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Abstract

In this paper, I examine a situation where economic agents facing a trade-off be-

tween exploring a new option and exploiting their existing knowledge about a safe

option differ with respect to their innate abilities in exploring the new option. I con-

sider a two-armed bandit framework in continuous time with one safe arm and a risky

arm. There are two players and each has access to a replica of a safe arm and a risky

arm. A player using the safe arm experiences a safe flow payoff whereas the payoff

from a bad risky arm is worse than the safe arm and that of the good risky arm is bet-

ter than the safe arm. Players start with a common prior about the probability of the

risky arm being good. I show that if the degree of heterogeneity between the players is

high enough, then there exists a unique Markov perfect equilibrium in simple cut-off

strategies. For moderate levels of heterogeneity, equilibrium in both cut-off and non

cut-off strategies exist. However, welfare wise, the cut-off equilibrium is the best. For

low levels of heterogeneity, no equilibrium in cut-off strategies exists. However, at the

higher end of the low range of heterogeneity, the intensity of experimentation is high-

est in the most heterogeneous equilibrium. As the level of heterogeneity increases, this
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most heterogeneous equilibrium coincides with the cut-off equilibrium and eventually

is the only surviving equilibrium.

JEL Classification Numbers:C73, D83, O31.
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1 Introduction

Economic agents are often faced with situations where they have to decide whether to
exercise a new risky option or to carry on with an option of which they have complete
knowledge. This leads to trade-offs between exploration and exploitation. In this paper,
I address how economic agents behave in situations when they differ with respect to their
abilities in exploring the new option and success in exploring the new risky option affect
other agents positively. This is particularly relevant in case of teamworks where economic
agents work jointly in exploring a new risky option but cannot contract upon the action of
each constituent agent1.

In the economics literature, the two-armed bandit models have been extensively used
to formally address the issue of trade-offs between exploration and exploitation in dynamic
decision making problems with learning. In standard continuous time exponential bandit
model, an agent has to decide how long to experiment along an arm to get rewarded before
switching over to another arm. As the agent experiments along a particular arm without
getting rewarded, the likelihood he attributes to ever getting rewarded along that arm is
revised downwards. Informational externalities arise in these models from the fact that an
agent’s learning about the state of the reward process along an arm is not only influenced
by his own experimentation experiences but also by the behaviour of other agents. In the
current work, I adopt this framework of exponential bandit model with two arms to anal-
yse how heterogeneous players behave when they face trade-offs between exploration and
exploitation and there are informational externalities. The players are heterogeneous in the
sense that along a particular arm, they differ with respect to their innate abilities. Hence,
given that a reward occurs along this arm, the expected time required to get that reward
differs among players. I characterise the set of Markov perfect equilibria for all ranges of
heterogeneity between the players. If the degree of heterogeneity between the players is
sufficiently high, then there is a unique Markov perfect equilibrium which happens to be in

1Examples are discussed later in the introduction
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simple cut-off strategies. For moderate degree of heterogeneity, there exist Markov perfect
equilibria in both cut-off and non cut-off strategies. However, the intensity of experimen-
tation in the equilibrium in cut-off strategies is always higher than that in any equilibrium
in non cut-off strategies. When the degree of heterogeneity is low, then all equilibria are
in non cut-off strategies. In this case, we can identify the most heterogeneous equilibrium.
This is the equilibrium where the stronger player chooses the risky arm and the weaker
player chooses the safe arm for largest possible range of beliefs. In this equilibrium, the
weaker player uses a cut-off strategy and the stronger player uses a non cut-off strategy.
As the degree of heterogeneity increases, this equilibrium eventually coincides with the
equilibrium in cut-off strategies. For other equilibria, players switch arms at a lower belief.
However, as in the game with homogeneous players, it is not unambiguously true that the
most heterogeneous equilibrium has the lowest intensity of experimentation compared to
any equilibrium where players switch arms at a lower belief2. In this case, we can iden-
tify two sub-levels of heterogeneity. Above the higher sub-level, the most heterogeneous
equilibrium is better than any other equilibrium. Below the lower sub-level, we have the
most heterogeneous equilibrium to be the worst compared to any other equilibrium. Hence,
as players tend to become homogeneous, we get back the already established result in the
literature. For degree of heterogeneity between these two sub-levels, the ranking between
the most heterogeneous equilibrium and other equilibria is ambiguous.

The analysis starts with introducing heterogeneity in the now canonical form of the
Two-armed Bandit Model (a.la [4]). Each player faces a common two armed exponential
bandit in continuous time. One of the arms is safe and a player accessing it gets a flow
payoff of s > 0. The other arm is either good or bad. A player who accesses the good risky
arm gets an arrival according to a Poisson process with known intensity. Each arrival gives
a lumpsum payoff, which is drawn from a time-invariant distribution with mean h > 0.
Players differ with respect to their innate abilities. This means, the Poisson intensity with
which a player experiences an arrival along a good risky arm differs across players. Player
1’s intensity is λ1 and that of player 2 is λ2 with λ1 > λ2. Hence, player 1’s flow payoff
along a good risky arm is g1 = λ1h and that of player 2 is g2 = λ2h such that g1 > g2 > s.
At a time point, a player can choose only one of the arms.

We first examine the social planner’s problem, which aims to maximise the sum of the
expected surplus of the players. The planner, in continuous time, decides on allocating
players to one of the arms. The social optimum involves specialisation at the extremes and

2As in [4]
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diversification for interim range of beliefs. This means that if it is too likely that the risky
arm is good (in this setting this implies belief being close to 1), then both the players are
made to access the risky arm. For interim beliefs, the weaker player (player 2 ) is allocated
to the safe arm and the stronger player (player 1 ) is allocated to the risky arm. Lastly, if it
is very likely that the risky arm is bad(implying belief being close to 0) then both players
are made to access the safe arm.

For the analysis of the noncooperative solutions, we restrict ourselves to Markovian
strategies with the common posterior belief as the state variable. The first main result
shows that there cannot be an efficient equilibrium. Then, I characterise the set of Markov
perfect equilibria for all possible kinds of heterogeneity between the players. A common
feature of any equilibrium is that both the beliefs where all experimentation ceases and
below which only one of the players experiment are higher than the corresponding beliefs
in the planner’s solution. This is due to free riding by the weaker player and also due to the
fact that player 1 does not internalise player 2’s benefit from his own experimentation.

With respect to the nature of the equilibrium, we can characterise three regions of het-
erogeneity. For the highest region, there exists a unique equilibrium and this equilibrium
is in cut-off strategies. For the middle range, equilibria in both cut-off and non cut-off
strategies exist but compared to any equilibrium in non cut-off strategies, the intensity of
experimentation is higher in the equilibrium in cut-off strategies. For the lowest range,
all equilibria are in non cut-off strategies. There exists a most heterogeneous equilibrium
where player 2 uses a cut-off strategy and player 1 uses a non-cutoff strategy. Within this
lowest range, given λ1, two sub-thresholds of the value of λ2 can be identified. For λ2 less
than the lower sub-threshold, the most heterogeneous equilibrium has the highest intensity
of experimentation compared to any other equilibrium. For λ2 greater than the higher sub-
threshold, the most heterogeneous equilibrium has the lowest intensity of experimentation.
In between these two sub-thresholds, the ranking between the most heterogeneous equilib-
rium and other equilibria is ambiguous. Hence, most of the time we can characterise and
identify the best equilibrium.

In reality, there are many issues which fit with the problem discussed in this paper. For
example, consider a situation in the academic world when two heterogeneous researchers
collaborate on a risky project. Thus, any breakthrough in the project will benefit both the
researchers as the publication resulting out of it will have names of both. Each of these
researchers can have his own area of expertise in the sense that if time is devoted towards
it, then there will be a steady flow of outputs. However, if the project they collaborate on
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has a breakthrough, then the resulting publication will be more prestigious than the outputs
from the areas of expertise. This situation can be visualised as a strategic experimentation
problem in two armed bandits. The area of expertise of each researcher can be interpreted
as a safe arm, and the more challenging problem can be interpreted as the risky arm. Each
of the researchers has to make a choice of whether to conduct research along his safe arm or
the risky arm. Here each researcher can free ride on the other. If one of them is conducting
research on the challenging problem, then a success will also give a payoff to the other
researcher. Similar situation can arise in case of political coalitions. In parliamentary
democracies, during elections, often political parties enter into a negotiation of seat sharing
in a particular area where none of them have that much of a stronghold. The constituent
parties may have their own stronghold areas. Hence, each constituent political party has
to allocate its time of campaigning between its stronghold area and the area where they
have formed a coalition with other parties. Campaigning in the stronghold area can be
interpreted as choosing the safe arm and the later can be interpreted as choosing the risky

arm. Observe that in the area where parties have formed a coalition, campaigning activities
by any party gives a positive benefit to all the constituent parties. Thus, there is room for
free-riding.

Related Literature: This paper contributes to the strategic bandit literature. Some of
the works which have studied the bandit problem in the context of economics, are Bolton
and Harris ([2]) Keller,Rady and Cripps([4]), Keller and Rady([5]), Klein and Rady ( [7])
and Thomas([9]). In all of these papers players are homogeneous. Except ([9]) and ([7]),
they have a replica of bandits and Free-riding is a common feature in all the above models
except ([9]). The paper which is closest to the current work is Keller, Rady and Cripps([5]).
They find that an equilibrium in cut-off strategies never exists. The present work contributes
in two ways. First, I show that with hetreogeneous players, it is not only possible to have
an equilibrium in cut-off strategies, but also under certain circumstances, it can become the
only surviving equilibrium. Also, except for very low level of heterogeneity, the best equi-
librium is the one which is most heterogeneous3, unlike in the model with homogeneous
players.

Thomas([9]) analyses a set-up where each player has access to an exclusive risky arm,
and both of them have access to a common safe arm. At a time the safe arm can be accessed

3As stated in the introduction and will be seen later, the most heterogeneous equilibrium coincides with
the equilibrium in cut-off strategies when the later exists.
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by one player only. Hence, there is congestion along an arm. The Poisson arrival rates differ
across the exclusive arm. The present paper differs from Thomas([9]) in three ways. First,
the type of risky arm in the present paper is the same for both players unlike Thomas([9])
where types were stochastically independent. Second, conditional on the risky arm being
good, the arrival rates in the present paper differ between players. Finally, there is no
congestion along any arm.

Klein([6])) studies a model where each player has an access to a bandit with two risky
arms and one safe arm. He shows that there exists an efficient equilibrium if the stakes
are high enough. In the present paper, I show that even in a bandit model with a safe arm
and a risky arm, heterogeneity between the players can give rise to unique Markov perfect
equilibrium and also for all kinds of stakes, in most cases we can identify and characterise
the best equilibrium.

The rest of the paper is organised as follows. Section 2 lays down the details of the
setting with heterogeneous players and characterise the equilibria for different ranges of
heterogeneity. Section 3 briefly describes a model where heterogeneity is only with respect
to the payoffs in the safe arm. Finally, section 4 concludes the paper.

2 Two armed bandit model with heterogeneous players

The Model:

There are two players (1 and 2) and each of them faces a continuous time two-armed
bandit. One of the arms is safe and a player who uses it gets a flow payoff of s > 0. The
risky arm can either be good or bad. If the risky arm is good, then a player accessing it
experiences arrivals according to a Poisson process with a known intensity. Each arrival
gives lumpsum payoffs to the player who experiences it. These lump sums are drawn from
a time invariant distribution with mean h > 0. Player 1 experiences these arrivals according
to a Poisson process with intensity λ1 > 0 and player 2 experiences these according to a
Poisson process with intensity λ2 > 0 such that λ1 > λ2. Hence, along a good risky arm,
player 1 experiences a flow payoff of g1 = λ1h and player 2 experiences a flow payoff of
g2 = λ2h. We have g1 > g2 > s. The uncertainty in this model arises from the fact that
it is not known whether the risky arm is good or bad. Players start with a common prior
p0, which is the probability with which the risky arm is good. A player in continuous time
has to decide whether to choose the safe arm or the risky arm. At a time point, a player
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can choose only one arm. Players’ actions and outcomes are publicly observable and based
on these, they update their beliefs. Players discount the future according to a common
continuous time discount rate r > 0.

To describe this formally, let pt be the common belief at time t ≥ 0. The belief evolves
according to the history of experimentation and payoffs. Since players start with a common
prior and the actions and outcomes of players are publicly observable, we will always
have a common belief at all times t > 0. Player i (i ∈ {1,2}) chooses a stochastic process
{ki(t)}(t≥0). This stochastic process is measurable with respect to the information available
up to time t with ki(t) ∈ {0,1} for all t. ki(t) = 1(0) implies that the player has chosen the
risky arm (safe arm). Each player’s objective is to maximise his total expected discounted
payoff, which is given by

E{
∫ ∞

t=0
re−rt [(1− ki(t))s+(ki(t)pt)gi]dt}

The expectation is taken with respect to the processes {ki(t)}t∈R+ and {pt}t∈R+ . From
the objective function it can be seen that there does not exist any payoff externalities be-
tween the players. The effect of the presence of the other player is only via the effect on
the belief through the informations generated by his experimentation.

Evolution of beliefs:

In the present model, only a good risky arm can yield a positive payoff in form of lump
sums. This implies that the breakthroughs are completely revealing. Hence, if any player
experiences a lump sum in a risky arm at time t = τ ≥ 0, then pt = 1 for all t > τ . On
the other hand, suppose at the time point t = τ , pt ∈ (0,1) and no player achieves any
breakthrough till the time point τ +∆ where ∆ > 0. Using Bayes’ Rule, the posterior at the
time point t = τ +∆ is

pτ+∆ =
pτe−

∫ τ+∆
τ [λ1k1(t)+λ2k2(t)]dt

pτe−
∫ τ+∆

τ [λ1k1(t)+λ2k2(t)]dt +(1− pτ)

Since beliefs evolve in continuous time, conditional on no breakthrough, the process
{pt}t∈R+ will evolve according to the following law of motion

d pt =−(λ1k1(t)+λ2k2(t))pt(1− pt)dt

7



In the following subsection, we consider the benchmark case when the actions of both
players are controlled by a benevolent social planner.

2.1 Planner’s Problem

Suppose there is a benevolent social planner, who controls the actions of both the players.
Let (k1(pt),k2(pt)) be the action profile of the planner, such that ki ∈ {0,1}. ki = 0 implies
that player i is in the safe arm and ki = 1 implies that player i is in the risky arm. The
planner wants to maximise the sum of the expected discounted payoffs of the players. If
v(p) is the value function of the planner, then using the law of motion of the beliefs we
must have4

v = max
k1,k2∈{0,1}

[r{(1− k1)s+(1− k2)s+ k1 pg1 + k2 pg2}dt

+(1−r dt){p(k1λ1+k2λ2)dt(g1+g2)+
(
1− p(k1λ1+k2λ2)dt

)
(v−v

′
p(1− p)(λ1k1+λ2k2)dt)}]

Simplifying above and ignoring the terms of the order o(dt), we have

v = 2s+ max
k1,k2∈{0,1}

{
k1[b1(p,v)− c1(p)]+ k2[b2(p,v)− c2(p)]

}
where ci(p) = [s− pgi] and

bi(p,v) = λi p
{(g1 +g2)− v− v

′
(1− p)}

r

Like ([4]), we can interpret the term bi(p) as the benefit of having player i on the risky
arm when the current state is p. On the other hand, the term ci(p) can be interpreted as
the opportunity cost of having player i on the risky arm. Note that this bellman equation is
linear in both k1 and k2. In the following proposition, we state the planner’s solution.

Proposition 1 There exist thresholds p∗1, p∗2 with 0 < p∗1 < p∗2 < 1 such that player 2 is

switched to the safe arm at p∗2 and player 1 is switched to the safe arm at p∗1.

4We do away with the argument of v in the subsequent analysis. This is to keep the notations simple
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Proof. This proposition is proved in two steps. First, from the proposed policy or solution,
the planner’s payoff is computed. Then, by a verification argument it is shown that this
computed payoff solves the bellman equation of the planner.

Since the Bellman equation is linear in the choice variables k1 and k2, we can restrict to
corner solutions and can thus derive closed form solutions for the value function.

First, consider the range p∈ (0, p∗1]. According to the conjectured solution, k2 = k1 = 0.
This implies that v(p) = 2s. Next, consider the range p∈ (p∗1, p∗2]. The conjectured solution
implies that k1 = 1 and k2 = 0. Thus, from the bellman equation we can infer that the
planner’s value function satisfies the following O.D.E:

v
′
+ v

[r+λ1 p]
p(1− p)λ1

=
rs

p(1− p)λ1
+

[rg1 +λ1(g1 +g2)]

(1− p)λ1

The solution to the above differential equation is:

v = s+[
λ1g+ rg1

λ1 + r
− sλ1

r+λ1
]p+C(1− p)[Λ(p)]

r
λ1

where g = (g1 +g2); Λ(p) = (1−p)
p and C is the integration constant.

Suppose p∗1 is the belief where player 1 is switched to the safe arm. From the value
matching condition at p∗1, we have

s+[
λ1g+ rg1

λ1 + r
− sλ1

r+λ1
]p+C(1− p)[Λ(p)]

r
λ1 = 2s

⇒C =
s− [λ1g+rg1

λ1+r − sλ1
r+λ1

]p

(1− p)[Λ(p)]
r

λ1

Smooth pasting condition at p∗1 requires that both the right hand and left hand derivative
of v at p∗1 is zero. This implies

[
λ1g+ rg1

λ1 + r
− sλ1

r+λ1
]−C[Λ(p)]

r
λ1 (1+

r
λ1 p

) = 0

Substituting the value of C we have

[
λ1g+ rg1

λ1 + r
− sλ1

r+λ1
]−

s− [λ1g+rg1
λ1+r − sλ1

r+λ1
]p

(1− p∗1)
(1+

r
λ1 p

) = 0
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⇒ p∗1 =
sµ1

(µ1 +1)g1 +g2 −2s

where µ1 =
r

λ1
.

Next, consider p > p∗2. According to the proposed solution, the planner keeps both
players at the risky arm. Thus, k1 = k2 = 1. This implies that for p ≥ p∗2, the value function
then satisfies the following O.D.E

v
′
p(1− p)(λ1 +λ2)+ v[r+(λ1 +λ2)p] = pg(λ1 +λ2 + r)

The solution to the above O.D.E is

⇒ v(p) = gp+C(1− p)[Λ(p)]
r
λ

where g = g1 +g2 and λ = λ1 +λ2.
At p = p∗2, player 2 is switched to the safe arm. Since the value function is continuous,

at the belief p∗2, the planner is indifferent between having player 2 at the risky arm or at the
safe arm. Thus, at p = p∗2, we have

b2(p,v) = s−g2 p

Smooth pasting condition at p = p∗2 implies that for p ≥ p∗2, we have

v
′
(p) = g−C[Λ(p)]

r
λ (1+

r
λ p

)

Hence b2(p∗2,v) can be written as

λ2

λ
(1− p∗2)C[Λ(p∗2)]

r
λ =

λ2

λ
[v−gp∗2]

Since, b2(p∗2,v) = s−g2 p∗2, we have

v(p∗2) =
λ1 +λ2

λ2
s > 2s

This is because λ1 > λ2. Let vsr(.) be the representation of the value function when 1 is at
the risky arm and 2 is at the safe arm and vrr be the same when both players are at the risky
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arm. Since value matching condition is satisfied at p = p∗2, we have

vrr(p∗2) = vsr(p∗2) =
λ1 +λ2

λ2
s

From this, we can infer that p∗2 should satisfy

[
λ1g+ rg1

λ1 + r
− sλ1

r+λ1
]p∗2 +[

s− [λ1g+rg1
λ1+r − sλ1

r+λ1
]p∗1

(1− p∗1)[Λ(p∗1)]
r

λ1

](1− p∗2)[Λ(p∗2)]
r

λ1 =
λ1

λ2
s (1)

We will now show that there exists a p∗2 ∈ (p∗1,1) such that the above relation holds. At
p∗2 = p∗1, L.H.S of (1) is equal to s < λ1

λ2
s. At p∗2 = 1, the L.H.S is equal to

g1 +
λ1

r+λ
(g2 − s)> g1 =

λ1

λ2
g2 >

λ1

λ2
s

Since L.H.S is continuous in p∗2 and monotonically increasing, there exists a unique
p∗2 ∈ (p∗1,1), such that (1) holds.

The integration constant of vrr is given by

C =

λ1+λ2
λ2

s−gp∗2
(1− p∗2)[Λ(p∗2)]

r
λ

The obtained value function is

v(p)=



gp+{
λ1+λ2

λ2
s−gp∗2

(1−p∗2)[Λ(p∗2)]
r
λ
}(1− p)[Λ(p)]

r
λ ≡ vrr : If p ∈ (p∗2,1],

:

s+[λ1g+rg1
λ1+r − sλ1

r+λ1
]p+{

s−[
λ1g+rg1

λ1+r − sλ1
r+λ1

]p∗1

(1−p∗1)[Λ(p∗1)]
r

λ1
}(1− p)[Λ(p)]

r
λ1 ≡ vsr : if p ∈ (p∗1, p∗2],

:
2s : if p ∈ (0, p∗1].

with vrr(p∗2) = vsr(p∗2) =
λ
λ2

s and vsr(p∗1) = 2s.
By standard verification arguments, it can be shown that this value function satisfies

optimality. This is shown in appendix A
From the above proposition one can see that the belief where player 1 is shifted to the
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safe arm from the risky arm is greater than the belief at which the players will be shifted
if both players’ poisson arrival rates are λ1. This is because of the fact that as one of the
players’s innate ability declines (λ2 < λ1), the benefit of having player 1 experimenting
along the rsiky arm decreases. Hence, player 1 is shifted at a higher belief.

The planner’s solution is depicted in the Figure 1.

Belief (p)

Value (v)

2s

p∗1
[Planner’s

threshold to
switch 1 to

the safe arm]

p∗2
[Planner’s

threshold to
switch 2 to

the safe arm]

λ
λ2

s

g

1 at R

2 at S

Both at R

0 1

Figure 1.

The optimal value function of the planner is a smooth convex curve and it lies in the
range [2s,g). At the belief p∗2(p∗1) , player 2 (1) is switched to the safe arm from the risky
arm.

The next subsection describes the non-cooperative game between the players.
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2.2 Non-cooperative game

In this subsection, we carry out the analysis of the non-cooperative game between the
players. We will focus on Markov perfect equilibria with the players’ common posterior
belief as the state variable. A Markov strategy of player i is any piecewise continuous
function ki : [0,1]→{0,1} (i = 1,2). This function is continuous at all but a finite number
of points. Further, we have ki(0) = 0 and ki(1) = 1. This ensures that player i chooses the
dominant action under subjective certainty.

We assume that the strategies of players are left continuous. Suppose at a time point
t ≥ 0, the common prior is pt . Then, given a strategy pair (k1(pt),k2(pt)) and conditional
on there being no breakthrough, from our previous arguments we know that the common
posterior beliefs evolve in continuous time according to the following law of motion

d pt =−(λ1k1(pt)+λ2k2(pt))pt(1− pt)dt

Given these, we will first discuss the best responses of the players.
Best Responses:
Let v1 be the optimal value function of player 1. Then given player 2’s strategy, and by

the principle of optimality, v1 should satisfy

v1(p) = max
k1∈{0,1}

{
r[(1− k1)s+ k1 pg1]dt +(1− r dt)[(k1λ1 + k2λ2)pdtg1

+(1− k1λ1 pdt − k2λ2 pdt)(v1 − v
′
1 p(1− p)(k1λ1 + k2λ2)dt)

}
After ignoring the terms of the order (o(dt)) and rearranging the remaining terms, we

have

v1(p) = s+ k2[λ2bn
1(p,v1)]+ max

k1∈{0,1}
k1[λ1bn

1(p,v1)− (s−g1 p)] (2)

where

bn
1(p,v1) = p

{g1 − v1 − (1− p)v
′
1}

r
λ1bn

1(p,v1) can be interpreted as the additional payoff accrued to player 1 due to the in-
formation generated from his own experimentation and λ2bn

1(p,v1) is the additional payoff
to player 1 from player 2’s experimentation along the risky arm. s− g1(p) is player 1’s
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opportunity cost of choosing the risky arm. These interpretations are similar to ([4]).
If v2 is the optimal value function of player 2, then given k1, we have

v2(p) = s+ k1[λ1bn
2(p,v2)]+ max

k2∈{0,1}
k2[λ2bn

2(p,v2)− (s−g2 p)] (3)

where

bn
2(p,v2) = p

{g2 − v2 − (1− p)v
′
2}

r

In the same way as above, we can explain the terms λ2bn
2(p,v2), λ1bn

2(p,v2) and s−g2 p.

For a given k2 ∈ {0,1}, from (2) we know that player 1’s best response is

k1 =


1 : if λ1b1(p,v1)> s−g1 p,

∈ {0,1} : if λ1b1(p,v1) = s−g1 p,

0 : if λ1b1(p,v1)< s−g1 p.

Thus, player 1 chooses the risky arm as long as his private additional benefit from using
it (given by λ1bn

1(p,v1)) is greater than or equal to the opportunity cost of choosing the
risky arm (given by s−g1 p). The term k2[λ2bn

1(p,v1)] reflects the free-riding opportunities
for player 1.

By rearranging we can infer that

k1 =


1 : if v1 > s+ k2

λ2
λ1
[s−g1 p],

∈ {0,1} : if v1 = s+ k2
λ2
λ1
[s−g1 p],

0 : if v1 < s+ k2
λ2
λ1
[s−g1 p].

This implies that when k2 = 1, player 1 chooses the risky arm, safe arm or is indifferent
between them according as his value in the (p,v) plane lying above, below or on the line

D1 : v = s+
λ2

λ1
[s−g1 p]

If k2 = 0, player 1 chooses the risky arm as long as his optimal value is greater than s.
He smoothly switches from R to S at p̄1. Since player 1 switches to S at p̄1 smoothly, we
will have v

′
1(p̄1)= 0. Also since player1’s value function is continuous, we have v1(p̄1)= s.
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Putting these in (2) (the optimal equation of player 1), we have

λ1 p(g1 − s) = rs− rg1 p

⇒ p̄1 =
rs

λ1(
r

λ1
g1 +g1 − s)

⇒ p̄1 =
µ1s

(µ1 +1)g1 − s

Similarly, for player 2, from (3) we have

k2 =


1 : if v2 > s+ k1

λ1
λ2
[s−g2 p],

∈ {0,1} : if v2 = s+ k1
λ1
λ2
[s−g2 p],

0 : if v2 < s+ k1
λ1
λ2
[s−g2 p].

This implies that if k1 = 1, player 2 chooses risky, safe or is indifferent between them
according as his value in the (p,v) plane lying above, below or on the line

D2 : v = s+
λ1

λ2
[s−g2 p]

If k1 = 0, player 2 switches to the safe arm from the risky arm smoothly at p̄2 where

p̄2 =
µ2s

(µ2 +1)g2 − s

When the other player uses the risky arm, the best response of the players are depicted
in figure 2.

The region lying below the line D1 represents the free-riding opportunities for player
1 while that lying below the line D2 represents the free-riding opportunities for player 2.
Line D2 is steeper than the line D1. From the picture, we can see that there exists a region
which lies above the line D1 and below the line D2. This gives rise to the possibility of
having an equilibrium where players use cut-off strategies.

Payoffs: Before we discuss equilibrium formally, we obtain explicit solutions for the
payoffs obtained by the players under different possibilities.

Let vrr
i be the payoff to player i when he chooses the risky arm and the other player also

15



Belief (p)

Value (v)

s

D1 : v = s+ λ2
λ1
(s−g1 p)

pm
1 = s

g1

D2 : v = s+ λ1
λ2
(s−g2 p)

pm
2 = s

g20 1

Figure 2.

chooses the risky arm . vrr
i satisfies the ODE

v
′
i + vi

[r+(λ1 +λ2)p]
(λ1 +λ2)p(1− p)

=
(λ1 +λ2)+ r

(λ1 +λ2)(1− p)
gi (4)

This is obtained by putting k1 = k2 = 1 in the Bellman equation of player i. Since vrr
i is a

solution to the above ODE, it can be expressed as

vrr
i = gi p+C(1− p)[Λ(p)]

r
λ (5)

vrs
i : payoff to player i when he chooses the risky arm and the other player chooses the

safe arm. Putting ki = 1 and k j = 0( j ̸= i) in the Bellman equation of player i, we get the
ODE which vrs

i should satisfy as

v
′
i + vi

[r+λi p]
λi p(1− p)

=
λi + r

λi(1− p)
gi (6)

Thus, vrs
i can be expressed as

vrs
i (p) = gi p+C(1− p)[Λ(p)]

r
λi (7)

Finally, let the payoff to player i when the other player chooses the risky arm and he
free rides by choosing the safe arm be denoted by Fi. Putting ki = 0 and k j = 1 ( j ̸= i) in
the Bellman equation of player i, we get the ODE satisfied by Fi. This is given by
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v
′
i +

r+λ j p
λ j p(1− p)

=
rs

λ j p(1− p)
+

gi

(1− p)
(8)

Solving the above ODE, we can get

Fi(p) = s+
λ j

λ j + r
[gi − s]p+C(1− p)[Λ(p)]

r
λ j (9)

C in all cases represents the integration constant and Λ(p) = 1−p
p .

We will now show that no efficient equilibrium exists. The following proposition de-
scribes this.

Proposition 2 The planner’s solution can never be implemented in a markov perfect equi-

librium

Proof. First, we argue that in any non-cooperative equilibrium, no experimentation along
the risky arm will occur for beliefs strictly less than p̄1. Suppose it does. Then let pl < p̄1

be the lowest belief where experimentation along the risky arm ceases. Then, consider
player i who is experimenting at this belief. There can be two possibilities. Either the other
player ( j ̸= i) is also experimenting along the risky arm at this belief or player i is the only
one experimenting. Since no experimentation occurs for beliefs strictly less than pl and
value functions of players are continuous, vi(p) = s at p = pl . As pl <

s
gi

, in the first case
player i’s payoff will lie below the line Di and hence, he is not playing his best response.
In the later case, since pl < p̄i, player i is again not playing his best response.

Thus no experimentation will ever occur for beliefs less than p̄1. However, in the plan-
ner’s solution experimentation occurs till the belief reaches the point p∗1 and p∗1 < p̄1. This
proves the proposition.

Having proved that all markov perfect equilibria are inefficient, we will now charac-
terise the equilirbia of this game exhaustively and will examine how their nature is depen-
dent on the degree of heterogeneity between the players. However, before doing that we
define some important threshold beliefs in the following subsection.

2.3 Important threshold beliefs

In this subsection, we discuss some important threshold beliefs. These will be important
for the characterisation of equilibria later.
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First, consider the function v̄1
rs(p) such that

v̄1
rs(p) = g1 p+Crs

1 (1− p)[Λ(p)]
r

λ1

with Crs
1 = s−g1 p

(1−p̄1)[Λ(p̄1)]
r

λ1

We first show that there exists a unique p
′
1 ∈ (p̄1,1) such that

v̄1
rs(p1) = D1(p)

where D1 : v = s+ λ2
λ1

s−g2 p

v̄1
rs is strictly convex and increasing in p. D1 is monotonically decreasing in p. At

p
′
1 = p̄1, v̄1

rs < D1. At p
′
1 = 1, v̄1

rs > D1. Hence, there exists a unique p
′
1 ∈ (p̄1,1) such

that v̄1
rs = D1.

Next, it can be observed that lower is the value of λ2, lower is p
′
1. This is because as

λ2 goes down, the line D1 shifts downwards and rotates towards left. On the other hand
the function v̄1

rs(p) is independent of the the value of λ2. Hence, the belief at which v̄1
rs

intersects D1 goes down.
Next, consider the function F̄2(p) such that

F̄2(p) = s+
λ1

λ1 + r
[g2 − s]p+Csr

2 (1− p)[Λ(p)]
r

λ1

with Crs
2 = −λ1

λ1+r [g2 − s]p̄1

The function F̄2(p) is strictly concave and strictly increasing in the range p ∈ (p̄1,1).
In similar way as above it can be shown that there exists a unique p∗n

2 ∈ (p̄1,1) such that
the curve of the function F̄2(p) intersects the line D2 where D2 : v = s+ λ1

λ2
s−g1 p.

It can be argued that p∗n
2 goes up as λ2 goes down. This follows from the fact that as

λ2 goes down, D2 shifts upwards and rotates towards right. On the other hand as λ2 goes
down, F̄2(p) becomes flatter at every belief. This implies that the belief at which the curve
of the function F̄2(p) intersects D2 goes up.

We can also argue that whenever λ2 ∈ (λ1,
s
h), p̄2 < p∗n

2 . As p̄2 is monotonically de-
creasing in λ2, we can infer that there exists λ ′

2 and λ ∗
2 satisfying s

h < λ ∗
2 < λ ′

2 < λ1 such
that whenever λ2 < λ ′

2, p
′
1 < p∗n

2 and whenever λ2 < λ ∗
2 , p

′
1 < p̄2. Thus, for λ2 ∈ (λ ∗

2 ,λ
′
2),

p̄2 < p
′
1 < p∗n

2
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2.4 Existense of equilibrium in cut-off strategies and condition under
which it is unique

In this sub-section we will demnostrate the conditions under which equilibrium in cut-off
strategies exists and when it is the only surviving equilibrium. We will show that if the
degree of heterogeneity between the players is high enough, then an equilibrium exists
where both players use cut-off strategies and that equilibrium is the unique MPE of the
game. This is illustrated in the following proposition.

Proposition 3 If λ2 is such that λ2 < λ ′
2 < λ1, then there exists a Markov perfect equi-

librium in simple cut-off strategies. The equilibrium is characterised by two thresholds

p̄1 and p∗n
2 . p̄1 is as defined above and p∗n

2 is such that p∗n
2 ∈ (p̄1,1) and p∗n

2 > p∗2. For

p ∈ (p∗n
2 ,1), both players choose the risky arm, for p ∈ (p̄1, p∗n

2 ], player 1 chooses the risky

and 2 chooses the safe arm and for p ≤ p̄1, both players choose the safe arm.

Further, if λ2 < λ ∗
2 , then this equilibrium is the unique Markov perfect equilibrium.

Proof.

Belief (p)

Value (v)

s

D1 : v = s+ λ2
λ1
(s−g1 p)

pm
1

D2 : v = s+ λ1
λ2
(s−g2 p)

pm
2p

′
1

p̄1

v2

v1

p∗n
20 1

Figure 3.

As argued earlier, in any noncooperative equilibrium, no experimentation along the
risky arm will occur for beliefs less than or equal to p̄1. We can now work backwards from
p̄1.
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First, I show that in any equilibrium, at the right ε− neighborhood (ε → 0) of p̄1, only
player 1 will be experimenting along the risky arm and player 2 will be free riding.

Suppose, at the right ε- neighborhood of p̄1, both players experiment along the risky
arm. Since the value functions are continuous, both will have their values close to s. In
the (v, p) plane, (s, p̄1) lies below both the lines D1 and D2. Hence, none of the players
are playing their best responses. This shows that in any non-cooperative equilibrium, at the
right ε-neighborhood of p̄1, only one player can experiment along the risky arm. It is not
possible to have player 2 experimenting along the risky arm and player 1 choosing the safe
arm. This is because if player 1 chooses the safe arm, choosing the risky arm constitutes a
best response for player 2 only if p ≥ p̄2 > p̄1. Hence, the only possibility is to have player
1 experimenting along the risky arm and player 2 choosing the safe arm. This constitutes
playing best responses by both the players. Thus, in any non-cooperative equilibrium, for
beliefs at the right ε- neighborhood of p̄1, Player 1 chooses the risky arm and 2 chooses the
safe arm. At p = p̄1, player 1 smoothly switches to the safe arm. Hence, payoffs for player
1 and 2 for this range of beliefs will be given by vrs

1 and F2 respectively. Since the value
functions are continuous, we will have

vrs
1 (p̄1) = g1 p̄1 +C(1− p̄1)[Λ(p̄1)]

r
λ1 = s ⇒C =

s−g1 p̄1

(1− p̄1)[Λ(p̄1)]
r

λ1

and

F2(p̄1) = s+
λ1

λ1 + r
[g2 − s]p̄1 +C(1− p̄1)[Λ(p̄1)]

r
λ1 = s ⇒C =−

λ1
λ1+r [g2 − s]p̄1

(1− p̄1)[Λ(p̄1)]
r

λ1

This is the manifestation of the value matching conditions at p = p̄1. The integration
constant for vrs

1 is positive and thus it is strictly convex. The slope of v1 at p̄1 is 0. Hence
vrs

1 is strictly increasing for p > p̄1. On the other hand, the integration constant of F2 is
negative and thus it is strictly concave. At p̄1, the slope of F2 is strictly positive. Hence at
the right ε− neighborhood of p̄1, F2 will lie above vrs

1 .
With player 1 choosing the risky arm, choosing safe arm will be a best response of

player 2, as long as F2 lies left of D2.
We will now show, that there exists a unique p∗n

2 ∈ (p̄1,1) such that F2(p∗n
2 ) = s+

λ1
λ2
(s−g2 p∗n

2 )≡ D2(p∗n
2 ). That is, there exists a unique belief in the range (p̄1,1) where F2

meets the line D2.
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We have F2(p̄1) = s < s+ λ1
λ2
(s− g2 p̄1) ≡ D2(p̄1), since p̄1 < pm

1 . On the other hand,

F2(1) = s+ λ1
λ1+r [g2 − s]> s+ λ1

λ2
(s−g2) as g2 > s. Since F2 is monotonically increasing5

and D2 is monotonically decreasing in p, there exists a unique p∗n
2 ∈ (p̄1,1), such that

F2(p∗n
2 ) = s+ λ1

λ2
(s−g2 p∗n

2 )≡ D2(p∗n
2 ).

Let the belief at which vrs
1 meets D1 be denoted as p

′
1. For all p ∈ (p̄1, p∗n

2 ), player 1
choosing the risky arm and player 2 choosing the safe arm are best responses to each other.
The conjectured equilibrium exists if both players choosing the risky arm for p > p∗n

2 are
best responses to each other. This happens if and only if p

′
1 < p∗n

2 . Thus, vrs
1 should meet D1

at a belief which is strictly lower than the belief at which F2(.) meets D2. This is because,
if p

′
1 > p∗n

2 , then for p ∈ (p∗n
2 , p

′
1), choosing the risky arm is not a best response of player

1 when the other player is choosing the risky arm. Appendix (B) shows that given a λ1, we
can find a λ ′

2 ∈ ( s
h ,λ1) such that if λ2 < λ ′

2, then p∗n
2 > p

′
1 and hence, equilibrium in cut-off

strategies exists.
However, for this equilibrium to be unique, we need to ensure that there does not exist

any range of beliefs such that player 1 choosing the safe arm and player 2 choosing the
risky arm are best responses to each other. This requires the belief at which the curve vrs

1

meets the line D1 to be lower than p̄2. Thus, we require p
′
1 < p̄2. If the belief at which vrs

1

meets D1 is higher than p̄2, then there will exist a range of beliefs where player 1 choosing
the safe arm and player 2 choosing the risky arm will be best responses to each other. It
will be established below, that p

′
1 < p̄2, only if the degree of heterogeneity is high enough.

Further, p
′
1 < p̄2 also guarantees existence of the equilibrium.

Consider λ2 very close to λ1. That is, λ2 is such that λ1 −λ2 > 0 and (λ1 −λ2)→ 0.
In this case, p̄2 → p̄1 from above and the line D2 tends to coincide with the line D1. Since,
vrs

1 is independent of λ2, the belief at which it will meet D1 will be strictly higher than p̄2.
Next, keeping λ1 fixed, consider λ2 close to s

h . That is λ2 − s
h > 0 and λ2 → s

h from
above. In this case, p̄2 → 1. Thus, the belief at which vrs

1 meets the line D1 is strictly less
than p̄2.

Keeping λ1 constant, as λ2 goes down, the line D1 becomes flatter and pivots downward
along the point ( s

g1
,s). Thus, the belief at which vrs

1 meets D1 goes down. Hence, the
belief at which vrs

1 meets D1 is monotonically increasing in λ2. On the other hand, p̄2 is
monotonically decreasing in λ2. This implies that there exists a λ ∗

2 ∈ ( s
h ,λ1), such that if

λ2 < λ ∗
2 , then vrs

1 always meets D1 at a belief strictly less than p̄2.

5This is because F
′
2 = λ1

λ1+r [g2 − s]−C[Λ(p)]
r

λ1 . For p = 1, F
′
2 = λ1

λ1+r [g2 − s]> 0. Since F
′
2(p̄1)> 0 and

is strictly concave, F
′
2 > 0 for p ∈ (p̄1,1)
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Lastly, we show that p∗n
2 > p̄2 for all λ2 >

s
h . Since F2() is strictly increasing in p, to

establish this formally, we need to show that

D2(p̄2)> F2(p̄2)

As the integration constant of F2 is strictly negative, we have F2(p̄2) < s+ λ1
λ1+r [g2 −

s]p̄2. From the expression of p̄2, we then have

F2(p̄2)< s+
λ1

λ1 + r
[g2 − s]p̄2 = s+

λ1

λ1 + r
[g2 − s]

µ2s
(µ2 +1)g2 − s

≡ f

On the other hand, D2(p̄2) = s+ λ1
λ2

s[g2 − s] 1
(µ2+1)g2−s . This implies

D2(p̄2)− f =
λ1s[g2 − s]

{(µ2 +1)g2 − s}λ2(λ1 + r)
λ1 > 0

Hence, D2(p̄2)> F2(p̄2). This establishes the fact that p∗n
2 > p̄2. Thus, whenever p

′
1 < p̄2,

p
′
1 < p∗n

2 .
This proves that if the difference λ1 − λ2 exceeds a threshold, then the conjectured

equilibrium exists and is the unique MPE of the game.
For beliefs greater than p∗n

2 , payoffs of player 1 and 2 are given by vrr
1 and vrr

2 respec-
tively. The integration constants are determined as follows:

C for vrr
1 from vrr

1 (p∗n
2 ) = vrs

1 (p∗n
2 )

C for vrr
2 from vrr

2 (p∗n
2 ) = F2(p∗n

2 ) = s+
λ1

λ2
[s−g2 p∗n

2 ]

This concludes the proof.
The equilibrium described above is depicted in figure 3. As before, line Di (i = 1,2),

describes the free-riding opportunities for player i. Since g1 = λ1h and g2 = λ2h, we have

D1 : v = s+
λ2

λ1
(s−g1 p) = s+

λ2

λ1
s−g2 p; D2 : v = s+

λ1

λ2
(s−g2 p) = s+

λ1

λ2
s−g1 p

Hence, D1 has a negative slope of magnitude g2 and D2 has a negative slope of magnitude
g1. Since g1 > g2, D1 is flatter than D2. D1 intersects the horizontal line v= s at p= pm

1 = s
g1

and D2 intersects at p = pm
2 = s

g2
.
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The upper curve v2 depicts the payoff of player 2 and the lower curve v1 depicts the
payoff of player 1. For all beliefs less than or equal to p̄1, both players choose the safe arm.
At the right neighborhood of p̄1, only player 1 experiments along the risky arm and player
2 free rides. Hence, the payoff curve of player 1 is strictly convex and that of player 2 is
strictly concave. At the belief p̄1, the derivative of the payoff of player 1 is zero and that of
player 2 is strictly positive. Thus, at p = p̄1, v2 lies strictly above v1. v2 intersects the line
D2 at p = p∗n

2 . At this point, player 2 stops free-riding and starts choosing the risky arm as
well. Hence, the curve v2 now becomes convex and there is a kink in v1 at this point. p∗n

2

is strictly greater than p∗2, the belief upto which the planner wants player 2 to experiment
along the risky arm.

We will now discuss the obtained result intuitively . In an equilibrium in cut-off strate-
gies, player 1 should never free ride and there should be a range of beliefs over which 1’s
best response should be choosing R and 2’s best response should be free-riding on 1’s ex-
perimentation. Given λ1, if λ2 decreases then the line D1 becomes flatter. This reduces
the free-riding opportunities of player 1. Hence, the area between the two lines D1 and
D2 increases. This explains why the degree of heterogeneity should be high enough for an
equilibrium in cut-off strategies to exist. For this equilibrium to be unique, there should not
exist any range of beliefs where player 1 choosing the safe arm constitutes a best response
to player 2 choosing the risky arm. This is ensured by having the degree of heterogeneity
even higher. Keeping λ1 fixed, as λ2 goes down, the line D1 becomes flatter and this reduces
the free riding opportunities of player 1 further and hence, player 1 can never free-ride on
player 2 in any non-cooperative equilibrium.

This unique MPE in cutoff strategies is inefficient. The inefficiency arises from two
channels. First, no experimentation takes place for beliefs below p̄1, whereas the planner
wants experimentation to go on up to p = p∗1 < p̄1. Clearly, player 1 does not internalise
the benefit to player 2 from his experimentation. Secondly, player 2 inefficiently free rides
for some range of beliefs. At p∗n

2 , player 2’s private return is equal to the private cost
s−g2 p2. However the social benefit is higher, since player 2 does not internalise the benefit
to player 1 from his experimentation6. Thus, p∗2 < p∗n

2 and there is inefficient free riding
for p ∈ (p∗2, p∗n

2 ). We call this inefficient free riding because the planner in his efficient
solution, makes player 2 to free ride over some range of beliefs.

In the following sub-sections, we will characterise the equilbria of the game when the
degree of heterogeneity between the players is not high enough. First, we focus on that

6Please refer to appendix (C) for a formal proof to show that this is true
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range of heterogeneity between the players when equilibria in both cut-off and non cut-off
strategies exist and later we will focus on that range of heterogeneity when equilbria are
only in non cut-off strategies.

2.5 Simultaneous existence of equilibria in both cutoff and non-cutoff
strategies

In the previous subsection, we have demonstrated that an equilibrium in cut-off strategies
exists if and only if p

′
1 < p∗n

2 . Further, this equilibrium is the only surviving equilibrium
when p̄2 > p

′
1. When p̄2 < p

′
1, there exists a range of beliefs where player 1 choosing the

safe arm and player 2 choosing the risky arm constitutes mutual best responses. We know
that for any λ2 >

s
h , p∗n

2 > p̄2, and given λ1, both p∗n
2 and p̄2 are monotonically decreasing

in λ2. Thus, given λ1, there exists a range of values of λ2 such that p∗n
2 > p

′
1 and p̄2 < p

′
1.

For these values of λ2, equilibria in both cut-off and non cut-off strategies exist.
The equilibrium in cut-off strategies is characterised as before. For beliefs below and

equal to p̄1, both players choose the safe arm. Player 1 chooses the risky arm for any belief
greater than p̄1. Player 2 continue choosing the safe arm for beliefs less than or equal to
p∗n

2 and chooses the risky arm for any belief greater than p∗n
2 . The following proposition

describes the equilibria in non-cutoff strategies.
To understand any non-cutoff equilibrium, we first discuss following two lemmas. The

proofs are relegated to the appendix.

Lemma 1 Consider an equilibrium in non-cutoff strategies. Suppose p1
s > p̄1 is the belief

at which the payoff of player 1 meets the line D1. If over the range of beliefs p ∈ (p̄1, p1
s )

player 1 has switched arms at least once, then p1
s < p

′
1

Lemma 2 Consider an equilibrium in non-cutoff strategies. Let ps
2 > p̄1 be the belief at

which the payoff of player 2 meets the line D2. If player 2 has switched arms at least once

over the range of beliefs p ∈ (p̄1, p2
s ), then p2

s > p∗n
2

The above two lemmas allow us to conclude that while comparing the equilibrium
in cut-off strategies with any equilibrium in non-cutoff strategies, we can without loss of
generality focus on those equilibria in non-cutoff strategies where players switch arms only
once before their payoff intersect the respective best response lines.
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Proposition 4 Given λ1, if λ2 is such that λ ∗
2 < λ2 < λ ′

2, then equilibria in both cut-off

and non cut-off strategies exist. Any equilibrium in non-cutoff strategies is characterised

by two switching points ps and p2
s such that p̄2 < ps < p2

s < p
′
1 and a cutoff point p̂2 with

p̂2 > p∗n
2 . For beliefs (p̄1, ps] and (p2

s ,1], player 1 chooses the risky arm and the safe arm

for p ∈ (0, p̄1] and p ∈ (ps, p2
s ]. Player 2 chooses the risky arm for beliefs p ∈ (ps, p2

s ] and

p ∈ (p̂2,1]. For beliefs p ∈ (0, ps] and p ∈ (p2
s , p̂2], player 2 chooses the safe arm.

Proof.
Since p̄2 < p

′
1, there is a range of beliefs where player 1 choosing the safe arm is a

best response to player 2 choosing the risky arm. In any equilibrium, for beliefs in the
range (p̄1, p̄2], only mutual best responses are player 1 choosing the risky arm and player
2 choosing the safe arm. In any equilibrium, it is not possible to have player 1 choosing
the safe arm and player 2 choosing the risky arm for all p ∈ (p

′
1,1]. This is because once

player 1’s value function intersects D1, he cannot choose safe arm anymore in equilibrium.
However, for an equilibrium in non cut-off strategies, it is a necessity that player 1 chooses
the safe arm and player 2 chooses the risky arm for some range of beliefs greater than p̄1.
Hence, in any equilibrium in non cut-off strategies, the belief where players switch arms
for the first time, should always lie in (p̄2, p

′
1). Let ps be the belief where players switch

arms for the first time. ps ∈ (p̄2, p
′
1).

For beliefs p ∈ (p̄1, ps], player 1 chooses the risky arm and player 2 chooses the safe
arm. Hence, player 1’s payoff in this range is given by

vrs1
1 (p)≡ vrs

1 (p) = g1 p+C(1− p)[Λ(p)]
r

λ1

with C = s−g1 p

(1−p)[Λ(p)]
r

λ1
. This is obtained from the value matching condition vrs1

1 (p̄1) = s.

Player 2’s payoff in this range is given by

F1
2 (p)≡ F2(p) = s+

λ1

λ1 + r
(g2 − s)p+C(1− p)[Λ(p)]

r
λ1

with C =−
λ1

λ1+r (g2−s)p

(1−p)[Λ(p)]
r

λ1
. This is obtained from the value matching condition F1

2 (p̄1) = s.

At the right ε- neighborhood (ε → 0) of ps, the payoff to player 1 will be given by :

F1
1 (p)≡ F1(p) = s+

λ2

λ2 + r
(g1 − s)p+C(1− p)[Λ(p)]

r
λ2
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with C =
vrs1

1 (ps)−{s+ λ2
λ2+r (g1−s)ps}

(1−ps)[Λ(ps)]
r

λ2

The payoff to player 2 at the right ε- neighborhood of ps is given by

vrs1
2 (p)≡ vrs

2 (p) = g2 p+C(1− p)[Λ(p)]
r

λ2

with C =
F1

2 (ps)−g2 ps

(1−ps)[Λ(ps)]
r

λ2

Let p2
s be the belief where F1

1 (p) intersects the line D1 and let p̃2 be the belief where
vrs1

2 (p) intersects D2.

As long as F1
1 (p) is below the line D1, it is always above vrs1

1 (refer to appendix (D)
for a detailed proof) and for all beliefs p < s

g2
, vrs1

2 will be below F1
2 (p) (refer to appendix

(E) for a detailed proof). These imply that F1
1 will intersect the line D1 at a belief p2

s such
that p2

s < p
′
1 and vrs1

2 will intersect D2 at a belief which is strictly greater than p∗n
2 . Since

p∗n
2 > p

′
1, F1

1 will intersect D1 before vrs1
2 intersects D2. Hence, when player 1’s value

intersects the line D1, player 2’s value is still below D2. Thus, at the right ε-neighborhood
of p2

s , the profile which constitutes mututal best responses is player 1 choosing the risky
arm and player 2 choosing the safe arm. Hence, at the right ε-neighborhood of p2

s , payoff
to player 1 is given by

vrs2
1 (p)≡ vrs

1 (p)

with vrs
1 (p2

s ) = F1
1 (p2

s )

and payoff to player 2 is given by

F2
2 (p)≡ F2(p)

with F2(p2
s ) = vrs1

2 (p2
s )

Since vrs1
2 (p2

s )< F1
2 (p2

s ), F2
2 (p) will always be below F1

2 . Hence, the belief p̂2 at which
F2

2 intersects D2 is strictly greater than the belief at which F1
2 (p) intersects D2. This shows

that p̂2 > p∗n
2 . At p = p̂2, player 2 switches to the risky arm. For p > p̂2, payoff to player

1 is given by
vrr

1 = g1 p+C(1− p)[Λ(p)]
r

(λ1+λ2)

with the integration constant being determined from vrr
1 (p̂2) = vrs2

1 (p̂2).
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Payoff to player 2 for p > p̂2 is given by

vrr
2 = g2 p+C(1− p)[Λ(p)]

r
(λ1+λ2)

with the integration constant being determined from vrr
2 (p̂2) = F2

2 (p̂2).

We are now in a position to compare the equilibrium in cut-off strategies with any
equilibrium in non cut-off strategies. It turns out that the intensity of experimentation in
the equilibrium in cut-off strategies is higher than that in any equilibrium in non cut-off
strategies. The following proposition describes this.

Proposition 5 When equilibria in both cut-off and non cut-off strategies exist, then com-

pared to any equilibrium in non-cutoff strategies, the intensity of experimentation is always

higher in the equilibrium in cut-off strategies.

Proof.
For the equilibrium in cut-off strategies and for any equilibrium in non cut-off strategies,

no experimentation takes place for beliefs less than or equal to p̄1. In the equilibrium in
cut-off strategies, for p ∈ (p̄1, p∗n

2 ], the weaker player (player 2) free rides and the stronger
player (player 1) experiments. For p > p∗n

2 , both players experiment. On the other hand,
in any equilibrium in non cut-off strategies, both players experiment for beliefs p > p̂2,
where p̂2 > p∗n

2 . Hence, compared to the equilibrium in cut-off strategies, the range of
beliefs over which only one player experiments is higher in any equilibrium in non cut-off
strategies. However, the total range of beliefs over which any experimentation takes place
is same across two kinds of equilibria. This range is (p̄1,1]. Further, in the equilibrium in
cut-off strategies, whenever only one player experiments, it is the stronger player who does
it. However, in any equilibrium in non cut-off strategies, we have seen that there exists a
range of beliefs (ps, p2

s ], when the weaker player experiments and the stronger player free
rides. Hence, the intensity of experimentation in the equilibrium in cut-off strategies is
always higher than that in any equilibrium in non cut-off strategies. This concludes the
proof.

The comparison between the equilibrium in cut-off strategies and any equilibrium in
non cut-off strategies is depicted in figure 4.

The black curves v1 and v2 depict the payoffs to player 1 and 2 respectively in the
equilibrium in cut-off strategies. In the equilibrium in non cut-off strategies, payoffs are
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Belief (p)

Value (v)

s

D1 : v = s+ λ2
λ1
(s−g1 p)

D2 : v = s+ λ1
λ2
(s−g2 p)

p
′
1p̄2 ps p̂2p2

sp̄1

v2

v1

p∗n
2

0 1

Figure 4.

same as before for beliefs less than or equal to ps. At ps, players switch arms. Blue curve
depicts the payoff to player 1 and the red curve depicts the payoff to player 2 for p > ps,
in the equilibrium in non cut-off strategies . As argued, the blue curve meets the line D1 at
a belief p2

s , which is strictly less than p
′
1. In the region (ps, p2

s ], player 2 experiments and
player 1 free rides. At p2

s , player 1 shifts to the risky arm and player 2 shifts to the safe
arm. When the red curve meets the line D2 at p̂2, player 2 shifts to the risky arm again. As
argued, p̂2 > p∗n

2 .
In appendix (H) we prove that the aggregate payoffs of players in equilibrium in cut-off

strategies is strictly higher than that in the equilibrium in non-cutoff strategies.
In the next sub-section, we discuss about equilibria when the degree of heterogeneity is

such that no equilibrium in cut-off strategies exists.

2.6 Low degree of heterogeneity: All equilibria are in non cut-off
strategies

In this subsection, we consider the situation when the degree of heterogeneity between the
players is such that there does not exist any equilibrium in cut-off strategies. Given λ1, this
happens when the value of λ2 is such that λ ′

2 < λ2 < λ2

Proposition 6 When no equilibrium in cut-off strategies exists, then the most heteroge-

neous equilibrium is characterised as follows. In this equilibrium, only the weaker player
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(player 2) uses a cut-off strategy. There is a switching point p̂1 ∈ (p∗n
2 , p1

′), such that

for p ∈ (p̄1, p∗n
2 ] and p ∈ (p̂1,1], player 1 chooses the risky arm and for p ∈ (0, p̄1] and

p ∈ (p∗n
2 , p̂1], he chooses the safe arm. Player 2 chooses the safe arm for p ≤ p∗n

2 and the

risky arm for p > p∗n
2 . As λ2 decreases below the threshold λ ′

2, this equilibrium becomes

the equilibrium in cut-off strategies.

Proof. By most heterogenoeus equilibrium we mean the equilibrium where actions of
players are different to the maximum possible extent. As p

′
1 > p∗n

2 , no equilibrium in cut-
off strategies exists. As before, at the right ε neighborhood of p̄1, player 1 choosing the
risky arm and player 2 choosing the safe arm constitutes mutual best responses. Since
p∗n

2 < p
′
1, for p̄1 < p < p∗n

2 , player 1 choosing the risky arm and player 2 choosing the
safe arm constitutes mutual best responses. Thus for p̄1 < p ≤ p∗n

2 , payoff to player 1 is
given by vrs1

1 (p) with vrs1
1 (p̄1) = s. Player 2’s payoff is given by F1

2 (p) with F1
2 (p̄1) = s.

At the belief p = p∗n
2 , player 2 shifts to the risky arm and player 1 shifts to the safe arm.

Payoff to player 1 is given by F1
1 (p) ≡ F1(p) with F1(p∗n

2 ) = vrs1
1 (p∗n

2 ). F1
1 (p) is strictly

concave and from our previous arguments we know that it will lie above vrs1
1 (p) as long as

F1
1 (p)< D1(p). Hence, the belief at which F1

1 (p) will intersect D1 is strictly less than p1
′.

Let this belief be p̂1. Once F1
1 (p) intersects D1 at p̂1, player 1 switches to the risky arm.

Payoffs to player 2 for p∗n
2 < p ≤ p̂1 is given by vrs1

2 (p) ≡ vrs
2 (p) with vrs

2 (p∗n
2 ) =

F1
2 (p∗n

2 ). For beliefs higher than p̂1, payoffs to player 1 is given by vrr
1 (p) with vrr

1 (p̂1) =

F1
1 (p̂1). Payoff to player 2 is given by vrr

2 (p) with vrr
2 (p̂1) = vrs

2 (p̂1).
The range of beliefs over which player 1 free-rides is (p∗n

2 , p̂1] ∈ (p∗n
2 , p

′
1]. As λ2 de-

creases, p∗n
2 gets closer to p

′
1 and hence the range of beliefs over which player 1 free rides

shrinks. When λ2 = λ ′
2, p∗n

2 = p
′
1. In that case, both vrs1

1 (p) and F1
2 (p) intersect D1 and D2

respectively at the same belief. It is from this point that the equilibrium in cut-off strategies
begins to exist. Hence, for all λ2 < λ ′

2, if in an equilirbium player 2 uses a cut-off strategy
then player 1 also have to use a cut-off strategy. Hence, at p∗n

2 = p
′
1, the most heteroge-

neous equilibrium becomes the equilibrium in cut-off strategies. It continues to be so for
all λ2 < λ ′

2.

In the above equilibrium, player 2 uses a cut-off strategy and player 1 uses a non cut-off
strategy. The equilibrium is depicted in figure 5. v1 and v2 denote the payoffs to player 1
and 2 respectively. The range of beliefs over which player 1 free rides is (p∗n

2 , ps]. It can
be seen from the figure that as λ2 decreases, p∗n

2 comes closer to p
′
1 and hence the range

of beliefs over which player 1 free rides shrinks and eventually as p∗n
2 crosses p

′
1, player 1
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stops free-riding and we have equilibrium in cut-off strategies.

Belief (p)

Value (v)

s

D1 : v = s+ λ2
λ1
(s−g1 p)

D2 : v = s+ λ1
λ2
(s−g2 p)

p̄1 p̄2 p
′
1

p∗n
2

ps

v2

v1

0 1

Figure 5.

We will now characterise other equilibria in non cut-off strategies. The following
proposition demonstrates this.

Proposition 7 If p∗n
2 < p

′
1, then apart from the most heterogeneous equilibrium, other equi-

libria in non cut-off strategies also exist. They can be of the following two kinds7

1 . There exists a switching point ps and two thresholds p̃1 and p̃2 such that ps ∈
(p̄2, p∗n

2 ) and p∗n
2 < p̃2 < p̃1 < p

′
1. Player 1 chooses the safe arm for p ∈ (0, p̄1], and

p ∈ (ps, p̃1]. He plays risky arm for p ∈ (p̄1, ps] and p ∈ (p̃1,1]. Player 2 chooses the safe

arm for p ∈ (0, ps] and the risky arm for p ∈ (ps,1]. Hence, player 1 uses a non cut-off

strategy and player 2 uses a cut-off strategy.

2. There exists a switching point ps and two thresholds p̃1 and p̃2 such that ps ∈
(p̄2, p∗n

2 ) and p̃1 < p̃2. Player 1 chooses the safe arm for p ∈ (0, p̄1] and p ∈ (ps, p̃1]. He

chooses the risky arm for p ∈ (p̄1, ps] and p ∈ (p̃1,1]. Player 2 chooses the safe arm for

p ∈ (0, ps] and p ∈ (p̃1, p̃2]. He chooses the risky arm for p ∈ (ps, p̃1] and p ∈ (p̃2,1].
Hence, both players use non-cutoff strategies.

7Again, without loss of generality, we consider only those equilibria where players switch arms only once
over the range of beliefs when both players’ payoff functions are below their respective best response lines.
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Proof.
Consider a point ps ∈ (p̄2, p∗n

2 ). For p ∈ (p̄1, ps], player 1 chooses the risky arm and
player 2 chooses the safe arm. Since p∗n

2 < p
′
1, from our previous analysis we know that

at p = ps, player i’s (i = 1,2) payoff function lies below the line Di. Hence, at the right ε
neighborhood of ps, one player choosing the risky arm and the other choosing the safe arm
constitute mutual best responses. Hence, we can have an equilibrium where both players
switch arms at a belief ps ∈ (p̄2, p∗n

2 ). In that case, at the right ε neighborhood of ps , payoff
to player 1 is given by

F1
1 (p)≡ F1(p) with F1(ps) = vrs1

1 (ps)

This function is concave and as argued earlier, as long as it is below the line D1, it lies
above vrs1

1 (p). Hence, the belief at which F1
1 (p) intersects the line D1 is strictly less than

p
′
1. Let the belief at which F1

1 (p) intersects the line D1 be p̃1.
The payoff to player 2 is given by

vrs1
2 (p)≡ v2(p)with v2(ps) = F1

2 (ps)

This function is strictly convex and always lies below F1
2 (p) as long as p < s

g2
. Let

p̂2 be the belief at which vrs1
2 (p) intersects the line D2. We have p̂2 > p∗n

2 . There are two
possibilities:

1. p̂2 < p̃1: In this case, we have the equilibrium of the first kind and the threshold
p̃2 = p̂2.

2. p̂2 > p̃1: In this case player 1’ value function intersects D1 at a belief which is less
than the belief at which player 2’s value function intersects the line D2. We will have the
equilibrium of the second kind. Hence, at p̃1, player 1 will switch to the risky arm and
player 2 will switch to the safe arm. At the right ε neighborhood of p̃1, player 1’s payoff is
given by

vrs2
1 (p)≡ vrs

1 (p) with vrs
1 (p̃1) = F1

1 (p̃1)

and player 2’s payoff is given by

F2
2 (p)≡ F2(p) with F2(p̃1) = vrs

2 (p̃1)

Let p̃2 be the belief at which F2
2 (p) intersects the line D2. Beyond this belief, both

players choose the risky arm.
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This concludes the proof of the proposition.

Comparing different equilibria when all equilibria are in non cut-off strategies:
Consider an arbitrary equilibrium in non cut-off strategies. A particular feature of this

class of equilibria is that player 1 shifts to the safe arm from the risky arm at a belief which
is in the interval (p̄2, p

′
1). Player 1 after switching to the safe arm continue to choose the

safe arm as long as his payoff does not meet D1. Thereafter, player 1 chooses the risky arm.
The following lemma establishes the fact that sooner the players initially switch, lower is
the belief at which player 1’s payoff meets the best response line D1.

Lemma 3 Consider p∗n
2 < p

′
1 and two equilibria in non cut-off strategies such that for one

the initial switcing point is ps1 and for the other it is ps2 with ps1 < ps2 . The belief at which

1’s payoff meets D1 is strictly lower for the equilibrium with the initial switching point ps1 .

Proof.
Consider the equilibrium with the initial switching point ps1 . The payoff to player 1 at

the right ε neighborhood of ps1 is given by F11
1 (p)≡ F1(p) with F1(ps1) = vrs1

1 (ps1). This
payoff function will be concave and will be given by

F11
1 (p) = s+

λ2

r+λ2
(g1 − s)p+Csr

1 (1− p)[Λ(p)]
r

λ2

Let p̃1 be the belief at which F11
1 (p) meets D1. The proof is trivial if the other equi-

librium has the initial switching point ps2 > p̃1. Hence, consider ps2 < p̃1. From our
previous arguments we know that for p ∈ (ps1, p̃1], F11

1 (p) > vrs1
1 (p). For the equilibrium

with switching point ps2, the payoff to player 1 at the right ε neighborhood of ps2 is given
by F12

1 (p)≡ F1(p) with F1(ps2) = vrs1
1 (ps2). This payoff function will be concave and will

be given by

F12
1 (p) = s+

λ2

r+λ2
(g1 − s)p+Csr

2 (1− p)[Λ(p)]
r

λ2

We have F11
1 (ps2) > vrs1

1 (ps2) = F12
1 (ps2). Since F11

1 (p) and F12
1 (p) cannot intersect

for p < 1, the belief at which F12
1 (p) meets D1 is higher. This concludes the proof of the

lemma.

The above lemma implies that for any equilibrium where both players use non cut-
off strategies, the belief at which player 1’s payoff function meets D1 is strictly less than
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that in the most heterogeneous equilibrium. This is because, in the later case the belief
at which player 1 switches to the safe arm is p∗n

2 and in the former case it is at a belief
less than p∗n

2 . The following proposition shows that unlike in the case with homogeneous
players, the most heterogeneous equilibrium is not always the one with lowest intensity of
experimentation.

Proposition 8 Given λ1, if λ2 is such that p∗n
2 < p

′
1, then there exist sub-thresholds λ lh

2 and

λ ll
2 such that λ ll

2 < λ lh
2 . If λ2 < λ ll

2 then the intensity of experimentation is higher in the

most heterogeneous equilibrium than all other equilibria. If λ2 > λ lh
2 , then the intensity of

experimentation is lowest for the most heterogeneous equilibrium.

Proof.
Consider λ2 = λ ′

2. Thus, p∗n
2 = p

′
1. At this point, the most heterogenoeus equilibrium

coincides with the equilibrium in cut-off strategies. From our previous discussions we
know that in any other equilibrium, the intensity of experimentation goes down through two
channels. First, the range of beliefs over which both players experiment shrinks. Next, there
emerges a range of beliefs where player 1 free rides. Hence, any other equilibrium will
have lower intensity of experimentation than the most heterogeneous equilibrium. In any
equilibrium which is not the most heterogeneous, the belief at which the payoff of player 2
meets D2 is a continuous function of λ2. For values of λ2 at the right ε neighborhood of λ ′

2,
the belief above which both players experiment in the most heterogeneous equilibrium is
p̂1 ≈ p′1. From the previous proposition we can infer that for λ2 at the right ε neighborhood
of λ ′

2, any other equilibrium will be of the second kind and p̃2 > p̂1. Thus, the range of
beliefs over which both players experiment will be the highest for the most heterogeneous
equilibrium.

The effect through the other channel is ambiguous when λ2 > λ ′
2. In this case, even in

the most heterogeneous equilibrium, there is a range of beliefs when player 1 free rides.
Hence, if the players switch arms earlier then it can have two effects. The range of beliefs
over which player 1 free rides can increase. At the same time, there is some higher range
of beliefs over which in the most heterogeneous equilibrium player 1 free rides while in the
other equilibrium player 2 free-rides. Thus, when we move from the most heterogeneous
equilibrium to any other equilibrium, we give up some good experiments at the lower belief
in return of having some good experiments at the higher belief. Thus the effect through this
channel is ambiguous. However, the range of beliefs over which player 1 free rides in the
most heterogeneous equilibrium goes to zero as λ2 → λ ′

2. Thus, at the right ε neighbor-
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hood of λ ′
2, there is a negative effect through this channel and this effect is a continuous

function of λ2. As already argued, the range of beliefs over which both players experiment
is higher for the most heterogeneous equilibrium when λ2 is in the right ε neighborhood
of λ ′

2. Since, the beliefs at which players’ value functions meet the best response lines are
continuous fucntions of λ2, there exists a λ ll

2 > λ ′
2 such that if λ2 ∈ (λ ′

2,λ
ll
2 ), the intensity

of experimentation will be highest for the most heterogeneous equilibrium.
Next, given λ1, consider λ2 such that λ2 → λ1. Then, from the results of the model with

homogeneous players, we know that the most heterogeneous equilibrium is always the one
with lowest intensity of experimentation. Since the beliefs at which the payoff functions
intersect the best response lines are all continuous functions of λ2, there exists a λ lh

2 with
λ ll

2 < λ lh
2 < λ1, such that for all λ2 ∈ (λ lh

2 ,λ1), the intensity of experimentation will be
lowest for the most heterogeneous equilibrium.

For λ2 ∈ (λ ll
2 ,λ

lh
2 ), the ranking between the most heterogeneous equilibrium and the

other equilibria is ambiguous. This happens because of the effect from the second channel
as explained above.

In the next section, we will briefly discuss that if we consider a model where the players
are identical in getting breakthrough along the good risky arm (i.e λ1 = λ2) but differ with
respect to the flow payoff obtained at the safe arm, the qualitative results obtained in the
paper this far are not altered.

3 Heterogeneity in the safe arm payoffs

Consider a variant of the model considered in the paper. Suppose players are identical in
their innate abilities in exploring the risky arm. That is, λ1 = λ2 = λ . However, they differ
with respect to the payoffs obtained by choosing the safe arm. Let si be the flow payoff
obtained by player i by choosing the safe arm such that

s1 < s2 < g

where g = λh.
We first show that the Planner’s solution will be of the same nature as obtained in the

model where players only differ with respect to their abilities to get a breakthrough along
the good risky arm.
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Planner’s Solution: The planner’s objective is to maximise the sum of the expected
payoffs of the players. Planner’s action is denoted by the pair (k1,k2) (ki ∈ {0,1}) . ki =

0(1) denotes that the planner has allocated player i at the safe(risky) arm. If v(p) is the
optimal value function of the planner, then the bellman equation of the planner is given by

v(p) = s1 + s2 + max
k1∈{0,1}

k1[b(p,v)− c1(p)]+ max
k2∈{0,1}

k2[b(p,v)− c2(p)]

where b(p,v) = λ p{2g−v−v
′
(1−p)}

r and ci(p) = si −gp

Analogous to the planner’s solution obtained in the previouis section, we can show that
there exist two thresholds p∗12 and p∗22 such that

s1µ
(2+µ)g− (s1 + s2)

= p∗12 < p∗22 < 1

where µ = r
λ . For all beliefs greater than p∗22, both players are made to choose the risky

arm. For beliefs greater than p∗12 and less than equal to p∗22, player 1 is made to choose the
risky arm and player 2 is made to choose the safe arm. For all beliefs less than or equal to
p∗12, both players are made to choose the safe arm.

Non-cooperative game:
We restrict ourselves to markovian strategies with the comon posterior as the state

variable. Let the strategy of player i be denoted as ki. It is defined by the mapping
ki : [0,1] → {0,1}. ki = 0(1) denotes that player i is choosing the safe(risky) arm. Let
vi(p) (i = 1,2) be the optimal value function of the players. Then, analogous to the previ-
ous section, the individual bellman equations are given as

v1 = s1 + k2[bn(p,v1)]+ max
k1∈{0,1}

k1[bn(p,v1)− (s1 −gp)]

and
v2 = s2 + k1[bn(p,v2)]+ max

k2∈{0,1}
k2[bn(p,v2)− (s2 −gp)]

where bn(p,vi) =
λ p{g−vi−v

′
i(1−p)}

r

We will now determine the best responses of the players. Consider player 1. Given
that player 2 is choosing the risky arm (i.e k2 = 1), player 1’s best response is to choose
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the risky arm as long as bn(p,v1) > s1 −gp. This implies that when player 1 is optimally
choosing the risky arm, we will have

v1 ≥ s1 + s1 −gp

Hence, given that the other player is choosing the risky arm, choosing the risky arm consti-
tutes a best response for player 1 as long as in the v− p plane, player 1’s value lies above
the line

D1 : v1 = s1 +[s1 −gp]

Similarly, for player 2, given that player 1 is choosing the risky arm, choosing the risky
arm constitutes a best response for player 2 as long as in the v− p plane, player 2’s value
lies above the line

D2 : v2 = s2 +[s2 −gp]

If player 2 is choosing the safe arm, then player 1 chooses the risky arm as long as the
belief is greater than p̄1s where

p̄1s =
µs1

(1+µ)g− s1

Similarly, if player 1 is choosing the safe arm, then player 2 chooses the risky arm as long
as the belief is greater than p̄2s where

p̄2s =
µs2

(1+µ)g− s2

Since, s1 < s2, we have p̄1s < p̄2s.
The best responses of the players are depicted in figure 6.

From figure 6, it can be observed that heterogeneity in safe arm payoffs makes the best
response lines of the players to lie apart from each other. When s1 = s2, then the lines
coincide with each other and when s2 = g, the lines are farthest apart from each other.
Hence, we see that the qualitative effect on the best response lines due to heterogeneity in
safe arm payoffs is the same as it is in the model where players differ only with respect to
their innate abilities in getting a breakthrough along the good risky arm. Thus, we can posit
that same kind of equilibrium analysis for different ranges of heterogeneity can be done.
The analytical characterisations will be different but they can be obtained in the identical
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Belief (p)

Value (v)

s1

s2

D1 : v = s1 +(s1 −gp)

pm
1 = s1

g

D2 : v = s2 +(s2 −gp)

pm
2 = s2

g0 1

Figure 6.

way as done in the previous section.

4 Conclusion

This paper has exhaustively characterised the equilbria in a two armed bandit game when
players are heterogeneous. As agents become heterogeneous, the most heterogeneous equi-
librium tends to become the equilibrium with maximum intensity of experimentation. As
heterogeneity between the agents increases, equilibrium in cut-off strategies exists. When
equilibria in both cut-off and non cut-off strategies exist, the intensity of experimentation is
always highest in the former. As heterogeneity increases further, the equilibrium in cut-off
strategies becomes the only surviving Markov perfect equilibrium. Thus, one of the crucial
take away of the paper is that, except for very low level of heterogeneity, we can always
characterise and identify the best equilibrium outcome of the game. Also, heterogeneity in
any for has the same qualitative effects on the non-cooperative solutions of the game.
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APPENDIX

A Verification arguments for the planner’s solution

First consider the range of beliefs p ∈ (p∗2,1). From the planner’s value function we know
that v(p) is this range satisfies

v(p) = vrr = gp+C(1− p)[Λ(p)]
r
λ

where g = λh and λ = λ1 +λ2. We have to show that bi(p,v)≥ s−gi p for i = 1,2.
From the expression of the value function we have

v
′
= g−C[Λ(p)]

r
λ

r
λ p

−C[Λ(p)]
r
λ
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This gives us

g− v− v
′
(1− p) =

(1− p)
p

r
λ

C[Λ(p)]
r
λ

Thus

bi(p,v)≡ λi p[
g− v− v

′
(1− p)

r
]≡ λi

λ
(1− p)C[Λ(p)]

r
λ ≡ λi

λ
[v−gp]

Hence,

bi(p,v)≥ s−gi p requires v ≥ λ
λi

s

Since for p ≥ p∗2, we have v ≥ λ
λ2

s, v > λ
λ1

s as λ1 > λ2. This implies that the value
function satisfies optimality on this range of beliefs. Further, since v(p∗2) =

λ
λ2

s, we can see
that at p = p∗2, the planner is just indifferent between having player 2 at the risky arm or at
the safe arm.

Next, consider the range p ∈ [p∗1, p∗2]. v(p) in this range satisfies

v(p) = vsr = s+[
λ1g+ rg1

λ1 + r
− sλ1

r+λ1
]p+C(1− p)[Λ(p)]

r
λ1

This gives us

[g− v− v
′
(1− p)] =

r(g− s)− rg1

λ1 + r
+

r
λ1

1
p

C(1− p)[Λ(p)]
r

λ1

Hence,

b1(p,v) = λ1 p
[g− v− v

′
(1− p)]

r
= v− s−g1 p

Thus,
b1(p,v)≥ s−g1 p requires v− s−g1 p ≥ s−g1 p ⇒ v ≥ 2s

Since this is satisfied for the range of beliefs considered, it is indeed optimal to keep
player 1 at the risky arm.

On the other hand we have

b2(p,v) = λ2 p
[g− v− v

′
(1− p)]

r
=

λ2

λ1
[v− s−g1 p]
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It is optimal to keep player 2 at the safe arm if

b2(p,v)≤ s−g2 p ⇒ v ≤ λ
λ2

s

For the range of beliefs considered, this condition is satisfied. Hence, we can infer that
it is indeed optimal to keep player 2 at the safe arm.

Further, since v(p∗1) = 2s we can infer that the planner is indifferent between having
player 1 at the safe arm or at the risky arm at the belief p = p∗1.

Finally, we check for the region p < p∗1. v = 2s for this region of beliefs. Thus we have

bi(p,v) =
λi

r
[g−2s]

bi(p,v)≤ s−gi p ⇒ p ≤ sµi

(µi +1)gi +g j, j ̸=i −2s

where µi =
r
λi

. From the expression of p∗1 we can infer that it is optimal to keep both players
at the safe arm for p < p∗1.

B Condition for existence of equilibrium in cutoff strate-
gies

We have argued that for an equilibrium in cutoff strategies to exist, we must have p∗n
2 > p

′
1.

Given a λ1, consider λ2 → λ1. In this case, the line D2 almost coincides with D1 and
from ([4]), we know that p∗n

2 < p
′
1.

As λ2 → s
h , the belief at which D2 intersects the horizontal line s approaches 1. Also,

F2 ≈ s as λ2 → s
h . Hence, p∗n

2 → 1 > p
′
1.

As λ2 decreases from λ1 to s
h , D2 shifts right with slope remaining the same and F2

becomes flatter. Hence, the belief at which F2 intersects D2 is monotonically decreasing in
λ2. On the other hand, as λ2 decreases, D1 becomes flatter and pivots downward along the
point ( s

g ,s). Hence, p
′
1 is monotonically increasing in λ2.

Thus there exists a λ ′
2 such that for all λ2 < λ ′

2, p∗n
2 > p

′
1
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C To show that p∗
2 < p∗n

2

At p∗n
2 we have

λ2bn
2(p,v2) = λ2 p∗n

2
{g2 − v2 − (1− p)v

′
2}

r
= s−g2 p∗n

2

This is because the private benefit to player 2 by staying at the risky arm is equal to the
cost to player 2 by moving to the safe arm.

However, due to player 2’s experimentation, player 1’s benefit is λ2bn
1(p,v1). Thus, if

player 2 continues to experiment along the risky arm at and at the left ε neighborhood of
p∗n

2 , the sum of payoffs will be higher. Since the sum of payoffs is highest for the planner’s
solution, we must have p∗n

2 > p∗2.

D vrs1
2 (p) lies below F1

2 (p) for all p < s
g2

We first show that vrs1
2 is strictly convex.

Consider the function

vrs
2 (p) = g2 p+C(1− p)[Λ(p)]

r
λ2

with C being determined from vrs
2 (ps) = s. Since ps <

s
g2

, the integration constant will be
strictly positive and hence the function will be strictly convex. By definition,

vrs1
2 ≡ vrs

2 (p)

with vrs
2 (ps) = F1

2 (ps). Since F1
2 (ps) > s, we must have the integration constant of vrs1

2 to
be strictly greater than that of vrs

2 with vrs
2 (ps) = s. Hence, vrs1

2 is strictly convex.
We have

vrs1
2 (p) = g2 p+Crs

2 (1− p)[Λ(p)]
r

λ2

and
F1

2 (p) = s+
λ1

λ1 + r
(g2 − s)p+Cs

2(1− p)[Λ(p)]
r

λ1
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This gives us

F1′
2 (ps) =

λ1

λ1 + r
(g2 − s)−Csr

2 [Λ(ps)]
r

λ1 [1+
r

λ1 ps
]

and
vrs1′

2 (ps) = g2 −Crs
2 [Λ(ps)]

r
λ2 [1+

r
λ2 ps

]

From the value matching condition at p = ps, we have

Crs
2 [Λ(ps)]

r
λ2 −Csr

2 (1− ps)[Λ(ps)]
r

λ1 =
s+ λ1

λ1+r (g2 − s)p−g2 p

(1− p)

Next, since [1+ r
λ2 ps

]> [1+ r
λ1 ps ] and Csr

2 > 0, we have

vrs′
2 (ps) = g2 −Crs

2 [Λ(ps)]
r

λ2 [1+
r

λ2 ps
]< g2 −Crs

2 [Λ(ps)]
r

λ2 [1+
r

λ1 ps
] = v̂′

2

Hence,

F1′
2 (ps)− v̂′

2 = { λ1

λ1 + r
(g2 − s)−g2}+

[1+ r
λ1
]{−g2 p+ s+ λ1

λ1+r (g2 − s)ps}
(1− ps)

=
r

λ1
[

s
ps

−g2]> 0

since ps <
s

g2
.

Since F1
2 (p) is strictly concave and vrs1

2 is strictly convex, for all p < s
g2

, F1
2 (p) will be

strictly above vrs1
2 (p).

E F1
1 (p) lies above vrs1

1 (p) as long as F1
1 (p)< D1(p)

At p = ps, player 2 changes to risky arm. Hence, at the right ε neighborhood of ps, the best
response of player 1 is to choose the safe arm. Given that player 2 is choosing the risky
arm, player 1’s best response will be to choose the safe arm as long as F1

1 (p) < D1(p).
Since player 1 always had the option of choosing the risky arm, it must be the case that as
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long as F1
1 (p)< D1(p), we must have

F2
1 (p)≥ vrr

1 (p) = g1 p+C(1− p)[Λ(p)]
r

(λ1+λ2)

with vrr
1 (ps) = vrs1

1 (ps).
Next, we prove that whenever vrr

1 (p) and vrs1
1 (p) intersect at a belief p < 1, it must be

the case that vrr′
1 (p)> vrs′

1 (p) .
Since at the belief p, vrr

1 (p) = vrs
1 (p), we have

g1(p)+Crr
1 (1− p)[Λ(p)]

r
(λ1+λ2) = g1 p+Crs

1 (1− p)[Λ(p)]
r

λ1

⇒Crr
1 [Λ(p)]

r
(λ1+λ2) =Crs

1 [Λ(p)]
r

λ1

Crr
1 > 0 and Crs

1 > 0.
This gives us

vrr′
1 (p) = g1 −Crr

1 [Λ(p)]
r

(λ1+λ2) [1+
r

(λ1 +λ2)p
] = g1 −Crs

1 [Λ(p)]
r

λ1 [1+
r

(λ1 +λ2)p
]

> g1 −Crs
1 [Λ(p)]

r
λ1 [1+

r
λ1 p

] = vrs1′
1 (p)

Consider the function vrr
1 (p) such that vrr

1 (ps) = vrs1
1 (ps). From our above conclusion

we can infer that at the right ε neighborhood of ps, vrr
1 (p) > vrs1

1 (p). Further, they cannot
cross again since if they have to cross then vrs1′

1 () would have to be strictly greater than
vrr′

1 (). However, as argued, this is not possible. Thus, for all ps < p < 1, vrr
1 (p)> vrs1

1 (p).
This implies that as long as F1

1 (p)< D1(p),

F1
1 (p)≥ vrr

1 (p)> vrs
1 (p)

F Proof of lemma 1

Proof.
Consider an equilibrium in non-cutoff strategies where player 1 switches arms at least

once over the range of beliefs p ∈ (p̄1, p1
s ).

In equilibrium, before player 1’s payoff meets D1 from below, if player 1 is choosing
the risky (safe) arm then player 2 must be choosing the safe (risky) arm. Hence, if player 1
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is choosing the risky arm, his payoff is given by

vrs
1 (p) = g1 p+Crs

1 (1− p)[λ (p)]
r

Λ1

The integration constant Crs
1 is determined from the value matching condition at the belief

where player 1 switches to the risky arm.
On the other hand, when player 1 chooses the safe arm, then his payoff is given by

F1(p) = s+
λ2

λ2 + r
(g1 − s)p+Csr

2 (1− p)[Λ(p)]
r

λ2

The integration constant Csr
2 is determined from the value-matching condition at the belief

where player 1 switches to the safe arm.
Suppose at a belief p̃1, player 1’s equilibrium payoff is below the line D1 and player

1 switches to the safe arm from the risky arm. Then the payoff to 1 at and to the left
neighborhood of p̃1 is given by vrs

1 (p) and at the right neighborhood of p̃1 is given by
F1(p) with F1(p̃1) = vrs

1 (p̃1). We will now argue that as long as F1(p) is below the line
D1, F1(p) will be strictly above vrs

1 (p). Given that player 2 is choosing the risky arm,
player 1’s best response will be to choose the safe arm as long as F1

1 (p) < D1(p). Since
player 1 always had the option of choosing the risky arm, it must be the case that as long
as F1

1 (p)< D1(p), we must have

F2
1 (p)≥ vrr

1 (p) = g1 p+C(1− p)[Λ(p)]
r

(λ1+λ2)

with vrr
1 (p̃1) = vrs

1 (p̃1).
Next, we prove that whenever vrr

1 (p) and vrs1
1 (p) intersect at a belief p < 1, it must be

the case that vrr′
1 (p)> vrs′

1 (p) .
Since at the belief p, vrr

1 (p) = vrs
1 (p), we have

g1(p)+Crr
1 (1− p)[Λ(p)]

r
(λ1+λ2) = g1 p+Crs

1 (1− p)[Λ(p)]
r

λ1

⇒Crr
1 [Λ(p)]

r
(λ1+λ2) =Crs

1 [Λ(p)]
r

λ1

Crr
1 > 0 and Crs

1 > 0.
This gives us

vrr′
1 (p) = g1 −Crr

1 [Λ(p)]
r

(λ1+λ2) [1+
r

(λ1 +λ2)p
] = g1 −Crs

1 [Λ(p)]
r

λ1 [1+
r

(λ1 +λ2)p
]
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> g1 −Crs
1 [Λ(p)]

r
λ1 [1+

r
λ1 p

] = vrs1′
1 (p)

Consider the function vrr
1 (p) such that vrr

1 (p̃1) = vrs1
1 (p̃1). From our above conclusion

we can infer that at the right ε neighborhood of p̃1, vrr
1 (p) > vrs1

1 (p). Further, they cannot
cross again since if they have to cross then vrs1′

1 () would have to be strictly greater than
vrr′

1 (). However, as argued, this is not possible. Thus, for all ps < p < 1, vrr
1 (p)> vrs1

1 (p).
This implies that as long as F1

1 (p)< D1(p),

F1
1 (p)≥ vrr

1 (p)> vrs
1 (p)

Let p̂1 be the belief where player 1 switches arms for the first time before his payoff
meets D1. It must be the case that p̂1 > p̄2 and at p = p̂1, player 1 switches from the risky
arm to the safe arm. From our arguments made above, we know that for p > p̂1, as long
as player 1 is choosing the safe arm in equilibrium, player 1’s payoff will always be above
v̄1

rs.
Next, consider a situation when over a range of beliefs greater that p̂1, player 1’s payoff

is below the line D1 and player 1 is choosing the risky arm. Then over this range of beliefs,
player 1’s payoff vrs

1 (p) must be strictly above v̄1
rs. This is because at the belief when

player 1 switched from the safe arm to the risky arm, vrs
1 (p) and F1(p) were equal. This

implies that at that belief vrs
1 (p) was strictly greater than v̄1

rs(p). Hence, for all p < 1,
vrs

1 > v̄1
rs(p). Thus, we have argued for beliefs p > p̂1, as long as the payoff function of

player 1 is below D1, it lies strictly above v̄1
rs(p). Hence, if p1

s is the belief where player
1’s payoff meets the line D1, then p1

s < p
′
1. This concludes the proof of the lemma.

G Proof of lemma 2

Proof.
Consider an equilibrium in non-cutoff strategies. In equilibrium, before the payoff of

player 2 meets the best response line D2, if player 2 is choosing the risky (safe) arm then
player 1 must be choosing the safe (risky) arm. Hence, if player 2 is choosing the risky arm
then his payoff is given by

vrs
2 (p) = g2 p+Crs

2 (1− p)[Λ(p)]
r

λ2
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The integration constant Crs
2 is determined from the value matchign condition at the belief

where player 2 switches to the risky arm from the safe arm.
On the other hand if player 2 is choosing the safe arm then his payoff is given by

F2(p) = s+
λ1

λ1 + r
(g2 − s)p+Csr

2 (1− p)[Λ(p)]
r

λ2

The integration constant Csr
2 is determined from the value matchign condition at the belief

where player 2 switches from the risky arm to the safe arm.
Suppose at a belief p̃2 > p̄1 player 2’s payoff is below the best response line D2 and

player 2 switches from the safe arm to the risky arm. Then, the payoff to 2 at and at the
left neighborhood of p̃2 is given by F2(p) and at the right neighborhood of p̃2 is given by
vrs

2 (p) with F2(p̃) = vrs
2 (p̃). We will now argue that as long as p < s

g2
, vrs

2 (p)< F2(p).
We first show that vrs1

2 is strictly convex.
Consider the function

v̂rs
2 (p) = g2 p+Crs

2 (1− p)[Λ(p)]
r

λ2

with Crs
2 being determined from v̂rs

2 (p̃2) = s. Since p̃2 <
s

g2
, the integration constant will be

strictly positive and hence the function will be strictly convex. By definition,

vrs
2 ≡ vrs

2 (p)

with vrs
2 (p̃) = F1

2 (p̃). Since F2(p̃) > s, we must have the integration constant of vrs
2 to be

strictly greater than that of v̂rs
2 . Hence, vrs

2 is strictly convex.
We have

vrs
2 (p) = g2 p+Crs

2 (1− p)[Λ(p)]
r

λ2

and
F2(p) = s+

λ1

λ1 + r
(g2 − s)p+Csr

2 (1− p)[Λ(p)]
r

λ1

This gives us

F
′
2(p̃2) =

λ1

λ1 + r
(g2 − s)−Csr

2 [Λ(p̃2)]
r

λ1 [1+
r

λ1 p̃2
]

46



and
vrs′

2 (p̃2) = g2 −Crs
2 [Λ(p̃2)]

r
λ2 [1+

r
λ2 p̃2

]

From the value matching condition at p = p̃2, we have

Crs
2 [Λ(p̃2)]

r
λ2 −Csr

2 (1− p̃2)[Λ(p̃2)]
r

λ1 =
s+ λ1

λ1+r (g2 − s)p̃2 −g2 p̃2

(1− p̃2)

Next, since [1+ r
λ2 p̃2

]> [1+ r
λ1 p̃2

] and Csr
2 > 0, we have

vrs′
2 (p̃2) = g2 −Crs

2 [Λ(p̃2)]
r

λ2 [1+
r

λ2 p̃2
]< g2 −Crs

2 [Λ(p̃2)]
r

λ2 [1+
r

λ1 p̃2
] = v̂′

2

Hence,

F1′
2 (p̃2)− v̂′

2 = { λ1

λ1 + r
(g2 − s)−g2}+

[1+ r
λ1
]{−g2 p̃2 + s+ λ1

λ1+r (g2 − s)p̃2}
(1− p̃2)

=
r

λ1
[

s
p̃2

−g2]> 0

since ps <
s

g2
.

Since F1
2 (p) is strictly concave and vrs1

2 is strictly convex, for all p < s
g2

, F2(p) will be
strictly above v2rs1(p).

Let p̂2 ∈ (p̄1, p2
s ) be the belief where player 2 switches arms for the first time. It must

be the case that p̂2 > p̄2 and at p = p̂2, player 2 switches from the safe arm to the risky
arm. From our arguments made above, we know that as long as p > p̂2, as long as player 2
is choosing the risky arm, player 2’s payoff will be strictly below F̄2(p).

Next, consider a situation when over a range of beliefs greater than p̂2, player 2’s payoff
is below the line D2 and player 1 is choosing the safe arm. Then, over this range of beliefs,
player 2’s payoff F2(p) must be strictly below F̄2(p). This is because at the belief when
player 2 switched from the risky arm to the safe arm, F2(p) = vrs

2 (p). This implies that
F2(p) was strictly greater than F̄2(p). Hence, for all p < 1, F2(p)< F̄2(p). Thus, we have
argued that for beliefs p > p̂2, as long as the payoff function of player 2 is below the line
D2, it lies strictly below F̄2(p). Hence, p2

s > p∗n
2 . This concludes the proof of the lemma
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H Welfare comparison

Lemma 4 Consider two equilibria in non-cutoff strategies and a range of beliefs [pl, ph].

In equilibrium 1 for all p in[pl, ph] and at the left ε neighborhood of pl , player 1 chooses the

risky arm and player 2 chooses the safe arm. In equilibrium 2, for all p ∈ [pl, ph], player 1
chooses the safe arm and player 2 chooses the risky arm. At p = pl , if the aggregate payoff

in equilirbium 1 is greater than or equal to that in equilibrium 2, then the aggregate payoff

in equilibrium 1 is strictly higher than that in equilibrium 2 for all p ∈ (pl, ph].

Proof.
First consider the case when at p = pl , the aggregate payoffs in both the equilibria are

equal. We denote the aggregate payoff in equlibrium 1 and 2 by v12 and v21 respectively.
When player 1 chooses the risky arm and player 2 chooses the safe arm, the aggregate
equilibrium payoffs of the players are given by

v12 = s+
[λ1g+ rg1

λ1 + r
− sλ1

λ1 + r

]
p+C12(1− p)[Λ(p)]

r
λ1

When player 1 chooses the safe arm and player 2 chooses the risky arm, the aggregate
equilibrium payoffs of the players are given by

v21 = s+
[λ2g+ rg2

λ2 + r
− sλ2

λ2 + r

]
p+C21(1− p)[Λ(p)]

r
λ2

We denote
[λ1g+rg1

λ1+r − sλ1
λ1+r

]
= A and

[λ2g+rg2
λ2+r − sλ2

λ2+r

]
= B.

At p = pl , the aggregate payoffs of the players are the same. This implies that at p = pl

we have
(1− pl)[C21[Λ(p)]

r
λ1 −C12[Λ(p)]

r
λ1 ] = p[A−B]

⇒ [C21[Λ(p)]
r

λ2 −C12[Λ(p)]
r

λ1 ] =
pl

1− pl
[A−B]> 0

The derivatives of the aggregate payoffs are given by

v
′
12 = A−C12[Λ(p)]

r
λ1 [1+

r
λ1

1
p
]

v
′
21 = B−C21[Λ(p)]

r
λ2 [1+

r
λ2

1
p
]
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This gives us

v
′
12 − v

′
21 = [A−B]+C21[Λ(p)]

r
λ2 [1+

r
λ2

1
p
]−C12[Λ(p)]

r
λ1 [1+

r
λ1

1
p
]> 0

This shows that for all p ∈ (pl, ph), v12 > v21.
Next, consider the case when at p = pl , the aggregate payoff in equilibrium 1 is strictly

higher than that in equilibrium 2. In that case let the aggregate payoff in equilibrium 2 be
denoted by v2

21 where

v2
21 = s+

[λ2g+ rg2

λ2 + r
− sλ2

λ2 + r

]
p+C2

21(1− p)[Λ(p)]
r

λ2

Since v2
21(pl) < v21(pl), we have C2

21 < C21. This implies that for all p ∈ (pl, ph] we
have v2

21 < v21. This proves that for all p ∈ (pl, ph], v12 > v2
21

Lemma 5 Consider two equilibria and a range of beliefs [pl, ph]. In one equilibrium

(Equilibrium 1) both players choose the risky arm for all p ∈ [pl,1]. In the other equi-

librium, both players choose risky arm for p ∈ [ph,1] and only one player chooses the risky

arm for p ∈ [pl, ph]. If the aggregate equilibrium payoff in equilibrium 1 at p = pl is at

least as large as that in equilibrium 2, then the aggregate payoff in the former equilibrium

is strictly higher than that in the later for all p ∈ (p,1)

Proof. We will show this only for the case when only one player chooses the risky arm, it
is player 1 who does it. The other case can be shown in similar manner. First consider the
case when vrr(pl) = vsr(pl).

vrr = gp+Crr(1− p)[Λ(p)]
r
λ

vsr = g1 p+
λ1

λ1 + r
(g2 − s)p+Csr(1− p)[Λ(p)]

r
λ1

From vrr(pl) = vsr(pl), we have

Csr[Λ(p)]
r

λ1 −Crr[Λ(p)]
r
λ =

pl

(1− pl)
[
rg2 +λ1s

λ1 + r
]> 0

v
′
rr = g−Crr[Λ(p)]

r
λ [1+

r
λ

1
p
]
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v
′
sr = g1 +

λ1

r+λ1
(g2 − s)−Csr[Λ(p)]

r
λ1 [1+

r
λ1

1
p
]

This gives us

v
′
rr − v

′
sr = g2 −

λ1

r+λ1
(g2 − s)+Csr[Λ(p)]

r
λ1 [1+

r
λ1

1
p
]−Crr[Λ(p)]

r
λ [1+

r
λ

1
p
]

Since [1+ r
λ1

1
p ]> [1+ r

λ
1
p ]

v
′
rr − v

′
sr > 0

This proves that for all p ∈ (pl,1), vrr > vsr.
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