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Abstract

A defining feature of culture is similarity in the manner in which information about the

world is interpreted. This makes it easier to extract information from the beliefs of those within

one’s own group. But this information itself may be of low quality if better informed sources lie

elsewhere. Furthermore, observing individuals outside one’s culture deepens our understanding

not only of those individuals, but also of their group. We model this process, using unobservable,

heterogeneous priors to represent fundamental belief differences across individuals; these priors

are correlated within but not across groups. Within this framework, we obtain the following

results. First, groups that are smaller and have higher levels of correlation in perspectives will

be more likely to exhibit homophily to begin with. If the correlation in perspectives is suffi-

ciently high, then this homophily persists over time, resulting in homogeneity and insularity

in observational patterns. If not, then persistent behavioral heterogenity can arise both within

and across groups, even if individuals in the same group are identical at the outset. Patterns

of observation exhibit considerable structure. Under certain conditions—which depend on the

variability across individuals in the quality of information, initial uncertainty about the per-

spectives through which this information is filtered, and the degree to which these perspectives

are correlated—individuals in each group can be partitioned into two categories. One of these

exhibits considerable homophily, rarely if ever stepping outside group boundaries, while the

other is unbiased and seeks information wherever it is most precise.
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1 Introduction

A defining feature of culture is similarity in the manner in which information about the world is

interpreted. Two individuals who share a common culture—defined by ethnicity, religion, or even

politics—will tend to have correlated mental models of the world, which facilitates communication.

In particular, it easier to extract the informational content of a statement when both the speaker

and the listener belong to the same group. This is a force for informational homophily: in seeking

information people will often turn to those whose perspectives they understand.

But no culture has a monopoly on information, and informational homophily therefore comes

at a price. Those who are willing to seek information from outside their own group will have access

to a richer information pool, even if this information is sometimes harder to extract. This is a force

for informational heterophily.

This trade-off between these two forces changes over time, based on an individual’s observa-

tional history. Previously observed sources become better understood and hence more likely to

be observed again. But the degree to which an individual’s understanding of another deepens

through observation depends on how well-informed the observer herself happens to be in the period

of observation. This is a force for symmetry-breaking, and divergence over time in the behavior of

individuals who are initially identical and belong to the same group.

This intra-group heterogeneity is further reinforced because those who repeatedly observe indi-

viduals outside their own group learn not only about the perspectives of their individual targets,

but also about the group to which the targets belong. That is, learning about a person from another

culture teaches us not only about the person, but also about the culture to which they belong. As

a consequence, such individuals become more likely to step outside the boundaries of their own

group in the future.

We model this process, using unobservable, heterogeneous priors to represent fundamental belief

differences across individuals. These priors—which we call perspectives—are correlated within but

not across groups. That is, individuals initially have more precise beliefs about the perspectives of

those within their culture than those outside it.

Within this framework, we obtain the following results. Groups that are smaller and have higher

levels of correlation in perspectives will be more likely to exhibit homophily to begin with. If the

correlation in perspectives is sufficiently high, then this homophily persists over time, resulting

in homogeneity and insularity in observational patterns. If not, then heterogenity in behavior

both within and across groups gan arise, even if individuals in the same group are identical at

the outset. But patterns of observation exhibit considerable structure. Under certain conditions—

which depend on the variability across individuals in the quality of information, initial uncertainty
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about the perspectives through which this information is filtered, and the degree to which these

perspectives are correlated—individuals in each group can be partitioned into two categories. One

of these exhibits considerable homophily, rarely if ever stepping outside group boundaries, while the

other is unbiased and seeks information wherever it is most precise. This bimodality in observational

behavior is the key testable prediction of the model.

2 Literature

The idea that culture affects cognition has been explored extensively in anthropology, social psy-

chology, and law. Kahan and Braman (2006), building on prior work by Douglas and Wildavsky

(1982), argue that “were indeterminacy or inaccessibility of scientific knowledge the source of public

disagreement, we would expect beliefs on discrete issues to be uncorrelated with each other.” And

yet, on questions such as the effects on crime of gun control, the effects on health of abortion, and

the effects on the climate of fossil fuel combustion, there is a high degree of correlation in opinion:

“factual beliefs on on these and many other seemingly unrelated issues do cohere.” Their proposed

explanation relies on the concept of cultural cognition:

Essentially, cultural commitments are prior to factual beliefs on highly charged political

issues. Culture is prior to facts, moreover, not just in the evaluative sense that citizens

might care more about how gun control, the death penalty, environmental regulation

and the like cohere with their cultural values than they care about the consequences of

those policies. Rather, culture is prior to facts in the cognitive sense that what citizens

believe about the empirical consequences of those policies derives from their cultural

worldviews.

This literature attempts to explain persistent and public differences across groups in beliefs,

but not with the sources of information that individuals actively seek. In order to address this

latter question, a theory needs to accommodate both fundamental belief differences across groups

as well as idiosyncratic differences across individuals in the quality of information about the world.

The framework developed in Sethi and Yildiz (2012, 2016)—where heterogeneous priors represent

fundamental belief differences and signals of varying precision represent information—allows for

such an exploration. Although priors are initially unobserved, they are drawn from a commonly

known distribution, so individuals can reason and update their beliefs about these as time unfolds

and information is received. In our earlier work we have used this framework to explore conditions

under which distributed information is aggregated, and to study the endogenous formation of

information networks in a population without distinct identity groups. Here we build on this by

allowing for different cultures, with a particular correlation structure on the distribution from which

priors are drawn.
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Lazarsfeld and Merton (1954) are credited with coining the term homophily, and associating it

with the proverb “birds of a feather flock together” (McPherson et al., 2001). Although homophily

arises along multiple dimensions of interaction, our concern here is with the tendency to turn to

individuals within one’s own identity group or culture for the purpose of information gathering.

Gentzkow and Shapiro (2011) have examined this issue, in the context of ideological identity (con-

servative and liberal) in the United States. They find that ideological homophily in access to online

news sources is greater than that in access to offline news, though considerably smaller than that

in face-to-face interactions in neighborhoods, workplaces and voluntary associations. Here news

sources are themselves are placed on an ideological spectrum based on the distribution of their

users across political identity groups.

Kets and Sandroni (2015) have examined the role of strategic uncertainty in generating ho-

mophily. Individuals in their framework are characterized by an impulse to play a particular action

in a coordination game, and these impulses are correlated within but not across groups. Each

player finds it rational to follow her impulse when interacting with members of her own group,

since she expects her counterpart to have the same impulse with high likelihood, and to follow it in

equilibrium. This reduces strategic uncertainty and makes interactions with own-group members

more desirable. Cultural similarity here serves as a mechanism for equilibrium selection rather than

information extraction.

The idea that individuals can extract information more easily from those with whom they share

a culture is the basis for a branch of the statistical discrimination literature descended from Phelps

(1972); see especially Aigner and Cain (1977) and Cornell and Welch (1996).1 Our contribution

here may be viewed as providing firmer foundations for this approach. While our starting point is a

greater capacity for individuals to interpret the opinions of those in their own group, this capacity

evolves over time in ways that can generate substantial within group heterogneity.

3 The Model

The model in this section builds on Sethi and Yildiz (2016), by allowing for separate social groups

with correlation in prior beliefs within (but not between) groups.

3.1 Groups and Perspectives

Consider a population N = {1, . . . , n} partitioned into two sets N1 and N2, each of which corre-

sponds to a distinct identity group. We refer to these as group 1 and group 2 respectively. Let

1In contrast, models of statistical discrimination such as Arrow (1973) and Coate and Loury (1993) involve ex

ante identical groups.
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nk ≥ 3 denote the size of group k and wk = nk/n its population share. For each i ∈ N , let

g(i) ∈ {1, 2} denote the group to which i belongs.

There is a sequence of periods t = 0, 1, ... and in each period there is a state θt ∈ R about

which individuals would like to have precise beliefs. Each individual holds an idiosyncratic prior

belief regarding the distribution from which θt is drawn. Specifically, according to the prior belief

of individual i, θt is normally distributed with mean µi and unit variance:

θ ∼i N(µi, 1).

We refer to prior mean µi as the perspective of i, and note that it is stable over time. The

interpretation is that the perspective governs the manner in which information regarding a broad

range of issues is filtered, with the state in each period corresponding to a distinct issue.

An individual’s perspective is not directly observable by others, but it is commonly believed

that the perspectives µ = (µ1, ..., µn) are jointly distributed distributed according to

µ ∼ N(0,Σ),

where Σ is a variance-covariance matrix with typical element σij .
2

We assume that perspectives are correlated within groups but uncorrelated across groups.

Specifically:

Σ = σ20

[
Σ1 0

0 Σ2

]
,

where the submatrices Σk have diagonal elements 1 and off-diagonal elements ρk ∈ (0, 1]. That is,

for any i 6= j, σij = σ20ρk if g(i) = g(j) = k, and σij = 0 otherwise. We can think of a group with

high correlation ρk as being relatively homogeneous or tightly-knit.

The parameter σ20 reflects the degree to which one individual’s beliefs about the perspectives of

others are imprecise, before one’s own prior has been observed. Having observed one’s own prior,

however, beliefs about the perspectives of others within one’s own group are updated (while beliefs

about the perspectives of those in the other group remain unchanged). Specifically, if i and j both

belong to group k, beliefs are updated as follows. Observing µi, i believes that µj is distributed

normally with mean

Ei[µj |µi] = ρkµi

and variance

V ari (µj |µi) = σ20
(
1− ρ2k

)
.

2The analysis to follow does not depend on the means all being equal to zero, and would remain intact for any

choice of means that are fixed and commonly known.
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If ρk = 1, there is complete within-group homogeneity of perspectives. If ρk < 1, there is some

heterogeneity of perspectives even within the group, and subjective uncertainty about these per-

spectives, but less uncertainty than there is about the perspectives of those outside the group.

Put differently, individuals within one’s own group are better understood (beliefs about their

perspectives is more precise), when compared with those outside ones group. This need not persist

over time, however, and will depend on patterns of mutual observation as information is received

and perspectives are learned.

Beliefs about the perspectives of others (both within and outside one’s own group) will change

over time through the observation of posterior beliefs, in a manner to be described below. We

write Σ(i, t) for the history-dependent variance-covariance matrix of µ at time t for player i; Σ(i, t)

has entries σjj′(i, t) with variances σjj(i, t) ≡ σ2j (i, t) on the diagonal. These reflect i’s uncertainty

about each individual j’s perspective. Note that σ2j (i, 0) = σ20 if i and j belong to different groups,

and σ2j (i, 0) = σ20(1 − ρ2k) if they both belong to group k. Moreover, for all i and t, σjj′(i, t) = 0

whenever j and j′ belong to distinct groups.3

3.2 Information and Expertise

Next we allow for informative signals. Suppose that in each period t, each individual i privately

observes the signal

xit = θt + εit, (1)

where εit ∼ N(0, τ2it). The signal variance τ2it captures the degree to which i is well-informed about

the period t state. We assume that these variances are public information, and are independently

and identically distributed across individuals and over time in accordance with an absolutely con-

tinuous distribution function F having support [τ2, τ2], where 0 < τ2 < τ2 < ∞. That is, no

individual is ever perfectly informed of the state, but all signals carry at least some information.

Having observed the signal xit, individual i updates her belief about the period t state according

to Bayes’ rule. This results in the following posterior belief for i:

θt ∼i N
(
yit,

τ2it
1 + τ2it

)
, (2)

where yit is the expected value of θt according to i, which we refer to as individual i’s opinion in

period t. This is computed as

yit =
τ2it

1 + τ2it
µi +

1

1 + τ2it
xit. (3)

These opinions are potentially observable by others, although the priors and signals are not sepa-

rately observable.

3Furthermore, since i’s own perspective is known to her, the terms σij(i, t) and σji(i, t) are all identically zero for

all t and all j ∈ N .
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3.3 Choosing Targets

Suppose that individuals can observe exactly one other opinion in each period, and would like to

choose a target with the goal of having the most precise beliefs about the current state. In making

this choice, an individual will generally face a trade-off between those who are well-informed (in

the sense of having precise signals) and those who are well-understood (in the sense of having

perspectives that are known with high precision to the observer in question).

If i observes j’s opinion in period t, then from (1) and (3), she obtains the following signal for

θt:

(1 + τ2it)yjt = θt + εjt + τ2jtµj .

The signal is noisy for two reasons: j is neither perfectly informed, nor perfectly understood by i

in the period of observation. Taken together, the variance of the noise in this signal is

γij(t) = τ2jt + τ4jtσ
2
j (i, t). (4)

Here, the first term is due to the noise in the information of j, and is simply the variance of εj .

It decreases as j becomes better informed. The second term comes from the uncertainty i faces

regarding the perspective µj of j, and is the variance of τ2jtµj (where τ2jt is public information

and hence has zero variance). This term decreases as i develops more precise beliefs about the

perspective µj , that is, as j becomes better understood by i.

The expression for the variance γij(t) reveals that in choosing a target j, an individual i has to

trade-off the noise in the information of j against the noise in i’s understanding of j’s perspective,

normalized by the level of j’s expertise. This is the trade-off between targets who are well-informed

and those who are well-understood.

The assignment of individuals to targets in period t may be represented by a function λt : N →
N , where λt(i) is an element of N \{i}. We shall assume that each individual in each period chooses

the target that provides the most informative opinion, with ties being broken in favor of the one

with the smallest label. That is

λi(t) = min

{
arg min

j
γij(t)

}
.

This function may be interpreted as a directed graph, with each node i associated with an outgoing

edge to the node λt(i). The graph can (and in general will) change from one period to the next,

as new levels of expertise are realized. But these changes will be history dependent, since the

understanding of others in the population will depend on past linkages and the conditions under

which they form.
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3.4 Learning Perspectives

Each time a target is observed, the observer learns something not only about the current state, but

also about the target’s perspective, and indeed (since perspectives are correlated within groups)

about the perspectives of others in the target’s group.

Given some individual i and period t, let l = λt(i) denote the target chosen by i in t. That is,

i observes the opinion ylt in period t. This opinion has been formed in accordance with (2-3), and

hence provides the following signal for µl:(
1 + τ2lt
τ2lt

)
ylt = µl +

1

τ2lt
(θt + εlt) .

The signal contains an additive noise term with variance

α(τ2it, τ
2
lt) =

1

τ4lt

(
τ2it

1 + τ2it
+ τ2lt

)
. (5)

Note that this variance depends on the expertise of the observer as well as that of the target,

through the observer’s uncertainty about θt. In particular, the variance α is increasing in τ2it and

decreasing in τ2lt. Hence i obtains a less noisy signal of her target’s perspective if the target is poorly

informed, or if i herself is well-informed. This is intuitive: a poorly informed target will have an

opinion close to her prior, while a better-informed observer will make a sharper inference from the

target’s opinion. Note that there are lower and upper bounds within which α must lie, given by

α = α(τ2, τ2) and α = α(τ2, τ2) respectively.

The opinion ylt of i’s target also provides information about the perspective µj of each j ∈ g (l)

because µj and µl are correlated. Individual i updates her beliefs about µ using this signal, yielding

a new variance-covariance matrix Σ(i, t+ 1) with entries

σjj′(i, t+ 1) = σjj′(i, t)−
σjl(i, t)σj′l(i, t)

α(τ2it, τ
2
lt) + σ2l (i, t)

(6)

for each pair j, j′ ∈ N . Since perspectives are correlated within groups, i updates her beliefs about

all those in the group to which her target l belongs, even though these are unobserved by i in

t. That is, σjj(i, t + 1) < σjj(i, t) for j ∈ g(l). In the special case of perfect correlation, we have

σjj(i, t+1) = σll(i, t+1) for all j ∈ g(l). Note that i does not update her beliefs about the members

of the other group: σjj′(i, t+ 1) = σjj′(i, t) for each pair j, j′ 6∈ g (l).

After observing her target’s opinion, the precision of i’s belief about l’s perspective increases.

Specifically, replacing both j and j′ with l in (6), we obtain

σ2l (i, t+ 1) = σ2l (i, t)−
σ4l (i, t)

α(τ2it, τ
2
lt) + σ2l (i, t)

. (7)

Recall that α is decreasing in τ2lt and increasing in τ2it. Hence, other things equal, if i happens to

observe j during a period in which j is very precisely informed about the state, then i learns very
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little about j’s perspective. This is because j’s opinion largely reflects her signal and is therefore

relatively uninformative about her prior. If i is very well informed when observing j, the opposite

effect arises and i learns a great deal about j’s perspective. Having good information about the

state also means that i has good information about j’s signal, and is therefore better able to infer

j’s perspective based on the observed opinion.

To summarize, given the correlation of perspectives, changes in i’s belief about j’s prior will

cause i to update her beliefs about the priors of all those in j’s group. That is, observing a target

is informative about the current state, the target’s perspective, and the perspectives of all others

in the target’s group. In the extreme case of perfect correlation, i will know the perspectives of all

those in her own group at the outset, and learn something about the perspectives of those in the

other group each time a target from the group is selected for observation.

Given the distribution governing expertise realizations, the dynamics of belief updating define

a Markov process where the period t state consists of the variance-covariance matrices Σ(i, t) for

i ∈ N . These matrices, together with the expertise realizations in t, fully determine the pattern of

observation that will arise in each period.

With imperfect correlation, heterogeneity in beliefs about perspectives will emerge and per-

sist, both within and across groups, and these beliefs will be sensitive to historical realizations of

expertise.

4 Observational Patterns

In this section, we investigate the communication patterns that can arise with positive probability.

Define the threshold variance

σ2 =
τ2 − τ2

τ4
. (8)

Here, σ2 is defined by equality τ2 + τ4σ2 = τ2, so that by (4) an individual i is indifferent between

a target j with maximally precise signal and σ2j (i, t) = σ2 and a target j′ with minimally precise

signal and σ2j′(i, t) = 0. Hence, if σ2j (i, t) < σ2 at some period t, then i links to j with positive

probability at period t. He links to j when j has very high and all individuals j′ 6= j have very low

expertise. Furthermore, since σ2j (i, t) is non-increasing over time, the inequality σ2j (i, t) < σ2 will

continue to be satisfied thereafter, and i will observe j infinitely often almost surely.

Next define the mapping β :
(
σ2,∞

)
→ R by

β
(
s2
)

=
τ4

τ4
(s2 − σ2). (9)

Here, β
(
s2
)

is defined by equality τ2 + τ4s2 = τ2 + τ4β
(
s2
)
, so that by (4) an individual i is

indifferent between a target j with maximally precise signal and σ2j (i, t) = s2 and a target j′ with
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minimally precise signal and σ2j′(i, t) = β
(
s2
)
. Hence, if σ2j′(i, t) < β(σ2j (i, t)), then i never links

to j at period t, regardless of expertise realizations. This is because i prefers j′ to j even when j′

has minimally precise signal and j has minimally precise signal. Clearly the same preference must

hold for all other expertise realizations. In general, this does not mean that the link ij is broken

forever because i may learn about the perspective of j from observing the opinions of the other

members of the group j belongs to, and he may link to j later when is more familiar with j and j

has higher expertise than others. On the other hand, if there is j′ from a group k′ with

σ2j′(i, t) < max
j∈Nk

β(σ2j (i, t)), (10)

then all the links ij to group k is permanently broken because i does not update his beliefs about

the perspectives in group k thereafter.

If σ20 < σ2, an individual would prefer to observe someone outside her group if the latter

had sufficiently high expertise, provided that each member of her own group has sufficiently low

expertise. This is true even if no out-group members have been previously observed, and all in-

group members are perfectly well understood. As we show below, a consequence of this assumption

is that in the long run, targets will be chosen on the basis of expertise alone, regardless of group

membership.

For σ20 < σ2 to hold, at least one of two things must be true: informational differences across

individuals in the population cannot be too small, and uncertainty about the perspectives of those

outside one’s group cannot be too great. Under these conditions informational differences will

matter enough to eventually overpower the tendency to homophily the comes from differences in

understanding.

If, instead, we have σ20 > σ2, then observational patterns even in the long run will depend on

the degree to which perspectives are correlated within each group, as we show below.

4.1 Initial Observation

While this process can give rise to complicated observational patterns over time, we begin with the

first period, in which only two classes of outcome are possible. Consider the following mutually

exclusive events:

(E1) there exists j ∈ N1 such that λ0(i) = j for all i 6= j

(E2) there exists j ∈ N2 such that λ0(i) = j for all i 6= j

(E3) there exist j1 ∈ N1 and j2 ∈ N2 such that λ0(i) = j1 for all i ∈ N1 \ {j1} and λ0(i) = j2 for

all i ∈ N2 \ {j2}.
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The events E1 and E2 correspond to homophily in one group, and extreme heterophily in the

other. All individuals in the population observe the globally best informed individual j, who may

or may not observe the second best informed.4 Event E3 involves homophily in both groups, with

all individuals (except possibly the best-informed in each group) observing an in-group member.

Note that for any i and j from a group k, i updates her beliefs about the perspective of the

fellow group member j from her own perspective, so that she has a more informed belief about µj :

σ2j (i, 0) = σ20(1− ρ2k).

The precision of her beliefs about the perspectives of the other group remains at v0. For σ20 > σ2, if

ρk is sufficiently high, then the likelihood that i will link to someone outside her group in the initial

period—and hence also in every other period—is zero. This is because σ2j (i, 0) < β(σ20) whenever

ρk > ρ, where ρ satisfies σ20(1− ρ2) = β(σ20) and is equal to

ρ =
√

1−
(
τ4/τ4

) (
1− σ2/σ20

)
∈ (0, 1) . (11)

What can and cannot happen in the initial period of observation depends on whether σ20 < σ2 and,

if not, whether the degree of correlation in perspectives exceeds the threshold ρ.

Proposition 1. Only E1, E2 and E3 can arise with positive probability: Pr (E1) + Pr (E2) +

Pr (E3) = 1, and E3 arises with positive probability for all parameter values. If σ20 < σ2, then all

three events have a positive probability of occurrence. If σ20 > σ2, then Pr(Ek) > 0 if and only if

ρk′ < ρ for k′ 6= k.

This result states that homophily arises with positive probability for all parameter values, and

that at least one group must exhibit homophily in the initial period. This is intuitive. If the

expertise levels of the two best-informed individuals in each group are sufficiently close, there

will be no crossing of group boundaries. If there are large differences in expertise between the best

informed individuals in the two groups, and the correlation in perspectives is not too great in either

group, then the best-informed individual in the population as a whole will attract all observers. But

if σ20 > σ2, then any group with highly correlated perspectives will exhibit homophily. The high

degree to which members of such groups understand each other will overwhelm any informational

disadvantage that might arise.

Proposition 1 tells us which observational patterns can and cannot arise in the initial period

of observation, but is silent on the likelihood of those events that can occur. The following result

addresses this.

Proposition 2. For distinct groups k and k′, Pr(Ek) is increasing in nk and decreasing in nk′ and

ρk′.

4If there is little difference in expertise between the second best informed and the best informed in j’s own group,

and these are distinct individuals, then j may observe the latter.
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This states that heterophily in a group is more likely if the group is small and the other

group is large. This is intuitive: heterophily arises when the best informed in one’s own group

has substantially lower expertise than the best informed in the other group, and this in turn is

more likely when one’s own group is small and the other group large. The result also states that

heterophily is less likely in tight-knit groups, which again is intuitive. In such groups individuals

understand each other well and a greater difference in expertise across the best informed in the two

groups is needed to generate heterophily.

All this applies to the initial period of observation, in which all individuals within a group are

symmetrically placed with respect to each other. In subsequent periods this symmetry is broken

and more complex patterns can arise.

4.2 Cross-Cutural Communication

At the end of the initial period, each individual has a better understanding of their target in

accordance with (7). They also have a better understanding of the perspectives of those in the

target’s group, since perspectives are correlated. But the size of these effects vary across observers,

even if they have a common target, since they depend on the expertise of the observer. Specifically,

from (5), an observer with higher expertise in the initial period learns more about her target (and

her target’s group) than one with lower expertise. As a result, many more complex patterns of

observation can arise over time.

To illustrate, consider the following example.

Example 1. Suppose n = 6 with N1 = {1, 2, 3} and N2 = {4, 5, 6}, σ20 = 10, and ρ1 = ρ2 = 0.1.

Expertise levels are (1, 0.1, 0.1, 0.9, 0.8, 0.8) in the first period and (0.1, 0.1, 0.1, 0.25, 0.2, 0.2) in the

second. In this case the first period targets are λ0(i) = 1 for all i 6= 1 and λ0(1) = 4. The second

period targets are λ1(i) = 4 for all i ∈ N1 and λ1(i) = 1 for all i ∈ N2.

In this example the two groups are each of size 3. In the first period the two individuals with

the greatest expertise are 1 and 4, with 1 being the best informed globally. Clearly 2 and 3 observe

1, since they all belong to the same group. Since perspectives are not highly correlated, all those

in N2 also observe 1, and 1 observes 4. This pattern is shown in the top panel of Figure 1.

Now consider the second period. Since all those in N2 were better informed than 2 and 3 in the

initial period, they learn more about the perspective of 1 after the first observation. This follows

directly from (5). As a result, they are more inclined to observe 1 again in the second period, even if

there is a better informed individual in the population. Given the small correlation in perspectives,

this effect is strong enough to overcome the fact that 4, a member of their own group, is globally

the best informed in the second period. Hence 5 and 6 observe 1 in the second period. This is
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Figure 1: Homophily and heterophily followed by heterophily in both groups

also the case for 4, who has learned even more about the perspective of 1 in the initial period, and

whose best within-group option in the second period is worse.

Finally, consider the members of N1 in the second period. Since 2 and 3 were poorly informed

in the first period and learned little about the perspective of 1, they observe 4, who is the globally

best informed individual in the second period. So does 1, who has already observed 4 in the initial

period. As a result all members of the population observe someone outside their own group. This

outcome is shown in the bottom panel of Figure 1. We get extreme heterophily in both groups.

It is easily verified that this example is robust, in that there exists an open set of expertise

realizations that generates the same observational patterns. That is, each individual in each period

strictly prefers her chosen target to any target not chosen. This is the case even for those in

group N2 in period 2, whose chosen target has the same expertise as others in group a; they have

all previously observed only individual 1 and hence have a strictly better understanding of her

perspective.

Example 1 exhibits maximal cross-cultural communication, with extreme heterophily in both

groups. But this relies on extreme heterophily in one group in the first period, and raises the

question of whether heterophily in both groups can arise after initial homiphily in both. The
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Figure 2: Homophily in both groups followed by heterophily in both

following example shows that it can.5

Example 2. All parameters are as in Example 1 except for expertise levels (2, 1, 0.1, 2, 0.1, 1) in

the first period and (0.85, 0.1, 1.4, 0.85, 1.4, 0.1) in the second. The first period targets are λ0(i) = 1

for all i ∈ N1 \ {1}, λ0(i) = 4 for all i ∈ N2 \ {4}, λ0(1) = 4 and λ0(4) = 1. The second period

targets are the same as the first except for λ1(3) = 5 and λ1(5) = 3.

In this example each individual observes the best informed in her own group initially, and the

two best informed individuals in the population (1 and 4) observe each other, as shown in the top

panel of Figure 2. In the second period 3 and 5 are globally best informed and observe each other,

while all others remain with their initial targets, given the knowledge about perspectives obtained

in the first period. The reason why these two switch away from their initial targets is that they

were both very poorly informed in the initial period, and thus learned little about the perspectives

of their respective targets. This second period observational structure is shown in the bottom panel

of Figure 2. We get homophily in both groups followed by heterophily in both.

These examples show that there is very little structure that can be placed on realized obser-

vational networks as time elapses, at least in the short run. However, we can rule out extreme

5As in the case of Example 1, this example is robust in the sense that there exists a neighborhood of the set of

specified expertise levels within which the same observational patters arise.
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heterophily in both groups in the second period conditional on homophily in both groups in the

first.

Proposition 3. The probability that both groups exhibit extreme heterophily in the second period

is positive only if one group exhibits extreme heterophily in the first period.

This is very intuitive. Given homophily in the initial period, there is at least one member of

each group who does not observe anyone outside her group, and is not the best informed in her

own group in either of the first two periods. At least one of these two individuals must belong to

a group with a globally best informed person in the second period. They will observe this person,

thus precluding extreme heterophily in both groups.

We turn now to the observational patterns that arise in the long run.

5 Long-Run Structures

Over time, each individual i sharpens her understanding of the targets she observes and, to a lesser

extent, also her understanding of those who share a culture with these targets. As in Sethi and

Yildiz (2016), after a finite number of periods, each potential link j either becomes free—if σ2j (i, t)

has fallen below σ2—or breaks—if there exists some j′ such that σ2j′(i, t) < β(σ2j (i, t). For each

i, therefore, there exists some (history-dependent) set Ji ⊆ N\ {i} of long-run experts who are

observed infinitely often. The perspectives of these long-run experts are learned to an arbitrarily

high degree of precision, and hence i eventually links with high likelihood to the most informed

individual within the set Ji in each period. We next consider what form these long-run expert sets

must take, with a focus on the degree of homophily in observational patterns.

For an individual i in group k, we define a (history-dependent) index of homophily as follows:

ηi =
|Ji ∩Nk|
|Ji|

This is the proportion of i’s long run experts who belong to i’s own group. The index lies in the

unit interval and equals zero if i’s long run experts all lie outside her group, and equals 1 if they

all lie within her group. We say that an individual i is unbiased in the long run if ηi = η∗i

η∗i =
nk − 1

n− 1
.

An individual who eventually chooses targets based only on their expertise levels will be unbiased.6

If ηi > η∗i then i exhibits homophily, and if ηi < η∗i then she exhibits heterophily. If the index equals

1 then i exhibits extreme homophily, and she exhibits extreme heterophily if the index is 0.

6So will an individual who chooses targets entirely at random, but such choices will not be consistent with the

assumed decision rule.
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Proposition 4. If σ20 < σ2, then Ji = N \ {i} for all i almost surely; all individuals are unbiased

in the long run.

When σ20 < σ2, all individuals are unbiased except on histories that arise with zero probability.

The reason is that an individual will always prefer to observe a target from the other group if the

latter is sufficiently well informed, provided that the best-informed in her own-group is sufficiently

poorly informed. This is a positive probability event regardless of history. The implication is that

all perspectives are learned to a high degree of accuracy in the long run, and all medium run effects

arising from the dependence on history of observational choices are washed away.

If, instead, σ20 > σ2, then the long run levels of homophily depend on the correlation in per-

spectives.

Proposition 5. Suppose σ20 > σ2. Then there is a positive probability that each individual i ∈ N
exhibits extreme homophily. If, in addition, ρk > ρ for group k, then all individuals in k exhibit

extreme homophily almost surely.

Hence, unless the condition for unbiasedness holds, each individuals exhibits extreme homophily

with positive probability. In groups with sufficiently high correlation in perspectives, extreme

homophily is ensured. The reason is as follows. For high enough correlation, all individuals observe

within group members in the first period regardless of expertise realizations. But this only increases

understanding of within group perspectives, without raising knowledge of any perspectives outside

the group. As a result, the likelihood of extreme homophily cannot decline and remains at 1. Even

if correlation in perspectives is low, extreme homophily in the first period is a positive probability

event, and a repetition of this first period network for some finite number of periods is also a

positive probability event. If this number of periods is large enough, then each individual in the

group develops so great an understanding of their initial target’s perspective that no other target

is ever subsequently observed, regardless of the expertise realizations that may later arise.

More complex and interesting observational patterns can arise if σ20 > σ2, and ρk < ρ for at

least one group k. In this case neither universal unbiasedness nor universal extreme homophily are

ensured, and substantial within-group behavioral diversity can arise. To explore this case, for each

individual i and group k, let

mik = |(Ji ∪ {i}) ∩Nk|

be the number of individuals from group k whose opinions i observes infinitely often; this set

includes herself if she belongs to k. Using information on these mk perspectives alone, i can update

her beliefs about the perspectives of all other individuals in group k, even if none of these has ever

been observed. The variance of these updated beliefs is σ20/φ (mik, ρk) where

φ (m, ρ) =
1− ρ/ (mρ+ 1)

1− ρ
≥ 1. (12)
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That is, i’s uncertainty about the perspectives of all individuals in group k shrinks by a factor of

(at least) φ (mik, ρk) if she observes mk members of the group infinitely often. Note that this factor

is increasing in both mk and ρ, as one might expect.

If the variance σ20/φ (mik, ρk) of the updated beliefs falls below the cutoff σ2, then i learns the

perspectives of the other members of group k so well that she links to each member of group k

infinitely often. In this case we must have mik = nk. This happens when

σ20/σ
2 < φ (mik, ρk) =

(mik − 1) ρk + 1

(mikρk + 1) (1− ρk)
. (13)

This leads us to:

Proposition 6. Consider any i ∈ N , any group k, and any m ≥ 1. If σ20/σ
2 < φ (m, ρk), then,

almost surely,

mik = |(Ji ∪ {i}) ∩Nk| < m or mik = |(Ji ∪ {i}) ∩Nk| = nk.

This result states that the set of individuals in group k whom i consults infinitely often must

either fall below some threshold (that depends on the correlation in group k perspectives), or must

constitute the entire group.

Note that 1/φ(1, ρk) = (1 − ρ2k), and this gives us a very simple and intuitive condition under

which i either exhibits extreme homophily or completely unbiased behavior. Suppose g(i) = k. If

σ20 < σ2/(1 − ρ2k) then i must link to all in-group members. This follows from Proposition 6 and

the fact that Ji ∪ {i} ∩Nk contains at least one member, i herself. Now suppose that g(i) /∈ k, and

σ20 < σ2/(1− ρ2k). Then i must link to all or none of those in group k. Taken together, this means

that i exhibits either extreme homophily in the long run, or complete unbiasedness, in the sense

that she simply observes the individual who is globally best informed.

Corollary 1. For any i ∈ N and any group k, if σ20(1− ρ2k) < σ2, then

Ji ∩Nk = Nk\ {i} if i ∈ Nk and

Ji ∩Nk ∈ {∅, Nk} if i 6∈ Nk.

In particular, if σ20(1 − min{ρ21, ρ22}) < σ2, then, in the long run, each individual either exhibits

extreme homophily or is unbiased.

For σ20 > σ2, define

m
(
σ20, ρ

)
=

1

1− (1− ρ)σ20/σ
2 − 1/ρ =

1− ρ
ρ

σ20 − σ2

σ2 − (1− ρ)σ20
, (14)

which solves the equation σ20/φ (m, ρ) = σ2. Since φ (m, ρ) < 1/ (1− ρ) by (13), m
(
σ20, ρ

)
is infinite

when σ2/σ20 ≤ 1 − ρ; it is finite otherwise. When mik > m
(
σ20, ρk

)
, we have σ20/φ (mik, ρk) < σ2.
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Figure 3: Regions of parameter space giving rise to homophily, unbiasedness, and indeterminacy.

This implies that if i learns the perspectives of m
(
σ20, ρk

)
or more members of group k, she must

link to all members of group k in the long run. Bearing in mind that each individual knows her

own perspective to begin with, this reasoning leads to the following result.

Corollary 2. For any individual i from group k, in the long run, i either links to everyone in her

group (Ji = Nk\ {i}) or links to at most m
(
σ20, ρk

)
− 1 of them (|Ji| ≤ m

(
σ20, ρk

)
− 1); she either

links to everyone in the other group k′, or links to at most m
(
σ20, ρk′

)
of them.

Observing a sufficiently large number of individuals in a group many times leads to sharp

beliefs about the perspectives of others in the group, which makes these also desirable candidates

for observation when they are well-informed. Since one’s own perspective is known at the outset,

the critical number of own-group targets that need to be observed for this effect is lower. Note

that the threshold m
(
σ20, ρ

)
is increasing in σ20 and decreasing in ρ. Hence high correlation and

low initial uncertainty about perspectives lead to lower thresholds for this tipping process to arise,

and make it more likely that all members of the group will eventually be observed.

Figure 3 shows regions of the parameter space under which various long run structures arise.

When ρk > ρ, we have extreme homophily and all individuals in k observe only in-group members.

In the region defined by σ2/σ20 > 1− ρ2k, individuals belonging to k observe all others in their own
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group, and either all or none in the other group. If σ2/σ20 < 1−ρ2k and ρ < ρ, more complex patterns

of observation can arise, and there is considerable indeterminacy in outcomes. Here individuals may

link to some members of a group while ignoring others, and there may be considerable within-group

heterogeneity in behavior.

The following example illustrates a case in which one group exhibits varying levels of homophily

across individuals, while the other is characterized by considerable heterogeneity, with some indi-

viduals exhibiting homophily while the others exhibit heterophily.

Example 3. Suppose n1 = 3, n2 = 6, ρ1 = 2/3, ρ2 = 1/4, τ2 = 1/2, τ2 = 1, and σ20 = 3. Then

σ2 = 2, so σ2/σ20 = 2/3. In this case 1−ρ21 = 5/9 < 2/3. Hence all individuals in group 1 link to all

others in their group, while all those in group 2 either link to all or none in group 1. Furthermore,

it can be verified that σ20/σ
2 > φ(m, ρ2) for all m = 1, ...6. Hence, for all i ∈ N , the number of

long-run links to members of group 2 is unconstrained.

Figure 4 shows the long-run structures that arise in this example for a particular realization of

expertise levels. All links are resolved (either broken or free) 38 periods have elapsed. The figure

shows the long-run expert sets for each of the nine agents in a separate cell, with colors indicating

group membership and a black boundary identifying the subject or observer in each cell. Consistent

with the results, each of the three members of group 1 link to the other two infinitely often, as

shown in the top row. They differ only with respect to their links to the other group, which range

from none to three. Under the parameter specifications in the example, group 2 individuals must

link to all or none of those in group 1, and this is also seen in the figure: three link to all and three

to none.

While the figure shows only one realization of the process, and one set of possible long-run

structures, it illustrates the manner in which long-run structures are constrained by the correlation

in perspectives within groups.

6 Large Groups

Our analysis to this point concerns groups of arbitrary size. Somewhat more can be said for groups

that are sufficiently large.

One implication of the results obtained above is that when m is finite and a group is sufficiently

large, repeatedly observing the opinions of a small fraction of group members is enough to learn the

perspectives of all others in the group to a high degree, even if they have not been directly observed.

As a result, these individuals will eventually come to be observed, whenever they happen to be

substantially better informed than others in the population. This leads to the following bang-bang

result, which holds under a wider range of parameter values than in the small group case:
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Figure 4: Free links in the long run for nine agents in two groups. Each cells is the observational

network for one agent, depicted with a black boundary, and links are to the agent’s long-run targets.

Corollary 3. For any i ∈ N , any group k with σ20(1 − ρk) < σ2, and every ε > 0, there exists n

such that, if nk > n, then either mik < εnk or mik = nk.

That is, if group k is sufficiently large, all individuals in the population either observe only a

small fraction of those in this group, or observe all members of the group in the long run.

We next present a lower bound on the probability that all individuals in a given group will

exhibit homophily in the long run. As the group size gets large, this probability approaches 1

under any ρk > 0. There are many such bounds. We start with one that can be easily derived

using the techniques in Sethi and Yildiz (2016). For simplicity, we also use a binary expertise

distribution:

τ2it =

{
τ2 with probability q,

τ2 with probability 1− q.
(15)

Consider any individual i and period t. Let l denote i’s target λt(i) in this period, and note

from (7) that

1/σ2l (i, t+ 1) = 1/σ2l (i, t) + 1/α
(
τ2it, τ

2
lt

)
≥ 1/σ2l (i, t) + 1/α

(
τ2, τ2

)
. (16)
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Moreover, σ2j (i, 0) = σ20
(
1− ρ2k

)
for any j from group k = g (i). Then, as i observes an in-group

member j repeatedly, the variance σ2j (i, t) eventually drops below β
(
σ20
)
. If i has not observed any

out-group member in the meantime, her links to all out-group members break permanently at that

point. Using the inequality in (16), one can easily show that the number of repetitions for this to

occur is at most max {dκe , 0} where

κ =
α
(
τ2, τ2

)
σ20

[
1

1− ρ2
− 1

1− ρ2k

]
=
α
(
τ2, τ2

)
σ20

ρ2 − ρ2k(
1− ρ2

) (
1− ρ2k

) . (17)

Here, ρ is the cutoff for the correlation above which i never links to an out-group member, as defined

in (11). If ρk > ρ, we have κ ≤ 0, and extreme homophily with probability 1 (see Proposition 5).

If not, then κ > 0, and some repetition may be needed in order for all out-group links to break.

The extent of this repetition depends on the distance of ρk from the cutoff ρ. Note that

κ <
α
(
τ2, τ2

)
σ20

ρ2

1− ρ2
≡ κ. (18)

To obtain our lower bound, consider the case of binary expertise. In the initial period, since

σ2j (i, 0) = σ20
(
1− ρ2k

)
> σ20, individual i links to an in-group member whenever there is any such

individual with high expertise, which occurs with probability 1 − (1− q)nk−1 ≥ q, or there is no

individual with high expertise in the population, which occurs with probability (1− q)n−1. She

links to an out-group member otherwise, which happens with probability (1− q)nk−1− (1− q)n−1.

If i has linked to an in-group member j initially, what is the probability that she will link

to j again in the next round? Note that she is now most familiar with j, then with other in-

group members, and least familiar with out-group members. Hence she will link to j if j has

high expertise, which happens with probability q, or nobody has high expertise, which occurs with

probability (1− q)n−1. She links to an out-group member with probability (1− q)nk−1−(1− q)n−1

as in the previous case.

With the remaining probability she links to a different in-group member, and learns more about

that individual, as well as about j and other in-group members. As she continues to observe only

in-group members, the probability that she links to the most familiar in-group member remains

q + (1− q)n−1, and the probability that she observes an out-group member remains (1− q)nk−1 −
(1− q)n−1, until the latter probability drops to zero. At this point all links to out-group members

break permanently and we have extreme homophily. The following lower bound on the likelihood

of extreme homophily is based on the probability of this event.

Proposition 7. Under (15), for any group k and any i ∈ Nk,

Pr (Ji ⊂ Nk) ≥

(
q + (1− q)n−1

q + (1− q)nk−1

)max{dκe,0}

≡ p∗.

As nk →∞, p∗ → 1.
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As the group size gets large, extreme homophily becomes virtually certain. This is intuitive.

Recall from Proposition 2 that the likelihood of extreme homophily in the initial period is increasing

in group size; the larger the group the more likely it will be that the group contains one of the

globally best-informed individuals. If this happens repeatedly for some initial set of periods, all links

to out-group members break and expertise realizations in subsequent periods become irrelevant.

The number of needed repetitions may be large, but is finite for any ρk > 0. The probability of

this event can be made arbitrarily close to 1 by increasing group size.

7 Conclusions

The basic premise underlying our analysis here is that members of an identity group share a common

worldview, and filter information about the world in a similar manner. We have modeled these

worldviews using heterogeneous prior beliefs, assumed to be correlated within but not across groups.

When seeking information about the world, this leads individuals to exhibit an initial preference

for observing the opinions of in-group members, since these opinions are easier to interpret. But

this bias need not overwhelm differences in the quality of information: outsiders may be observed

if they have significantly more precise signals than insiders. And observing outsiders gives rise

to additional positive feedback effects, as one learns not just about a different individual but also

about a different culture.

A natural process of symmetry-breaking, arising from differences across observers in their own

quality of information, can give rise to heterogeneity within groups in observation patterns. The

extent of this heterogeneity if constrained, however, and under certain conditions results in a sharp

separation of individuals into two categories: those who exhibit extreme homophily, and those

who shed all initial biases towards in-group members. This bimodality of observation patterns is

potentially testable using data on communication networks.
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Appendix

Proof of Proposition 1. Let j and j′ respectively denote individuals with the highest expertise in

groups 1 and 2 respectively. If there are multiple such individuals in any group, consider the one

with the lowest label. If j and j′ have the same level of expertise, then each individual in N1 will

strictly prefer to observe j while each individual in N2 will strictly prefer j′. The same is true by

continuity if the expertise levels of j and j′ are sufficiently close. This is a positive probability

event, and corresponds to E3.

Next suppose that σ20 < σ. Then

τ2 + τ4σ20 < τ2 < τ2 + τ4σ20(1− ρ2)

for any ρ ∈ (0, 1). If τj0 = τ2 and τj′0 = τ2, then all individuals other than j observe j. The same

is true by continuity if τj0 is sufficiently close to τ2, while τj′0 is sufficiently close to τ2, which is a

positive probability event corresponding to E2. That E1 can arise with positive probability can be

shown by switching the values of τj0 and τj′0 in this argument.

To see that no other event can occur with positive probability, note that each individual must

observe either j or j′, since we are considering the first period. Furthermore, all individuals in

N1 \ j have the same preference over j and j′. If all choose j′ then so does j, since this individual

faces a choice between j and the member of N1 with the second highest expertise. Similarly, if any

individual in N2 \ j′ chooses j, then so does every member of N2. This implies that one of the three

cases in the proposition must occur.

Now suppose that σ20 < σ. If ρ2 ≥ ρ, then σ20(1 − ρ2) < β(σ20). Hence if i ∈ N2, Pr(λ0(i)) ∈
N1) = 0 so Pr(E1) = 0. The same reasoning may be used to prove the claim about E2.

Proof of Proposition 2. Fix any k and k′, where k 6= k′. For τ2 ∈ [τ2, τ2] and ρk′ , σ
2
0 given, let

z(τ2) ∈ R denote the unique solution to

z2 + z4σ20(1− ρk′) = τ2 + τ4σ20. (19)

Note that z(τ2) is strictly increasing and satisfies z(τ2) > τ2. This function can be interpreted

as follows: if the best-informed individual in group Nk has signal variance at most τ2, and all

individuals in Nk′ have signal variance above z(τ2), then all those in Nk′ will observe the best-

informed in Nk. So will all those in Nk other than this best-informed individual, so Ek will occur.

The probability of this is

Pr(Ek) =

∫ τ2

τ2
(1− (1− F (x))nk) (1− F (z (x)))nk′ dx. (20)

The claims regarding the effect of nk and nk′ follow immediately. Note that an increase in ρk′ raises

z(·) from (19) and hence lowers the integrand in (20), completing the proof.
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Proof of Proposition 3. Suppose that both groups exhibit homophily in the first period (so E3

occurs). At least one of the two groups must contain an individual with the globally lowest signal

variance in period 2. Suppose that k is such a group, and let j ∈ Nk be such an individual. Given

E3 and nk ≥ 3, there must be at least one individual in i ∈ Nk such that i 6= j and λ0(i) ∈ Nk.

Let l ∈ Nk denote λ0(i). We then have

σ2l (i, 1) ≥ σ2j (i, 1) ≥ σ2j′(i, 1)

for all j′ /∈ Nk. Since j is globally best informed in the second period, we must have either

λ1(i) = j ∈ Nk or λ1(i) = l ∈ Nk. In either case extreme heterophily in Nk in the second period is

precluded.

Proof of Proposition 4. Suppose σ20 < σ2 and consider any period t and any pair of distinct indi-

viduals i and j. We show that there is a positive probability that i links to j in period t regardless

of the history of expertise realizations prior to t. Note that σ2j (i, t) ≤ σ20 while σ2j′(i, t) > 0 for all

j′ /∈ {i, j} and all histories. Suppose that τjt = τ and τj′t = τ for all j′ /∈ {i, j}. Then

γij(t) = τ2 + τ4σ2j (i, t) < τ2 + τ4σ2 = τ2 < τ2 + τ4σ2j′(i, t) = γij′(t).

Hence i links to j under these expertise realizations. The same is true for expertise realizations

sufficiently close to these, so i links to j with positive probability in each period, regardless of

history. Hence, for each pair of individuals i and j, j ∈ Ji almost surely, so Ji = N \ {i} as

claimed.

Proof of Proposition 5. Suppose σ20 > σ2, in which case β(σ20) is well-defined and finite. It is easily

verified that in the initial period, there is a positive probability that for each i ∈ N , λ0(i) ∈ g(i).

That is, there is a positive probability that in the initial period, each individual links to a member

of their own group. (This will happen if the four best-informed individuals in the population all

have sufficiently similar levels of expertise, and two of these are in the first group while the other

two are in the second.) Suppose that the first period network does indeed satisfy λ0(i) ∈ g(i) for

all i ∈ N . Note that the likelihood that this same network will form again in the second period is

also positive, as is the probability that it will form in each of the first s periods for any given, finite

s. Suppose that the same network (with λ0(i) ∈ g(i) for each i ∈ N) forms in each of the first s

periods. If s is sufficiently large, then for each i ∈ N , we reach

σ2λ0(i)(i, s) < β(σ20).

At this point all links from i to all members outside g(i) break, and i subsequently exhibits extreme

homophily. We have shown that this is a positive probability event.

To prove the second claim, consider any group k with ρk > ρ. Then, for each pair i and j such

that j ∈ g(i) = k we have

σ2j (i, 0) = σ20(1− ρ2k) < β(σ20).
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Hence the probability that i links to any j′ /∈ g(i) is zero in the initial period. It is clearly also zero

in all subsequent periods.

Proof of Proposition 6. The claim follows from the analysis in the text. Indeed, take any history

in which mik ≥ m where σ20/σ
2 < φ (m, ρk). Then, along that history, for any j ∈ Nk\ {i},

σ2j (i,∞) ≡ limt→∞ σ
2
j (i, t) ≤ σ20/φ (mik, ρk) ≤ σ20/φ (m, ρk) < σ2. There then exists t∗ such that

σ2j (i, t
∗) < σ2. Since the probability of histories in which i does not link to j infinitely often is zero,

this completes the proof.
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