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Abstract

We consider an infinitely repeated legislative bargaining model in the spirit of Baron
and Ferejohn (1989), with three agents dividing a dollar in every period. The status
quo evolves endogenously over time, as agents can approve new proposals by a majority
of two votes. One agent has veto power and must approve any proposal that changes
the status quo. Our key parameter of interest is the veto player’s agenda setting power,
defined as the probability (p) that she is randomly selected as the proposer in a given
period. We characterize and show existence of a symmetric Markov Perfect Equilibrium
for all possible primitives (i.e. the initial status quo, the discount factor, and p). Our
main result is that the veto player’s equilibrium welfare is non-monotonic in her agenda
setting power. If p is low, the veto player can offer alternating bribes to her opponents,
which leads to an equilibrium with full surplus extraction by the veto player in the long
run (exactly analogous to Nunnari, 2014). However, once p exceeds a critical threshold,
we show existence of a new equilibrium with only partial surplus extraction, because
the non-veto players can form a blocking coalition which is immune to such “minimum-
winning” bribery schemes. The stark contrast with Nunnari (2014) stems from the
non-veto players having inherently different but self-enforcing beliefs about equilibrium
play. For a large set of primitives, this new equilibrium guarantees strictly positive and
identical shares to the non-veto players in the long run, and makes them both strictly
better off than the full extraction equilibrium. We argue how adding an initial “cheap
talk” stage can rule out the full extraction equilibrium from being selected whenever it
is dominated. Finally, we show that the non-veto players can sustain larger shares in
the long run if their initial shares are allocated more equitably, or if agents are more
patient. In the limit case where patience and the veto player’s agenda setting power
grow very large, our model also replicates the findings of Diermeier, Egorov and Sonin
(2013) for the three-player case.
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1 Introduction

Motivation Basic insights of game theory suggest that the institutional rules underlying a
bargaining game or a committee decision are important in determining the outcome. It has
been well established in the literature on group decision making that having the ability to
set the agenda can be used strategically to influence the outcome of the bargaining process.
For example, in a simple voting game with three voters, three alternatives and preference
orderings that exhibit a Condorcet cycle, any selected agenda setter can always implement
her favorite alternative by first asking for a vote between her two least preferred alterna-
tives, and then have the winner take it up against her most preferred alternative. In a more
general decision-theoretic framework, Plott and Levine (1977) show that the agenda setter
can influence committee decisions in her favor, and find support for their findings through a
laboratory experiment. More recently, Knight (2005) considers empirical evidence from bar-
gaining episodes in Congress, concerning the distribution of transportation projects. He finds
support for the qualitative prediction that members on the transportation committee with
proposer power secure more project spending than members from other districts, suggesting
that having proposer power can be very valuable. In a setting that is more related to our
paper, Bernheim, Rangel and Rayo (2006) consider a legislative bargaining game where the
status quo evolves endogenously. They find that when amendments to the status quo can
be made sequentially by different players, then the final proposer has near-dictatorial power
under fairly weak conditions. This evidence suggests that it should always be beneficial for
an agent to have more agenda setting power, since that creates more frequent opportunities
to propose amendments to the current status quo, and therefore to shape the outcome of the
bargaining process.

Main result In this paper, we provide a simple and tractable theoretical framework where
the common intuition that “having more agenda setting power helps” does not hold. More
specifically, we prove existence of a symmetric Markov Perfect Equilibrium in which an in-
crease of the agenda setting power of any given player may be detrimental to that player’s
equilibrium welfare. This equilibrium is characterized by an infinite and monotonically in-
creasing sequence of critical threshold values of agenda setting power. At every threshold, a
marginal increase in the agenda setting power of a given agent will trigger a discontinuous
drop in that agent’s welfare. This creates a potential micro-foundation for real-life phenom-
ena where an agent may deliberately try to curb her own agenda setting power, since this
could increase her welfare in equilibrium. In a zero-sum game, this implies that the welfare of
the other agents is reduced, even though they can now propose more often. We will provide
a motivating example after briefly describing the model setup first.

Basic setup We consider a legislative bargaining game in the spirit of Baron and Ferejohn
(1989). We extend their benchmark model to a dynamic context where the status quo policy
evolves endogenously over time. There are three players who bargain in an infinite number
of periods over the division of a fixed budget, and the allocation implemented at the end of
every period becomes the default allocation in the next. Importantly, the model diverges from
Baron and Ferejohn (1989) in that one of the players is uniquely and permanently endowed
with veto power throughout the game, allowing her to unilaterally reject amendments to the
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status quo proposed by other players. Every period, the veto agent is randomly selected
with probability p to propose an alternative allocation. Each non-veto player has symmetric
agenda setting power denoted by 1−p

2
. We consider a so-called “closed rule” where a motion

proposed by one player is voted immediately against the status quo, as opposed to an “open
rule” where amendments can be made sequentially by other players in a known order, as
in Bernheim, Rangel and Rayo (2006). Importantly, we allow for recognition rules that are
asymmetric, such that the veto and non-veto players may have a different probability of being
selected as the proposer in any given period.

Example Our main motivating example is one of a country that has three political players
and a fixed amount of annual fiscal revenues to divide among those players every year. The
three players represent a Monarch with veto power, a Nobility, and a Bourgeoisie. This is
characteristic of constitutional monarchies that have upper and lower houses of parliament.
The upper house and lower house represent different strata of society, but are largely similar in
terms of their powers. Throughout the paper, we treat the two non-veto players as symmetric
in terms of agenda setting power, although they may have different budget shares in the initial
status quo. Each institution would like to extract as much of the budget as possible, and
cares about the future generations of their “type”. The Monarch, while having veto power,
is constrained in that she requires the support of either the Bourgeoisie or the Nobility in
order to change the status quo. Conversely, if either the Nobility or the Bourgeoisie make a
new proposal, it must always be acceptable by the Monarch. Our main result establishes a
potential micro-foundation for why the Monarch may want to commit to permanently lower
her agenda setting power, in order to secure a larger share of the pie for herself or her future
descendants. By relinquishing some of her legislative power and seemingly empowering the
two houses of parliament, she effectively increases competition for resources between them,
prevents them from forming credible blocking coalitions with each other, and ends up stealing
more of the total surplus in the long run.

Contribution to the literature The two papers most closely related to ours are Dier-
meier, Egorov and Sonin (2013), and Nunnari (2014). Both papers consider a similar dynamic
legislative bargaining environment with at least one veto agent, but they find dramatically
different results in terms of the expropriation power of the veto player(s). In Diermeier et
al. (2013), the non-veto players form endogenous coalitions to protect each other’s property
rights, which precludes full expropriation by the veto player(s). In Nunnari (2014), however,
the veto player asymptotically extracts the full surplus in the long run, leaving the non-veto
players defenseless and exploitable. Interestingly, the model in our paper is able to predict
both of these contrasting outcomes, depending on the primitives of the model. However,
our setup differs from both Diermeier et al. (2013) and Nunnari (2014) in a number of
dimensions.

Diermeier et al. (2013) consider a general environment where three or more legislators (at
least one of whom has veto power) bargain over a discrete policy space, with a general voting
rule, whereas we consider a baseline model with only three agents and a simple majority rule.
However, Diermeier et al. (2013) assume that (1) only the veto player(s) can propose new
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allocations, and (2) legislators are extremely patient.1 In comparison, our model deliberately
treats the distribution of agenda setting power and the agents’ common discount factor as
two key primitives of the model, and we show how the equilibrium changes as a function of
these two primitives and the initial status quo allocation.

In Section 3, we show how the equilibrium with partial surplus extraction exists for a
vast set of primitives. In Section 5, we show that it converges to that of Diermeier et al.
(2013) in the limiting case where the veto player has all the proposal power and players
become infinitely patient. This suggests that (1) our model nests that of Diermeier et al.
(2013) for the three-player case, and (2) the assumption of having discrete surplus divisions
in Diermeier et al. (2013) is not driving the stark contrast with the full expropriation result
obtained by Nunnari (2014), where allocations are assumed to be continuous.

Nunnari (2014) considers a baseline model with an underlying symmetric structure and
equilibrium concept which are identical to ours, and shows that the veto player can fully
expropriate her two opponents (asymptotically) for a reasonably large set of primitives.2 For
the remaining set of primitives (i.e high levels of patience and a fairly powerful veto player),
no equilibrium is defined. Furthermore, Nunnari (2014) considers various extensions of the
baseline model which show robustness of the full expropriation equilibrium to games with
more than three players and more general voting rules, which further contrasts his results
with those of Diermeier et al. (2013). In comparison, our paper shows the existence of a
symmetric MPE for all possible primitives, which we can roughly partition into three regions.

In the first region, comprising all the primitives for which Nunnari (2014) does not define
an equilibrium, we show existence of an equilibrium with partial surplus extraction by the
veto player, where the non-veto players can sustain strictly positive long-run shares.3

In the second region, Nunnari’s (2014) equilibrium with full surplus extraction exists,
but we prove existence of a different equilibrium with only partial expropriation by the
veto player. We provide conditions under which our equilibrium Pareto-dominates Nunnari’s
(2014) equilibrium from the perspective of the non-veto players.4 The stark contrast be-
tween these respective equilibria stems from the non-veto players having inherently different
but self-enforcing beliefs about equilibrium play. In this region, if both non-veto players
believe that the other non-veto player would accept any allocation where the veto player
offers one opponent a large enough bribe and the other opponent nothing, then accepting
these “minimum-winning” bribes becomes a mutual best response. Under these beliefs, the

1More specifically, Diermeier et al. (2013) require that the discount factor δ ∈ (δ0, 1), where δ0 =(
|A|

1+|A|

) 1
|A|

and A is the set of all feasible (discrete) allocations that exhaust the budget. In a setup with 3

players and a discrete budget b ∈ N, this lower bound δ0 approaches 1 very fast as b increases. For example,
if b = 1, then A = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and hence δ0 = 0.9086. Similarly, for b = 3, |A| = 10 and
δ0 = 0.9905. In the limit case where b ∈ N grows unboundedly (or, analogously, if allocations become
continuous), their results require δ ≈ 1, which significantly complicates the equilibrium analysis due to
stationarity concerns and classic folk theorem arguments.

2More specifically, the author shows that, irrespective of the initial status quo, the full expropriation

equilibrium exists whenever δ ≤ 1+3p−
√

1+6p−7p2

4p2 , where δ is the common discount factor and p is the

recognition probability of the veto player. For example, if p = 3
4 , this requires δ ≤ 8

9 .
3Note that we are not claiming equilibrium uniqueness in this region.
4This is still work in progress, along with the extension of our model where pre-game cheap talk is

introduced as a potential equilibrium selection mechanism in Section 4.
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equilibrium of Nunnari (2014) obtains where at most one non-veto player holds a positive
share after the initial period, and where the veto player holds the total share in the long run.
However, if both non-veto players start the game with the belief that they will not accept
such bribes, but instead block any proposal which fully expropriates either one of them, then
this becomes a mutual best response as well. This alternative set of beliefs is internally con-
sistent with the partial surplus extraction. To resolve this multiplicity, we introduce a “cheap
talk” stage as a potential equilibrium selection mechanism in Section 4.

Finally, in the third region, we do not find an equilibrium with partial surplus extraction,
and the only long-run stable point is where the veto player holds the total surplus. This case
typically holds when the veto player is relatively weak and players are impatient, making
it easier for the veto player to offer feasible and acceptable bribes, and to form alternating
minimum-winning coalitions. However, even though both our and Nunnari’s (2014) equi-
librium imply full expropriation by the veto player in the long run, equilibrium play in the
initial period (and hence welfare levels) may still be different. In particular, our equilibrium
does not exhibit any mixing behavior on behalf of the veto player, whereas Nunnari’s (2014)
does.

Overview In Section 2, we present the basic model and work out a simple example of
how the players’ beliefs about equilibrium play will affect their belief-consistent continuation
values, strategies and long-run outcomes.

In Section 3, we characterize the equilibrium, and provide conditions on the primitives
under which the non-veto players can sustain strictly positive long-run shares.

Section 4 contains an extension of the model with an initial “cheap talk” phase in which
players can communicate costlessly. This allows us to rule out the full extraction equilibrium
from being played whenever there exists a dominating partial extraction equilibrium.5

Section 5 presents comparative statics and some insightful graphs for the equilibrium
with partial surplus extraction. First, we show how the veto player’s welfare may be non-
monotonic in her agenda setting power, which follows from the analysis in Section 3. Then,
we consider the impact of a change in the level of patience, and the effect of a change in
the level of inequality in the initial status quo. Perhaps unsurprisingly, the non-veto players
will be more likely to resist bribes by the veto player and form a blocking coalition if they
are either more patient or more equal in terms of initial shares. Moreover, we show how our
equilibrium converges to the one found by Diermeier et al. (2013) in the limit, when the veto
player acquires all the agenda setting power and players become infinitely patient.

Section 6 concludes and hints at future research. We hope to extend our current three-
player setting towards a more general framework, in order to assess the robustness of our
results and potentially apply them to a wider range of real-world scenarios.

2 Model

Set-up Consider an infinitely repeated bargaining game between three agents indexed by
i ∈ {1, 2, v}, where v denotes the veto player. In every period t ≥ 1, the agents have

5We are still working on formalizing this notion, and we may consider alternative equilibrium selection
mechanisms.
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Figure 1: The simplex ∆ - set of feasible allocations

to divide a dollar among themselves in every, by collectively choosing an allocation vector
xt = (xt1, x

t
2, x

t
v). An allocation xt is feasible if xti ≥ 0 for all i ∈ {1, 2, v} and

∑
i x

t
i = 1.

Denote the set of feasible allocations by ∆. As shown in Figure 1, any feasible allocation
x = (x1, x2, xv) can be represented by a point in R2

+ with Cartesian coordinates (x1, x2), such
that the veto player receives a residual share xv = 1− x1− x2. Then, the origin corresponds
to the allocation x = (0, 0, 1), where the veto player v holds the full surplus.

Stage game In every period t ≥ 1, all agents vote between the status quo policy xt−1 and
a new allocation y ∈ ∆ that is proposed by one of the agents. The initial status quo x0

is exogenously given. We consider simply majority voting. Moreover, agent v is uniquely
endowed with veto power throughout the game. This implies that any proposal y can be
unilaterally blocked by agent v, even if the other two agents vote in favor of y over xt−1. The
bargaining protocol is as follows. Let p ∈ (0, 1] denote the (common knowledge) probability
with which the veto player is recognized as the proposer in any given period t. Each non-veto
player i = 1, 2 is selected with (symmetric) probability 1−p

2
.6 Hence, p captures the relative

agenda setting power of the veto player. At the start of every period t, a single agent is
randomly selected (according to p) to propose an allocation y which will compete against
xt−1. There are no amendments by other agents.7 If y gets the support of the veto player
and at least one other agent i = 1, 2, the proposal gets implemented and becomes the new

6Note that p = 1/3 corresponds to the symmetric baseline scenario considered by Nunnari (2014). How-
ever, he also considers heterogeneous recognition probabilities in an extension of the model.

7Although this simple setup is common in the literature, other alternatives can be thought of. For example,
Bernheim, Rangel and Rayo (2006) consider multiple proposers who move sequentially in a known order, in
what is essentially a one-shot game. Another alternative would be to rotate (or randomize) both the veto
power as well as the proposer power, or to endogenize the proposer power as in Cotton (2012).
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status quo, xt = y. Otherwise, the previous status quo xt−1 stays in place until the next
period. Instantaneous payoffs xt are consumed after they realize, and there is no borrowing
or saving.8 Agents maximize the present discounted value of their lifetime utility at every
time t, given the implemented allocation xt:

Ui(x
t) = xti +

+∞∑
s=t+1

δs−txsi

where i ∈ {1, 2, v} and δ ∈ [0, 1) denotes the common discount factor.

Equilibrium concept We focus on symmetric Markov Perfect equilibria where the single
relevant state variable is xt−1, the status quo implemented in the previous period. The
strategy of agent i can then be described by a pair

σi(x
t−1) = {µi(y|xt−1), Ai(xt−1)}

where µi(y|xt−1) denotes the new allocation(s) that player i proposes, conditional on being
selected as the agenda setter and the status quo xt−1, and Ai(x

t−1) ⊆ ∆ is the set of alloca-
tions for which agent i would vote in favor of if the current status quo is xt−1. Note that the
acceptance set Ai does not depend on the identity of the player who makes the proposal, since
players only care about their own payoff, and because the current status quo is a sufficient
statistic for the continuation values of every player. Without loss of generality, we assume
that indifferent agents always vote in favor of a proposal. Note that the proposal strategies
can be pure or mixed, allowing agents to randomize between proposing different allocations
with positive probability.

Comparison with Nunnari (2014) So far, our setup has been identical to the one in
Nunnari (2014), who establishes the stark result that the veto player is able to fully ex-
propriate the two non-veto players asymptotically. Although we derive an equilibrium with
fundamentally different outcomes; since our models are so closely related, we first present
two of the main results from Nunnari (2014):

Lemma 1 (Nunnari (2014)) Assume a symmetric recognition rule where p = 1
3
. Then,

there exists a symmetric MPE in which, irrespective of the discount factor (δ) and the initial
division of the dollar (x0), the status quo eventually gets arbitrarily close to the veto player’s
ideal point. Formally: ∀ε > 0, ∃T s.t. ∀t ≥ T , xtv ≥ 1− ε.

The next result generalizes this by relaxing the assumption that p = 1
3
, although existence

of the MPE now requires some primitives to be excluded:

8We do not allow agents to borrow or save for two main reasons. Firstly, this would imply that the object
being bargained over can be stored or transferred for future use or lending, which is not always feasible (e.g.
plots of land, perishable goods, livestock). Secondly, access to credit markets would allow agents to offer
and implement negative allocations, which alters the strategy space. However, our main results should go
through as long as the feasible allocations are reasonably bounded from above and below, such that the veto
player cannot offer infinitely large bribes.
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Lemma 2 (Nunnari (2014)) Assume a general recognition rule where p ∈ (0, 1]. Then,
there exists a symmetric MPE in which, irrespective of the initial division of the dollar (x0),
the status quo policy eventually gets arbitrarily close to the veto player’s ideal point, as long
as 1) p ∈ [0, 1

2
] and δ ∈ [0, 1), or 2) p = 1 and δ ∈ [0, 1), or 3) p ∈ (1

2
, 1) and δ ≤ δ(p) =

1+3p−
√

1+6p−7p2
4p2

.

Although Nunnari (2014) does not claim uniqueness, the robustness of this equilibrium
still suggests there is little or no hope for the non-veto players; for the majority of primitives,
they will be fully expropriated in the long run. The main reason why we find an alternative
equilibrium is because we consider the possibility of sustaining cooperation among non-veto
players. This is inherently different from the beliefs implicitly assumed by Nunnari (2014).
In each equilibrium, the agents share a certain set of common beliefs about equilibrium
play which are self-sustaining and consistent (i.e. incentive compatible) with respect to the
equilibrium strategies.

In Nunnari (2014), both non-veto players believe that if the veto player were to propose
an allocation which fully expropriates one non-veto player and offers a sizable bribe to the
other, then that proposal will be approved by the non-veto player who receives the bribe.
The veto player’s equilibrium strategy where she keeps offering a “minimum-winning” bribe
to the poorest (or weakest) non-veto player at the expense of the other non-veto player is
consistent with the common belief that the non-veto players are willing to sell each other out
and accept such bribes.

As we will illustrate in the example below, our equilibrium is fundamentally different
because both non-veto players believe that if the veto player were to offer such a “minimum-
winning” bribe to either non veto-player at the expense of the other, then they would both
reject that proposal and hence maintain the current status quo for another period. Under
these beliefs, the non-veto players effectively form a blocking coalition which is immune to
certain bribes. In the spirit of Diermeier et al. (2013), this endogenous coalition formation
implies that the veto player cannot obtain the entire surplus in the long run. The next
example and subsequent analysis in Section 3 will hopefully make clear what the driving
forces (i.e. primitives) are behind the non-veto players’ (in)ability to enforce strictly positive
long-run shares for themselves.

Throughout the example and the rest of the paper, we will refer to the beliefs underly-
ing Nunnari’s (2014) equilibrium with full surplus extraction as non-cooperative beliefs, and
the beliefs underlying our equilibrium with partial surplus extraction as cooperative beliefs.
However, it is important to keep in mind that the structure of the underlying strategic game
does not change.

Example Let the initial status quo be x0 = (1
2
, 1
2
, 0) and let p = 1, i.e. the veto player

is the sole agenda setter, but she starts out with no initial wealth. Let δ ∈ [0, 1) be the
common discount factor. In this simple setting, the only relevant strategies are the veto
player’s proposals and the non-veto players’ (symmetric) acceptance sets.

Case 1: Non-cooperative beliefs
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• At t = 1, consider the strategy where the veto player proposes either y = ( 1
2−δ , 0, 0) or

z = (0, 1
2−δ , 0), bribing each non-veto player with 50% chance.

• We now check incentive compatibility for the non-veto player who is offered the bribe.
Assuming (wlog) that player 1 gets offered the bribe, we need to verify that V Accept

1 (y) ≥
V Reject
1 (y) for all δ ∈ [0, 1).

• If player 1 accepts the bribe and implements x1 = y at t = 1, then the veto player
will propose xt = (0, 0, 1) for all t ≥ 2. Player 2 votes in favor due to indifference;
he receives 0 no matter what he does. Hence, the continuation value of both non-veto
players is 0, and V Accept

1 (y) = 1
2−δ .

• If player 1 rejects the bribe and implements x1 = x0 at t = 1, then given the veto
player’s equilibrium mixing strategy at t = 2, this yields a value V Reject

1 (y) = 1
2
+δ[1

2
1

2−δ ].
Crucially, this continuation value incorporates the belief that the other non-veto player
would accept the same bribe ( 1

2−δ ) when offered.

• It is easily verified that V Accept
1 (y) = V Reject

1 (y) for all feasible values of δ ∈ [0, 1). By
symmetry, this implies that both non-veto players will accept the one-time bribe when
offered, and receive 0 forever after.

• Hence, when p = 1, the veto player acquires the full surplus after just two rounds, even
when the non-veto players are patient and start out sharing the full surplus equally. This
example demonstrates the significance of the non-cooperative belief system implicitly
assumed in Nunnari (2014).

Case 2: Cooperative beliefs

• Now, we evaluate player 1’s incentive compatibility constraint when he considers an
infinite-period rejection of the veto player’s bribe attempts, rather than just a one-
period rejection as in Case 1. Under the belief that player 2 would also reject any bribe
offered by the veto player, the continuation values along this path look fundamentally
different from the previous case. Consistent with their beliefs, the non-veto players
jointly enforce that xt = x0 for all t ≥ 1, so that V Reject

1 = V Reject
2 = 1

2(1−δ) .

• Now suppose that the veto player, realizing that his opponents are collaborating by
refusing any deviation from the initial status quo, tries to offer the largest feasible bribe
to either non-veto player, in an attempt to break the endogenous coalition between her
opponents. However, if player 1 ever accepts y = (1, 0, 0) or if player 2 ever accepts
z = (0, 1, 0), then the status quo will again become xt = (0, 0, 1) for all t ≥ 2. This
follows because the veto player cannot credibly commit to any other future path once
one non-veto player is fully expropriated. Therefore, accepting a one-time bribe yields
a maximal value of V Accept

1 (y) = V Accept
2 (z) = 1 to either non-veto player.

• It is easily verified that V Reject
1 > V Accept

1 (y) and V Reject
2 > V Accept

2 (z) whenever δ ∈
(1
2
, 1). If δ ∈ [0, 1

2
], the veto player can offer a feasible bribe equal to 1

2(1−δ) and achieve
the full surplus after two rounds.
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• Therefore, the status quo x0 = (1
2
, 1
2
, 0) can be sustained as a Markov Perfect Equilib-

rium whenever the non-veto players are reasonably patient (δ > 1
2
).

Note that this simple example already highlights two important features of our equilib-
rium. First of all, it shows that the result of endogenous cooperation (in which the non-veto
players can sustain strictly positive shares in the long run) in Diermeier et al (2013) is robust
to a much larger range of patience than was considered in that paper. Second, it demonstrates
how the beliefs of the non-veto players may have a tremendous impact on their equilibrium
welfare levels. In Section 4, we will propose a potential equilibrium selection mechanism to
deal with this multiplicity, by allowing the players to coordinate on a set of beliefs through
a cheap talk stage before the bargaining game starts.

3 Equilibrium analysis

In this section, we show existence of the equilibrium for all possible primitives (x0, δ, p) ∈
Ω = ∆ × [0, 1) × (0, 1], assuming that the non-veto players share cooperative beliefs about
each other, i.e. they will form a blocking coalition whenever that is incentive compatible. As
shown by the previous example, these beliefs will not always be sustainable for all primitives.
In these cases (e.g. when δ is low), the veto player will eventually obtain the full surplus.

Before analyzing the case with a general status quo x0 ∈ ∆, we start with the special
case where the status quo lies on one of the two axes. Define this set as ∆ = {x ∈ ∆ :
min(x1, x2) = 0}. This will be useful to fix ideas about what happens if one of the non-veto
players ever accepts a “minimum-winning” bribe offered by the veto player.

Then, we derive conditions on the primitives in Ω under which partial surplus extraction
by the veto player is an equilibrium. We show that if these conditions are not met, the status
quo will reach the set ∆ after one period.

3.1 A simple sufficient condition for full surplus extraction

The set ∆ contains all allocations which can be implemented by a minimal winning coalition,
i.e. the veto player and one non-veto player. Our first result states that the veto player can
always obtain the full surplus asymptotically if the status quo reaches this set after some
time t ≥ 0. In other words, if any non-veto players is ever fully expropriated, then full
expropriation of both non-veto players will inevitably follow in the long run, irrespective of
the discount factor δ and the distribution of agenda setting power p. Because the non-veto
players cannot sustain any advantageous blocking coalition in this region, this is essentially
the same result as the one obtained by Nunnari (2014) in Lemma 1 and 2.

Lemma 3 Let the primitives be (x0, δ, p) ∈ ∆ × [0, 1) × (0, 1]. Then, there exists a Markov
Perfect Equilibrium where the veto player (asymptotically) extracts the full surplus. That is,
∀ε > 0, there exists T such that ∀t ≥ T , the veto player’s payoff in the status quo satisfies
xtv > 1− ε.

Appendix A contains the proof, deriving and analyzing the equilibrium strategies and
corresponding value functions of each player in detail.
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Equilibrium structure In equilibrium, every agent proposes an allocation that gives a
positive share to a minimum winning coalition, where one non-veto player is fully expropri-
ated. This makes ∆ an absorbing set. Since the veto player’s vote is always required to pass
an allocation, she will always receive a positive share in every period. Moreover, she will
never receive less than her current status quo share, since she could always invoke her veto
power and maintain the status quo. Let x ≡ max(x1, x2) be the share held by the wealthier
non-veto player. Since x0 ∈ ∆, the other non-veto player has a share of 0. The equilibrium
strategies are simple and intuitive.

If a non-veto player is selected as the proposer, he will offer the veto player exactly her
current share (1 − x) and will keep the remainder of the surplus (x) for himself. Under the
standard tie-breaking rule, the veto player accepts the new proposal when kept indifferent.

If the veto player is selected as the proposer, she will offer a bribe to the non-veto player
who has a share of 0, since that is the cheapest vote to buy. In equilibrium, the optimal
bribe demanded by this non-veto player takes the following form:

d(x, δ, p) =
δ(1− p)

2− δ(1 + p)
x

This bribe keeps the poorest non-veto player indifferent between either accepting it and
altering the current status quo, or rejecting it and sticking to x0, which currently gives him 0.
By the tie-breaking rule, he will accept the bribe at the expense of the other non-veto player.
Note that as long as the players are not infinitely patient (δ < 1), this bribe is always strictly
smaller than the share of the other non-veto player, x. This implies that the veto player can
steal a strictly positive amount (x−d) whenever she proposes, which happens infinitely often
as long as p > 0. Hence, the veto player’s share displays a “ratchet effect”, and converges to
the only stable outcome, x∞ = (0, 0, 1).9 In the extreme case where either the agents are fully
myopic (δ = 0) or the veto player is the only agenda setter (p = 1), the demand d(x, δ, p) = 0.
Intuitively, the non-veto player who currently has nothing is indifferent between accepting a
share of 0 or maintaining the current status quo. Hence, the veto player can always propose
and implement y = (0, 0, 1) without delay.

Figure 2 shows an example of the evolution of the status quo if the initial allocation is
x0 = (0.7, 0, 0.3), with δ = 0.95 and p = 0.3. For simplicity, the graph plots only the first 25
allocations proposed by the veto player, in order to show the steady convergence towards the
veto player’s ideal point, x∞ = (0, 0, 1). Whenever a non-veto player proposes, the status
quo would flip along the 45-degree line.

Comparative statics Once the status quo lies in the absorbing set ∆, the veto player’s
continuation value strictly increases with her agenda setting power p, for any discount factor
δ. This happens for two reasons. First of all, a higher value of p allows the veto player to
propose, and hence steal some part of the surplus, more frequently. Secondly, the size of the
share that she is able to steal each time she proposes, (x− d), strictly increases with p. This
follows because an increase in p reduces the non-veto players’ chances of proposing in any
future period. Hence, it becomes less likely that they will be able to form minimal winning
coalitions with the veto player and steal the share of the other non-veto player. This reduces

9The main results of Nunnari (2014) stem from the asymptotic nature of this process of convergence.
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Figure 2: Evolution of the status quo once ∆ is reached, for p = 0:50, δ = 0:90
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the non-veto players’ continuation values, which in turn allows the veto player to offer them
lower bribes, and reach the origin faster.

Finally, any increase in the discount factor δ will increase the bribe required to make the
poorer non-veto player indifferent. This slows down the convergence rate of the status quo
towards the origin.

3.2 Conditions for full surplus extraction

We have shown that full (asymptotic) surplus extraction by the veto player is always a
feasible equilibrium if the status quo xt ∈ ∆ for some t ≥ 0. Now, we seek to find more
general conditions on the primitives under which the status quo will reach that absorbing set
∆, even if both non-veto players start out with strictly positive shares (i.e. x0 /∈ ∆).

Let the initial status quo be given by x0 = (x1, x2, 1− x1 − x2), and let x ≡ max(x1, x2)
and x ≡ min(x1, x2). The main result can then be stated as follows.

Proposition 1 Let the primitives be (x0, δ, p) ∈ ∆× [0, 1)× (0, 1]. If 2− 3δ(1 + p) + δ2(1 +
p + 2p2) < 0, then there exists a symmetric Markov Perfect Equilibrium where, irrespective
of the initial division of the dollar (x0), the status quo policy eventually gets arbitrarily close
to the veto player’s ideal point. Moreover, the status quo reaches the absorbing set ∆ after
at most one period, i.e. min(xt1, x

t
2) = 0 ∀t ≥ 1.

The detailed proof is given in Appendix B.
Before giving some interpretation and comparative statics of these thresholds, we discuss

how the equilibrium is set up.
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Equilibrium structure The proof in the Appendix shows in more detail how for a given δ
and p, the set of possible allocations can be partitioned into four different subsets of the space
∆, which we call ∆A, ∆B, ∆C , and ∆D. The difference between them lies in two factors.
First, that the veto player is willing to accept a bribe of dv = 0 in regions ∆B and ∆C , and not
in regions ∆A and ∆D. Second, that the veto player plays a mixed strategy while bribing the
non-veto players in regions ∆C and ∆D, and not in regions ∆A and ∆B. Suppose that non-
veto player 1 is selected as the proposer, he will optimally form a minimal winning coalition
with the veto player and propose an allocation x1 = (1 − dv, 0, dv), where dv ≥ 0 is the
bribe offered to the veto player. Symmetrically, player 2 would propose x1 = (0, 1− dv, dv).
Optimality requires that the proposer does not offer anything more to the veto player than
strictly necessary to induce her to support x1. Now, recall from Proposition 1 that as soon
as one non-veto player gets fully expropriated at some point, then the veto player will be
able to extract the full surplus in the long run. Hence, accepting the new proposal x1 gives
her a guaranteed high continuation value. This, in turn, might make her willing to accept
negative bribes dv < 0, which are infeasible (e.g. due to her credit constraints). This will
be the case if the veto player has a relatively low initial share to begin with. Graphically,
∆B and ∆C correspond to status quos x0 that are far away from the origin (x1, x2) = (0, 0),
where the veto player owns the full surplus. In these cases, she will accept a bribe dv = 0.
Conversely, if she has a relatively large initial share, then the veto player will only accept a
strictly positive amount dv > 0. These will be the cases ∆A and ∆D.

Solving for dv and rewriting the constraint that dv > 0 allows us to derive bound that
partitions off the subsets ∆A and ∆D.

Also, ∆C and ∆D correspond to status quos x0 that are closer to the 45 degree line which
corresponds to an equal allocation to both non-veto players. In these cases, the veto player
will offer a bribe to either non-veto player according to a probability calculated so as to keep
the non-veto players indifferent between accepting or rejecting that bribe. Conversely, if
there is more inequality among non-veto players in the initial allocation, then the veto player
will only bibe the poorer non-veto player. These will be the cases ∆A and ∆B. Solving for
µ (the probability of bribing the poorer non-veto player) and rewriting the constraint that
µ < 1 allows us to derive bound that partitions off the subsets ∆C and ∆D.

Based on the nature of the equilibrium play in the game described so far, we derive a
boundary such that cooperation among non veto players is sustainable. When 2 − 3δ(1 +
p) + δ2(1 + p+ 2p2) > 0, ∆ contains a fifth sub-region called ∆E where the non-veto players
can sustain cooperation to ensure that each of them receives a positive allocation in the long
run.

3.3 Conditions for partial surplus extraction

For given values of p and δ, this region is defined as the set of status quos that satisfy:

x >

(
(2− δ(1 + p))2

2(2− δ(1− p))(1− δp)

)
where we define x ≡ min(x01, x

0
2) as the share of the poorer non-veto player, respectively.10

10Note that this set is empty if 2− 3δ(1 + p) + δ2(1 + p+ 2p2) < 0
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It is easily checked that these two sets form a proper partition of the set ∆. We have already
derived the optimal strategies (offers and voting) and the corresponding value functions if
the initial status quo x0 ∈ ∆ \∆E. However, we need to define it for the residual region ∆E

as well. First, we shall show that for non-veto players, there will be no bribe which could
induce them to leave ∆E. Then we shall invoke the symmetry of payoffs to argue that ∆E

can itself be partitioned into five sub-regions {∆A2 ,∆B2 ,∆C2 ,∆D2 ,∆E2}. This partitioning
can be iterated indefinitely with each ∆EJ region being partitioned into three sub-regions.
In each sub-region of type ∆iJ (i = A,B,C,D), convergence shall take place in the way
described before to a convergence point that is the “origin” for region ∆EJ−1 .

Proposition 2 Let the primitives (x0, δ, p) ∈ Ω be such that 2−3δ(1+p)+δ2(1+p+2p2) > 0,
and define J ≥ 0 such that x0 ∈ ∆EJ \∆EJ+1. Then, any L-shaped set ∆EJ \∆EJ+1 must be
absorbing, and the status quo will converge to the allocation (x?J , x?J , 1− 2x?J).11 Moreover,
the discounted lifetime value of each non-veto player i = 1, 2 is bounded from below by

Vi(x
0) >

x?J

1− δ

Proof: Consider the status quo x0 ∈ ∆EJ \ ∆EJ+1 . In Appendix C, we show that any
status quo that originates in ∆E1 will stay lead to all future allocations being from within
that region. The fact that payoffs within any ∆EJ region are simply a shift of the origin
and change in scale from a corresponding ∆EJ−1 region means that we can extrapolate and
iterate the result to the following two conditions which will hold in equilibrium:

(1) Both non-veto players are strictly better off by staying anywhere within the L-shaped
set ∆EJ \∆EJ+1 than by deviating towards the adjacent L-shaped set ∆EJ−1 \∆EJ situated
on the lower-left. Therefore, they will jointly block any attempt by the veto player to move
the status quo towards any L-shaped set that lies closer to the origin.

(2) The veto player is strictly better off by staying within the L-shaped set ∆EJ \∆EJ+1

than by deviating towards the adjacent L-shaped set ∆EJ+1 , situated on the upper right.
Therefore, she will block any attempt by the non-veto players to move the status quo towards
any L-shaped set that lies farther away from the origin.

By (1) and (2), any L-shaped set ∆EJ \ ∆EJ+1 must be absorbing. The equilibrium
dynamics imply that the status quo will converge to the lower-left corner of this set (defined
as (x?J , x?J , 1− 2x?J)) at a rate that depends on the primitives (δ, p).

We could also add the following interesting corollary that follows from our above claims
(1) and (2):

Corollary 1 The equilibrium dynamics imply that following incentive constraints must hold
∀i = 1, 2, ∀j ≥ 1,∀x ∈ ∆Ej \∆Ej+1, ∀y ∈ ∆Ej−1 \∆Ej , ∀z ∈ ∆Ej+1:{

Vi(z) > Vi(x) > Vi(y)

Vv(y) > Vv(x) > Vv(z)

11Although it will never actually reach this allocation, since it has to stay on the interior of ∆EJ .
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Basically, this says that, for any allocation in given L-shaped set ∆Ej \∆Ej+1 , both the
non-veto players are strictly better off by staying inside that set forever than by moving
outside of it. This means e.g. that the first non-veto playr would strictly prefer starting out
from x0 = (1

3
, 2
3
, 0) instead of a much more advantageous initial status quo y0 = (4

5
, 1
5
, 0),

if this latter allocation lies in a lower L-shaped set. Similarly, the veto player could be
strictly worse off (in terms of lifetime value) starting off with a high initial endowment (e.g.
x0 = (1

5
, 1
5
, 3
5
)) than with an alternative y0 = (1, 0, 0), because the latter allocation allows

her to steal everything in the long run while the former might lie in a higher L-shaped curve
and offer lower future discounted value.

Since both non-veto players can trust each other no never propose or accept any allocation
outside of ∆E, if the game starts with a status quo within the region, all future allocations
must lie within that region. This means that the payoffs of both non-veto players in every
period must be at least x∗, where:

x∗ =

(
(2− δ(1 + p))2

2(1− δp)(2− δ(1− p))

)
This reduces the “effective budget” to 1− 2x∗, other than that, other things are exactly

the same as in ∆. Therefore, ∆E would be partitioned just as ∆ was, and the strategies in
equilibrium would be the same as calculated earlier. The only differences will be the shift in
origin, and reduction in “effective budget”. Now, we can take this argument one step further
and argue that such partitioning would take place iteratively indefinitely.

Iterative partitioning of ∆ We define the space of primitives Ω = {(x0, δ, p)|x0 ∈ ∆, δ ∈
[0, 1), p ∈ [0, 1]} where ∆ = {x0 = (x01, x

0
2, x

0
v)|
∑

i x
0
i = 1} is the set of all possible allocations

and x0v = 1−x01−x02 denotes the share of the veto player. Then, depending on the exogenously
given values of (δ, p), we partition ∆ into five subsets ∆i ( ∆ (i ∈ {A1, B1, C1, D1, E1}), which
we define as follows:

x0 ∈ ∆A1 ⇔


x < 1− x

(
2−δ(1−p)
2−δ(1+p)

)
x ≥ x

(
2−δ(1−p)
2−δ(1+p)

)
x ≤

(
(2−δ(1+p))2

2(1−δp)(2−δ(1−p))

)

x0 ∈ ∆B1 ⇔



x ≥ 1− x
(

2−δ(1−p)
2−δ(1+p)

)
x ≥

(
δ2p(1−p)

(1−δp)(2−δ(1−p))

)
+ x

(
2−δ(1+p)−δ2p(1−p)
(1−δp)(2−δ(1+p))

)
x ≤

(
2−δ(1+p)
2−δ(1−p)

)
x ≤

(
(2−δ(1+p))2

2(1−δp)(2−δ(1−p))

)

x0 ∈ ∆C1 ⇔



x ≥ 2−δ
2−δ(1−p) − x

x <
(

δ2p(1−p)
(1−δp)(2−δ(1−p))

)
+ x

(
2−δ(1+p)−δ2p(1−p)
(1−δp)(2−δ(1+p))

)
x ≤

(
2−δ(1+p)
2−δ(1−p)

)(
2−δp
1−δp

)
− x

x ≤
(

(2−δ(1+p))2
2(1−δp)(2−δ(1−p))

)
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x0 ∈ ∆D1 ⇔


x < 2−δ

2−δ(1−p) − x
x < x

(
2−δ(1−p)
2−δ(1+p)

)
x ≤

(
(2−δ(1+p))2

2(1−δp)(2−δ(1−p))

)
x0 ∈ ∆E1 ⇔ x >

(
(2− δ(1 + p))2

2(1− δp)(2− δ(1− p))

)
where we define x ≡ max(x01, x

0
2) and x ≡ min(x01, x

0
2) as the shares of the wealthier and

poorer non-veto player, respectively. It is easily checked that these three sets form a proper
partition of the set ∆.

By iterating this process, we can keep partitioning the residual ∆E-regions ad infinitum,
until we obtain a sequence of collections of sets {∆Aj ,∆Bj ,∆Cj ,∆Dj ,∆Ej} for j = 1, 2, 3, ...
that satisfy the following properties:


∆ij ∩∆kj = ∅

∆Aj ∪∆Bj ∪∆Cj ∪∆Dj ∪∆Ej = ∆Ej−1

limj→∞∆Ej = {(1
2
, 1
2
, 0)}

∀j ≥ 1,∀i 6= k, i, k ∈ {A,B,C,D,E}
∀j ≥ 1

The first two conditions imply that the sets generated in every iteration j ≥ 1 form
a proper partition of the set ∆Ej−1 generated in the previous iteration, where we define
∆E0 ≡ ∆. The third condition (which we prove later on) ensures convergence of the ∆Ej -
region towards the singleton allocation x = (1

2
, 1
2
, 0). The speed of convergence will depend

on the other primitives, δ and p. We will show that this convergence result holds if and only
if 2 − 3δ(1 + p) + δ2(1 + p + 2p2) > 0. If p and δ do not satisfy this condition, then the
sets ∆Ej = ∅ for all j ≥ 1, and the convergence result fails. The intuitive reason is that if
the non-veto players are relatively impatient (i.e. low δ given p ∈ [0, 1]), or if they get to
propose more often (i.e. high p given δ ∈ [0, 1) they are willing to accept full expropriation
in the future, and their optimal demand will never exceed the total budget. In this case, our
previous results for regions {∆A1 ,∆B1 ,∆C1 ,∆D1} show that x = (0, 0, 1) is the unique stable
allocation for any initial status quo x0 ∈ ∆. Notice that for x0 ∈ ∆A1 ∪∆B1 ∪∆C1 ∪∆D1 our
results boil down to those derived by Nunnari (2014), which considered the symmetric case
where p = 1

3
.

Conversely, if the veto player’s agenda setting power (p) is high enough, and the non-veto
players are patient enough, to reject any feasible bribe offered to them by the veto player
(i.e. 2 − 3δ(1 + p) + δ2(1 + p + 2p2) > 0), then we will show that, depending on the initial
status quo x0, they can sustain strictly positive (and symmetric) shares for themselves in the
long run. To characterize these limiting stable allocations, we first introduce a sequence of
cutoff values {x?j}j≥1 that is directly linked to the sequential partitions of ∆Ej from before:

x = (x1, x2, 1− x1 − x2) ∈ ∆Ej ⇔ min(x1, x2) > x?j

Hence, for every j ≥ 1, the cutoff value x?j defines an upper right triangle in the set of
possible allocations ∆, where the allocation (x?j, x?j, 1− 2x?j) corresponds to the lower-left
corner of this (open) set ∆Ej . For completeness, we define x?0 = 0 as the lower-left left corner
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of the (open) set ∆E0 = ∆ \ ∆, which excludes all allocations on either the horizontal or
vertical axis. This sequence of cutoffs {x?j}j≥0 is defined as follows:

x?j = 1
2

[
1− γj

]
if j ≥ 0

where the factor γ satisfies:

γ =
(
1− 2( (2−δ(1+p))2

2(1−δp)(2−δ(1−p)))
)

if δ ∈ [0, 1)

It is easily checked that γ ∈ [0, 1) whenever 2 − 3δ(1 + p) + δ2(1 + p + 2p2) > 0. Under
this condition on (δ, p), the sequence of cutoffs {x?j}j≥0 is strictly increasing and converges
towards 1

2
. The corresponding sequence of nested sets {∆Ej}j≥0 is strictly decreasing and

converges towards the singleton (1
2
, 1
2
, 0).

Conversely, if 2− 3δ(1 + p) + δ2(1 + p+ 2p2) ≤ 0, then γ will be negative. For status quos
x0 in that case, the origin (0, 0, 1) is the unique stable outcome and the values of {x?j}j≥1
do not exist. For these cases, we have already characterized the optimal strategies (demands
and voting) for every player and the corresponding value functions, depending on whether
x0 lies in ∆A1 , ∆B1 , ∆C1 , or ∆D1 . Given these values for x∗j, we can now characterize the
sets {∆Aj ,∆Bj ,∆Cj ,∆Dj ,∆Ej} for j = 1, 2, 3, ...

x0 ∈ ∆AJ ⇔


x < 1− 2x∗J−1 − (x− x∗J−1)

(
2−δ(1−p)
2−δ(1+p)

)
x ≥ x∗J−1 + (x− x∗J−1)

(
2−δ(1−p)
2−δ(1+p)

)
x > x∗J−1

x ≤ x∗J

x0 ∈ ∆BJ ⇔



x ≥ 1− 2x∗J−1 − (x− x∗J−1)
(

2−δ(1−p)
2−δ(1+p)

)
x ≥ (1− 2x∗J−1)

(
δ2p(1−p)

(1−δp)(2−δ(1−p))

)
+ (x− x∗J−1)

(
2−δ(1+p)−δ2p(1−p)
(1−δp)(2−δ(1+p))

)
x ≤

(
2−δ(1+p)
2−δ(1−p)

)
(1− 2x∗J−1)

x > x∗J−1

x ≤ x∗J

x0 ∈ ∆CJ ⇔



x ≥ (1− 2x∗J−1) 2−δ
2−δ(1−p) − (x− x∗J−1)

x < (1− 2x∗J−1)
(

δ2p(1−p)
(1−δp)(2−δ(1−p))

)
+ (x− x∗J−1)

(
2−δ(1+p)−δ2p(1−p)
(1−δp)(2−δ(1+p))

)
x ≤ (1− 2x∗J−1)

(
2−δ(1+p)
2−δ(1−p)

)(
2−δp
1−δp

)
− (x− x∗J−1)

x > x∗J−1

x ≤ x∗J
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x0 ∈ ∆DJ ⇔


x < (1− 2x∗J−1) 2−δ

2−δ(1−p) − (x− x∗J−1)
x < (x− x∗J−1)

(
2−δ(1−p)
2−δ(1+p)

)
x > x∗J−1

x ≤ x∗J

x0 ∈ ∆EJ ⇔ x > x∗J

Where x∗J is caluculated using the formula described above.

Thus, for any initial status quo x0 such that min(x01, x
0
2) > 0, there exists a unique integer

J ∈ {0, 1, 2, ...} such that x?J < min(x01, x
0
2) ≤ x?J+1. In other words, the initial status quo

x0 ∈ ∆EJ \∆EJ+1 , which we call an “L-shaped” set. We now move to the major results of
this paper.

4 Interesting results

4.1 The veto player’s lifetime valuation is non-monotonic in p

This is the main takeaway from this paper. The “Monarch” or “President” who is already
endowed with veto power could be made worse off if she has higher proposal power (p). Figure
3 shows the veto player’s lifetime valuation for a given status quo and δ as pis increased:

The graph in Figure 3 is endogenous to the status quo, and depends on the level of
patience. However, for all status quos such that min{x01, x02} > 0 and δ > 0.5 there exists a
threshold value of proposal power p beyond which the veto player suffers a discrete reduction
in her lifetime valuation.

First, suppose that the veto player can credibly commit to any agenda setting policy. More
specifically, we assume that the veto player can unilaterally choose a parameter p ∈ [0, 1] at
time t = 0, after observing the initial status quo x0. Once p is chosen, it will remain fixed
forever and the game proceeds exactly as before. Since the veto player’s value function is
strictly increasing in p below the threshold that we derived in Section 3, it will be optimal to
commit to a value of p that is exactly equal to that threshold. This will maximize the speed
at which the veto player can extract the surplus of her opponents.

Although this case seems trivial, it leads to a surprising conclusion. Consider our previous
analogy where the veto player represents a Monarch, attempting to expropriate the Bour-
geoisie and the Nobility. Assume that the primitives are such that the Monarch cannot fully

expropriate the wealth of her citizens (i.e. x >
(

(2−δ(1+p))2
2(2−δ(1−p))(1−δp)

)
holds) where x represents

the wealth of the poorer Bourgeoisie. If the Monarch has the ability to credibly lower her
agenda setting power by delegating some to her opponents, she certainly will do so. This
implies that certain democratic reforms, such as the founding of houses of parliament for
both the Nobility and the Bourgeoisie, might actually increase the wealth of the Monarch
over time to the expense of her citizens. Indeed, it would allow the Monarch to “divide and
conquer”, by setting the Nobility and the Bourgeoisie up against each other, while slowly
stealing some of their surplus along the way in a slow, controlled manner. Note that all
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Figure 3: Comparing Equilibrium Value Functions for Veto Player v: Vv(p, δ,x
0), for x0 =

(0.5, 0.3, 0.2), δ = 0.90
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citizens should rationally oppose such transitions towards a more democratic system, if they
are able to foresee that it will ultimately lead to their ultimate demise if the Monarch is never
overthrown, or if her veto power never diminishes in the future.

4.2 Inequality matters

Inequality between the non-veto players matters; at times, much more than their collective
wealth. The mechanism the veto players uses to appropriate wealth is akin to dividing and
ruling. When the non-veto players are more equal in terms of their wealth, they have more of
an incentive to work together to block the veto player from usurping either of their allocations.
The greater equality moves the status quo into a ∆EJ region with a higher J .

Figure 4 shows this effect of increasing equality on the Veto player’s payoff:
As we noted earlier, both non-veto players would be better off if they could move to a ∆EJ

region from a ∆EJ−1 region. If we modified the game to allow non-veto players to transfer
wealth to each other (without any strings attached) before the game begins, then the richer
non-veto player would prefer to transfer some of her wealth to the poorer non-veto player (so
as to mover to a ∆EJ region). This result displays a preference for equality without using
any other regarding preferences. However, the veto player would use her power to bock any
such movement toward greater equality.
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Figure 4: The Effect of Varying Initial Inequality on the Equilibrium Value Function of Veto
Player v, for δ = 0.90
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Max. Inequality: x0 = (0.8, 0, 0.2)

High Inequality: x0 = (0.65, 0.15, 0.2)

Benchmark: x0 = (0.5, 0.3, 0.2)

Low Inequality: x0 = (0.45, 0.35, 0.2)

Min. Inequality: x0 = (0.4, 0.4, 0.2)

4.3 The result converges to Diermeier et al (2013)’s

In Diermeier et al (2013), p = 1, and the result claimed is that if δ is sufficiently high, then
for each status quo, the point directly below, or to the left of it on the 45 degree line will be
a stable point. In continuous allocations and with three players, as δ and pincrease to values
close to 1, we see several absorbing L-shaped regions compress to form L-lines (almost) the
vertices of which form the points of convergence for each region. This closely approximates
the result of Diermeier et al (2013).
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Figure 5: Cooperative Equilibrium for Varying levels of Agenda-Setting Power p
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(b) p = 1
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(c) p = 2
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(d) p = 1

Notes: This panel shows the shape of the simplex and the evolution of the initial status
quo for various values of p. For comparison, we keep the discount factor δ = 0.95 and the
initial status quo x0 = (0.5, 0.3, 0.2) in all panels. As p increases from 0 to 1, the Veto Player
gradually obtains more agenda-setting power, but may become worse off in the long run. In
panel (a), both Non-Veto Players are eventually expropriated, since cooperation cannot be
sustained for p = 0. In panel (b), the initial status quo lies in the 2nd L-shaped region, defined
by its vertex x?2(δ, p) = 0.288. Hence, the status quo will converge to (0.288, 0.288, 0.424).
In panel (c), the initial status quo lies in the 3rd L-shaped region, defined by its vertex
x?3(δ, p) = 0.242. Hence, the status quo will converge to (0.242, 0.242, 0.516). Finally, in panel
(d), the initial status quo lies in the 9th L-shaped region, defined by its vertex x?9(δ, p) = 0.285.
Hence, the status quo will converge to (0.285, 0.285, 0.430). These examples illustrate how
the long-run share held by each player evolve nonmonotonically with p. This is in sharp
contrast with the non-cooperative equilibrium obtained by Nunnari (2016), where the Veto
Player will obtain the full surplus in the long run for any primitives (x0, δ, p) for which the
equilibrium exists.
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5 Resolving multiplicity of equilibria

This is an environment where two Markov perfect equilibria coexist. Nunnari (2014) finds one
of those equilibria, we find another. In this section, we shall describe a method of choosing
between multiple equilibria and reaching uniqueness. First, we describe a modified game
with a pre-play cheap talk to select one of the equilibria. Then, we discuss the results and
implications of this modified game.

5.1 Modified game

We modify the environment defined in section 2 by adding a period 0 for pre-game commu-
nication. Players will be able to see the primitives of the game (x0, p, δ) before deciding on
which equilibrium would get played. The timing of the modified game will be:

• Players observe the primitives: (x0, p, δ)

• Players discuss playing one of the possible equilibria

• If two players weakly prefer an equilibrium, that equilibrium is enforced. The third
player will be forced to best respond

Period 1 onwards:

• At each t, one agent is selected to make a proposal y

• All agents vote between xt−1 and y

• If y gets 2 votes (including the veto), then xt = y,
otherwise xt = xt−1

• xt is allocated

5.2 Results of the modified game

The modification of the game described above implies that if any two players are better off
in a particular equilibrium, they will be able to coordinate on it in period 0.

In Figure 6, we colour the simplex according to which equilibrium gets selected in period
0. The yellow region corresponds to a subset of primitives where all agents are indifferent
between selecting either equilibrium. In the green region, both non-veto players prefer to
play our equilibrium rather than the one decribed in Nunnari (2014). Irrespective of the
primitives, there is no region in which the Veto player is strictly better off in our equilibrium,
nor is there any primitive such that any two players are better off in the equilibrium described
in Nunnari (2014).

We can see this result more clearly in Figures 7, 8, and 9. Here, we note that for a large
range of primitives, both non-veto players are strictly better off in our equilibrium and would
therefore be able to coordinate to enforce it in period 0 of the modified game.
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Figure 6: Comparing Equilibria for p = 0.50, δ = 0.90
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Figure 7: Comparing Equilibrium Values for Non-Veto Player 1: x01 + δV1(p, δ,x
0), for x0 =

(0.5, 0.3, 0.2), δ = 0.90
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x01 + δV1(p) under Non-cooperative Equilibrium

x01 + δV1(p) under Cooperative Equilibrium

6 Conclusion

We consider an infinitely repeated legislative bargaining game with endogenous status quos.
We find a Markov perfect equilibrium which differs from the one found by Nunnari (2014).
We show that in our equilibrium, it may be optimal for the veto player to commit to lowering
her proposal power, in order to secure a larger share of the surplus in the long run. If the veto
player cannot credibly commit to reducing her proposal power, then her opponents may prefer
to protect each other’s property rights by forming a blocking coalition, inhibiting the veto
player from stealing the full surplus. We then argue that inequality in the initial allocation
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Figure 8: Comparing Equilibrium Values for Non-Veto Player 2: x02 + δV2(p, δ,x
0), for x0 =

(0.5, 0.3, 0.2), δ = 0.90
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Figure 9: Comparing Equilibrium Values for Veto Player v: x0v + δVv(p, δ,x
0), for x0 =

(0.5, 0.3, 0.2), δ = 0.90
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x0v + δVv(p) under Non-cooperative Equilibrium

x0v + δVv(p) under Cooperative Equilibrium

matters much more so than the sum of allocations available to the non-veto players. So
much so, that the richer non-veto player would strictly benefit by transferring some of her
money to the poorer non-veto player (even at a cost). This result is particularly interesting
since we do not have other-regarding preferences here. However, since inequality among the
non-veto players allows the veto player to expropriate, she would block any such transfer. We
find support for our equilibrium in the findings of Diermeier et al (2013) and show that their
results are robust to a large range of proposal power and discount values, as well as continuous
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allocations (in stead of only discrete allocations). Finally, we propose a modified game in
order to choose between the equilibrium found in Nunnari (2014) and our equilibrium. We
find that for large subset of primitives, our equilibrium is strictly preferred by the two non-
veto players and would be enforced by them in period 0. For all other primitives, the two
equilibria are identical and either one could be enforced.
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Appendices

A Proof of Lemma 3

Consider a status quo allocation x = (x1, x2, 1 − x1 − x2) ∈ ∆. Define x ≡ max(x1, x2),
and note that min(x1, x2) = 0. Denote the poorest non-veto player by index i (i = 1, 2) and
the wealthier non-veto player by j (j 6= i). Consider the following (pure) proposal strategies
for the three agents: (1) agent 1 proposes y1 = (1 − dv, 0, dv), (2) agent 2 proposes y2 =
(0, 1−dv, dv) and (3) veto agent v proposes yv = (di, 0, 1−di) if i = 1 and yv = (0, di, 1−di)
if i = 2, respectively. The offered bribes dk (k = 1, 2, v) will be functions of the primitives
(x, δ, p) in equilibrium. For this to constitute an equilibrium with asymptotic full extraction
by the veto player, we need to check that the following conditions hold:

(1) The veto player weakly prefers accepting dv over rejecting it and sticking to x.
(2) The veto player strictly prefers to bribe the poorest non-veto player i.
(3) Agent i weakly prefers accepting di over rejecting it and sticking to x.
(4) Agent j, who gets expropriated if agent v is the proposer, would not be willing to

accept the bribe di.
(5) The bribing scheme is budget feasible and allows asymptotic full extraction by the

veto player.

Note that conditions (2) and (4) ensure that the veto player follows a pure strategy. If the
veto player would instead follow a mixed strategy where she offers the bribe to either player
i or j with positive probability, then both non-veto players should be indifferent between
accepting or rejecting the bribe, which requires a higher bribe and would be suboptimal
for the veto player. Optimality requires that the IC constraint of (poorer) player i binds
in equilibrium, while the IC constraint of (wealthier) player j should be violated when
evaluated at di. Condition (5) requires that di+dv < 1, so the veto player can steal a strictly
positive share of the surplus whenever he proposes, ensuring asymptotic convergence towards
x∞ = (0, 0, 1), the unique stable outcome.

First, we show that there exist demand (or bribe) functions (d1, d2, dv) that consti-
tute a symmetric equilibrium. Denote by Vi(x) the expected continuation value of player
i ∈ {1, 2, v} when the status quo is x. Then, the optimal offered bribes must make the re-
ceiver indifferent between accepting and rejecting. This implies that the following incentive
constraints must hold for all x ∈ ∆:

(IC1) d1 + δV1(d1, 0, 1− d1) ≥ x1 + δV1(x) if x1 = 0
(IC2) d2 + δV2(0, d2, 1− d2) ≥ x2 + δV2(x) if x2 = 0
(IC3) dv + δVv(1− dv, 0, dv) ≥ xv + δVv(x)
(IC4) d2 + δV1(d2, 0, 1− d2) < x1 + δV1(x) if x2 = 0
(IC5) d1 + δV2(0, d1, 1− d1) < x2 + δV2(x) if x1 = 0

where Vv(1 − dv, 0, dv) = Vv(0, 1 − dv, dv), since the veto player does not care about
the identity of the non-veto players when she is offered a bribe dv. By conditions (1) and
(3), the first three incentive constraints (IC1) − (IC3) must bind in equilibrium. The strict
inequalities (IC4) and (IC5) correspond to condition (4). Condition (2) is incorporated in
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the continuation values stated below, and condition (5) will be checked later. Given the
recognition probabilities of each player and the proposed strategies of all agents, we can
write out the continuation values for the non-veto players:

V1(0, x, 1− x) = 1−p
2

(1− dv + δV1(1− dv, 0, dv)) + 1−p
2

(0 + δV1(0, 1− dv, dv)) +
p (d1 + δV1(d1, 0, 1− d1))

V1(x, 0, 1− x) = 1−p
2

(1− dv + δV1(1− dv, 0, dv)) + 1−p
2

(0 + δV1(0, 1− dv, dv)) +
p (0 + δV1(0, d2, 1− d2))

V2(0, x, 1− x) = V1(x, 0, 1− x)
V2(x, 0, 1− x) = V1(0, x, 1− x)

where d1, d2 and dv are endogenous functions of (x, δ, p) yet to be determined.
Similarly, the continuation values for the veto player are given by

Vv(x, 0, 1− x) = 1−p
2

(dv + δVv(1− dv, 0, dv)) + 1−p
2

(dv + δVv(0, 1− dv, dv)) +
p (1− d2 + δVv(0, d2, 1− d2))

Vv(0, x, 1− x) = Vv(x, 0, 1− x)

Since all agents have linear utilities and the two non-veto players have the same agenda
setting power, we solve this system by guessing a solution which is symmetric and linear in
the share of the wealthier non-veto player, x:

d1(x, δ, p) = d2(x, δ, p) = Ax+B; dv(x, δ, p) = Cx+D;
V1(0, x, 1− x) = V2(x, 0, 1− x) = Ex+ F ; V1(x, 0, 1− x) = V2(0, x, 1− x) = Gx+H;
Vv(x, 0, 1− x) = Vv(0, x, 1− x) = Ix+ J .

It is easy to see that if x = max(x1, x2) = 0, then the veto player will maintain that status
quo and keep the full surplus forever. This implies that B = F = H = 0, D = 1 and J = 1

1−δ .
Moreover, we know that a proposing non-veto player can never offer the veto player something
strictly less than her current share, since that would be unilaterally blocked. However, the
(wealthier) non-veto player will also never offer the veto player something strictly larger than
her current share, because then it would be profitable to deviate and propose x′ = x instead,
which will give the veto player her current share irrespective of her vote. If poorer non-veto
player can propose, he will also keep the veto player indifferent by offering her her current
share (1− x), and take x for himself. Hence, dv(x) is equal to the veto player’s current share
(1− x), and thus C = −1. The four remaining unknown coefficients can be found by solving
(IC1), (IC2), (IC3), using the continuation value functions and the condition that the value
functions must sum up to 1

1−δ . The optimal demands are given by

di=1,2(x, δ, p) = δ(1−p)
2−δ(1+p)x

dv(x, δ, p) = 1− x

Plugging these demand (or bribe) functions back into the value functions allows us to
verify that the veto player’s value is increasing in her status quo payoff, and that the non-
veto players’ payoffs are both increasing in their combined share x:

V1(x, 0, 1− x) = V2(0, x, 1− x) =
(1−p)(2δ2p−(1+3p)δ+2)
2(1−δ)(1−δp)(2−δ(1−p))x

V1(0, x, 1− x) = V2(x, 0, 1− x) = (1−p)(2−δ(1+p))
2(1−δ)(1−δp)(2−δ(1−p))x

Vv(x, 0, 1− x) = Vv(0, x, 1− x) = 1
1−δ −

(2−δ)(1−p)
(1−δ)(2−δ(1−p))x
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It is easily checked that the equilibrium conditions (1)− (5) are satisfied. The veto player
can steal a positive amount whenever she can propose, since di(x, δ, p) < x for all p > 0 and
δ < 1. In other words, the veto player’s bribing scheme not only keeps the (poorest) non-veto
player in her minimal winning coalition indifferent between accepting or rejecting, but it also
satisfies di=1,2 + dv < 1, leaving some positive rent to be extracted each time the veto player
can propose. Since p > 0, this rent extraction happens infinitely often as t → ∞, such that
the status quo converges to x∞ = (0, 0, 1). Moreover, if δ = 0 or p = 1, the convergence
happens in finite time, and x∞ is reached after two periods. This completes the proof of
Lemma 3. �

B Proof of Proposition 1

Consider an initial status quo x0 = (x1, x2, 1 − x1 − x2) ∈ ∆. Define x ≡ max(x1, x2) and
x ≡ min(x1, x2). Denote the poorest non-veto player by index i (i = 1, 2) and the wealthier
non-veto player by j (j 6= i). Since the non-veto players have equal proposer power, the
demands and value functions will be symmetric for the non-veto players, and everything can
be written as a function of the primitives (x, x, δ, p). To save on notation, we will suppress
the last two parameters (δ, p), and write all demands and value functions as a function of
(x1, x2). Let V1(x, x) denote the value for agent 1 if he is the wealthier player (i.e. x1 = x),
and V1(x, x) the value if he is the poorer player (i.e. x1 = x). The value functions are
symmetric for player 2, such that V2(x, x) = V1(x, x) and V2(x, x) = V1(x, x). Similarly,
define d1(x, x) as player 1’s demand when he is the poorer player, and d1(x, x) as his demand
when he is the wealthier player. For player 2, symmetry implies that d2(x, x) = d1(x, x)
and d2(x, x) = d2(x, x). Finally, the veto player demands dv(x, x) = dv(x, x), since she does
not care about the identities of the two non-veto players. Finally, define µ ∈ [0, 1] as the
probability with which the veto player offers a bribe to the poorest non-veto player. In
equilibrium, µ will also be a function of (x, x).

We also add the following boundary on the values of p and δ:

2− 3δ(1 + p) + δ2(1 + p+ 2p2) < 0

We note that this condition is sufficient, while not being necessary to ensure that the
bribe scheme described is budget feasible. As will become clearer in the next section, the
above boundary condition provides the range of proposal power (p) and patience (δ) for which
cooperation among non-veto players cannot be unconditionally sustained.

Below, we restate Nunnari’s (2016) result (in Proposition 5) which states that, depending
on the primitives of the model, the veto player may either adopt a mixed strategy where
she offers a bribe to each non-veto player with positive probability, or she will follow a pure
strategy and bribe the poorest player with probability 1 (as in Proposition 1). Moreover, if
a non-veto player is selected as the proposer, the veto player may demand either a strictly
positive amount dv, or may be willing to accept dv = 0 (negative amounts are not allowed).
Thus, the primitives (x, x, δ, p) are denoted by x0 and can be partitioned into 4 different
subsets ∆i ( Ω (i ∈ {A,B,C,D}). As in Nunnari (2016), we now consider each separate case.
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There is a fifth region, ∆E, however, it is not present when 2−3δ(1 +p) + δ2(1 +p+ 2p2) < 0

B.1 Case A: x0 ∈ ∆A

In this case, assume that (1) whenever a non-veto player proposes, then the veto player
demands a positive amount dv ≥ 0 in order to vote Yes, and (2) if the veto player proposes,
she adopts a pure strategy of bribing the poorest non-veto player with probability 1.12 Hence,
the incentive compatibility constraints of both the poorest non-veto player as well as the veto
player must bind in equilibrium, and we must also verify that this is indeed optimal within
some range ∆A. Guessing demands and value functions that are linear in x and x, we obtain
a system of 10 unknowns and 10 (non-redundant) equations, similar to the proof in Appendix
A. We obtain the following optimal demands and value functions:

dA1 (x, x) = dA2 (x, x) = δ(1−p)
2−δ(1+p)x+ 2−δ(1−p)

2−δ(1+p)x

dAv (x, x) = dAv (x, x) = 1− x− x− 2δp
2−δ(1+p)x

V A
1 (x, x) = V A

2 (x, x) = (1−p)(2δ2p−(1+3p)δ+2)
2(1−δ)(1−δp)(2−δ(1−p))x+ 1−p

2(1−δ)(1−δp)x

V A
1 (x, x) = V A

2 (x, x) = (1−p)(2−δ(1+p))
2(1−δ)(1−δp)(2−δ(1−p))x+ 1+p−2δp

2(1−δ)(1−δp)x

V A
v (x, x) = V A

v (x, x) = 1−x
1−δ −

(2−δ)(1−p)
(1−δ)(2−δ(1−p))x

Note that if x = 0, our results simplify to the ones in the simple case where x0 ∈ ∆ in
Proposition 1. This implies that ∆ ∈ ∆A. Now, in order to find the range of primitives
for which these strategies are optimal, we must verify our assumptions that (1) dAv > 0
and (2) that the veto player always wants to bribe the poorer non-veto player (or µA = 1),
which implies that the IC constraint of the wealthier non-veto player must be violated when
evaluated at the equilibrium bribe level offered to the poorer non-veto player. Combined,
these conditions imply the following bounds on the primitives:

x0 ∈ ∆A ⇔


x < 1− x

(
2−δ(1−p)
2−δ(1+p)

)
x ≥ x

(
2−δ(1−p)
2−δ(1+p)

)
x ≤

(
(2−δ(1+p))2

2(1−δp)(2−δ(1−p))

)
Finally, it is easily verified that the demands satisfy dA1,2 + dAv ≤ 1 irrespective of the

primitives. Hence, the bribing scheme is always feasible.

B.2 Case B: x0 ∈ ∆B

In this case, the veto player still bribes the poorer non-veto player with probability 1. The
difference with the previous case is that the feasibility constraint that dv ≥ 0 will now be

12It is easily shown that it can never be optimal for the veto player to bribe the wealthiest non-veto player
with probability 1, since the other non-veto player would be willing to compete.
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binding in equilibrium, since the veto player would be willing to accept negative amounts in
order to reach an allocation on the frontier, since this will allow her to steadily appropriate all
the surplus in the future. Intuitively, this will be the case if the veto player has a low initial
endowment, and is willing to sacrifice her full share in order to bribe a non-veto player and
reach a new allocation in the absorbing set ∆. Therefore, (IC3) will be slack in equilibrium.
We obtain the following solution:

dB1 (x, x) = dB2 (x, x) = 2(1−δ)(2−δ(1−p))
(2−δ(1+p))2 x+ δ(1−p)

2−δ(1+p)
dBv (x, x) = dBv (x, x) = 0

V B
1 (x, x) = V B

2 (x, x) = δp(1−p)
(1−δp)(2−δ(1+p))x+

(1−p)(2δ2p−(1+3p)δ+2)
2(1−δ)(1−δp)(2−δ(1−p))

V B
1 (x, x) = V B

2 (x, x) = p
1−δpx+ (1−p)(2−δ(1+p))

2(1−δ)(1−δp)(2−δ(1−p))
V B
v (x, x) = V B

v (x, x) = 2p
(1−δ)(2−δ(1−p)) −

2p
2−δ(1+p)x

In equilibrium, optimality and feasibility for this case require (1) that the IC constraint
for the veto player is slack at dBb = 0, (2) that the IC constraint of the wealthier non-veto
player is violated when evaluated at the demand offered to the poorer non-veto player (or
µB = 1), and (3) that dB1,2 + dBv ≤ 1. Combined, these three constraints imply the following
bounds on the initial status quo:

x0 ∈ ∆B ⇔



x ≥ 1− x
(

2−δ(1−p)
2−δ(1+p)

)
x ≥

(
δ2p(1−p)

(1−δp)(2−δ(1−p))

)
+ x

(
2−δ(1+p)−δ2p(1−p)
(1−δp)(2−δ(1+p))

)
x ≤

(
2−δ(1+p)
2−δ(1−p)

)
x ≤

(
(2−δ(1+p))2

2(1−δp)(2−δ(1−p))

)

B.3 Case C: x0 ∈ ∆C

In the remaining two cases, the veto player will not adopt a pure strategy to bribe the poorest
non-veto player. Instead, she will mix and offer a bribe to either player 1 or player 2 with
some probability. However, in this case the veto player is still willing to accept an amount
dCv = 0, as in Case B. Let µC ∈ (0, 1) be the probability that the veto player offers the
bribe to the poorest non-veto player. If µC is interior, the veto player must be indifferent
between bribing either non-veto player, which implies she must offer them the same amount
irrespective of their current shares (x1, x2). This implies that at the optimal bribe level
dC1 = dC2 , both non-veto players must have the same value of either accepting the bribe and
moving to region ∆ ∈ ∆A (and getting the same continuation value), or rejecting the bribe
and sticking to the status quo:

dC1 + δV A
1 (dC1 , 0) = x1 + δV C

1 (x0, µC) = x2 + δV C
2 (x0, µC)

If this were not the case, then the veto player would strictly prefer to bribe the agent
with the lowest status quo share, since he is willing to accept a lower amount than the other
player. However, µC = 1 would then no longer be interior. Competition between the non-veto
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players would then induce the veto player to start mixing again. The continuation values for
the non-veto players can be summarized by a vector (x, x, µC):

V C
1 (x, x, µC) = V C

2 (x, x, µC) = 1−p
2

(
1− dv + δV A

1 (1− dv, 0, dv)
)

+ 1−p
2

(
0 + δV A

1 (0, 1− dv, 0)
)

+
p
(
µC
[
0 + δV A

1 (0, d2, 1− d2)
]

+ (1− µC)
[
d1 + δV A

1 (d1, 0, 1− d1)
])

V C
1 (x, x, µC) = V C

2 (x, x, µC) = 1−p
2

(
b− dv + δV A

1 (1− dv, 0, dv)
)

+ 1−p
2

(
0 + δV A

1 (0, 1− dv, 0)
)

+
p
(
µC
[
d1 + δV A

1 (d1, 0, 1− d1)
]

+ (1− µC)
[
0 + δV A

1 (0, d2, 1− d2)
])

We now solve this system of equations for the optimal strategies (dC1 , µ
C). By rewriting

the optimality conditions from before, we can express the optimal mixing probability µC as
a function of the primitives and the optimal demand d1:

µC =
1

2

(
1 +

x− x
dC1

(
1− δp
δp

)(
2− δ(1− p)
2− δ(1 + p)

))
It is easy to see that this is always weakly greater than 1

2
, since x ≥ x. In other words,

the veto player always mixes in favor of the poorest non-veto player to equalize the status
quo values of both non-veto agents. By plugging this (non-linear) expression for µ back
into the value functions V C

i (x, x, µC) and V C
i (x, x, µC) (for i = 1, 2), it can be checked that,

conditional on having a linear demand function dC1 (= dC2 ), the value functions of the non-
veto players will also be linear in x and x. After substituting out µC , we can solve for the
optimal demands and value functions by using a similar linear “guess and verify” method.
The optimal demands are given by:

dCi=1,2(x, x) = (1−δ)(1−δp)(2−δ(1−p))
(2−δ(1+p))(2−δ−2δp+δ2p2)(x+ x) + δ(1−p)(1−δp)

2−δ−2δp+δ2p2

dCv (x, x) = 0

The associated value functions are given by:

V C
1 (x, x) = V C

2 (x, x) = 2−δ(1+p)
2δ(2−δ−2δp+δ2p2)(x+ x)− 1

δ
x+ (1−p)(2−δ(1+p))2

2(1−δ)(2−δ(1−p))(2−δ−2δp+δ2p2)

V C
1 (x, x) = V C

2 (x, x) = 2−δ(1+p)
2δ(2−δ−2δp+δ2p2)(x+ x)− 1

δ
x+ (1−p)(2−δ(1+p))2

2(1−δ)(2−δ(1−p))(2−δ−2δp+δ2p2)

V C
v (x, x) = V C

v (x, x) = −p(1−δp)
2−δ−2δp+δ2p2 (x+ x) + 1

1−δ

(
1− (1−p)(2−δ(1+p))2

(2−δ(1−p))(2−δ−2δp+δ2p2)

)
The mixing probability µ is nonlinear in (x, x) and can be found by plugging in the

optimal bribe dC1 (x, x) in the condition for µC we derived before. In order for the equilibrium
to be optimal and feasible, we need (1) that (IC3) is slack when evaluated at dCv = 0, (2)
that µC < 1 and (3) that the optimal demands satisfy dC1,2 + dCv ≤ b. These three conditions
imply the following bounds:

x0 ∈ ∆C ⇔



x ≥ 2−δ
2−δ(1−p) − x

x <
(

δ2p(1−p)
(1−δp)(2−δ(1−p))

)
+ x

(
2−δ(1+p)−δ2p(1−p)
(1−δp)(2−δ(1+p))

)
x ≤

(
2−δ(1+p)
2−δ(1−p)

)(
2−δp
1−δp

)
− x

x ≤
(

(2−δ(1+p))2
2(1−δp)(2−δ(1−p))

)
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As in Case B, the third (feasibility) condition rules out some primitives. For example, in

the extreme case where x = x = 1
2
, feasibility requires that δ > δ =

1+3p−
√

1+6p−7p2
4p2

. This

corresponds to the condition derived by Nunnari (2014) in his Appendix of Proposition 5.
We note that the condition is satisfied for all p and δ when 2−3δ(1+p)+δ2(1+p+2p2) < 0.
Note finally that the first and third conditions are parallel lines with slope −1. It can be
shown that, for all feasible values of (δ, p), there is always a non-empty region of allocations
which satisfies both constraints. In other words, region C always exists irrespective of the
primitives.

B.4 Case D: x0 ∈ ∆D

This case is analogous to the previous one, except that the veto player now demands a positive
amount dDv ≥ 0, so his IC constraint must bind. The continuation values for all players are
analogous to before. Then, we can solve for symmetric linear equilibrium by imposing the
(IC3) constraint and the condition that dv = 0 when (x, x) is exactly at the boundary for
case C (where x = 2−δ

2−δ(1−p) − x). Beyond this bound, then by construction of case D, the

veto player demands dCv ≥ 0. Moreover, since the veto player is again mixing, the optimal
bribe offered to each non-veto player must again satisfy dC1 = dC2 , since both non-veto players
must have the same value of either accepting the bribe and moving to region ∆ ∈ ∆A (and
getting the same continuation value), or rejecting the bribe and sticking to the status quo:

dD1 + δV A
1 (dD1 , 0) = x1 + δV D

1 (x0, µD) = x2 + δV D
2 (x0, µD)

Solving the system of equations yields the following equilibrium demands for Case D:

dDi=1,2(x, x, δ, p) = (1−δp)(2−δ(1−p))
(2−δ)(2−δ(1+p)) (x+ x)

dD3 (x, x, δ, p) = 1− 2−δ(1−p)
2−δ (x+ x)

The corresponding value functions are given by

V D
1 (x, x) = V D

2 (x, x) = 2−δ(1+p)
2δ(2−δ)(1−δ)(x+ x)− x

δ

V D
1 (x, x) = V D

2 (x, x) = 2−δ(1+p)
2δ(2−δ)(1−δ)(x+ x)− x

δ

V D
v (x, x) = V D

v (x, x) = 1
1−δ −

2−δ−p
(2−δ)(1−δ)(x+ x)

Feasibility and optimality for this case require that (1) dDv > 0 and (2) µD < 1, which
imply the following boundary conditions for case D:

x0 ∈ ∆D ⇔


x < 2−δ

2−δ(1−p) − x
x < x

(
2−δ(1−p)
2−δ(1+p)

)
x ≤

(
(2−δ(1+p))2

2(1−δp)(2−δ(1−p))

)
Finally, it is easy to check that dD1 + dDv ≤ 1 for all primitives within the range ∆D.
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As long as 2 − 3δ(1 + p) + δ2(1 + p + 2p2) < 0, there will only be four regions; namely:
∆A, ∆B, ∆C , and ∆D. When 2− 3δ(1 + p) + δ2(1 + p+ 2p2) ≥ 0, we will have a fifth region
in which there will be partial (not full) surplus extraction. That region, ∆E follows:

x0 ∈ ∆E ⇔ x >

(
(2− δ(1 + p))2

2(1− δp)(2− δ(1− p))

)
This is the boundary condition stated in Proposition 2. This completes the proof. �

C Proof of Proposition 2

In order to prove that the non-veto players will never have an incentive to move outside of
region E(∆E), we show that both non-veto players are better off being within ∆E than at
any point outside it. In our equilibrium, they trust each other to realise this and therefore
block any move by the veto player to move outside ∆E.

It is easily shown that in the L-shaped region of ∆ \ ∆E the point that offers the first
non-veto player the highest lifetime continuation value is (1, 0, 0).

We therefore compare the valuation for the first non-veto player at the worse than worst
case scenario in region E - i.e. to stay at (x∗, x∗, 1− x∗) forever

to
The valuation of the first non-veto player at (1, 0, 0) which moves the new status quo to

region A
If the first non-veto player finds the bribe acceptable, cooperation among the two non-

veto players will break down and the veto player will be able to asymptotically expropriate
both non-veto players. Note the following values:

x∗ =

(
(2− δ(1 + p))2

2(2− δ(1− p))(1− δp)

)
(1)

The value to the first non-veto player from staying at (x∗, x∗, 1− x∗) forever is given by:

V alue =
1

1− δ

(
(2− δ(1 + p))2

2(2− δ(1− p))(1− δp)

)
(2)

The valuation for the first non-veto player from accepting the bribe to move to (1, 0, 0)
and converging to the origin thereafter is given by: 1 + δV A

1 (1, 0)

V alue = 1 + δ

[
(1− p)(2δ2p− (1 + 3p)δ + 2)

2(1− δ)(1− δp)(2− δ(1− p))

]
(3)

We then compare this with the value to the first non-veto player from staying at (x∗, x∗, 1−x∗)
forever, and find that the first non-veto player is at least as well off staying at (x∗, x∗, 1−x∗)
forever. We find an analogous result for the second non-veto player.

Since both non-veto players would rather stay at the worse than worst point in ∆E than
accept the best bribe that the veto player could possibly offer either one of them, we can
be assured that they would trust each other to remain within ∆E and collectively block any
attempt by the veto player to move to ∆ \∆E.

�
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