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Abstract

For any given preference profile of voters, a social welfare relation is a complete

binary relation over the set of alternatives. A social welfare relation is distance-

minimising if it selects a binary relation that is ‘closest’ to the given voter profile

according to the a notion of distance defined over the set of all possible preference

orderings. We define a quaternary relation over the set of all preference orderings and

assume that it satisfies certain ‘weak’ assumptions. We show that under these condi-

tions there exists a distance function over which the class of majoritarian social welfare

relations is distance-minimising. We also characterize the majority binary relation over

which these conditions become necessary.
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1 Introduction

Social choice theory, from its conception, has been concerned with aggregation of voter

preferences. The well-known Arrow’s result states that no such aggregation is possible when

certain ‘appropriate’ properties are imposed on the aggregating rule. A significant amount

of literature has attempted to avoid these problems by either restricting the domain of

preferences or by relaxing some of the axioms.1 In this paper we take the latter approach by

relaxing the assumption of transitivity of the social welfare relation.

We know from the literature that transitivity of the social welfare relation is a strong

requirement and it is only guaranteed by imposing certain assumptions on individual prefer-

ences.2 Transitivity of social welfare relations has been known to produce irrational outcomes.

For example, Fishburn (1970) show that transitive social choice functions may contradict

with the principles of unanimity for some vote profiles.

We already know social welfare relations may violate transitivity even though individual

preferences are transitive.3 This implies that requiring the social welfare relation to be

transitive is much stronger requirement than imposing it on individual preferences. We

provide an example of a situation when relaxing this assumption may be useful.

Consider a setting where the central planner has not yet decided to implement a single

outcome. In such a situation her only concern is to obtain a complete social binary relation

from the individual preferences. The decision to produce a good is therefore, postponed for

a later time. Moreover, in cases of tie, i.e., when one outcome needs to be implemented and

no majority winner exists, a tie-breaking rule can be used to obtain a final outcome.

We impose an ordinal notion of ‘similarity’ over the set of all preference orderings. This

is represented by a quaternary relation which is defined over the set of all binary relations

over the set of alternatives. A quaternary relation compares pairs of binary relations and

orders them according to their ‘similarity’ or ‘dissimilarity’.

We impose certain ‘natural’ properties on the quaternary relation and show that there

exist distance functions, defined over the set of all preference orderings, which represent

the given quaternary relation. We use the literature on measurement theory (Krantz et al.

(1990)) to show that this distance function satisfies certain additional properties.

We show that these properties are sufficient for the class of majoritarian social welfare

relations to be the unique class of distance-minimising social welfare relations. We also show

that if we relax the assumption of transitivity on the voter preferences then these properties

are necessary and sufficient for specific class of majoritarian social welfare relations. We

give a brief description of the model and discuss the literature and our contribution to this

literature.

1See Arrow et al. (2010) for detailed exposition of the social choice literature on avoiding the negative

results of Arrow.
2Sen and Pattanaik (1969) provide conditions on individual choice functions which guarantee transitivity

of the social choice function.
3This is exemplified by the famous Condorcet’s paradox.
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1.1 Model and Results

Consider a model with finite number of voters and alternatives. Each voter submits a pref-

erence ordering over the set of alternatives. The social welfare relation outputs a complete,

but not necessarily transitive, binary relation.

We define a quaternary relation Q over the set of all binary relations over the set of

alternatives as follows. We write (W1W2)Q(W3W4) if and only if W1 and W2 are ‘more

similar’ to each other than W3 and W4. Alternatively this can also be defined in terms of

‘dissimilarity’ (see Krantz et al. (1989) for a complete theory of measurement).

We impose the following properties over the quaternary relation- (i) linear (ii) symmetric

(iii) closest at identity (iv) equivalence of identical pairs (v) Q-betweenness and (vi) collinear-

ity. All the properties except Q-betweenness are standard in the literature on measurement

theory. We briefly explain Q-betweenness.

We use the notion of betweenness of preferences to define Q-betweenness. A profile W2 is

between W1 and W3 if it contains all the common ordered pairs in W1 and W3 but not those

which are in neither of them. For example, suppose the set of alternatives is {x, y, z}. Let

W1 = {(x, y), (y, x), (y, z), (z, x)}, W2 = {(x, y), (y, z), (z, x)}, W3 = {(x, y), (y, z), (x, z)}
and W4 = {(x, y), (y, z), (z, y), (z, x)} be four complete binary relations over the set of alter-

natives. Then W2 is between W1 and W3 but W4 is not between W1 and W3 since it consists

of the pair (z, y) which is in neither W1 nor W3 even though it contains the common pairs

(x, y) and (y, z) between W1 and W3. This has become a standard notion of betweenness in

the social choice literature due to its properties.4

Suppose W1 is between W2 and W3. Then Q-betweenness requires that W1 and W2

be strictly more similar to each other according to Q than W1 and W3 are to each other.

Similarly, it also requires that W2 and W3 are strictly more similar to each other according

to Q than W1 is to W3.

This property allows us to “embed” a notion of betweenness that is appropriate in this

social choice setting. Moreover, the standard notion of imposing collinearity as in Krantz

et al. (1990) is too weak and does not guarantee the additivity property of the distance

metric that we require for our main result. We describe the majoritarian social welfare

relation below.

Suppose for a given profile at least a majority of voters weakly prefer x over y. A social

welfare relation is majoritarian if x is socially weakly preferred to y under this rule for the

given profile. We use the following notion for our result.

Let d be a distance metric defined over the set of binary relations. A social welfare

relation is distance-minimising if it minimizes the sum of the distances between itself and

the preference orderings of the voters. We briefly state our main result.

Suppose the quaternary relation Q satisfies assumptions (i)-(vi). Then there exists a dis-

4There are numerous works which deal with the same notion of betweenness. See, for example, Nehring

and Puppe (2007), Can and Storcken (2013) and Lainé et al. (2016).
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tance function d which is a numerical representation of Q such that the class of majoritarian

social welfare relations is the unique class of distance-minimising. This implies that any

majoritarian social welfare relation will minimize the sum of the distances (corresponding to

d) between itself and the voter preferences when compared to any other non-majoritarian

social welfare relation.

We show that the properties satisfied by the distance metric d which makes this result

possible are weaker than the ones used in the literature. More specifically, the additivity

of the distance function guarantees our result. We show that Kemeny’s notion of distance

belongs to this broad class of ‘additive’ distance metrics.

Later, in the discussion of our mail result we provide an example of a distance metric

which satisfies additivity and is not Kemeny. Therefore, the set of distance metrics over

which the class of majoritarian social welfare relations is distance-minimising is large.

Our second result characterizes the specific class of majoritarian social welfare relation

that is distance-minimising over the same distance metric that was used for our main re-

sult. Moreover, this distance metric satisfies properties which are necessary and sufficient to

guarantee that this class of social welfare relations will be distance-minimising. We call the

social welfare relations which belong to this class as majority binary relation.

It is necessary to relax the assumption of transitivity of voter preferences to obtain the

properties of the distance metric. We describe this rule below.

The majority binary relation always strictly prefers x over y if either (i) a strict majority

strictly prefers x over y or (ii) a strict minority (i.e. strictly less than half the number of

voters) prefer (weakly or otherwise) y over x.

If half the voters strictly prefer x over y and the other half strictly prefers y over x then

a tie-breaking rule is applied. The tie-breaking rule is such that any of the three possible

orderings can be chosen x and y: (i) x strictly preferred over y (ii) y strictly preferred over

x and (iii) x and y indifferent. We assume for completeness that it chooses each with equal

probability but this is not important for our result. However, the fact that each of the three

orderings is possible under the tie-breaking rule is important for our second result.

1.2 Literature Review

A large amount of work in the literature on social choice theory has dealt rationalizing

different social aggregators through the use of a distance notions defined over the set of

possible preferences.5

It is well known in the literature on median rules that the majoritarian social welfare

5A part of this literature deals with choosing aggregating rules which select outcomes or rankings closest

to the profile which would have unanimously selected the prescribed outcome (see Lerer and Nitzan (1985))

and Andjiga et al. (2014)).

Other works like Bossert and Storcken (1992), Nehring and Puppe (2002) and Nehring and Puppe (2007)

study the existence of ‘suitable’ strategy-proof social welfare functions in median spaces.
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relation maximises the sum of pairwise agreements between the voters’ preferences and itself

(Monjardet (2005)).

The social welfare relation which satisfies the above condition is also known as a median

rule or Kemeny’s rule (Kemeny (1959), Kemeny (1972)). These rules pick the ‘median’ in

some metric space depending on the corresponding notion of distance. However, in most of

these papers Kemeny’s notion of distance is used for computing median rules.6

As noted in the literature, it is easy to verify that Condorcet’s majority relation and

Kemeny’s median procedure are the same (Monjardet (2005)). This implies that the majority

binary relation is the unique distance minimising rule under the Kemeny’s notion of distance.

In other words, when the social welfare relation is transitive, then the majority binary relation

is the unique representative distance-minimising social welfare relation. This is a direct

application of Demange (2012).

However, all of these works assume Kemeny’s notion of distance when measuring distances

between preference orderings. Even though Kemeny’s notion is ‘suitable’ for social choice

theoretic settings, our result implies that for a broader class of distance functions the ma-

joritarian social welfare relations are distance-minimising. And, as noted above, Kemeny’s

notion of distance is a special case of these additive distance notions.

We aim to add to the literature in social choice theory which deals with the relaxation

of transitivity of the social welfare relation. A prominent result in this literature is that of

May (1952) which states that when there are two alternatives the majority rule is the only

rule that is decisive, egalitarian, neutral and positively responsive. The result immediately

extends to the case of multiple alternatives if the social welfare relation satisfies independence

of irrelevant alternatives.

Other works include Dasgupta and Maskin (2008) which shows that the majority rule is

the ‘most robust’ voting rule for ‘any’ domain. More specifically, they show that it satisfies

pareto, anonymity, neutrality, independence of irrelevant alternatives and decisiveness.

Our paper adds to the literature on majoritarian social choice relations and provides

additional results in favour of these rules. This work also aims to contribute to the literature

on median rules and distance-based analysis in the social choice literature.

The paper is organised as follows. Section 2 describes the model. Section 3 states the

main result and the proof while section 3.1 provides a discussion of its implications. Section

4 provides a characterization while section 5 concludes.

6The Kemeny distance is defined as follows: d(W1,W2) = |W1\W2|+ |W2\W1| for all W1,W2. This has

become a widely used notion of distance in the social choice literature. See Young and Levenglick (1978) for

an application of Kemeny’s distance to the problem of Condorcet consistency.
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2 The Model

2.1 Notation

The set of voters is N. Let X be the finite set of alternatives. A binary relation W on X

is a subset of X × X such that (i) (x, y) ∈ W if and only if x is weakly preferred to y (ii)

(x, y) ∈ W and (y, x) ∈ W if and only if x and y are indifferent and (iii) (x, y) ∈ W and

(y, x) /∈ W if and only if x is strictly preferred to y. Alternatively, we will write xWy when

x is weakly preferred to y, xWPy when x is strictly preferred to y, and xWIy when x and y

are indifferent according to W . A binary relation W is complete if either (x, y) ∈ W or (y, x)

or both for any x, y ∈ X. Let the set of all complete binary relations beW . In this paper we

will only consider complete binary relations and we will use W to denote a generic element

of W . A binary relation S ∈ W is strict if [(x, y) ∈ S]⇔ [(y, x) /∈ S] for all x, y ∈ X. Let S
be the set of all strict binary relations.

A binary relation R ∈ W is an ordering if it is reflexive, complete and transitive.7 Let R
be the domain of all orders. An ordering is strict P ∈ W if it also a strict binary relation.

Let P be the set of all strict orderings. Therefore, P ⊆ R ⊆ S ⊆ W .

For any W1,W2,W3 ∈ W we say that W2 is between W1 and W3 if and only if (W1∩W3) ⊆
W2 ⊆ (W1∪W3). In other words, W2 contains all the ordered pairs common to both W1 and

W3 but not those which are in neither of them. This notion of betweenness is natural in this

setting and is commonly used in the social choice literature.8

Let B(W1,W2) = {W ′ ∈ W|W ′ is between W1 and W2} and let b(W1,W2) = |B(W1,W2)|
denote the number of profiles between W1 and W2.

Let W1\W2 denote the ordered pairs in W1 which are not in W2. Two binary relations

W1,W2 ∈ W are adjacent if |W1\W2| + |W2\W1| = 1 i.e. they only differ by one ordered

pair.

A path between W and W ′ is collection of profiles ρ = (W0,W1, . . . ,Wq) where (i) W0 =

W and Wq = W ′ (ii) |W\W ′| + |W ′\W | = q and (iii) Wj and Wj+1 are adjacent for all

j ∈ {0, . . . , q − 1}. Note that there may be multiple paths between any two profiles W1 and

W2.

Let N denote a non-empty subset of N consisting of n voters. A social welfare relation

F : ∪N∈NRn → W is a binary relation over the set of alternatives. Therefore, for any non-

empty subset of voters N ⊆ N and vote profile π ∈ Rn the social welfare relation outputs a

binary relation F (π).9 We denote by F the set of all social welfare functions.

We impose the following ordinal notion of ‘similarity’ between pairs of binary relations.

A quaternary relation Q on W is a subset of W2 ×W2. We write (W1W2,W3W4) ∈ Q or

7A binary relation R is complete if either aRb or bRa or both, reflexive if aRa for all a and transitive if

aRb and bRc implies aRc for all a, b, c.
8For other applications of betweenness in the social choice literature see Nehring and Puppe (2007), Can

and Storcken (2013) and Lainé et al. (2016).
9Our main result does not depend on this variable population definition of the social welfare relation.
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(W1W2)Q(W3W4) if and only if W1 and W2 are ‘more similar’ to each other than the pair W3

and W4.
10 Let QP and QI denote the strict or asymmetric and the indifferent component of

Q respectively defined in the usual way. We impose the following properties on Q.

(i) Linear: Q is reflexive, complete and transitive.

(ii) Symmetric: For all W1,W2 ∈ W , (W1,W2)Q(W2,W1).

(iii) Closest at identity: For all distinct W1,W2 ∈ W , (W1,W1)QP (W2,W1).

(iv) Equivalence of identical pairs: For all W1,W2 ∈ W , (W1,W2)Q(W2,W2).

(v) Q-betweenness: For any W1,W2,W3 ∈ W , if W2 ∈ B(W1,W3) then

(W1,W2)QP (W1,W3) and (W2,W3)QP (W1,W3).

This property is different from the more general notion of betweenness used in the

theory of measurement. However, in the social choice setting this is a natural assump-

tion since it states that when a binary relation W2 is between W1 and W3. Moroever,

Q-betweenness along with the collinearity (defined below) implies that profiles which

have more ordered pairs in common between them are closer to each other terms of Q.

(vi) Collinearity: Let W1,W2,W3 ∈ W distinct be such that W2 ∈ B(W1,W3). For all

distinct W ′
1,W

′
2,W

′
3 ∈ W such that W ′

1 ∈ B(W ′
2,W

′
3),

1. If (W1,W2)Q(W ′
1,W

′
2) and (W ′

1,W
′
3)Q(W1,W3), then (W2,W3)Q(W ′

2,W
′
3).

2. If either of the preceding antecedent inequalities is strict, then the consequent

inequality is strict as well.

The ternary relation (W1,W2,W3〉 holds if W1,W2,W3 satisfy collinearity.11 We write

〈W1,W2,W3〉 if both (W1,W2,W3〉 and 〈W1,W2,W3) hold.

By respects betweenness and collinearity, [W2 ∈ B(W1,W3)] ⇔ [〈W1,W2,W3〉]. The

structure 〈W , Q〉 is a proximity structure iff Q satisfies properties (i)-(iv). In the literature

on measurement theory it has been shown that a quaternary relation can be numerically

represented by a distance function (Krantz et al. (1990)). We define a distance function

below.

Definition 1 (Distance) A function d :W×W → R+ is a distance function if it satisfies

the following properties,

(i) Non-negativity: d(W1,W2) ≥ 0 for all W1,W2 ∈ W .

(ii) Identity of indiscernibles: d(W1,W2) = 0 if and only if W1 = W2.

10Alternatively, Q can also be defined as a notion of ‘dissimilarity’. See Krantz et al. (1971), Krantz et al.

(1990) and Krantz et al. (1989) for a comprehensive theory of measurement.
11Most of the terminology is adopted from Krantz et al. (1990).
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(iii) Symmetry: d(W1,W2) = d(W2,W1) for all W1,W2 ∈ W .

(iv) Triangle Inequality: d(W1,W3) ≤ d(W1,W2) + d(W2,W3) for all W1,W2,W3 ∈ W .

For any given profile π ∈ W let n(x, y) = |{i|(x, y) ∈ Wi}| be the number of voters who

weakly prefer x over y. Similarly define n(y, x). Our main result characterizes the distance

metric over which the following class of majority binary relations are the distance minimising.

We define this below.

Definition 2 (Distance-minimising) A social welfare relation F is distance-minimising

with respect to a distance function d if for every profile π = (W1, . . . ,Wn) ∈ Wn,

F ∈ argmin
F ′∈F

n∑
i=1

d(Wi, F
′(π)) ∀F ∈ F .

Therefore, a social welfare relation is distance-minimising if it picks the ‘closest’ aggregate

preference relation according to the distance function d when compared to any element

outside this class.

These rules are called “median” rules by Kemeny (1959) and characterized in Young and

Levenglick (1978) and Can and Storcken (2013).12 We can define this for a class of social

welfare functions as follows.

A class of social welfare relations F c is distance-minimising with respect to a distance

function d if for every profile π = (W1, . . . ,Wn) ∈ Wn,

F ∈ argmin
F ′∈F\Fc

n∑
i=1

d(Wi, F
′(π)) ∀F ∈ F c.

Therefore, a class of social welfare relation is distance-minimising if any element of the

class picks the ‘closest’ aggregate preference relation according to the distance function d

when compared to any element outside this class.

It is well-known that majority outcomes over pairwise decisions form a class of distance-

minimising social welfare relations (Monjardet (2008)). However, most of the literature on

median rules only consider the Kemeny notion of distance to define. It is well known that

if the distance is Kemeny then the majority binary relation will be the median rule for any

odd profile (see Demange (2012)). We define majoritarian social welfare relations below.

Definition 3 (Majoritarian) A social welfare relation FM is a majoritarian if for all

π ∈ Rn for all x, y ∈ X [
n(x, y) ≥ n

2

]
⇒
[
(x, y) ∈ FM(π)

]
.

12Rules which minimize the square of sum of distances between the social welfare relation and the corre-

sponding vote profile are called mean rules.
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Let FM denote the class of all majoritarian social welfare relations. A majority binary

relation always weakly prefers x over y if atleast a weak majority of voters weakly prefer x

over y.

3 Main Result

Theorem 1 Suppose Q, the quaternary relation on W × W , satisfies properties (i)-(vi).

Then there exists a distance function d which is the numerical representation of Q over

which the class of majoritarian social welfare relations is distance-minimising.

In other words, Theorem 1 states that given a quaternary relation that satisfies the

mentioned properties any majoritarian social welfare relation will be ‘closer’ to the preference

profile when compared to any non-majoritarian social welfare relation with respect to any

d which is a numerical representation of Q. Moreover, as we will show later, the class of

distance functions over which majoritarian social welfare relations are distance-minimising

contains the Kemeny distance.

Proof: Suppose Q is a quaternary relation onW which satisfies properties (i)-(vi). We first

show the existence of a distance function d which numerically represents Q. We then show

that a majoritarian binary relation is distance-minimising with respect to d.

By definition, 〈W , Q〉 is a proximity structure. As argued above, 〈W1W2W3〉 ⇔ W1 ∈
B(W2,W3) for all W1,W2,W3 ∈ W . We use the results of Krantz et al. (1990) to prove our

claim. We appropriately modify their definition of segmentally additive proximity structure

as follows.

Definition 4 A proximity structure 〈W , Q〉 with a ternary relation 〈〉 defined in terms of

Q is segmentally additive iff the following condition holds for all W1,W2,W3,W5 ∈ W ,

If W1 6= W2, then there exist W ′
0, . . . ,W

′
n ∈ W such that W ′

0 = W1, W
′
n = W2 and

(W ′
i−1,W

′
i )Q(W1,W2).

Therefore, 〈W , Q〉 is a segmentally additive with the ternary relation 〈〉 as defined above.

The definition in Krantz et al. (1990) includes an added condition which states that if

(W1,W2)Q(W3,W5) then there exits W4 ∈ W such that (W1,W2)QI(W3,W4). With our

additional notion of betweenness above their following result can be proved without this

additional assumption.

Proposition 1 (Krantz et al. (1990)) Suppose 〈W , Q〉 is a segmentally additive proximity

structure. Then there exists a real-valued function d : W × W → R+ such that for any

W1,W2,W3,W4 ∈ W ,

1. 〈W , d〉 is a metric space.
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2. (W1,W2)Q(W3,W4) iff d(W1,W2) ≤ d(W3,W4).

3. 〈W1,W2,W3〉 iff d(W1,W2) + d(W2,W3) = d(W1,W3).

4. If d′ is another metric on W satisfying the above conditions, then there exists α > 0

such that d′ = αd.

We refer the reader to Krantz et al. (1990) for the proof of this result. Their proof can

be modified easily using our definition of segmentally additive proximity structures. This is

due to fact that our notion of ‘betweenness’ is a special case of their notion of betweenness

as given by collinearity in the description of the model above. Therefore, we omit the proof

of this result and proceed to proving our claim.

We now show that given any majoritarian social welfare relation FM and for all π ∈ Rn,

n∑
i=1

d(Ri, F
M(π)) ≤

n∑
i=1

d(Ri, F
′(π)) ∀F ′ /∈ FM .

We prove this by contradiction. Suppose FM is a majoritarian social welfare relation and

for some F ′ /∈ FM and π ∈ Rn,
∑n

i=1 d(Ri, F
M(π)) >

∑n
i=1 d(Ri, F

′(π)).

We fix the profile π and for simplicity write F instead of F (π) for the remaining part

of the proof. We construct a sequence of social welfare relations (F 0, F 1, . . . , F q) such that

F 0 = F ′, F q = FM and the following holds,

n∑
i=1

d(Ri, F
j+1) ≤

n∑
i=1

d(Ri, F
j) ∀ j ∈ {0, q − 1}.

Let F 0 = F ′. Since F ′(π) 6= FM(π) there exists a pair x, y ∈ X such that either (i)

(x, y) ∈ FM and (x, y) /∈ F ′ or (ii) (x, y) /∈ FM and (x, y) ∈ F ′. We construct F 1 as follows.

• If condition (i) above holds let (x, y) ∈ F 1

• If condition (ii) holds let (x, y) /∈ F 1.

• For all other pairs let F 1|R\(x,y) = F 0|R\(x,y).

Therefore, (F 0 ∩ FM) ⊂ F 1 ⊂ (F 0 ∪ FM) ⇒ F 1 ∈ B(F 0, FM). Either F 1 = FM in which

case the sequence ends. If F 1 6= FM , then by the same arguments as above we can construct

F 2 ∈ B(F 1, FM). Therefore, by repeating these steps we have a sequence (F 0, F 1 . . . , F q)

such that F 0 = F ′, F q = FM and 〈F jF j+1F j+2〉 for q ∈ {0, 1, . . . , q − 2}. We first show

that,
∑n

i=1 d(Ri, F
1) ≤

∑n
i=1 d(Ri, F

0).

We introduce the notion of adjacency to prove this. Two profiles W1,W2 are adjacent if

there is no profile W3 /∈ {W1,W2} such that W3 ∈ B(W1,W2). It is easy to check that in the

sequence (F 0, F 1, . . . , F q) every pair F j, F j+1 for q ∈ {0, 1, . . . q − 1} are adjacent.
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Lemma 1 Suppose W1 and W2 are adjacent. Then for any W3 ∈ W such that W3 /∈
{W1,W2}, either 〈W1W2W3〉 or 〈W3W1W2〉.13

Proof: Since W1 and W2 are adjacent there exists one and only one pair x, y ∈ X such that

either (i) (x, y) ∈ W1 and (x, y) /∈ W2 or (ii) (x, y) /∈ W1 and (x, y) ∈ W2. W.l.o.g. suppose

(i) holds. Then either (a) 〈W1W2W3〉 if (x, y) /∈ W3 or (b) 〈W3W2W1〉 if (x, y) ∈ W3. This

proves the lemma.

Let A1 = {i|b(Ri, F
0) ≥ b(Ri, F

1)} and A2 = {i|b(Ri, F
1) ≥ b(Ri, F

0)}. By construction

of F 0 and F 1, |Ri∩F 0| ≤ |Ri∩F 1| for at least a majority of voters. Therefore, by Lemma 1,

either 〈RiF
1F 0〉 for a majority of voters and 〈RiF

0F 1〉 for the remaining voters. Therefore,

|A1| ≥ |A2|.
Since F 1 ∈ B(Ri, F

0) for all i ∈ A1, by Lemma 1 either 〈RiF
1F 0〉 or 〈F 0F 1Ri〉 for all

i ∈ A1. Therefore, by statement (3) of Proposition 1,

d(Ri, F
0) = d(Ri, F

1) + d(F 1, F 0) for all i ∈ A1.

Therfore, by taking the sum over A1,∑
i∈A1

d(Ri, F
0) =

∑
i∈A1

d(Ri, F
1) +

∑
i∈A1

d(F 1, F 0).

Since F 0 ∈ B(Ri, F
1) for all i ∈ A2, we can use the same arguments as those used above

and sum over A2, ∑
i∈A2

d(Ri, F
1) =

∑
i∈A2

d(Ri, F
0) +

∑
i∈A2

d(F 1, F 0).

Since |A1| ≥ |A2|, ∑
i∈A2

d(F 1, F 0) ≤
∑
i∈A1

d(F 1, F 0).

i.e.
∑
i∈A2

d(Ri, F
1)−

∑
i∈A2

d(Ri, F
0) ≤

∑
i∈A1

d(Ri, F
0)−

∑
i∈A1

d(Ri, F
1).

Therefore, by manipulating the terms in the above inequality appropriately,

n∑
i=1

d(Ri, F
1) ≤

n∑
i=1

d(Ri, F
0).

Using similar arguments as those used above,

n∑
i=1

d(Ri, F
2) ≤

n∑
i=1

d(Ri, F
1).

13Note that the ternary relation is symmetric i.e. 〈W1W2W3〉 = 〈W3W2W1〉 for all W1,W2,W3 ∈ W.
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Therefore,
n∑
i=1

d(Ri, F
j+1) ≤

n∑
i=1

d(Ri, F
j) for all j ∈ {0, q − 1}.

By construction,
n∑
i=1

d(Ri, F
M) ≤

n∑
i=1

d(Ri, F
′).

Note that the choice of the majoritarian social welfare relation FM , π and F ′ was arbi-

trary. Therefore, for any FM ∈ FM and for all π ∈ Rn,

n∑
i=1

d(Ri, F
M(π)) ≤

n∑
i=1

d(Ri, F
′(π)) ∀F ′ /∈ FM .

�

3.1 Discussion

The variable population definition of the social welfare relation is not required for Theorem 1.

The result also holds for any fixed number of voters. In the next section, we will characterize

the majority binary relation using the variable population definition of the social welfare

relation which is distance-minimising over the set of additive distance metrics.

Property 3 in Proposition 1 is critical for our result. This property has been called

additivity in the literature on measurement theory. In the next section we will show that for

a specific majoritarian social welfare relation additivity of the distance functions is necessary

and sufficient for this majoritarian binary relation to be distance-minimising.

These notions of distances are broader than Kemeny’s. It can be shown that the distance

metric characterized by the quaternary relation Q need not be neutral à la Can and Storcken

(2013). We provide an example of a metric which is not Kemeny but satisfies additivity.

Therefore, the majoritarian social welfare relation is distance-minimising according to this

distance.

Example 1 We define a distance metric dα as follows. Let δ : X ×X → (0, 1) be such that

(i) δ(j, j′) = δ(j′, j) for all j, j′ ∈ X. Then,

dα(W1,W2) =
∑
j,j′∈X
j 6=j

(j,j′)∈(W1\W2)
(j,j′)∈(W2\W1)

δ(j, j′).

We can show that d satisfies all the properties of a metric as in Definition 1.

• Non-negativity: This holds by definition of δ.

12



• Identity of indiscernibles: For any W1 = W2 we have (W1\W2) = (W2\W1) = φ.

Therefore, dα(W1,W1) = 0.

• Symmetry: Since (W1\W2)∪ (W2\W1) = (W1\W2)∪ (W2\W1) for all W1,W2 ∈ W , we

have dα(W1,W2) = dα(W2,W1).

• Triangle inequality: This is true by the property that for any δ1, δ2, δ3 ∈ (0, 1) we have

δ1 + δ2 ≥ δ3.

Moreover, we show that it satisfies additivity. For any W1,W2,W3 such that W2 ∈
B(W1,W3) we show that dα(W1,W2) + dα(W2,W3) = dα(W1,W3). We show this in steps.

From the definition of the distance metric,

dα(W1,W2) + dα(W2,W3) =
∑
j,j′∈X
j 6=j

(j,j′)∈(W1\W2)
(j,j′)∈(W2\W1)

δ(j, j′) +
∑
j,j′∈X
j 6=j

(j,j′)∈(W2\W3)
(j,j′)∈(W3\W2)

δ(j, j′)

Since (W\W ′) ∪ (W ′\W ) = (W ∪W ′)\(W ∩W ′) for all W,W ′,

dα(W1,W2) + dα(W2,W3) =
∑
j,j′∈X
j 6=j

(j,j′)∈(W1∪W2)\(W1∩W2)

δ(j, j′) +
∑
j,j′∈X
j 6=j

(j,j′)∈(W2∪W3)\(W2∩W3)

δ(j, j′)

By definition of betweenness of profiles and the associativity of ∪ and ∩,(
(W1 ∪W2)\(W1 ∩W2)

)⋃(
(W2 ∪W3)\(W2 ∩W3)

)
= (W1 ∪W3)\(W1 ∩W3).

Therefore,∑
j,j′∈X
j 6=j

(j,j′)∈(W1∪W2)\(W1∩W2)

δ(j, j′) +
∑
j,j′∈X
j 6=j

(j,j′)∈(W2∪W3)\(W2∩W3)

δ(j, j′) =
∑
j,j′∈X
j 6=j

(j,j′)∈(W1∪W3)\(W1∩W3)

δ(j, j′)

⇒ dα(W1,W2) + dα(W2,W3) =
∑
j,j′∈X
j 6=j

(j,j′)∈(W1∪W3)\(W1∩W3)

δ(j, j′) = dα(W1,W3).

Therefore, dα(W1,W2) + dα(W2,W3) = dα(W1,W3). Therefore, d satisfies additivity.

The conditions specified on Q and the resulting properties on the distance function are not

necessary for the class of majoritarian social welfare relations to be distance-minimsing. This

is due to the fact that the class of majoritarian social welfare relations is large. Therefore,

to obtain necessary conditions a complete binary relation has to be specified.

In the next section we show for a specific majoritarian social welfare relation the con-

ditions (i)-(vi) on Q and the resulting properties on d are both necessary and sufficient for
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this majoritarian social welfare relation to be distance-minimising. We use the variable

population definition of the social welfare relation to obtain these necessary conditions.14

4 Characterization

In this section we characterize a specific majority binary relation which is the unique distance-

minimising social welfare function over a class of distance metrics which satisfy additivity.

In the next result we show that part (3) of Proposition 1 i.e., additivity over triples on

a path is necessary (and of course, sufficient) for the following majoritarian social welfare

relation. This allows us to obtain a quaternary relation from the corresponding distance

function d.

We use the following notation for our next definition. Let nP (x, y) = |{i|xPiy}| and

nP (y, x) = |{i|yPix}|. We define a tie-breaking rule τ : X ×X ⇒ X ×X such (i) τ(x, y) =

τ(y, x) and (ii) τ(x, y) ⊆ {(x, y), (y, x)}. Let T be the set of all tie-breakers.

Therefore, a tie-breaking relation for every pair of alternatives picks a binary relation over

that pair of alternatives. Note that for every pair of alternatives x, y the tie-breaking rule

either chooses {(x, y)}, {(y, x)} or {(x, y), (y, x)}. In the following definition we will assume

that either of these may be chosen.

Definition 5 (Majority binary relation) A social welfare relation F ∗ is a majority bi-

nary relation if for all π ∈ Rn and every pair of alternatives (x, y) ∈ X × X there exists a

tie-breaking rule τ : X ×X ⇒ X ×X such that,

(i) [nP (x, y) > N
2

]⇒ [xF ∗Py].

(ii) [nP (y, x) < N
2

]⇒ [xF ∗y].

(iii) If nP (x, y) = nP (y, x) = N
2

then F ∗(π)|xy = τ(x, y).

(iv) If none of the above (i)-(iii) hold then (x, y) /∈ F ∗.

We denote this class of majority binary relations as F∗. It is easy to verify that the above

rule is complete. We say that there is a tie between x and y at a given profile π if part (iii)

of the above definition holds i.e. nP (x, y) = nP (y, x) = N
2

. In such a case, the tie-breaking

rule comes into effect and any of the three possible binary relations may be chosen by the

majority binary relation.15 We show this in the following example.

Example 2 The set of voters is N = {1, 2, 3, 4} and the set of alternatives is X = {x, y}.
Consider the profile π shown in Table 1 below.

14More specifically, to obtain necessary conditions we need the social welfare relation to be defined over

every triple of voter preferences.
15Of course, as the number of pairwise ties increase, the number of possible majority binary relations

increases threefold. For a profile with ties over m pairs the number of profiles in the set of all majority

binary relations is 3m.
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Table 1: Preference profile π ∈ R4

1 2 3 4

x x yz y

y yz x x

z z

By Definition 5 there are three equally likely outcomes. Denote these by F ∗1 (π), F ∗2 (π)

and F ∗3 (π). These are listed below.

• F ∗1 (π) = {(x, y), (y, z), (x, z)} if τ(x, y) = {(x, y)}.

• F ∗2 (π) = {(x, y), (y, x), (y, z), (x, z)} if τ(x, y) = {(x, y), (y, x)}.

• F ∗3 (π) = {(y, x), (y, z), (x, z)} if τ(x, y) = {(y, x)}.

Let F∗(π) denote the set of possible binary relations for the profile π. This set is singleton

when there are no ties. Therefore, in the above example F∗(π) = {F ∗1 (π), F ∗2 (π), F ∗3 (π)}.

Theorem 2 The class of majority binary relation is distance-minimising with respect to d

if and only if Q satisfies the conditions (i)-(vi) and d is a numerical representation of Q.

Proof: To prove sufficiency we can use the same arguments as those used in the proof of

Theorem 1 to prove this. By Lemma 1, for any F ′ 6= F ∗ we can construct a sequence of

functions F 0, . . . F q such that F 0 = F ′ and F q = F ∗ and
∑n

i=1 d(Ri, F
j+1) ≤

∑n
i=1 d(Ri, F

j)

for all j ∈ {0, q − 1}.
To prove necessity we need to extend the domain of the majority rule from R to W .

Since the majority binary relation only considers pairwise orderings Definition 5 is extended

to the domain W .

Suppose the majority binary relation is distance-minimising with respect to some distance

d. We show that d satisfies additivity (property (iii) in Proposition 1). As a result, we can

obtain a quaternary relation onW such that (W1,W2)Q(W3,W4)⇔ d(W1,W2) ≤ d(W3,W4).

We show this in steps.

Since d is a distance function by assumption 〈W , d〉 is a metric space. Therefore, part (i)

of Proposition 1 is satisfied. We show that d is additive over triples such that one of them is

between the other two.

Let W1,W2,W3 ∈ W such that W2 ∈ B(W1,W3). We first show that F (W1,W3) = W2.

As a result we show that d(W1,W2) + d(W2,W3) = d(W1,W3). Fix any arbitrary pair of

alternatives x, y ∈ X. For the profile π = (W1,W3) one of the four possibilities in Definition

5 will hold. We prove the following claim.

Claim: Suppose π = (W1,W3). Then (i)[(x, y) ∈ F ∗] ⇒ [(x, y) ∈ W2] and (ii) [(x, y) /∈
F ∗]⇒ [(x, y) /∈ W2].
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This implies that F ∗(W1,W3) = W2. We prove this in parts. We slightly abuse notation

and write xW P
i y when x is strictly preferred to y in Wi for any i ∈ N .

• Suppose part (i) of Definition 5 holds i.e. nP (x, y) > N
2

. By definition xF ∗Py. By

betweenness of preferences xW P
2 y.

• Similar arguments can be made to show that if part (ii) of Definition 5 holds then xF ∗y

and xW2y.

• Suppose part (iii) of Definition 5 holds. Then either (x, y) ∈ W2 or (x, y) /∈ W2. By

definition, there exists a tie-breaking rule τ ∈ T such that τ(x, y) = W2|xy. Therefore,

W2 ∈ F∗(W1,W3).

• Suppose none of the parts (i)-(iii) of the definition hold. Since conditions (i) and

(ii) do not hold, yW P
1 x and yW P

3 x. By the definition of betweenness of preferences,

[W2 ∈ B(W1,W3)]⇒ [W2 ⊆ W1 ∪W3]. Therefore, (x, y) /∈ W2.

Therefore, for all parts (i)-(iv) of Definition 5, [(x, y) ∈ F ∗] ⇒ [(x, y) ∈ W2] and

[(x, y) /∈ F ∗] ⇒ [(x, y) /∈ W2] for some tie-breaking function τ ∈ T . This implies that

W2 ∈ F∗(W1,W3) . Since the majority binary relation is distance-minimising,

d(W1,W2) + d(W3,W2) ≤ d(W1,W1) + d(W3,W1)

By closest at identity of Q and the triangle inequality of d,

d(W1,W2) + d(W2,W3) = d(W1,W3).

�

Therefore, for a specific class of majoritarian social welfare function the additivity of the

distance metric is both necessary and sufficient to make this the unique distance minimising

class of social welfare relations.

5 Conclusion

We showed that for a large class of distance functions, which are representations of ordinal

measures, the class of majoritarian social welfare relations are uniquely distance-minimising.

We characterized the specific class of majoritarian social welfare relations for which this class

of distance measures are necessary and sufficient.
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