average of the current month and the three previous ones.

4. All regressions include fixed effects at the year-month, state-district, and state-year levels and the full set of controls.

OLS IV RF

2. Pollution and weather values are aggregated to the district-level for matching with infants.

3. The dependent variable in all regressions is 1[Died this month].

5. All regressions cluster standard errors at the district level and use sampling weights provided by DLHS-2.
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columns 2, 4, and 6 separately identify a pollution-health association for neonates, and the results 

here suggest a quite strong and statistically significant relationship. Column 2 point estimates 

still tell us nothing, but this is not surprising, given our endogeneity concerns. The IV serves the 

precise purpose of removing this endogeneity, and when we look at its results (in Column 4), we 

see that domestic river pollution imparts a significant mortality burden in the first month of life. 

The RF (in column 6) utilizes the same exogenous variation as the IV and shows that the 

mortality burden of river pollution persists well-downstream of the pollution’s measurement.  

 

The second observation we make about Table 7 pertains to magnitudes: Taken together, the 

OLS, IV, and RF results in columns 2, 4, and 6, respectively, exactly match our ex ante 

hypotheses. Consider identification concerns: The conventional wisdom about the non-random 

assignment of pollution says that the dose-response impact of pollution on health is likely to be 

biased downwards, because pollution may be positively correlated with economic activity and 

urbanization. Our empirical results are consistent with this reasoning, yielding much larger 

health impacts with the IV specification than with OLS. Also consider the logic of river flow: 

Since water pollution decays with river flow and time, one would predict that the downstream 

impact is smaller in magnitude than the within-district health impact. Indeed, we find exactly 

that, with IV point estimates (3.676 and 3.557 in Table 7) being relatively much larger than 

corresponding RF point estimates (1.272 and 1.256). 

 

Because of the details of our econometric specification8, these point estimates have the 

interpretation of “average number of neonatal deaths, out of 100,000 births, associated with a 

one-percent rise in fecal coliform concentration.” Thus, the IV results in Table 7 imply that 3.5 

additional children die within one month of birth when FCOLI rises by one percent, and the RF 

results imply a corresponding marginal mortality burden of about 1.2. Another way to describe 

these results is in terms of elasticities, which we provide in the italicized rows of Table 7. The 

implied within-district elasticity of neonatal mortality with respect to FCOLI is 0.09, and the 

downstream-district analog is 0.03. These may seem small as absolute numbers, but they only 

reflect small changes in domestic river pollution. In fact, the logarithm of fecal coliforms (our 

                                                      
8 In particular: We define the infant mortality dummy as a 0/1000 variable for numerical tractability in our tables. 
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key explanatory variable) varies tremendously from month to month in our data: The sample-

wide standard deviation of Log(FCOLI) is 2.84, as Table 2 shows. 

 

We are lucky to have not one but two large samples of infant survival outcomes with which to 

work, so we can test the robustness of our main results by repeating our analysis with NFHS-2 

substituted for RCH-2. Everything in this second analysis is the same as in our first analysis, 

with the exception of a small number of control variables which are only available from one 

survey or another (see Table 4 for a list of these variables). NFHS-2 results are displayed below 

in Table 8. The qualitative results are exactly the same: Increases in domestic river pollution are 

associated with a very statistically-significant rise in neonatal (one-month) mortality, and this 

association persists at districts downstream of pollution measurement. The implied elasticities 

actually rise, from 0.09 to 0.13 in the IV model, and from 0.03 to 0.05 in the RF model. 

 

 

 

 

Table 8. Health Regression Results, NFHS-2

(1) (2) (3) (4) (5) (6)

Panel A. Bound of [50 km, 300 km]

Log(FCOLI) -0.066 -0.174 -1.802 -0.345 -0.042 -0.193

(.) (.) (158.219) (0.464) (0.126) (0.133)

Log(FCOLI)*1[Age=1 month] 1.362 4.755*** 1.755***

(.) (1.616) (0.586)

Implied elasticity for one-month-olds 0.13 0.05

R
2

0.03 0.03 0.01 0.03 0.03 0.03

N 280,000 280,000 271,000 271,000 325,000 325,000

Panel B. Bound of [75 km, 300 km]

Log(FCOLI) -0.028 -0.152 0.113 -0.315 -0.006 -0.163

(0.149) (0.160) (0.650) (0.646) (0.126) (0.125)

Log(FCOLI)*1[Age=1 month] 1.485** 5.057*** 1.822***

(0.659) (1.752) (0.589)

Implied elasticity for one-month-olds 0.14 0.05

R
2

0.03 0.03 0.03 0.03 0.03 0.03

N 271,000 271,000 259,000 259,000 313,000 313,000

Notes

3. The dependent variable in all regressions is 1[Died this month].

4. All regressions include fixed effects at the year-month, state-district, and state-year levels and the full set of controls.

5. All regressions cluster standard errors at the district level.

6. Pollution values are computed as the moving average of the current month and the three previous ones.

OLS IV RF

1. An observation is a child-month.

2. Pollution and weather values are aggregated to the district-level for matching with infants.
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VI. DISCUSSION 

 

Our instrumental variables analysis (Tables 7 and 8) identifies a strong correlation between 

domestic river pollution and infant mortality. The logic of our “upstream” instrument for 

pollution and the empirical evidence provided by our first-stage tests (Tables 5 and 6) suggest 

that this correlation is causal: Rises in domestic water pollution impart a mortality burden to 

infants. This is important because the academic literature contains few causal estimates of the 

water pollution–health relationship directly. While there are many studies of interventions that 

identify ways to improve health via the channel of water quality, there is a dearth of knowledge 

on how harmful water pollution actually is, particularly in developing countries. We think our 

research advances the frontiers explored by the two most similar studies to ours. Ebenstein 

(2012) finds river water quality to be associated with adult cancer mortality in China but does so 

cross-sectionally, with pollution data from 2004 and mortality data from 1991-2000. Brainerd 

and Menon (2012) find river pollution to be associated with infant mortality in India – our exact 

setting – but focus specifically on agricultural pollution and can only match infants to state-

average pollution (we are able to match at the district level). 

 

One particular finding of note from our analysis is that the first month of birth is by far the most 

dangerous when it comes to river pollution. In fact, we find no evidence of a strong relationship 

existing between mortality and pollution in months two through twelve of a child’s life. Our 

neonatal (first-month) mortality impact, however, is large and robust. This should not be 

surprising, given both our summary statistics on mortality and the widespread belief that the first 

month is the most fragile period of an infant’s life. This belief is bolstered by empirical evidence 

going back to at least Chay and Greenstone (2003), who find a similarly strong impact on 

neonatal mortality in the context of air pollution in the United States. Meanwhile, two recent 

studies focus on Indian neonatal mortality in the context of water pollution. Brainerd and Menon 

(2011) find a significant impact of agricultural pollution; Spears (2012), studying the impacts of 

rural sanitation (which is intimately related with domestic water pollution), does not. 

 

Though we hope our numerical estimates are clear of bias, we acknowledge that measurement 

error prevents us from precisely calibrating the water pollution–health dose-response function. 

We do not know where infants live, nor do we know how infants interact with water; this means 
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we cannot know their precise exposure to water pollution. Additionally, the magnitudes we find 

are net of behavioral adjustment, such as water-source switching. We believe our results are 

likely to underestimate the true dose-response function, because (1) some (if not most) of our 

sample does not actually consume river water, and (2) some households are liable to switch away 

from rivers to alternative water sources when river pollution rises. 

 

A further caveat of our results is that we cannot definitively make a case for a particular 

mechanism by which river pollution imparts a neonatal mortality burden. Drinking water is the 

most likely channel ex ante, but, as we noted in Section IV, only 1.2% of RCH-2 infants come 

from households whose primary source of drinking water is rivers at the time of survey. As 

explained in Section II, the epidemiology literature provides evidence that bathing, eating, 

irrigation, and person-to-person contact can all transmit disease. However, we do not have the 

data to study these modes of transmission directly. Understanding the mechanism of the river 

pollution–health relationship is a top priority for our future research. 

 

One final aspect of our research that we wish to highlight is the finding of spillovers of both 

pollution and mortality in downstream districts. Our discussion of pollution spillovers in Section 

II highlights the presence of both theoretical and empirical evidence of free-riding in the context 

of river water quality, but no attempt has ever been made to quantify the costs of such free-

riding. The results of our reduced-form regression analysis do just that, albeit in partial fashion 

(the costs of water pollution are not solely health-related, and infant mortality is an incomplete 

measure of health costs). The fact that pollution measured in one district kills infants living 50 – 

300 km further downstream should be strong incentive for policy dialogue across district 

borders. Even if zero water pollution is not the optimal policy, the incentive to free-ride on 

pollution cleanup and the associated health costs identified here make it highly unlikely that the 

current levels of water quality are socially efficient.  

 

 

VII. CONCLUSION 

 

Water pollution remains a public health problem today in spite of major policy, spending, and 

improvements to water supply and sanitation. This holds true especially in India: The National 
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River Conservation Plan has engendered billions of dollars in expenditures to reduce domestic 

pollution into India’s rivers, yet we nonetheless find that a one-percent rise in domestic river 

pollution in a given district-month has a causal impact of 3-5 additional neonatal deaths per 

100,000 births. This finding is convincingly robust – it holds for each of the two major national 

surveys of Indian health that we use in our analysis. Furthermore, pollution has health impacts 

that spill over into downstream districts: We find an additional 1-2 neonatal deaths per 100,000 

births in the district downstream of pollution’s measurement. 

 

These findings only begin to uncover the details of the water pollution–health relationship, but 

they shed light on several important aspects to consider for policymaking to improve public 

health. First, domestic (and not just industrial) pollution into rivers (and not just groundwater) 

has a real health cost. Second, infants appear to be very vulnerable to water pollution in their first 

month of life, and not very much at all in the remainder of their first year. Third, there is a 

geographic mismatch between the production of pollution and the incidence of its external health 

costs, which implies a need for cooperation and bargaining across jurisdictional borders. 
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Author Year Locale Proxy for Pollution Outcome Variables Findings

Cutler and Miller 2005 U.S.A. Clean water 

technology

1-year mortality Introduction of water filtration 

and chlorination systems is 

associated with infant mortality 

reductions that explain 75% of 

overall infant mortality changes 

between 1900 and 1936.

Galiani, Gertler, and 

Schargrodsky

2005 Argentina Privatization of 

water services

child mortality, 

aged 0-5

Privatization of water provision is 

associated with an 8% decrease 

in child mortality.

Watson 2006 U.S.A. Indian 

reservations

Sanitation 

improvements

1-month, 1-year 

mortality

A 10% increase in the number of 

sanitation projects is associated 

with 50 fewer infant deaths per 

100,000 births three years after 

project completion. The effect is 

driven by non-neonatal mortality.

Ebenstein 2010 China Water quality 

grade

digestive cancers A 1-grade deterioration in water 

quality is associated with a 9.7% 

increase in digestive cancer 

incidence.

Gamper-Rabindran, 

Khan, and Timmins

2010 Brazil Piped water 

provision

1-year mortality Provision of piped water is 

associated with 1.25 fewer deaths 

per 1,000 live births at the 90th 

percentile of baseline 1-year 

mortality and only 0.55 fewer 

deaths at the 10th percentile.

Kremer, Leino, 

Miguel, Zwane

2011 Kenya Spring protection diarrhea among 

children aged 0-3

Spring protection is associated 

with a 25% drop in diarrhea 

incidence among children aged     

0-3.

Field, Glennerster, 

and Hussam

2011 Bangladesh Fecal 

contamination

1-year, 2-year, 5-

year mortality

An additional year of exposure to 

high-risk water sources is 

associated with a 27% increase in 

the probability of 1-year infant 

mortality.

Brainerd and 

Menon

2011 India Fertilizer 

agrichemicals

1-month, 1-year 

mortality

A 10% increase in agrichemical 

levels in the month of conception 

is associated with an 11% (15%) 

increase in the likelihood of 1-

year (1-month) mortality.

Notes

Appendix Table 1. A survey of results from recent studies of water quality and infant health

1. The studies shown here are merely a subjective sample of the greater economics literature on water quality and 

health.
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Notes

Appendix Figure 1. Histogram for Log(FCOLI)

1. FCOLI values are computed as the moving average of the current month and 

the three previous ones. Logarithms are applied afterwards.
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