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Abstract

A collective choice model of an environment where a society must allocate but cannot
legally enforce property rights over a single indivisible productive asset is studied. There
are both production and pillage opportunities for coalitions. For strictly superadditive
production technologies, we show that the set of efficient allocations is a vNM Stable Set.
In contrast, while the stability imperatives of the Core support the efficient allocation
of property rights, they do limit the possibilities for wealth distribution in the society.
For a mild restriction on the state space and for a class of pillage technologies, the set
of efficient allocations is also Chwe’s Largest Consistent Set.
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"Throughout the history of mankind, it has been quite common that economic agents, indi-
vidually or collectively, use power to seize control of assets held by others."

Piccione and Rubinstein (2007)

"All aspects of human life are responses ... to the interaction of two great life strategy
options: on the one hand, production and exchange, on the other hand, appropriation and
defense against appropriation."

Hirshleifer (1994)
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1 Introduction

A collective choice model of an environment where a society must allocate but cannot legally
enforce property rights over a single indivisible productive asset is studied. Property rights
may be held by coalitions which may differ in terms of their power and their productivity
with the asset. A state in the model describes which coalition owns the asset and how is the
wealth produced from the asset distributed among all the players. Coalitions can move to
costlessly pillage the asset from current owners if they are more powerful than the coalition
of players who lose from such a move and the new owners are complicit in the pillage. Even
in the absence of property rights enforcement, is an efficient allocation of property rights
enforceable in this model ? This paper uses cooperative analysis to give an affirmative
answer.

As Hirshleifer (1994) reminds us, the appropriative struggle for control of productive re-
sources alongside the economic activity of production and exchange through market insti-
tutions provides the main storyline of human history. The acts of pillage can take many
forms- war, theft, rent seeking activities like lobbying for licenses and monopoly privileges
as well as coercive taxes/transfers of democratic governments. Pillage, therefore, is as much
a feature of advanced societies as it appears to be of the primitive societies.

The classical efficiency of exchange in a free market economy is predicated on enforcement
of property rights. The first welfare theorem postulates voluntary exchange as a premise
for allocative efficiency of exchange. A strand of literature in law and economics starting
with Calabresi and Melamed (1972) and Kaplow and Shavell (1996) look at the economic
analysis of property and liability rules. Working in that tradition, Bar-Gill and Persico (2016)
point to the possibility of achieving efficiency in an exchange model with a single durable
asset even with a weak protection of property rights. The present paper is motivated by
a similar question as to whether property rights protection is a necessary prerequisite for
efficiency. We examine this question in a model with a single durable asset and where there
are opportunities for production as well as pillage by coalitions.

Models of weak property rights either model pillage as costly investment in rent seeking
activities (Murphy et al. (1991), Muthoo (2004), Hafer (2006)) or as costless (Piccione and
Rubinstein (2007), Jordan (2006)). This paper is in the latter tradition of modeling pillage
as costless. Our model has the same lack of commitment that characterizes dynamic political
settings and has been emphasized in the recent literature (Jordan (2009), Acemoglu et al.
(2012) etc.). A sufficiently powerful coalition may pillage the asset today from a less powerful
coalition. However, members of the coalition cannot commit not to part ways and join
another coalition tomorrow to appropriate the asset in hope of a better payoff. Enforceability
thus depends on the distribution of political power.

All our results pertain to the class of strictly superadditive production technologies implying
that an efficient state is one where the grand coalition holds the property rights and produces
the greatest aggregate wealth. Our first result, Proposition 1, says that the set of efficient
states is a vNM Stable Set. Thus stability imperatives of vNM Stable Set neither constrain

2



the efficient allocation of property rights nor wealth distributions. In contrast, while the
stability imperatives of the Core support the efficient allocation of property rights, they do
limit the possibilities for wealth distribution in the society. Our second result, Proposition 2,
characterizes the Core. At a wealth distribution in a Core state, every coalition whose
total wealth falls short of its own productive potential cannot be more powerful than its
complementary coalition. Both the Core and vNM Stable Set are defined with respect to
the direct dominance relation. We next turn to see whether efficiency can be supported by
expectations of rational farsighted players. Proposition 4 is our main result characterizing
Chwe’s Largest Consistent Set (LCS). For a mild restriction on the state space and for a
class of pillage technologies, the set of efficient states is the LCS. Thus for a class of pillage
technologies, the farsighted stability imperatives of LCS also impose no constraints on either
efficient property rights allocation or wealth distributions. We conclude that in our model
which has absence of property rights enforcement, efficiency is supported by a range of
stability concepts from cooperative theory namely vNM Stable Set, Core and LCS.

The expectations that make efficient states stable when players are farsighted rely on punish-
ing acts of pillage. As such, they differ from the expectations embodying a vNM Stable Set.
To see this, consider a 3-player symmetric production environment given by f(N) = 1.2,
f(S) = 1 if |S| = 2 and f(S) = 0 if |S| = 2. The power of a coalition at a state is its
total wealth at that state. Let z0 = (N, (0.2, 0.4, 0.6)) and z1 = ({1, 3}, (0.3, 0, 0.7)). A
deviation by coalition {1, 3} from the efficient state z0 to the inefficient state z1 cannot be
deterred by the expectation of a move back to an efficient state. So the standard markovian
expectations in Anesi (2010) that support the vNM Stable Set cannot stabilize the efficient
state z0 as they leave no scope for punishing either player 1 or player 3. This is primarily
because "winning coalitions" are endogenous and may depend on the particular move under
consideration. So even though there is no "winning coalition" for a direct move from z0 to
say z′′ = (N, (0.35, 0.1, 0.75)), coalition {1, 3} may enforce a move from z0 to z1 in anticipa-
tion of a subsequent move to the efficient state z′′, thus eventually profiting from the move.
Nevertheless, we can construct an expectation that makes z0 stable against a deviation to z1.
Let z2 = ({2, 3}, (0, 0.2, 0.8)) and z3 = (N, (0.1, 0.2, 0.9)). Player 1 will block the deviation
from z0 to z1 as the path z2, z3 that is expected subsequent to the deviation punishes player
1 in its final conclusion.

There is a growing literature on resource allocation in environments with weak or no protec-
tion of property rights. Jordan (2006) invents single good pillage games as a setting for study
of power and studies the core and stable sets of these games. Rowat (2009) adds a second
good to single good pillage games ’s single good pillage games, thus introducing opportuni-
ties for exchange. Consequently, gains from trade may also motivate pillage in their setting.
Moreover, vNM stability may preclude efficiency. Jordan (2009) further develops production
pilllage games in which in addition to pillage opportunities, each player has an individual
production technology which she uses to produce consumption from the share of asset that
she owns. Our model differs from these papers in that unlike them we allow for coalitional
ownership and coalitional production. Moreover, we have a single indivisible asset while in
Jordan (2009), players own varying quantities of the asset. Our main result on supporting
efficient states as LCS is similar in spirit to Jordan (2009) who supports efficient states in
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his model via his own solution concept of ’Legitimate Set’ that relies on punishing acts of
pillage.

2 Model

2.1 Environment

There is a single indivisible and durable asset. There is a set N = {1, . . . , n} of n agents
who live forever. The asset may be owned by a coalition of agents. Various groups of agents
may produce varying amount of wealth with the asset which is described by a function f
that for a coalition S gives the wealth f(S) that it can generate, in units of lifetime payoffs,
if S had the ownership of the asset.

There is a set of states Z that encode information about property rights and wealth distri-
bution in the society. A state z ∈ Z specifies a coalition S that jointly owns the asset and a
distribution u = (u1, . . . , un) ∈ Rn

+ of lifetime payoff f(S) that S gets from the asset.

Z = {(S, u) ∈ 2N \ φ× Rn
+ :
∑
i∈N

ui = f(S)}

Agent i’s payoff in state z = (T,w) is ui(z) = wi i.e. his share of the wealth distribution at
that state. We will refer to the owning coalition at the state z as o(z).

There is absence of property rights enforcement which makes any prevailing state vulnerable
to pillage by another group. The technology of pillage is specified by the construct of a
power function as defined by Jordan (2006) that satisfies the following properties

Definition 1. (Power Function). A power function is a function π : 2N × Z→ R satisfying

(p1). the power of a coalition does not decrease as the coalition adds new members i.e.

∀z ∈ Z, S ⊂ T =⇒ π
[
T ; z

]
≥ π

[
S; z

]
(p2). the power of a coalition does not decrease if there is no member of the coalition whose
wealth decreases

∀z, z′ ∈ Z st o(z) = o(z′)
(
∀i ∈ S, ui(z′) ≥ ui(z)

)
=⇒

(
π
[
S; z′

]
≥ π

[
S; z

])
(p3). the power of a coalition increases if the wealth of every member of the coalition
increases

∀z, z′ ∈ Z st o(z) = o(z′)
(
∀i ∈ S, ui(z′) > ui(z)

)
=⇒

(
π
[
S; z′

]
> π

[
S; z

])
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That the notion of power function specifies the technology of pillage is reflected in the fol-
lowing definition of feasible moves.

Definition 2. (Feasible Moves). A move from state z to state z′ = (T,w) is feasible for a
coalition S , written z →S z

′ if

1. the new owners i.e. players in T support the move i.e. T ⊂ S. This is needed as coalition
T is supposed to produce the wealth from the asset at state z′.

2. S is more powerful at state z than the coalition of players who lose from the move

π
[
S; z

]
> π

[
{i ∈ N : ui(z

′) < ui(z)}; z
]

The environment 〈Z, π, (→S)S⊂N , (ui)i∈N〉 may be seen as a cooperative game.

3 Cooperative Analysis

Individual preferences represented by ui, feasibility relations →T and power function π[.; z]
induce a direct dominance relation < on the set of states Z.

Definition 3. (Direct Dominance). z < z′ (z′ directly dominates z) if

1. there exists S such that z →S z
′; and

2. Players in S do not lose from the move and some player in S gains from the move i.e.

S ⊂ {i ∈ N : ui(z
′) ≥ ui(z)} and S ∩ {i ∈ N : ui(z

′) > ui(z)} 6= ∅

Let < (z) be the set of states that dominate z. The Core and vNM Stable Set are two of
the earliest solution concepts from cooperative game theory based on the direct dominance
relation.

Definition 4. (Core). A set of states V ⊂ Z is the Core of 〈N,Z, π, (ui)i∈N ,W 〉 if no state
in V is dominated by another state in Z.

In other words, Core is the set of undominated states in Z. We now define a stable set for
an abstract binary relation on the state space.

Definition 5. (Stable Set). Given a binary irreflexive relation C on the state space Z, a set
of states V ⊂ Z is a stable set of 〈Z,C〉 if the following two conditions hold:

1. Internal Stability (IS). No state in V is dominated by another state in V.

z ∈ V =⇒ C (z) ⊂ Z \ V
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2. External Stability (ES). Every state not in V is dominated by another state in V.

z′ ∈ Z \ V =⇒ ∃z ∈ V : z ∈C (z′)

Definition 6. (vNM Stable Set). A set Y ⊂ Z is vNM stable set if Y is the stable set of
〈Z, <〉.

The first result below shows that the set of all efficient states can be supported as the vNM
stable set of the game. In other words, the stability imperatives in vNM stability concept
do not constrain efficiency in any way.

Proposition 1. If the coalitional production function f(.) is strictly superadditive, then the
set of efficient states E is a vNM Stable Set.

Proof. No efficient state a is dominated by another efficient state b because in moving from
a to b, some player i must be getting less than in a. However the move is feasible only for
coalition N making i’s cooperation necessary. i can, therefore, block the move. Thus the set
of efficient states is internally stable.

Every inefficient state a with total wealth produced f(S) (for some coalition S that holds
the property rights over the asset at state a) is dominated by an efficient state b with total
wealth produced f(N) in which the extra wealth produced f(N)−f(S) > 0 is equally shared
with everyone in N i.e. b =

(
N, (ui(a) +

f(N)−f(S)
N

)i∈N
)
. Thus the set of efficient states is

externally stable. Q.E.D.

The above result also implies that the direct dominance relation < is not a tournament on
the state space. The next result says that not all efficient states can be supported as the
Core. Thus the stability imperatives in the concept of Core do not constrain the efficient al-
location of property rights but do limit the possibilities for wealth distribution in the society.

Proposition 2. Suppose the coalitional production function f(.) is strictly superadditive.
Let

Y = {z ∈ E : ∀S ⊂ N
∑
i∈S

ui(z) ≥ f(S) or π[S; z] ≤ π[N \ S; z]}

Then Y is the Core of 〈Z, <〉.

Proof. Suppose z ∈ Y and z < z′ = (T,w) through coalition D. Let S = {i ∈ N : ui(z
′) ≥

ui(z)}. Then D ⊂ S and π[S; z] ≥ π[D; z] > π[N \ S; z] where the first inequality follows
from property (p1) of the power function and the second from the definition of <. Since
z ∈ Y, this implies

∑
i∈S ui(z) ≥ f(S), and

f(T ) =
∑
i∈N

ui(z
′) ≥

∑
i∈S

ui(z
′) >

∑
i∈S

ui(z) ≥ f(S)
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where the strict inequality is because some player in coalition D must necessarily gain in
the move from z to z′ and D ⊂ S. For T = S, the contradiction is obvious. For T ( S, the
contradiction is to the strict superadditivity of f . This completes the proof that all states in
Y are Core states. To complete the proof that Y is the Core, consider a state z /∈ Y. There
is a coalition S ⊂ N such that

∑
i∈S ui(z) < f(S) and π[S; z] > π[N \ S; z]. Define a state

z′′ = (S,w) such that for every player i in S, ui(z′′) = wi = ui(z) +
f(S)−

∑
i∈S ui(z)

|S| . Then
z < z′′. So z cannot be a Core state. Q.E.D.

We present an example with specific production and pillage technologies to get a sense of
what the Core looks like.

Example. There are three players, N = {1, 2, 3}. There is a symmetric production envi-
ronment and power of a coalition is simply its total wealth.

f(S) =


F if |S| = 3

G if |S| = 2

0 if |S| = 1

, F > G

π[S; z] =
∑

i∈S ui(z)

In this example, the Core is given by

Y =
{(
N,
(
wi, wj, wk

))
: 0 ≤ wi ≤ wj < wk; wk ≥ G; wi+wj+wk = F ; i, j, k ∈ {1, 2, 3}

}
The vNM stable set suffers from a conceptual flaw that it does not take farsightedness of
players into account. The next definition of dominance takes into account the farsightedness
of players and adapts Chwe (1994)’s definition of indirect dominance and consistent set to
our environment.

Definition 7. (Farsighted Dominance). z0 is farsightedtly dominated by zm, or, z0 �
zm if there exists a path z0 = (T 0, w0), z1 = (T 1, w1), . . . , zm = (Tm, wm) and coalitions
S1, S2, . . . , Sm such that for every i = 1, . . . ,m,

1. T i ⊂ Si;

2. Si is more powerful at state zi−1 than the coalition of players who lose from the move in
its final conclusion under the path

π
[
Si; zi−1

]
> π

[
{i ∈ N : ui(z

m) < ui(z
i−1)}; zi−1

]
7



3. Players in Si do not lose from the move and some player in Si gains from the move i.e.

Si ⊂ {i ∈ N : ui(z
m) ≥ ui(z

i−1)} and Si ∩ {i ∈ N : ui(z
m) > ui(z

i−1)} 6= ∅

Definition 8. (Chwe’s Consistent Set). A set Y ⊂ Z is a Chwe’s Consistent Set if z0 ∈ Y
if and only if ∀z1 = (T 1, w1) and S1 ⊂ N such that T 1 ⊂ S1, ∃zm ∈ Y, where z1 = zm or
z1 � zm and a player i ∈ S1 for whom ui(z

m) < ui(z
0).

Definition 9. (Chwe’s Largest Consistent Set). A set Y ⊂ Z is Chwe’s Largest Consistent
Set if Y is a Consistent Set that includes any other Consistent Set.

Proposition 3. Suppose the coalitional production function f(.) is strictly superadditive.
Then the set of efficient states, E, is externally stable with respect to the farsighted dom-
inance relation, �. However, there are pillage technologies for which E is not internally
stable with respect to �.

Proof. External stability of E with respect to � follows because <⊂� and E is externally
stable with respect to < by Proposition 1. For the second assertion, consider an example.
There are three players, N = {1, 2, 3}. There is a symmetric production environment given
by

f(S) =


1.2 if |S| = 3

1 if |S| = 2

0 if |S| = 1

The power π[S; z] of a coalition S at the state z is the total wealth of S i.e. π[S; z] =∑
i∈S ui(z). This notion of power depends on the prevailing state.

z = (N, (0.2, 0.4, 0.6)) z′ = ({1, 3}, (0.3, 0, 0.7)) z′′ = (N, (0.35, 0.1, 0.75))

It may be checked that z � z′′ via the path z, z′, z′′. Q.E.D.

The example presented in the proof of Proposition 3 also helps to illustrate a general feature
of the model. A deviation by coalition {1, 3} from the state z ∈ E to state z′ ∈ Z \ E
cannot be deterred by the expectation of a move back to E. So the standard markovian
expectations that support the vNM Stable Set do not work in the model. This is primarily
because "winning coalitions" are endogenous and may depend on the particular move under
consideration. So even though there is no "winning coalition" for a direct move from z to
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z”, coalition {1, 3} may enforce a move from z to z′ in anticipation of a subsequent move to
the efficient state z”, thus eventually profiting from the move.

We use the same example to argue that even though the path z, z′, z” displayed in the proof
of Proposition 3 destabilizes the efficient state z, we can construct an expectation that makes
z stable against a deviation to z′. For ease of notation, lets relabel z as z0 and z′ as z1.
We will display states z2 and z3 such that the path z0, z1, z2, z3 makes z0 stable against a
deviation to z1.

z0 = (N, (0.2, 0.4, 0.6))

z1 = ({1, 3}, (0.3, 0, 0.7))
z2 = ({2, 3}, (0, 0.2, 0.8))
z3 = (N, (0.1, 0.2, 0.9))

Player 1 will block the deviation from z0 to z1 as the path z2, z3 that is expected subsequent
to the deviation punishes player 1 in its final conclusion.

We next argue that not all pillage technologies support the construction of expectations that
serve as punishment for some player who is complicit in the initial deviation. For this, take a
3-player environment and suppose the strictly superadditive production function is specified
as

f(S) =



1.2 if |S| = 3

0.85 if |S| = {1, 2} or {1, 3}
0.1 if |S| = {2, 3}
0.8 if |S| = {1}
0 if |S| = {2} or {3}

The power π[S; z] of a coalition S at the state z is the total wealth of S i.e. π[S; z] =∑
i∈S ui(z). Let z0 = (N, (0.7, 0.3, 0.2)) and z1 = ({1}, (0.8, 0, 0)). This deviation cannot

be deterred by an expectation of a move back to an efficient state. Also observe that it is
impossible to construct an expectation that punishes player 1. To see this, suppose we could
construct a path embodying such an expectation. The coalition, say S2, that gets this path
rolling from z1 must be more powerful than the coalition of players who eventually lose from
the move. This implies that the coalition S2 must be more powerful than player 1 which is
impossible given the pillage technology.

In order to be able to construct an expectation punishing player 1, we need to make the
players other than player 1 more powerful. One power function that enables us to do that
specifies the power π[S; z] of a coalition S at the state z as π[S; z] = v |S| +

∑
i∈S ui(z).

Suppose in the above example v > 0.8. Then π[{2, 3}; z1] > π[{1}; z1]. Letting z2 =
({2, 3}, (0, 0.05, 0.05)) and z3 = (N, (0.2, 0.5, 0.5)), we now have the desired expectations.
Player 1 will not deviate from z0 to z1 as the path z2, z3 that is expected subsequent to the
deviation punishes player 1 in its final conclusion.

In the next result, we restrict the state space to allow for only those states at which every
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player who holds property rights over the asset enjoys a positive payoff. Let

Z++ = {z = (S, u) ∈ Z : ∀i ∈ S, ui > 0}
E++ = E ∩ Z++

We show that with this mild restriction on state space, the set of efficient states has good far-
sighted stability properties for some pillage technologies. Formally, the set of efficient states
is a Chwe’s Largest Consistent Set that is externally stable with respect to �. The pillage
technology in Proposition 4 is specified by a power function that depends both on coalitional
size and coalitional wealth. The parameter v specifies the degree of substitutability of size
and wealth for attaining the same power. 1

The logic of the proof of Proposition 4 is as follows. In the first step, we show that for
every deviation by coalition S1 from an efficient state z0 to an inefficient state z1 where say
coalition T 1 holds the property rights, there is a feasible opportunity for pillage at z1 that
leaves some player i ∈ T 1 losing her property rights. The second step shows that E++ must
be a Chwe’s Consistent Set and involves the construction of a two-step path z2, z3 from the
deviation z1. The first move to z2 leads to player i losing her property rights; the second
move ends up in some efficient state z3 and serves as a punishment for i with respect to z0.
The third step shows that E++ must be a Largest Consistent Set as the stability imperatives
preclude the inclusion of any inefficient state.

Proposition 4. Suppose n ≥ 3, the state space is Z++ and the following conditions hold:
(1) the production function f(.) is strictly superadditive;
(2) the pillage technology as specified by the power function π[.; z] is given by

∀z ∈ Z, π[S; z] = v |S|+
∑
i∈S

ui(z) where v > max
k∈N

f({k})
n− 2

Then the set of efficient states, E++, is a Chwe’s Largest Consistent Set of 〈Z++,�〉 that is
externally stable with respect to �.

Proof. External stability of E++ with respect to � follows because <⊂� and E++ is exter-
nally stable with respect to <.

Step 1. We show that

∀z = (S, u) ∈ Z++ \E++, ∃T 6= N such that S \T 6= ∅, π[T ; z] > π[N \T ; z] and f(T ) > 0

Without loss of generality let u1 ≥ u2 ≥ . . . ≥ un. Choose the smallest m ∈ {1, . . . , n} such
that

π[{1, . . . ,m}; z] > π[{m+ 1, . . . , n}; z]

i.e. vm+
m∑
i=1

ui > v(n−m) +
n∑

i=m+1

ui

1If coalitional size reduces by 1 player, then an increase in coalitional wealth by v units would keep the
power unchanged.
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Such an m < n exists as the above inequality holds for m = n− 1. To see this, suppose first
un > 0. Then un−2 ≥ un−1 ≥ un > 0. This implies un−2 + un−1 > un which further implies
v(n − 2) +

∑n−1
i=1 ui > un. Suppose next un = 0. This implies

∑n−1
i=1 ui = f(S) > 0 = un

which further implies v(n− 2) +
∑n−1

i=1 ui > un.

Let U = {1, . . . ,m}. Suppose S \ U 6= ∅. If m ≥ 2, then set T = U . Else, if m = 1 i.e.
U = {1}, then let k ∈ S \ U and set T = N \ {k} which implies k ∈ S \ T .

π[T ; z] = v(n− 1) +
∑

i∈N\{k}

ui

> v + u1 as 1 ∈ N \ {k} and n ≥ 3

> v(n− 1) +
n∑

m=2

um as U = {1}

≥ v + uk = π[N \ T ; z]

Suppose S \U = ∅. Let k be the biggest player index such that k ∈ S. There are two cases.
Suppose first k ≥ 2. Then set T = N \ {k} so that k ∈ S \ T . In this case uk−1 ≥ uk which
implies

∑
i∈N\{k} ui ≥ uk so that

π[T ; z] = v(n− 1) +
∑

i∈N\{k}

ui > v + uk = π[N \ T ; z]

as n ≥ 3. Suppose next k = 1 so that S = {k}. Then set T = N \ {k} so that k ∈ S \ T . In
this case

π[T ; z] = v(n− 1) +
∑

i∈N\{k}

ui

= v(n− 1) + f(S)− uk as z = (S, u) ∈ Z++

> v + 2f(S)− uk by definition of v
≥ v + 2uk − uk as z = (S, u) ∈ Z++

= v + uk = π[S; z] = π[N \ T ; z]

Since f is strictly superadditive and |T | ≥ 2, we have f(T ) > 0.

Step 2. In this step, we show E++, is a Chwe’s Consistent Set. Observe that a deviation
to another efficient state from an efficient state is not feasible as some player must lose
from the move and that player will block the deviation. Fix z0 ∈ E++ and a deviation by
coalition S1 to z1 = (T 1, w1) ∈ Z++ \ E++. We will define z2 = (T 2, w2) ∈ Z++ \ E++

and z3 = (N,w3) ∈ E++ such that z1 � z3 but there exists a player i ∈ S1 such that
ui(z

3) < ui(z
0) so that i blocks the initial deviation to z1.

Since z1 ∈ Z++ \ E++, by Step 1, ∃T 2 6= N such that T 1 \ T 2 6= ∅, π[T 2; z1] > π[N \
T 2; z1] and f(T 2) > 0. Let i ∈ T 1 \ T 2 ⊂ S1. Then since z0 ∈ E++, we have ui(z0) > 0.
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Construction of w2.
Step a. Define w̃2 ∈ Rn

+ by

∀j ∈ T 2 ∪ {i} w̃2
j = ε ∈

(
0,min

{
ui(z

0), (w1
j )j∈T 2:w1

j>0,
f(T 2)

1 + |T 2|
})

∀j ∈ N \ (T 2 ∪ {i}) w̃2
j = 0

so that the excess ẽ = f(T 2)−
∑
j∈N

w̃2
j > 0

Step b. Consider the optimization problem

max
(ηj)j∈T2:w1

j
>0

∑
j∈T 2:w1

j>0

ηj

subject to ∀j ∈ T 2 : w1
j > 0 w̃2

j + ηj ≤ w1
j∑

j∈T 2:w1
j>0

ηj ≤ ẽ

∀j ∈ T 2 : w1
j > 0 ηj ≥ 0

Abusing notation, let (ηj)j∈T 2:w1
j>0 be the solution to this optimization problem. Define

ŵ2 ∈ Rn
+ by

∀j ∈ T 2 : w1
j > 0 ŵ2

j = w̃2
j + ηj

∀j ∈ N \ {k ∈ T 2 : w1
k > 0} ŵ2

j = w̃2
j

Recompute the excess ê = f(T 2)−
∑
j∈N

ŵ2
j ≥ 0

Step c. If ê = 0, then w2 := ŵ2. If ê > 0, then

∀j ∈ T 2, w2
j := ŵ2

j +
ê

|T 2|
∀j ∈ N \ T 2, w2

j := ŵ2
j

At this point the excess e = f(T 2)−
∑
j∈N

w2
j = 0

so that z2 = (T 2, w2) ∈ Z++.

Construction of w3. Let h̃ = f(N)−f(T 2) > 0 by strict superadditivity of f . There are two
cases.
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Case a. If ê = 0 in Step b in the construction of w2, then consider the optimization problem

max
(γj)j∈T2:w1

j
>0

∑
j∈T 2:w1

j>0

γj

subject to ∀j ∈ T 2 : w1
j > 0 ŵ2

j + γj ≤ w1
j∑

j∈T 2:w1
j>0

γj ≤ h̃

∀j ∈ T 2 : w1
j > 0 γj ≥ 0

Again, let (γj)j∈T 2:w1
j>0 be the solution to this optimization problem. Define ŵ3 ∈ Rn

+ by

∀j ∈ T 2 : w1
j > 0 ŵ3

j = w2
j + γj

∀j ∈ N \ {k ∈ T 2 : w1
k > 0} ŵ3

j = w2
j

Compute the excess ĥ = f(N)−
∑
j∈N

ŵ3
j ≥ 0

If ĥ = 0, then w3 := ŵ3. If ĥ > 0, then choose ε̂ ∈ (0, ĥ) and define

∀j ∈ T 2, w3
j := ŵ3

j +
ĥ− ε̂
|T 2|

∀j ∈ N \ (T 2 ∪ {i}), w3
j := ŵ3

j +
ε̂

|N \ (T 2 ∪ {i})|
w3
i := ŵ3

i

At this point the excess h = f(N)−
∑
j∈N

w3
j = 0

so that z3 = (N,w3) ∈ Z++.

Case b. If ê > 0 in Step b in the construction of w2, then ∀j ∈ T 2 : w1
j > 0, w2

j ≥ w1
j . So

choose ε̃ ∈ (0, h̃) and define

∀j ∈ T 2, w3
j := w2

j +
h̃− ε̃
|T 2|

∀j ∈ N \ (T 2 ∪ {i}), w3
j := w2

j +
ε̃

|N \ (T 2 ∪ {i})|
w3
i := w2

i

At this point the excess h = f(N)−
∑
j∈N

w3
j = 0

so that z3 = (N,w3) ∈ Z++.

This construction implies that for every j ∈ T 2, w3
j ≥ max (w2

j , w
1
j ) and for every j ∈ N \T 2,

w3
j ≥ w2

j . This further implies that z1 � z3 but ui(z3) := w3
i < ui(z

0) so that i blocks the
initial deviation to z1.
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Step 3. In this step, we show E++, is Chwe’s Largest Consistent Set (LCS). Suppose by way of
contradiction that z = (S, u(z)) ∈ Z++ \E++∩ LCS. Define z′ = (N, (ui(z)+

f(N)−f(S)
n

)i∈N).
Then z′ ∈ E++ ⊂ LCS. Moreover z < z′ and since {z, z′} ⊂ LCS , a deviation from z to
z′ cannot be deterred. But this contradicts that z is stable by virtue of being in LCS. This
proves that E++ is LCS. Q.E.D.

4 Concluding Remarks

The possibility of efficient allocation of property rights in a model of asset exchange where
coalitions have both production and pillage opportunities is studied. The model reflects the
feature of human societies that any cooperative production happens in the shadow of conflict.
This conflict arises from distribution of wealth primarily because any such distribution has
implications for power. More powerful coalitions may coercively take control of the asset
from less powerful ones. We show that efficient allocation of property rights is supported as
a stable allocation using a range of cooperative stability notions like vNM Stable Set, Core
and Largest Consistent Set (LCS). The LCS is widely seen as one of the most permissive
notions of stability. As such, its conclusions for what is unstable is robust. Our main
result, Proposition 4, says that for a class of production and pillage technologies, the set
of efficient states is the LCS. The LCS expectations that make the set of efficient states
stable rely on punishing the acts of pillage feasible at any efficient state, thereby disciplining
any initial coalition contemplating pillage. Proposition 4 may also be interpreted as saying
that for a class of environments, property rights enforcement is not necessary for achieving
efficiency.

We work with strictly superadditive production technologies. The pillage technologies that
support the punishments in our main result are ones that provide that in determining power
of a coalition, an increase in coalitional size can compensate for at least some reduction in
wealth.

The advantages of a cooperative analysis is that it allows us to deduce conclusions without
writing detailed institutional structures. But the treatment of expectations is ad-hoc. A
noncooperative analysis would involve writing a dynamic bargaining game in a style similar
to Konishi and Ray (2003) providing an institution for generating those expectations. A
noncooperative analysis is the subject matter of future work.
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