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Abstract

We develop methods of empirical welfare-analysis in multinomial choice settings, under com-

pletely general consumer-heterogeneity and income-e¤ects. Our results pertain to three practi-

cally important scenarios, viz., (i) simultaneous price-change of multiple alternatives, (ii) intro-

duction/elimination of a choice-alternative, and (iii) choice among non-exclusive options. These

do not follow from the single price-change results of Bhattacharya (Econometrica, 2015). In

program-evaluation contexts, they enable estimation of compensated program-e¤ects, i.e., how

much the subjects themselves value a policy-intervention, and the resulting deadweight-loss.

Welfare-analysis under endogeneity is brie�y discussed.

Keywords: Multinomial Choice, Unobserved Heterogeneity, Nonparametric Welfare Analy-

sis, Compensated Program E¤ects, Deadweight Loss, Compensating Variation, Multiple Price

Change, Elimination of Alternative, Non-exclusive Choice.

1 Introduction

Welfare calculations, based on the compensating and equivalent variation (CV and EV, henceforth),

lie at the heart of economic policy analysis. Although theoretically well-understood, these measures

are rarely calculated or reported as part of econometric program evaluations. Indeed, empirical

studies � both reduced-form and structural � usually adopt a paternalistic view and evaluate a

policy intervention in terms of its uncompensated e¤ects on individual outcomes. But they ignore
�Address for correspondence: debobhatta@gmail.com. I am grateful to Pascaline Dupas, Phil Haile, Jerry Haus-

man, Whitney Newey and seminar participants at the University of Wisconsin for feedback and suggestions. All

errors are mine. JEL codes: C14, C25, D12, D61, H22

1



the heterogeneity in welfare e¤ects which require computation of compensated e¤ects. For example,

in an educational context, researchers typically evaluate the impact of a tuition subsidy via its net

e¤ect on college-enrolment (c.f. Ichimura and Taber, 2002, Kane, 2003). But they stop short

of evaluating how much the subsidy is valued by the potential bene�ciaries themselves, viz., the

lump-sum income transfer that would result in the same individual utilities as the subsidy, and

any resulting deadweight loss thereof.1 The present paper develops methods for calculating such

welfare e¤ects as part of program evaluation studies, without requiring the researcher to make any

restrictive assumptions on the nature of preference-heterogeneity or income e¤ects. The setting

is where we observe individual level data on a cross-section of consumers making choices among

discrete prospects, and the goal is to estimate the e¤ects of hypothetical economic changes on

consumer welfare.

In practical settings involving cross-sectional data, unobservable heterogeneity in consumer

preferences makes empirical welfare analysis a challenging problem. Nonetheless, some advances

based on Roy�s identity have recently been made for the case of a continuous good, such as gaso-

line consumption, under general preference heterogeneity (c.f., Hausman and Newey, 2016, Lewbel

and Pendakur, 2016). However, many important real-life decisions involve discrete choice, such as

college-attendance, choice of commuting method, school-choice, retirement decisions, and so forth.

The Roy�s identity based methods used for continuous choice cannot be applied in these settings

owing to the non-smoothness of individual demand in price and income.2 Until very recently,

available methods for welfare analysis in discrete choice settings were based on restrictive and ar-

bitrary assumptions on preference heterogeneity, e.g., quasi-linear preferences implying absence of

income e¤ects (c.f., Domencich and McFadden, 1975, Small and Rosen 1981), or parametrically

speci�ed utility functions and heterogeneity distributions (Herriges and Kling, 1999, Dagsvik and

Karlstrom, 2005, Goolsbee and Klenow, 2006). See McFadden, 1981, for an early discussion of para-

1Stiglitz (2000, page 276) notes that empirical researchers typically ignore income e¤ects owing to the perceived

di¢ culty of calculating them, and Goolsbee (1999, page 10) points out that whereas the economic theory of welfare

largely relates to compensated elasticities, common program evaluation studies in public �nance typically report

uncompensated e¤ects. Hendren (2013) discusses this point and some related issues in more detail.
2The closest parallel to Roy�s Identity for discrete choice is the so-called Daly-Williams-Zachary theorem (Mc-

Fadden, 1981, 5.8), which shows that in an additive random utility model with scalar heterogeneity, the choice

probabilities equal certain derivatives of the average indirect utility. This result is not useful for analysis of individual

welfare distributions, since the income compensation that maintains average utility is not the same as the average of

the income compensations that maintain individual utilities, unless preferences are quasilinear. We are interested in

the latter distribution, and hence the DWZ theorem is not relevant to our problem.
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metric approaches to modelling discrete choice and welfare analysis. Indeed, two key concerns with

parametric analyses are (a) model mis-speci�cation leading to erroneous substantive conclusions,

and (b) identi�cation of welfare distributions solely from functional form assumptions.

Recently, Bhattacharya, 2015 (DB15, henceforth) has shown that for heterogeneous consumers

facing the choice between mutually exclusive discrete alternatives, the marginal distributions of

equivalent/compensating variation (EV/CV) resulting from a ceteris paribus price-change of an

alternative can be expressed as closed-form transformations of conditional choice probabilities.

These results hold under fully unrestricted heterogeneity and income-e¤ects across consumers.

Taking DB15 as the point of departure, the present paper makes three new contributions. First, we

show that in a discrete choice setting, money-metric welfare e¤ects of simultaneous price changes of

several alternatives continue to remain well-de�ned whereas the analog of the Marshallian Consumer

Surplus becomes path-dependent (Proposition 1). Next, EV/CV distributions in this case are

shown to be expressible as closed-form transformations of estimable choice-probabilities (Theorem

1). These results cover situations where some price changes are negative, some zero and some

positive. The key issue here, elaborated in Section 2.1 below, is that although welfare e¤ects of

multiple price-changes are well-de�ned, their distributions cannot be obtained by iterating the

single price-change result of DB15. This is because the income at which welfare distributions are to

be evaluated varies in an unobservable way across individuals from the second iteration onwards,

and thus cannot be conditioned on. Consequently, new results are required for welfare analysis in

these situations.

Multiple price-changes are the likely consequences of a single initial price change of a product

with substitutes. For example, a school-tuition subsidy in an area with child labor is likely to raise

children�s wages in response. The impact of such simultaneous price-changes on consumer welfare is

usually the key consideration for policymakers in regard to their decision on whether to implement

a proposed policy-change (c.f., Willig et al, 1991). It has been common practice in applications

to use the so-called log-sum formula (c.f., Small and Rosen, 1981, Train, 2009) for welfare com-

parisons in these settings. This formula, though convenient, is based on strong, unsubstantiated

assumptions like absence of income e¤ects and extreme valued heterogeneity, and potentially leads

to erroneous substantive conclusions (see our empirical example below for a concrete illustration

of such errors).3 Here we show that under completely general preference heterogeneity and income

3Some of these restrictive assumptions have subsequently been replaced with less stringent parametric assumptions,

c.f. Dagsvik and Karlstrom, 2005, McFadden and Train, 2000, Herriges and Kling, 1999, Goolsbe and Klenow, 2006.
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e¤ects, one can express welfare-distributions resulting from multiple simultaneous price-changes in

terms of choice probability functions, thereby reducing welfare-analysis to the problem of estimat-

ing (structural) choice probabilities. Crucially, our welfare-expressions (a) hold when income e¤ects

are non-negligible, as is likely for bigger purchases like children�s education and consumer durables,

and (b) apply to arbitrary patterns of price changes across alternatives, thereby making the results

useful across a large range of empirical situations.

Section 3 of this paper concerns welfare loss resulting from elimination of an existing alterna-

tive (or, equivalently, welfare gain from having added a new alternative to the choice set), such

as banning teenage wage-labour in a poor country. Previous econometric studies of such problems

either ignored consumer heterogeneity, and implicitly assumed a �representative consumer�model,

and/or worked under restrictive parametric assumptions (Willig et al, 1991, Hausman, 1996, Haus-

man and Leonard, 2002, Hausman, 2003, Trajtenberg, 1989).4 In contrast, our set-up allows for (a)

unrestricted consumer heterogeneity, and (b) arbitrary e¤ects of eliminating the alternative on the

price of existing alternatives, thereby making our results applicable to a wide variety of practical

situations.5 Importantly, these results are robust to failure of parametric assumptions, and clarify

which features of welfare distributions can and which ones cannot be learnt from demand data alone

without functional form assumptions. Indeed, our key result, stated below in Theorem 2, shows

that Hicksian welfare distributions in this case can again be expressed as closed-form transforma-

tions of choice-probabilities without any assumption on heterogeneity. Nonetheless, calculating the

tails of these distributions require observation of demand at prices where aggregate demand at an

adjusted income level reaches zero. At high income levels, such prices may not be observed since

producers have no incentive to set a price where aggregate demand for high income people is zero.

In that case, a lower bound on the welfare distributions can be obtained using the value of aggregate

demand at the highest observed price.6 A corollary of our main result is that the heuristic empiri-

All of these still require speci�cation of the dimension and distribution of unobserved heterogeneity and functional

form of utility functions about which no a priori information is available.
4See Lewbel (2001) for an illuminating discussion of demand and welfare analysis with a representative consumer

vis-a-vis allowing for preference heterogeneity.
5Welfare calculations in the two scenarios described above correspond to situations where the price vectors before

and after are given. The process through which the �nal price vector following the relevant change is calculated

requires modelling the supply side. See, Hausman and Leonard, 2002, page 256-8, for an illustration of the method-

ology.
6For common parametric models, like mixed logit, these issues are assumed away, and welfare distributions are

point-identi�ed simply via functional form assumptions.

4



cal practice of calculating welfare e¤ects of new goods by integrating choice probabilities from the

current price to in�nity yields the average EV, if prices of substitutes remain unchanged; however,

calculation of the average CV and/or allowing for prices of substitutes to change entail di¤erent

expressions. These results can be used for "retrospective" calculation of welfare gains from having

introduced a new alternative, simply by reversing the labels of CV/EV.

Section 4 of this paper considers multinomial choice with non-exclusive alternatives. For exam-

ple, if a cable-TV company o¤ering a sports package and a movie package raises product-prices,

then the resulting welfare calculations requires new results because the packages are not exclusive

alternatives for a potential consumer. We show that for multiple non-exclusive discrete goods,

the welfare distribution resulting from a single price-change can be directly expressed as a closed-

form functional of choice-probabilities but that for multiple price-changes cannot, unlike the case

of multinomial choice among exclusive options. We then show how to construct nonparametric

bounds for these distributions.

Taken together, these results provide new insights into welfare analysis in discrete choice situa-

tions, as well as providing practitioners with useful empirical tools for evaluating policy changes in

real-life settings. In section 5, we discuss practical implementation of our results, and state a new

and useful �nding, viz. that under income endogeneity and corresponding to a price increase, the

EV but not the CV can be used for legitimate welfare analysis even in the absence of instruments

or control functions.

Proofs of all theoretical results and details of numerical calculations for the empirical illustration

are provided in the appendix.

We end this section by emphasizing that our results establish the closed-form mapping between

welfare distributions and structural choice probabilities, while imposing no restriction on preference

heterogeneity or functional form of utilities. In other words, our results show that knowledge of

welfare distributions is exactly equivalent to the knowledge of structural choice probabilities. Once

the structural choice probabilities (or nonparametric bounds on them) are identi�ed, our results

deliver identi�cation of the welfare distributions (or bounds on them) regardless of whether price

and/or income are endogenous.7

7 Indeed, if one allows for endogenous regressors, then the nonparametric point-identi�cation of structural choice

probabilities themselves is nontrivial, and would typically require control function type approaches (c.f., Blundell and

Powell, 2003, Matzkin, 2008 and Berry and Haile, 2015). Alternatively, the results of Chesher (2005) can be used to

derive nonparametric bounds on structural choice probabilities in presence of endogeneity. But in either case, one
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2 Multiple Price-Changes

Set-up and notation: Consider a multinomial choice situation where alternatives are indexed by

j = 1; :::; J ; individual income is denoted by Y , and price of alternative j by Pj . Individual utility

from choosing alternative j is Uj (Y � Pj ; �), j = 1; :::; J , where � denotes individual heterogeneity

of unknown dimension; � is distributed in the population with unknown marginal CDF F� (�).

We have a cross-sectional random sample of consumers, and observe their characteristics including

income, the prices they face, and the choice they make. The following analysis implicitly conditions

on observable non-income characteristics.

De�ne the structural choice probability for alternative j evaluated at price vector p and income

y, denoted fqj (p; y)g, j = 1; :::; J , as

qj (p; y) =

Z
1

�
Uj (y � pj ; r) > max

k 6=j
fUk (y � pk; r)g

�
dF� (r) . (1)

In words, if we randomly sample individuals from the population, and o¤er the price vector p

and income y to each sampled individual, then a fraction qj (p; y) will choose alternative j, in

expectation.

Assumption 1 Assume that for each � and for each j = 1; :::; J , the utility function Uj (�; �) is

strictly increasing.

Assumption 1 simply says that corresponding to making any choice, every consumer is strictly

better o¤ if they have more numeraire left in their pocket. Note that this assumption leaves the

dimension of heterogeneity completely unspeci�ed, and says nothing about how utility changes with

unobserved heterogeneity.

Now consider a hypothetical change in the price vector from p0 � (p10; p20; :::; pJ0) to p1 �

(p11; p21; :::; pJ1). Then the EV at income y for an � type consumer is the income reduction S in

the initial situation that would lead to attainment of the eventual indirect utility. Formally, the

EV is the solution S to the equation:

max fU1 (y � p11; �) ; U2 (y � p21; �) ; :::; UJ (y � pJ1; �)g

= max fU1 (y � S � p10; �) ; U2 (y � p20 � S; �) ; :::; UJ (y � pJ0 � S; �)g . (2)

can directly apply our results to the resulting choice probability estimates, and obtain corrsponding welfare estimates

without requiring any additional modi�cation due to endogeneity.
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Similarly, the CV is the income compensation in the eventual situation necessary to restore the

initial indirect utility; formally, the CV is the solution S to the equation:

max fU1 (y + S � p11; �) ; U2 (y + S � p21; �) ; :::; UJ (y + S � pJ1; �)g

= max fU1 (y � p10; �) ; U2 (y � p20; �) ; :::; UJ (y � pJ0; �)g . (3)

As � varies in the population, the CV and EV will have a distribution across consumers. Our goal

is to estimate these distribution functions using the cross-sectional dataset.

Note that by analogy with the single price change case, one can attempt to de�ne the change

in average Marshallian consumer surplus in the multiple price change case via the line-integral

CS (L) = �
Z
L

JX
j=1

qj (p; y) dpj , (4)

where L denotes a path from p0 to p1 (c.f. Auerbach, 1985, equation 2.2). The negative sign stems

from the fact that rise in price leads to a loss in consumer surplus.

In the set-up described above, we �rst show that for arbitrary price changes, the EV and CV are

well-de�ned under assumption 1, but the Marshallian Consumer Surplus is not. We then show why

the results of DB15 cannot be iterated to get welfare-distributions for multiple price changes, and

then establish the �rst key result of this paper, viz., that the marginal distributions of individual-

level EV and CV for arbitrary changes in the price vector can be obtained as closed-form functionals

of the structural choice probabilities.

We will assume without loss of generality that

pJ1 � pJ0 � pJ�1;1 � pJ�1;0 � ::: � p11 � p10. (5)

That is, label the alternative with the smallest price change (the smallest could be a negative

number, representing a fall in price) alternative 1, the next smallest as alternative 2 and so on.

Now, it is well known that for continuous choice with multiple prices changing simultaneously,

the Marshallian Consumer Surplus is generically unde�ned in the sense that the corresponding

line-integral is path-dependent, but the Hicksian CV and EV continue to remain well-de�ned (c.f.,

Tirole, 1988, page 11). Our �rst result establishes that the same conclusion holds for discrete

choice.
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Proposition 1 Consider the multinomial choice set-up with J alternatives. Consider a price

change from p0 � (p10; p20; :::; pJ0) to p1 � (p11; p21; :::; pJ1). Under assumption 1, the individ-

ual compensating and equivalent variations are uniquely de�ned.

(Proof in Appendix)

Marshallian Consumer Surplus: It can be shown that for discrete choice with multiple price

changes, the integral (4) is path-dependent. In the appendix, we demonstrate this for the case with

3 alternatives (J = 3). Thus it is no longer true that the average Marshallian consumer surplus is

identical to the average EV, as found in DB15 for the case of a ceteris paribus price increase of a

single alternative.

2.1 Welfare Distributions for Multiple Price-Changes

DB15 showed that in the above setting, when the price of a single alternative changes ceteris

paribus, the resulting CV and EV distributions can be expressed as closed-form functionals of

choice-probabilities. It is important to note that one cannot iterate this single price-change result

to obtain the welfare distribution for simultaneous changes in the prices of multiple alternatives. To

see this, consider a choice among three alternatives (J = 3), and suppose that price of alternative

1 changes from p10 to p11, and that of 2 from p20 to p21, and price of 3 is unchanged at p3. Suppose

we try to calculate the overall CV, starting with, say, price change of alternative 1, followed by 2

(the order in which we do this does not matter, by path independence) and applying theorem 2 of

DB15 at each stage. Suppose the CVs corresponding to the two price changes are denoted by S1

and S2 respectively. Then, by de�nition,

max fU1 (y � p10; �) ; U2 (y � p20; �) ; U3 (y � p3; �)g

= max fU1 (y + S1 � p11; �) ; U2 (y + S1 � p20; �) ; U3 (y + S1 � p3; �)g

= max

8>>>>>><>>>>>>:
U1

0@y + S1 + S2| {z }
=S, overall CV

� p11; �

1A ; U2
0@y + S1 + S2| {z }

S

� p21; �

1A ;
U3

0@y + S1 + S2| {z }
S

� p3; �

1A .

9>>>>>>=>>>>>>;
Then using theorem 2 of DB15, we can get the marginal distribution of S1 but we cannot get the

marginal distribution of S1+S2 because the price of both alternative 1 and 2 have changed between

lines 1 and 3 of the previous display and so theorem 2 of DB15 does not apply. Secondly, because
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we cannot calculate the value of the CV S1 for an individual (we can only calculate its distribution

across all individuals), we cannot apply theorem 2 of DB15 to calculate the marginal distribution

of S2, since the income at which we could potentially apply the theorem depends on S1 which is

unknown, unlike y which is a �xed known constant. Thus, a new result is required for welfare

analysis corresponding to simultaneous changes in multiple prices, and it is given by the following

theorem.

Theorem 1 Consider the multinomial choice set-up with J exclusive alternatives. Consider a price

change from p0 � (p10; p20; :::; pJ0) to p1 � (p11; p21; :::; pJ1) satisfying (5). Denote pj1 � pj0 by

�pj for j = 1; :::; J . Under assumption 1, the marginal distribution of the individual EV evaluated

at income y is given by

Pr (EV � a)

=

8>>>>>>>>>>>><>>>>>>>>>>>>:

0 if a < �p1,Pj
k=1 qk

0@ p11; :::; pj1;

pj+1;0 + a; :::; pJ0 + a; y

1A if �pj � a < �pj+1, a � 0, 1 � j � J � 1,

Pj
k=1 qk

0@ p11 � a; :::; pj1 � a;

pj+1;0; :::; pJ0; y � a

1A if �pj � a < �pj+1, a < 0, 1 � j � J � 1,

1 if a � �pJ ,

(6)

while that of the individual CV evaluated at income y is given by

Pr (CV � a)

=

8>>>>>>>>>>>><>>>>>>>>>>>>:

0 if a < �p1,Pj
k=1 qk

0@ p11; :::; pj1;

pj+1;0 + a; :::; pJ0 + a; y + a

1A if �pj � a < �pj+1, a � 0, 1 � j � J � 1,

Pj
k=1 qk

0@ p11 � a; :::; pj1 � a;

pj+1;0; :::; pJ0; y

1A if �pj � a < �pj+1, a < 0, 1 � j � J � 1,

1 if a � �pJ ,

(7)

where qks are de�ned above in equation (1). (The separate entries for a � 0 and a < 0 in each line

of (6) and (7) arise from accommodating rise and fall of prices, respectively).

These distributional results cover positive, zero and negative price-changes. For example, in

the 3-alternative case, suppose alternative 2 is the outside option with price p21 = p20 = 0, and
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�p1 < 0 < �p3, then (7) becomes

Pr (CV � a) =

8>>>>>><>>>>>>:

0 if a < �p1,

q1 (p11 � a; 0; p30; y) if �p1 � a < 0,

q1 (p11; 0; p30 + a; y + a) + q2 (p11; 0; p30 + a; y + a) if 0 � a < �p3,

1 if a � �p3.

(8)

Finally, note that in the above results, the CDFs are non-decreasing because of assumption 1.

For instance, for the CV, we require

q1 (p11; p20 + a; p30 + a; y + a) � q1
�
p11; p20 + a

0; p30 + a
0; y + a0

�
(9)

whenever p11 � p10 � a < a0. But this is true because the LHS is the probability of the event

U1 (y + a� p11; �) � max fU2 (y � p20; �) ; U3 (y � p30; �)g

) U1
�
y + a0 � p11; �

�
� max fU2 (y � p20; �) ; U3 (y � p30; �)g , since a0 > a,

() U1
�
y + a0 � p11; �

�
� max

8<: U2 (y + a
0 � (p20 + a0) ; �) ;

U3 (y + a
0 � (p30 + a0) ; �)

9=; ,
whose probability is the RHS of the previous display. Inequality (9) can be interpreted as a

Slutsky/Revealed Preference inequality for discrete choice.

Remark 1 Note that the above results hold no matter whether price and income are endogenous or

not. Endogeneity a¤ects how the (structural) choice probabilities are to be consistently estimated,

not the relationship between welfare distributions and the structural choice probabilities which is

what the above results establish. See Section 5 below for further discussion of welfare estimation

under endogeneity.

Remark 2 It is also implicit throughout that the price changes do not alter the population of

interest, e.g. a large tuition subsidy in a district might attract outsiders with a strong preference

for education to migrate in, altering the distribution of preferences relative to the status-quo. In

other words, the price changes considered here are assumed to be modest enough to have no impact

on the distribution of �.

3 Two Extensions

In this section we show how to calculate welfare e¤ects in two practically relevant scenarios �viz.,

(i) elimination/introduction of an alternative from/to consumers�choice sets, and (ii) price changes
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when alternatives are not exclusive.

3.1 Elimination of an Alternative

Consider a setting of multinomial choice among exclusive alternatives f1; :::; J + 1g. Suppose the

alternative J + 1 is eliminated subsequently, which can potentially a¤ect consumer welfare by

both restricting the choice set and also by a¤ecting the prices of other alternatives. Assume that

we have data on a cross-section of individual choices in the pre-elimination situation. We wish

to calculate the distribution of Hicksian welfare e¤ects that would result from eliminating the

J + 1th alternative. Previous researchers (c.f. Hausman, 2003) had provided convenient, o¤-

the-shelf formulae for estimation of welfare e¤ects for a "representative" consumer, ignoring the

impact of unobserved heterogeneity in preferences. Incorporation of preference heterogeneity and

developing the associated welfare analysis reveals interesting di¤erences between CV and EV based

formulae and identi�ability of their distribution, as will be shown below.

Toward that end, consider an individual at income y and unobserved heterogeneity � whose

utility from consuming alternative j at price pj is given by Uj (y � pj ; �). The problem is to �nd

the distribution of welfare e¤ects across such individuals resulting from potentially eliminating

alternative J + 1. Suppose from an initial price vector (p11; :::; pJ1; pJ+1), following elimination of

the J + 1th alternative, the eventual price vector becomes (p10; :::; pJ0).

Then the CV is the income compensation in the post-elimination situation necessary to attain

the initial indirect utility. Formally, CV is the solution S to the equation:

max fU1 (y � p11; �) ; :::; UJ (y � pJ1; �) ; UJ+1 (y � pJ+1; �)g

= max fU1 (y + S � p10; �) ; :::; UJ (y + S � pJ0; �)g .

Analogously, the EV is de�ned as the income reduction S in the initial situation that would lead

to attainment of the eventual, i.e. post-elimination indirect utility:

max fU1 (y � S � p11; �) ; :::; UJ (y � S � pJ1; �) ; UJ+1 (y � S � pJ+1; �)g

= max fU1 (y � p10; �) ; :::; UJ (y � pJ0; �)g .

De�ne the pre-elimination choice probabilities for alternatives k = 1; :::; J + 1, as

qk (p1; :::; pJ+1; y) = Pr

�
Uk (y � pk; �) > max

j2f1;:::;J+1gnfkg
Uj (y � pj ; �)

�
. (10)

Assume WLOG that pJ;0 � pJ;1 � ::: � p10 � p11, and denote pj0 � pj1 by �pj for j = 1; :::; J .
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We now state the main result describing the marginal distribution of EV and CV. The proof

appears in the appendix.

Theorem 2 Assume that for each j = 1; :::; J + 1, Uj (�; �) is strictly increasing. Let qk (�; :::; �; y)

be as de�ned in (10). Then

Pr (CV � a)

=

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

0 if a < �p1,

Pj
k=1 qk

0BBB@
p10; :::; pj0;

pj+1;1 + a; :::; pJ1 + a; pJ+1 + a;

y + a

1CCCA , if �pj � a < �pj+1, j = 1; ::; J � 1, a � 0,
Pj
k=1 qk

0@ p10 � a; :::; pj0 � a;

pj+1;1; :::; pJ1; pJ+1; y

1A , if �pj � a < �pj+1, 1 � j < J � 1, a < 0,
1� qJ+1 (p10; :::; pJ0; pJ+1 + a; y + a) , if �pJ � a, a � 0,

1� qJ+1 (p10 � a; :::; pJ0 � a; pJ+1; y) , if �pJ � a < 0.

(11)

On the other hand,

Pr (EV � a)

=

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

0 if a < p10 � p11,Pj
k=1 qk

0@ p10; :::; pj0;

pj+1;1 + a; :::; pJ1 + a; pJ+1 + a; y

1A , if �pj � a < �pj+1, j = 1; ::; J � 1, a � 0,
Pj
k=1 qk

0@ p10 � a; :::; pj0 � a;

pj+1;1; :::; pJ1; pJ+1; y � a

1A , if �pj � a < �pj+1, 1 � j < J � 1, a < 0,
1� qJ+1 (p10; :::; pJ0; pJ+1 + a; y) , if �pJ � a, a � 0,

1� qJ+1 (p10 � a; :::; pJ0 � a; pJ+1; y � a) , if �pJ � a < 0.

(12)

As in the previous theorem, the pairs of results for a < 0 and a � 0 correspond to which

existing alternatives have become more and less expensive, respectively, following the elimination

of the J+1th alternative. Also, note that in order to calculate the probabilities appearing in theorem

2, we need to observe adequate cross-sectional variation in the price of all J +1 alternatives in the

pre-elimination period.

Remark 3 The above theorem also provides a formal justi�cation of the heuristic empirical practice

of equating elimination of an alternative with increasing its price to plus in�nity for the purpose of

welfare analysis.
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Corollary 1 If elimination of the alternative has no e¤ect on prices of the other alternatives, then

pj1 = pj0 for all j = 1; :::; J , and the above results simplify to

Pr (CV � a) =

8<: 0 if a < 0,

1� qJ+1 (p10; :::; pJ0; pJ+1 + a; y + a) if 0 � a.
(13)

Pr (EV � a) =

8<: 0 if a < 0,

1� qJ+1 (p10; :::; pJ0; pJ+1 + a; y) if 0 � a.
(14)

These corollaries have clear intuitive interpretation. For example, consider the result (13).

Recall that CV is de�ned as the solution S to

max fU1 (y � p10; �) ; :::; UJ (y � pJ0; �) ; UJ+1 (y � pJ+1; �)g

= max fU1 (y + S � p10; �) ; :::; UJ (y + S � pJ0; �)g .

Observe that any individual who does not consume the J+1th product in the pre-elimination situ-

ation su¤ers no welfare change relative to the �nal situation when the product becomes unavailable.

Therefore, we only need to consider those individuals who consume the J + 1th alternative in the

pre-elimination situation. Among these individuals, the CV is positive and less than a for those

who, with the compensated income y + a, would enjoy a higher utility than what they are getting

from consuming the J + 1th alternative in the pre-elimination situation. Since buying the J + 1th

alternative at price pJ+1 with income y yields the same utility as buying it at price pJ+1 + a with

income y+a, the probability of CV being less than a equals the probability of buying one of 1; :::; J

when the price vector is (p10; :::pJ0; pJ+1 + a) and income is y + a.

Corollary 2 If eliminating the J+1th alternative has no e¤ect on prices of the other alternatives,

then the average values of individual welfare change are given by

E (CV ) =

Z 1

pJ+1

qJ+1 (p10; :::; pJ0; r; y + r � pJ+1) dr, (15)

E(EV ) =

Z 1

pJ+1

qJ+1 (p10; :::; pJ0; r; y) dr, (16)

using the change of variable r = pJ+1 + a.

The expression (16) is commonly used as an ad-hoc measure of the welfare e¤ect of introducing

a new product. Thus it follows from the above discussion that if elimination of the alternative

entails no price change for the other alternatives, then the commonly used expression happens to

13



equal the mean EV, but ceases to be so if one is interested in the mean CV, or prices of substitutes

also change.

In order to calculate the above expressions nonparametrically, a researcher needs to observe

demand up to the price where the choice probability becomes zero. Typically, in a dataset, one is

unlikely to observe such prices, since producers have no incentive to raise prices where revenue is

zero. But then one can obtain a lower bound for E (CV ) by integrating up to the highest price

observed in the dataset where demand from consumers is non-zero. This is in contrast to the case of

price changes for multiple alternatives, reported in equation (6) above, where welfare distributions

are nonparametrically identi�ed as long as the hypothetical price-changes are within the range of

the observed price data. Of course, for parametric choice probabilities, e.g. random coe¢ cient

logit, expressions like (16) are identi�ed directly from functional form assumptions.

Finally, note that the above expressions can also be used for retrospective calculation of welfare

distributions corresponding to introduction of a new alternative, simply by interchanging the labels

of EV and CV. For example, Hausman, 2003, calculates the welfare e¤ects of introducing a new

brand of breakfast cereals when one has consumption data on all cereal brands including the recently

introduced one. Hausman�s calculations used a representative consumer idea, ignoring preference

heterogeneity in the population. In contrast, allowing for unrestricted preference heterogeneity

would lead to expressions for CV and EV distributions given by (12) and (11), respectively.

3.2 Non-exclusive Discrete Choice

We now change the set-up described above to allow for non-exclusive choice. Accordingly, assume

that there are two binary choices which are non-exclusive among themselves. For example, suppose

choice 1 for a household is whether to subscribe to a sports package o¤ered by a cable TV network

which costs P1 and choice 2 is whether to subscribe to a movie package which costs P2. A household

then has four exclusive options �f1g ; f2g ; f1; 2g ; f0g (where f0g denotes choosing none of the two

packages) with respective utilities U1 (Y � P1; �), U2 (Y � P2; �), U12 (Y � P1 � P2; �) and U0 (Y; �),

respectively.

Single Price Change: Consider the CV corresponding to a rise in the price of the sports

package from p10 to p11 with the price of the movie package �xed at p2. The CV evaluated at

14



income Y = y is the solution to the equation

max

8<: U0 (y + CV; �) ; U1 (y + CV � p11; �) ;

U2 (y + CV � p2; �) ; U12 (y + CV � p11 � p2; �)

9=;
= max

8<: U0 (y; �) ; U1 (y � p10; �) ;

U2 (y � p2; �) ; U12 (y � p10 � p2; �)

9=; . (17)

The marginal distribution of CV corresponding to this single price change is point-identi�ed in

this case. The explanation of this result is as follows. Group option f1g and f1; 2g together (call it

group A) and options f0g and f2g together and call it group B. De�ne

"
def
= (p2; �)

VA (y � p1; ")
def
= max fU1 (y � p1; �) ; U12 (y � p1 � p2; �)g ,

VB (y; ")
def
= max fU0 (y; �) ; U2 (y � p2; �)g .

Correspondingly (17) becomes

max fVA (y + CV � p11; ") ; VB (y + CV; ")g = max fVA (y � p10; ") ; VB (y; ")g . (18)

If the U functions are strictly increasing in the �rst argument for each �, then so are VA (�; ") and

VB (�; ") for each ". Now we can apply theorem 1 of DB15 for binary choice to this problem and

get the marginal distribution of the compensating variation. For example, for 0 � a < p11 � p10,

theorem 1 of DB15 gives

Pr (CV � a)

= Pr [VB (y + a; ") � VA (y + a� (p10 + a) ; ")]

= Pr

26664
max fU0 (y + a; �) ; U2 (y + a� p2; �)g

� max

8<: U1 (y + a� (p10 + a) ; �) ;

U12 (y + a� (p10 + a)� p2; �)

9=;
37775

= q0 (p10 + a; p2; y + a) + q2 (p10 + a; p2; y + a) .

Thus

Pr (CV � a) =

8>>><>>>:
0 if a < 0,

q0 (p10 + a; p2; y + a) + q2 (p10 + a; p2; y + a) ; if 0 � a < p11 � p10,

1 if a � p11 � p10.

15



Multiple Price Changes: The key fact enabling us to write (17) as the binary choice CV

(18) is that P2 is being held �xed at p2; if P2 also varied across individuals, then the distribution of

" would vary beyond the variation of � and the binary formulation would no longer be applicable.

Indeed, for multiple price changes in the non-exclusive alternatives case, welfare distributions can

no longer be written in terms of choice probabilities. To see this, consider a simultaneous rise in

P1 and P2 from (p10; p20) to (p11; p21). Assume that 0 < p11 � p10 < p21 � p20.

Then the CV is de�ned via

max

8<: U0 (y + CV; �) ; U1 (y + CV � p11; �) ;

U2 (y + CV � p21; �) ; U12 (y + CV � p11 � p21; �)

9=;
= max fU0 (y; �) ; U1 (y � p10; �) ; U2 (y � p20; �) ; U12 (y � p10 � p20; �)g .

Now,

Pr [CV = p11 � p10]

= Pr

26664U1 (y � p10; �) � max
8>>><>>>:
U0 (y; �) ; U2 (y � p20; �) ; U12 (y � p10 � p20; �) ;

U0 (y + p11 � p10; �) ; U2 (y + p11 � p10 � p21; �) ;

U12 (y � p10 � p21; �)

9>>>=>>>;
37775

= Pr

24U1 (y � p10; �) � max
8<: U2 (y � p20; �) ; U12 (y � p10 � p20; �) ;

U0 (y + p11 � p10; �)

9=;
35 . (19)

This probability is not generically point-identi�ed from the choice-probabilities. To see this, con-

sider the following counter-example.

Counter-example: Consider a classic McFadden type utility speci�cation:Uj (a; �) = �ja +

�j , for j = 0; 1; 2; 12, and the �s distributed standardized extreme-valued. Then because the

regressors (y; y � p1; y � p2; y + p1 � p2) constitute a 3 dimensional subspace �the sum of the 1st

and the 4th regressors equals the sum of the 2nd and the 3rd implying exact multicollinearity �

the 4 coe¢ cients (�0; �1; �2; �12) are not separately identi�ed. A direct way to verify this is to

note that the Hessian of the likelihood function is proportional to the inner product xx0, where

x � (y; y � p10; y � p20; y � p10 � p20)0 (c.f. Bohning, 1992, page 198-9), and so its expectation is

globally singular. Therefore, by Rothenberg, 1971 theorem 1, the parameter vector � is not even

locally point-identi�ed.
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Now the expression for Pr [CV = p11 � p10] in this case equals

q1 (y + p11 � p10; y � p10; y � p20; y � p10 � p20)

=
exp (�1 (y � p10))0@ exp (�0 (y + p11 � p10)) + exp (�1 (y � p10))

+ exp (�2 (y � p20)) + exp (�12 (y � p10 � p20))

1A . (20)

Since x � (y + p11 � p10; y � p10; y � p20; y � p10 � p20) spans a 4 dimensional space (unless p11 6=

p10), we cannot have that for some � 6= �,

q1 (y + p11 � p10; y � p10; y � p20; y � p10 � p20;�)

= q1 (y + p11 � p10; y � p10; y � p20; y � p10 � p20; �)

for all p10; p11; p20; y. To see this explicitly, consider the following thought experiment. Suppose at

a speci�c value x of the regressors, q1 (x; �) = q1 (x; �). Now holding p10; p20; y �xed, if we increase

p11, then the denominator of q1 (�; �) will increase more (less) than that of q1 (�; �) if �0 > �0

(�0 < �0), so that q1 (�; �) = q1 (�; �) cannot continue to hold. Therefore we must have �0 = �0.

Next, if we increase y, p10 and p20 by the same amount such that y�p10, y�p20 remain �xed, only

the 4th term in the denominator of (20) will change, and by the same logic as above, maintaining

q1 (�; �) = q1 (�; �) would require �12 = �12. Changing y and p10 by the same amount holding

p11 and p20 �xed would deliver �2 = �2, and changing y while changing p20 by the same amount

and changing p11 the same amount in the opposite direction while holding p10 �xed would deliver

�1 = �1.

Thus although � 6= � will produce the same choice probabilities for all potentially observable

values of prices and income, the expression (19) is di¤erent with positive probability (w.r.t. the

joint distribution of the regressors) if � 6= �. This implies that the CV distribution cannot be

identi�ed from the choice probabilities unless p11 = p10, which is the single price change scenario.

Bounds for the CV distribution: One can nonetheless bound the probability (19) using

Assumption 1. In particular, let

A =

8<: p�1; p
�
2; y

� : y� � p�1 � y � p10, y� � p�2 � y � p20;

y� � p�1 � p�2 � y � p10 � p20, y� � y + p11 � p10

9=; ,
B =

8<: p�1; p
�
2; y

� : y� � p�1 � y � p10, y� � p�2 � y � p20;

y� � p�1 � p�2 � y � p10 � p20, y� � y + p11 � p10

9=; .
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Then an upper bound consistent with Assumption 1 is given by:

Pr

24U1 (y � p10; �) � max
8<: U2 (y � p20; �) ; U12 (y � p10 � p20; �) ;

U0 (y + p11 � p10; �)

9=;
35

� inf
(p�1; p�2; y�)2A

Pr

24U1 (y� � p�1; �) � max
8<: U2 (y

� � p�2; �) ; U12 (y� � p�1 � p�2; �) ;

U0 (y
�; �)

9=;
35

= inf
(p�1; p�2; y�)2A

q1 (y
�; y� � p�1; y� � p�2; y� � p�1 � p�2) . (21)

These bounds arise from the fact that if, e.g., y��p�1 � y�p10, then U1 (y� � p�1; �) � U1 (y � p10; �),

by assumption 1, so that the probability of U1 (y � p10; �) exceeding a speci�c number is smaller

than that of U1 (y� � p�1; �) exceeding that same number. Similarly, y� � p�2 � y � p20 implies

that U2 (y � p20; �) � U2 (y� � p�2; �) so that the probability of U2 (y � p20; �) being exceeded by a

number is smaller than that of U2 (y� � p�2; �) being exceeded by it, etc.

By a similar logic, a lower bound on (19) is given by

Pr

24U1 (y � p10; �) � max
8<: U2 (y � p20; �) ; U12 (y � p10 � p20; �) ;

U0 (y + p11 � p10; �)

9=;
35

� sup

(p�1; p�2; y�)2B
Pr

24U1 (y� � p�1; �) � max
8<: U2 (y

� � p�2; �) ; U12 (y� � p�1 � p�2; �) ;

U0 (y
�; �)

9=;
35

= sup

(p�1; p�2; y�)2B
q1 (y

�; y� � p�1; y� � p�2; y� � p�1 � p�2) .8 (22)

The conclusion from the above discussion is that in a discrete choice setting when alternatives are

non-exclusive, the distributions of individual welfare change for a single ceteris paribus price change

can be expressed directly as a choice probability, but for simultaneous change in several alternatives�

prices, they can only be bounded by functionals of choice probabilities. This is in contrast to the

multinomial case with exclusive alternatives where welfare distributions are identi�ed for both single

and multiple price changes. An intuition for the result is that in the non-exclusive case, there is

a systematic relationship between the prices of the di¤erent options, so that in a dataset we can

8A topic of future research is to verify how tight these bounds would be in real applications, and how much

they would shrink if we make additional behavioral assumptions, e.g. that one or both alternatives are normal

goods, or that alternatives 1 and 2 are substitutes (or complements) for all consumers, etc. An obvious way to

incorporate such assumptions would be to impose shape restrictions on the choice probabilities themselves, e.g.
@
@y
(q1 (p1; p2; y) + q12 (p1; p2; y)) � 0, or @

@p2
(q1 (p1; p2; y) + q12 (p1; p2; y)) � 0, respectively.
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never observe independent price variations across the various (composite) options, no matter how

many price combinations are observed across the individual alternatives.

Remark 4 Note that this distinction between the exclusive and non-exclusive options would not be

apparent if one started with a fully parametric model of choice; indeed, welfare distributions would

appear to be expressible in terms of choice probabilities in both cases for arbitrary price-changes.

This conclusion would, of course, arise solely from functional form assumptions.

4 Discussions on Implementation

The results reported in theorems 1 and 2, and the associated corollaries are fully nonparamet-

ric in that no functional form assumptions are required to derive them. When implementing

these results in practical applications, one can therefore estimate conditional choice probabilities

nonparametrically, e.g., using kernel or series regressions and use these estimates to calculate wel-

fare distributions. For instance, recall the 3-alternative case, leading to (8), where we have, say,

p11� p10 < 0 = p21� p20 < p31� p30. For any random variable X with CDF F (�) and �nite mean,

the expectation satis�es

E (X) = �
Z 0

�1
F (x) dx+

Z 1

0
(1� F (x)) dx;

thus the mean CV from (8) is given by

�
Z 0

p11�p10
q1 (p11 � a; p20; p30; y) da+

Z p31�p30

0
q3 (p11; p20; p30 + a; y + a) da, (23)

where qj (p1; p2; p3; y) denotes the choice probability of alternative j when the price of the three

alternatives are (p1; p2; p3) and income is y. If the dataset is of modest size, so that kernel regressions

are imprecise, then one can alternatively use a parametric approximation to the choice probabilities.

Numerical integration routines are now available in popular software packages like STATA and

MATLAB, and can be used to calculate the integrals of choice probabilities in the same way that

consumer surplus was traditionally calculated by earlier researchers.

4.1 Endogeneity

Income Endogeneity: In applications, observed income may be endogenous with respect to

individual choice. A natural example is when omitted variables, such as unrecorded education level,
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can both determine individual choice and be correlated with income. Under such endogeneity, the

observed choice probabilities would potentially di¤er from the structural choice probabilities, and

one can de�ne welfare distributions either unconditionally, or conditionally on income, analogous

to the average treatment e¤ect and the average e¤ect of treatment on the treated, respectively, in

the program evaluation literature. In this context, an important and useful insight, not previously

noted, is that for a price-rise, the distribution of the income-conditioned EV is not a¤ected by

income endogeneity, whereas that of the CV is (for a fall in price, the conclusion is reversed for CV

and EV respectively).

To see why that is the case, recall the three alternative case discussed above, and de�ne the

conditional-on-income structural choice probabilities as

qcj
�
p1; p2; p3; y

0; y
�
=

Z
1

�
Uj
�
y0 � pj ; �

�
� max

k 6=j
Uk
�
y0 � pk; �

��
dF (�jy) ,

where F (�jy) denotes the distribution of the unobserved heterogeneity � for individuals whose

current income is y. Now, for a real number a, satisfying p11 � p10 � a < p21 � p20, it is easy to

see that similar to equation (8), the distributions of EV at a, evaluated at income y, conditional

on current income being y, are given by

Pr (EV � ajInc = y) = qc1 (p11; p20 + a; p30 + a; y; y) ,

while for CV it is given by

Pr (CV � ajInc = y) = qc1 (p11; p20 + a; p30 + a; y + a; y) .

Now, qc1 (p11; p20 + a; p30 + a; y; y), by de�nition, is the fraction of individuals currently at income y

who would choose alternative 1 at prices (p11; p20 + a; p30 + a), had their income been y. But this is

directly observable in the data since the realized and hypothetical incomes are the same, and there-

fore, no corrections are required owing to endogeneity. However, qc1 (p11; p20 + a; p30 + a; y + a; y)

is the fraction of individuals currently at income y who would choose alternative 1 at prices

(p11; p20 + a; p30 + a), had their income been y + a. This fraction is counterfactual and not di-

rectly estimable because the distribution of � is likely to be di¤erent across people with income

y+a relative to those with income y, due to endogeneity. To summarize, if the objective of welfare

analysis is to calculate the EV distribution resulting from price rise for individuals whose realized

income equals the hypothetical income, then endogeneity of income is irrelevant to the analysis.

This implies that if exogeneity of income is suspect and no obvious instrument or control func-
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tion is available, then a researcher can still perform meaningful welfare analysis based on the EV

distribution at current income.

Price Endogeneity: When individual choice data are available, endogeneity of price is typi-

cally of lesser concern, because an individual�s choice or her omitted characteristics are less likely

to a¤ect the market price she faces. However, if there are unobserved choice attributes, then price

endogeneity may be an important empirical concern. Blundell and Matzkin (2015) and Berry

and Haile (2015) have made important recent advances for handling price endogeneity in demand

analysis with general heterogeneity; also the methods of Blundell and Powell using control func-

tions can be used to identify structural choice probabilities. An alternative to the above is to obtain

bounds for the average structural function using an instrument for price (c.f. Horowitz and Manski,

Chesher), and then obtain bounds for the corresponding welfare distributions by integrating the

choice probability bounds.

5 Summary and Conclusion

In this paper, we have shown how to conduct empirical welfare analysis in multinomial choice

settings, allowing for completely general consumer heterogeneity and income-e¤ects. The paper

considers three scenarios �(a) simultaneous change in prices of multiple alternatives, (b) the in-

troduction or elimination of an alternative, possibly accompanied by price-changes of other alter-

natives; and (c) situations where choice-alternatives are non-exclusive. The key results are that (i)

Hicksian welfare changes are well-de�ned under a mild monotonicity assumption on utilities in all

these cases, (ii) in cases (a) and (b) the marginal distributions of CV and EV can be expressed

as simple closed form functions of choice probabilities without requiring any assumption on the

functional forms of utilities, preference heterogeneity or income e¤ects, and (iii) this last conclusion

fails when alternatives are non-exclusive, but welfare distributions can still be bounded in that case.

Our welfare measures are expressible as closed-form functionals of structural choice probabilities.

As such, our approach strictly dominates state-of-the-art random-coe¢ cient based demand and

welfare analysis which require a researcher to either make arbitrary assumptions on the distribu-

tion of random coe¢ cients (e.g. that they are normally distributed), or to require full support for

regressors for identi�cation and to solve di¢ cult ill-posed inverse problems in estimation.

At a practical level, our methods can be used in program evaluation studies to calculate "com-

pensated" program e¤ects, i.e., the program�s value to the subjects themselves, measured in terms
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of its cash equivalent, and the associated deadweight loss, without requiring restrictive assumptions

on the nature of preference heterogeneity and income e¤ects in the population. These money-metric

welfare measures can also be compared across interventions with di¤erent outcomes. For example,

a tuition subsidy for school attendance, and an adoption-subsidy for take-up of a health-product

cannot be directly compared in terms of their average outcomes; but their cash equivalents (and

the associated deadweight loss) can be directly compared, since both are expressed in monetary

units.
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Appendix

Path-dependence of Line Integral De�ning Marshallian Consumer Surplus for Dis-

crete Choice

Consider a setting with three mutually exclusive alternatives with initial prices p0 � (p10; p20; p30)

and �nal prices p1 � (p11; p22; p33). Let y denote income and qj (p; y) denote the choice probability

of alternative j when the price vector is p and income is y. Then the change in average consumer

surplus arising from the price change from p0 to p1 can be de�ned via the line integral

CS (L) = �
Z
L
q1 (p; y) dp1 + q2 (p; y) dp2 + q3 (p; y) dp3,

where L denotes a path L (t) from t = 0 to t = 1 such that L (0) � p0 � (p10; p20; p30) and

L (1) � p1 � (p11; p22; p33). Consider two di¤erent such paths

L1 (t) = (p10 + t (p11 � p10) ; p20 + t (p21 � p20) ; p30 + t (p31 � p30))

L2 (t) =
�
p10 + t

2 (p11 � p10) ; p20 + t (p21 � p20) ; p30 + t (p31 � p30)
�
.

Then

CS (L1) = �
Z 1

0

26664
(p11 � p10)� q1 (p0 + t (p1 � p0) ; y)

+ (p21 � p20)� q2 (p0 + t (p1 � p0) ; y)

+ (p31 � p30)� q3 (p0 + t (p1 � p0) ; y)

37775 dt:
But

CS (L2)

= �
Z 1

0

26664
2t (p11 � p10)� q1

�
p0 + t (p1 � p0) +

�
t2 � t

�
(p11 � p10) ; y

�
+(p21 � p20)� q2

�
p0 + t (p1 � p0) +

�
t2 � t

�
(p11 � p10) ; y

�
+(p31 � p30)� q3

�
p0 + t (p1 � p0) +

�
t2 � t

�
(p11 � p10) ; y

�
37775 dt;

which would in general di¤er from CS (L1). Thus the CS is not well-de�ned for simultaneous

change in multiple prices. Note that if only p1 changes, then

CS (L1) = � (p11 � p10)�
1Z
0

[q1 (p10 + t (p11 � p10) ; y)] dt;

CS (L2) = �2
1Z
0

�
(p11 � p10)� q1

�
p10 + t

2 (p11 � p10) ; y
��
tdt

= � (p11 � p10)�
1Z
0

q1 (p10 + r (p11 � p10) ; y) dr, substituting t2 = r

= CS (L1) ,
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and we get back path independence. Thus the loss of path-independence arises only for multiple

simultaneous price-changes.

Proof of Proposition 1

Proof. Let p0 = (p10; p20; :::; pJ0) denote the initial price vector and p1 = (p11; p21; :::; pJ1) denote

the �nal price-vector. Suppose that two numbers S and T with S 6= T solve the equation for the

EV. Then, by de�nition,

max fU1 (y � p11; �) ; :::; UJ (y � pJ1; �)g

= max fU1 (y � p10 � S; �) ; :::; UJ (y � pJ0 � S; �)g , (24)

and

max fU1 (y � p11; �) ; :::; UJ (y � pJ1; �)g

= max fU1 (y � p10 � T; �) ; :::; UJ (y � pJ0 � T; �)g , (25)

so that

max fU1 (y � p10 � T; �) ; :::; UJ (y � pJ0 � T; �)g

= max fU1 (y � p10 � S; �) ; :::; UJ (y � pJ0 � S; �)g . (26)

Since each Uj (�), j = 1; :::J , is strictly increasing by assumption 2 if S > T , each term within fg on

the RHS of (26) will be strictly smaller than the corresponding term on the RHS. Therefore, each

term within fg on the RHS will be strictly smaller than the maximum value in the LHS. Since there

are �nitely many terms on the RHS, the maximum will also be strictly smaller than the maximum

on the LHS, a contradiction. Similarly, if S < T , then the RHS of (26) will be strictly larger than

the LHS. Therefore in order for (26) to hold, we must have S = T .

An exactly analogous argument works for the CV where the analogous equalities are

max fU1 (y � p11 + S; �) ; :::; UJ (y � pJ1 + S; �)g

= max fU1 (y � p10; �) ; :::; UJ (y � pJ0; �)g

= max fU1 (y � p11 + T; �) ; :::; UJ (y � pJ1 + T; �)g .

Again, by assumption 1, this implies S = T .

Proof of Theorem 1. First, consider EV.

27



Note that the EV is de�ned by

max fU1 (y � p11; �) ; U2 (y � p21; �) ; :::; UJ (y � pJ1; �)g

= max fU1 (y � S � p10; �) ; U2 (y � p20 � S; �) ; :::; UJ (y � pJ0 � S; �)g . (27)

The �rst step is to establish that

EV � a,

8<: max fU1 (y � p11; �) ; U2 (y � p21; �) ; :::; UJ (y � pJ1; �)g

� max fU1 (y � a� p10; �) ; U2 (y � p20 � a; �) ; :::; UJ (y � pJ0 � a; �)g

9=; . (28)

Indeed, it is obvious from (27) that EV � a will imply the RHS inequality inside the f�g in

(28). To see the converse, assume that

max fU1 (y � p11; �) ; U2 (y � p21; �) ; :::; UJ (y � pJ1; �)g

� max fU1 (y � a� p10; �) ; U2 (y � p20 � a; �) ; :::; UJ (y � pJ0 � a; �)g . (29)

Now (29) and equation (27) imply that

max fU1 (y � S � p10; �) ; U2 (y � p20 � S; �) ; :::; UJ (y � pJ0 � S; �)g

� max fU1 (y � a� p10; �) ; U2 (y � p20 � a; �) ; :::; UJ (y � pJ0 � a; �)g ,

i.e., for all j = 1; :::; J , we have that

max fU1 (y � S � p10; �) ; :::; UJ (y � pJ0 � S; �)g � Uj (y � pj0 � a; �) .

If the maximum on the LHS of the previous display is the kth term, i.e., Uk (y � S � pk0; �), then

choosing j = k on the RHS, we have that

Uk (y � S � pk0; �) � Uk (y � pk0 � a; �) ,

whence, applying assumption 1, it follows that S � a. This establishes (28).

Now we work from (28) to derive the CDF of the EV. To do this, �rst note that if pl1�pl0 � a <

pl+1;1�pl+1;0, l = 1; :::; J�1, then the inequality (29) can hold if and only if the LHS max is one of

U1 (y � p11; �) ; U2 (y � p21; �) ; :::; Ul (y � pl1; �) but not Ul+1 (y � pl+1;1; �) ; :::; UJ (y � pJ1; �). To

see this, suppose to the contrary that the max on the LHS of (29) is obtained for some k satisfying

J � k > l. Then (29) implies

Uk (y � pk1; �) � max
j=1;:::J

fUj (y � a� pj0; �)g � Uk (y � a� pk0; �) .
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Given assumption 1, i.e., monotonicity of Uk (�; �), it follows that pk1 � a+ pk0, i.e., a � pk1 � pk0,

a contradiction since k > l.

Therefore, if a satis�es pl1 � pl0 � a < pl+1;1 � pl+1;0, then

Pr (EV � a)

= Pr

26666664
U1 (y � p11; �)

� max

8>>><>>>:
U2 (y � p21; �) ; :::; Ul (y � pl1; �) ; :::; UJ (y � pJ1; �) ;

U1 (y � a� p10; �) ; U2 (y � p20 � a; �) ; :::;

Ul (y � a� pl0; �) ; :::; UJ (y � pJ0 � a; �)

9>>>=>>>;

37777775

+Pr

26666664
U2 (y � p21; �)

� max

8>>><>>>:
U1 (y � p11; �) ; :::; Ul (y � pl1; �) ; :::; UJ (y � pJ1; �)

U1 (y � a� p10; �) ; U2 (y � p20 � a; �) ; :::;

Ul (y � a� pl0; �) ; :::; UJ (y � pJ0 � a; �)

9>>>=>>>;

37777775
+:::

+Pr

26666666664

Ul (y � pl1; �)

� max

8>>>>>><>>>>>>:

U1 (y � p11; �) ; U2 (y � p21; �) ; :::; Ul�1 (y � pl�1;1; �) ;

Ul+1 (y � pl+1;1; �) ; :::; UJ (y � pJ1; �)

U1 (y � a� p10; �) ; U2 (y � p20 � a; �) ; :::;

Ul (y � a� pl0; �) ; :::; UJ (y � pJ0 � a; �)

9>>>>>>=>>>>>>;

37777777775

(1)
= Pr

26664
U1 (y � p11; �)

� max

8<: U2 (y � p21; �) ; :::; Ul (y � pl1; �) ;

Ul+1 (y � a� pl+1;0) ; :::; UJ (y � pJ0 � a; �)

9=;
37775

+Pr

26664
U2 (y � p21; �)

� max

8<: U1 (y � p11; �) ; :::; Ul (y � pl1; �) ;

Ul+1 (y � a� pl+1;0) ; :::; UJ (y � pJ0 � a; �)

9=;
37775

+:::

+Pr

26664
Ul (y � pl1; �)

� max

8<: U1 (y � p11; �) ; :::; Ul�1 (y � pl�1;1; �) ;

Ul+1 (y � a� pl+1;0; �) ; :::; UJ (y � pJ0 � a; �)

9=;
37775

where the equality marked (1) uses the fact that y � pj1 � y � a � pj;0, for all j = 1; :::; l, since
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pl1 � pl0 � a. The above probability equals

q1 (p11; p21; :::; pl1; pl+1;0 + a; :::; pJ0 + a; y)

+q2 (p11; p21; :::; pl1; pl+1;0 + a; :::; pJ0 + a; y)

:::+ ql (p11; p21; :::; pl1; pl+1;0 + a; :::; pJ0 + a; y) ,

if a � 0, and equals

= q1 (p11 � a; p21 � a; :::; pl1 � a; pl+1;0; :::; pJ0; y � a)

+q2 (p11 � a; p21 � a; :::; pl1 � a; pl+1;0; :::; pJ0; y � a)

:::+ ql (p11 � a; p21 � a; :::; pl1 � a; pl+1;0; :::; pJ0; y � a) ,

if a < 0. This is precisely expression (6).

Next consider CV, de�ned as the solution S to the equation

max fU1 (y + S � p11; �) ; U2 (y + S � p21; �) ; :::; UJ (y + S � pJ1; �)g

= max fU1 (y � p10; �) ; U2 (y � p20; �) ; :::; UJ (y � pJ0; �)g . (30)

The �rst step is to see that CV � a is equivalent to

max fU1 (y � p10; �) ; U2 (y � p20; �) ; :::; UJ (y � pJ0; �)g

� max fU1 (y + a� p11; �) ; U2 (y + a� p21; �) ; :::; UJ (y + a� pJ1; �)g . (31)

The necessity is obvious by assumption 1. Su¢ ciency follows because (30) and (31) imply that

max fU1 (y + S � p11; �) ; U2 (y + S � p21; �) ; :::; UJ (y + S � pJ1; �)g

� max fU1 (y + a� p11; �) ; U2 (y + a� p21; �) ; :::; UJ (y + a� pJ1; �)g . (32)

Then there must be at least one j such that the RHS max is Uj (y + a� pj1; �), which, by (32)

must be larger than Uj (y + S � pj1; �), implying by assumption 1 that S � a.

Next, suppose a satis�es pj1 � pj0 � a < pj+1;1 � pj+1;0. Then y + a� pj+1;1 < y � pj+1;0, and

therefore, by assumption 1, Uj+1(y+ a� pj+1;1; �) < Uj+1 (y � pj+1;0; �). Therefore, the RHS max

30



in (31) must be one of U1 (y + a� p11; �) ; :::; Uj (y + a� pj1; �). Accordingly, we have that

Pr (CV � a)

=

jX
k=1

Pr

26666666666664

Uk (y + a� pk1; �)

� max

8>>>>>>>>><>>>>>>>>>:

U1 (y � p10; �) ; :::; Uk�1 (y � pk�1;0; �) ; Uk (y � pk0; �) ;

Uk+1 (y � pk+1;0; �) :::; UJ (y � pJ0; �)

U1 (y + a� p11; �) ; :::; Uj�1 (y + a� pj�1;1; �) ;

Uj (y + a� pj1; �) ; Uj+1 (y + a� pj+1;1; �) ;

:::UJ (y + a� pJ1; �)

9>>>>>>>>>=>>>>>>>>>;

37777777777775

=

jX
k=1

Pr

26666666666664

Uk (y + a� pk1; �)

� max

8>>>>>>>>><>>>>>>>>>:

U1 (y � p10; �) ; :::; Uk�1 (y � pk�1;0; �) ;

Uk+1 (y � pk+1;0; �) :::; UJ (y � pJ0; �)

U1 (y + a� p11; �) ; :::; Uj�1 (y + a� pj�1;1; �) ;

Uj (y + a� pj1; �) ; Uj+1 (y + a� pj+1;1; �)

:::UJ (y + a� pJ1; �)

9>>>>>>>>>=>>>>>>>>>;

37777777777775

=

jX
k=1

Pr

26664
Uk (y + a� pk1; �)

� max

8<: U1 (y + a� p11; �) ; :::; Uj (y + a� pj1; �) ;

Uj+1 (y � pj+1;0; �) ; :::UJ (y � pJ0; �)

9=;
37775 .

The second equality follows from the fact that k � j and pj1 � pj0 � a, and so we have by

assumption 1 that Uk (y + a� pk1; �) � Uk (y � pk0; �). The third equality follows from pj1� pj0 �

a < pj+1;1 � pj+1;0, so by assumption 1, Uk (y � pk;0; �) � Uk (y + a� pk1; �) for all k � j and

Uk (y � pk;0; �) > Uk (y + a� pk1; �) for all k > j. Finally,

jX
k=1

Pr

26664
Uk (y + a� pk1; �)

� max

8<: U1 (y + a� p11; �) ; :::; Uj (y + a� pj1; �) ;

Uj+1 (y � pj+1;0; �) ; :::UJ (y � pJ0; �)

9=;
37775

�

8<:
Pj
k=1 qk (p11; :::; pj1; pj+1;0 + a; :::; pJ0 + a; y + a) if a � 0,Pj
k=1 qk (p11 � a; :::; pj1 � a; pj+1;0; :::; pJ0; y) if a < 0.

Proof of theorem 2:
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Proof. The CV solves

max fU1 (y � p11; �) ; :::; UJ (y � pJ1; �) ; UJ+1 (y � pJ+1; �)g

= max fU1 (y + S � p10; �) ; :::; UJ (y + S � pJ0; �)g .

Now, by the same logic as the one leading to equation (28) in the previous proof,

Pr [S � a]

= Pr

24 max fU1 (y � p11; �) ; :::; UJ (y � pJ1; �) ; UJ+1 (y � pJ+1; �)g
� max fU1 (y + a� p10; �) ; :::; UJ (y + a� pJ0; �)g

35 . (33)

Recall the assumption that (WLOG)

pJ0 � pJ1 � pJ�1;0 � pJ�1;1 � ::: � p10 � p11.

Therefore, if a < p10 � p11, then for each j = 1; :::; J , the Uj (y � pj1; �) on the LHS of (33) will be

strictly larger than the corresponding Uj (y + a� pj0; �), contradicting that the RHS max exceeds

the LHS max. Thus there can be no probability mass below p10� p11. If for some j 2 f1; :::J � 1g,

pj0� pj1 � a < pj+1;0� pj+1;1, then each of the �rst j terms on the RHS of (33) is at least as large

as the corresponding term on the LHS, while the (j + 1)th term onwards on the RHS are smaller

than the corresponding terms on the RHS. This means that one of these �rst j terms on the RHS

must be the maximum and it must also exceed the j + 1th term onwards on the RHS. Thus, for

pj0 � pj1 � a < pj+1;0 � pj+1;1, the probability that S � a equals

jX
k=1

Pr

26664Uk (y + a� pk0; �) � max
8>>><>>>:
maxk02f1;:::;jgnk fUk0 (y + a� pk00; �)g ;

maxl�j+1 fUl (y � pl1; �)g ;

UJ+1 (y � pJ+1; �)

9>>>=>>>;
37775

=

8<:
Pj
k=1 qk (p10; :::; pj0; pj+1;1 + a; :::; pJ1 + a; pJ+1 + a; y + a) if a � 0,Pj

k=1 qk (p10 � a; :::; pj0 � a; pj+1;1; :::; pJ1; pJ+1; y) if a < 0.
.
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When a � pJ0 � pJ1, then (33) reduces to

Pr

24 max fU1 (y � p11; �) ; :::; UJ (y � pJ1; �) ; UJ+1 (y � pJ+1; �)g
� max fU1 (y + a� p10; �) ; :::; UJ (y + a� pJ0; �)g

35
= Pr

24 max fUJ (y � pJ1; �) ; UJ+1 (y � pJ+1; �)g

� max fU1 (y + a� p10; �) ; :::; UJ (y + a� pJ0; �)g

35
= 1� Pr

24 max fUJ (y � pJ1; �) ; UJ+1 (y � pJ+1; �)g

> max fU1 (y + a� p10; �) ; :::; UJ (y + a� pJ0; �)g

35
(1)
= 1� Pr

24 UJ+1 (y � pJ+1; �)

> max fU1 (y + a� p10; �) ; :::; UJ (y + a� pJ0; �)g

35

=

8>>><>>>:
1� qJ+1 (p10; :::; pJ0; pJ+1 + a; y + a) if pJ0 � pJ1 � a; a � 0,

1� qJ+1 (p10 � a; :::; pJ0 � a; pJ+1; y) if pJ0 � pJ1 � a; a < 0,

1, otherwise

.

Equality
(1)
= follows from the fact that if a � pJ0 � pJ1, then UJ (y � pJ1; �) must be no more than

UJ (y + a� pJ0; �).

The proof of EV is very similar and is omitted for the sake of brevity.
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