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Abstract

We model a decision-making environment where choice takes place
in two stages- first, the decision-maker considers a sub-list from a list
of alternatives and next, she decides to choose an alternative from
the sub-list considered in the previous stage. Following the influ-
ential work by Manzini and Mariotti (2014), we consider the situa-
tion when the first stage decision-making exhibits variability, i.e. the
decision-maker ends up paying attention to different sub-lists at dif-
ferent times. We relax a significant assumption made in Manzini and
Mariotti (2014) called “menu independence” and still show that the
choice rule can be fully characterized when it satisfies the behavioral
axioms: proximity, list regularity and list assymetry. The proximity
axiom introduces the notion that the influence of an alternative (aj)
on the choice probability of another alternative (ak) in a list depends

∗We thank Salvador Barberá, Miguel A. Ballester, Paola Manzini, Marco Mariotti,
Tugce Cuhadaroglu, Jordi Massó, Arunava Sen, Debasis Mishra, Avinash Bora, Kemal
Yildiz, and seminar/conference participants at 13th Meeting of Society for Social Choice
and Welfare.
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only on the “proximal” alternatives with respect to both these alter-
natives (i.e. alternatives lying between aj and ak) in that list. In our
result, all behavioral parameters which include a complete and anti-
symmetric binary relation over the alternatives in any list, are fully
identified.

Keywords: Attention parameter, choice function, list, stochastic choice,
two-stage decision-making.
JEL Classification Numbers: C72, C78, D82.

1 Introduction

We model a decision-maker whose choice responses exhibit variability. Al-

though many models in economic choice theory deal with deterministic be-

havior, market and experimental data often reveal stochastic nature of decision-

making (McFadden (2000)). As Barberá and Pattanaik (1986) observe, de-

velopment of psychology literature has also been inclined towards stochas-

tic choice models. The problem of “imperfect” or “limited” attention has

also been explored by Masatlioglu et al. (2012) and Lleras et al. (2015).

Masatlioglu et al. (2012) provide an axiomatic characterization that enables

revelation of preferences while relaxing the implicit assumption made in con-

sumer theory that a decision-maker considers all feasible alternatives. Their

model recognizes the possibility that a decision-maker may be unaware of

the existence of some alternatives in the set from which she is making the

choice. Lleras et al. (2015) employ a framework that views the problem

as “choice overload” in which different products have to compete for the

decision-maker’s attention.

Manzini and Mariotti (2014) develop a model of a boundedly rational

agent who maximises a preference relation but randomness in the choice data

arises due to imperfect attention. They focus on the framework in which the
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decision-making is conceived as a two-stage process: the agent may not eval-

uate all possible options in a set A but only considers a subset (possibly

strict) of it, called the consideration set, C(A); once C(A) is formed the final

choice is made by maximising a preference relation over C(A). The agent

considers each feasible alternative a ∈ A with a given (unobservable) prob-

ability (the attention parameter) and Manzini and Mariotti (2014) makes a

specific assumption in their model: attention parameter or the probability

for any alternative a ∈ A to be included in the consideration set C(A) is

menu independent, i.e. it does not depend on the other alternatives in A.

Given this assumption, they find the characterization of the choice rule when

it satisfies two simple axioms.

Previously, two-stage decision making has been analyzed within determin-

istic frameworks in various contexts: Eliaz, Richter and Rubinstein (2011)

axiomatize procedures using which a decision-maker may shortlist alterna-

tives before making a final choice. They consider that examining each alter-

native may be “costly” for the decision-maker, and therefore it is convenient

to formulate a consideration set in the first stage, from which a final choice

is made. However, as Manzini and Mariotti (2014) point out, among the

studies relating to consideration set model of choice, Masatlioglu et al is the

pioneering work as it is the first to study how attention and preferences can

be retrieved from a given choice data in this category of models. But in their

model it is not possible to pin down the primitives by observing the choice

data generated. Manzini and Mariotti (2014)’s contribution is significant in

that regard: their characterization result uniquely identifies the primitives.

While Manzini and Mariotti (2014) point out that the “menu indepen-

dence” is a significant assumption, they also show that the unrestricted menu

dependence generates a model with no observable restrictions and “..it is not
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clear a priori what partial restrictions should be imposed on menu depen-

dence”. Manzini and Mariotti (2014) leave the characterization of such a

decision problem as an open question.

In this paper we consider a richer structure of the set of alternatives- we

assume that the agent encounters the alternatives in the form of a (finite)

sequence or a list. Rubinstein and Salant (2006) introduces the notion of

choice from lists. List is a natural restriction on the structure of the set

of alternatives in many real life choice problems. For example, when the

decision-maker buys a product online, the website displays the products in

the form of a list; when a researcher decides on a journal to submit a paper,

the journal names appear in a sequence to her mind etc. There are many more

examples from daily life and we will mention some of them in the following

discussion. We analyze two-stage decision-making in the framework of lists.

In the first stage, the decision-maker pays attention to a sub-list of the entire

list (say, `), and in the second stage she chooses an alternative from the sub-

list selected in the first stage. The randomness is attributed to the first stage

of the decision-making procedure when a consideration list is formed. Once

the consideration list is formed, we assume that the decision-making in the

second stage is deterministic.

Note that the randomization over the sub-lists in the first stage is com-

patible with various behavioral assumptions about the decision-maker that

result in “imperfect” or “limited” attention (à la Masatlioglu et. al. (2012);

Lleras et al. (2015); Manzini and Mariotti (2014), as discussed above) in

this stage. For example, the decision-maker may pre-commit to concentrate

on different sub-lists in different occasions. This could be based on several

factors as exemplified by the following examples:

(1) consider an individual visiting a supermarket to buy a pet-bottle of
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soft drink. If time-pressured, she may consider only the products in specific

positions on the shelf of the soft drinks (say, the first and the middle and the

last item of the list, to get a feel of the variety; or the first few products are

considered and the rest is ignored);

(2) suppose that an individual plans to buy a cosmetic product and she

prefers buying products online. On an occasion when the internet speed is

slow, she may avoid browsing through all the pages to see the entire list

of products- she may just plan to consider the products listed on the first

page and ignore clicking the “next” button (this example is attributed to

Masatlioglu et. al. (2012)).

Such mechanisms may be adopted by the decision-maker due to cognitive

constraints that may make it costly to pay attention to every alternative

(Eliaz, Richter and Rubinstein (2011)).

When the decision-maker does not pre-commit to paying attention to

alternatives that appear in specific positions, she may observe the alternatives

appearing in a list along the way and decide which ones to consider. In this

case also several factors may lead to limited attention or randomness in the

consideration lists generated in the first stage. We discuss two examples

below:

(1) often representatives from various companies are present near the

product-shelves in the supermarkets to promote their products and explain

their attributes. A consumer visiting the series of products may get influ-

enced and consider the products accordingly. This effect could be attributed

to choosing different “reference points” (Tversky and Kahneman 1991; Ru-

binstein and Salant 2006) to form the consideration lists.

One could construct a similar example for online shopping as well, where

various discounts (or “combination offers”) which appear while going through

5



the list influence the consumer to form her consideration list.

(2) Another important factor that could cause attention paid to an alter-

native to differ is the possibility that the decision-maker is “unaware” about

the existence or attributes of a particular alternative in the list. For example,

a new brand of wrist watches may often be ignored by consumers until they

become “aware” of its quality. Goeree (2008) explores this problem arising

out of imperfect information and stresses the role of advertising as an impor-

tant influence in determining the set from which the consumers ultimately

choose from. Consumers may “consider” only those alternatives about which

they have some prior information. A new product may therefore attract less

attention even if it is of superior quality in the absence of awareness. A regu-

lar shopper in a supermarket may gradually become aware of a new product

kept on a shelf of the market and the probability of paying attention to it

may increase.

We provide an axiomatic characterization of the class of random choice

rules from lists, i.e. the rules which specify the probability with which an al-

ternative is chosen from any list. Unlike Manzini and Mariotti (2014), where

the characterization requires the attention paramter to be menu independent,

our characterization allows the attention parameter to be menu/list depen-

dent. We adapt two axioms employed by Manzini and Mariotti (2014) to

the framework of lists, namely, list regularity and list asymmetry to develop

a model with identifiable parameters for attention as well as revelation of

the decision-maker’s preferences. We introduce the notion of “proximity” of

any two alternatives in a list and relate it to measuring the influence of one

alternative on the other. Specifically, our axiom, “proximity” can be seen

as an independence requirement stating that the influence of removing an

alternative aj on the choice probability of another alternative ak in any list
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l = (a1, . . . , aK), where K ≥ k > j (without loss of generality) for the corre-

sponding list, should be independent of the alternatives before aj and after

ak in that list. Thus the axiom requires that the influence of an alternative

(aj) on the choice probability of another alternative (ak) in a list depends

only on the “proximal” alternatives with respect to both these alternatives

i.e. on the alternatives lying between aj and ak in that list.

Apesteguia and Ballester (2016) model preference heterogeneity in a ran-

dom utility model. They introduce the notion that the presence of an al-

ternative in between two alternatives plays a crucial role in determining

choice probabilities of alternatives placed at the two extremes. Their axiom-

“centrality” requires that given a particular order, in every triplet when one of

the two extreme alternatives is removed, the choice probability of the other

extreme alternative remains unchanged. Our axiom of “proximity” differs

from it as we require that only those alternatives that lie in between two

alternatives in a list influences their choice probabilities. More crucially, in

Apesteguia and Ballester (2016) the order of the alternatives is endogenous.

On the other hand, in our model the order in which the alternatives appear

is exogenously given to the decision-maker, as in the examples illustrated

earlier.

The proximity axiom characterizes a class of random choice rules, called

“dominated sub-lists rules”. There is a specific form of random consideration

function (which determines probabilities for selecting different sub-lists in the

first stage) with respect to which a dominated sub-list rule (say, P ) is defined

as follows: consider any list l. There is a complete and antisymmetric binary

relation T l over the set of alternatives appearing in l. Probability of selecting

an alternative x from l, as given by P (x, l) is then computed as follows:

add the probabilities of the sub-lists (as given by the random consideration
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function) in which x appears and x beats all other alternatives in the sub-

lists in a pairwise comparison according to T l. As a decision-making process,

the rule appears to be natural: the event of choosing any alternative x from

a list l is the union of sub-events in which attention to paid to a sub-list

l′ in which the other alternatives in that list are dominated by x according

to a complete and antisymmetric binary relation. The name of the rule:

“dominated sub-lists rules” follows from the notion of dominance. Note that

the binary relation reflects the “true” taste of the decision-maker over the

alternatives and this binary relation is subject to change with the list from

which the choice is made.

In this regard it may be pertinent to compare our rule with the ratio-

nalizable stochastic choice rules as discussed in Falmagne (1978) or Barberà

and Pattanaik (1986): a stochastic choice rule C defined over the subsets of

a finite set X is rationalizable if there exists a probability assignment over

the set of all possible linear orderings over X such that C(x,A), A ⊆ X, is

the union of probability measures over all those linear orderings over X, in

each of which x is the best alternative among all the alternatives in A. In

our model, if P is a dominated sub-lists choice rule from lists, there exists a

complete and antisymmetric binary relation for every list and a probability

assignment over all the sub-lists such that P (x, l) is the union of probability

measures over all those sub-lists containing x, in each of which x beats the

other alternatives in the sub-list as per the binary relation. Thus the ran-

domness in the stochastic choice rules in Falmagne (1978) is induced by the

probability assignment over the linear orderings and in the dominated sub-

lists choice rules (from lists) the origin of the randomness is the probability

assignment over the possible sub-lists, i.e. consideration lists.

We know that the observed choice data may not reflect the true taste of
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the decision-maker (for a detailed discussion, see Masatlioglu et. al. (2012)).

The binary relation in any dominated sub-lists choice rule reflects the true

taste of the decision-maker. In our model this underlying binary relation

is identified for any dominated sub-lists choice rule. Also the attention pa-

rameters are identified for singleton and binary lists (i.e. the lists with two

alternatives). Interestingly, we show that identifying the attention param-

eters for binary lists is sufficient to characterize the rule in general. Hence

our model fits well with the strand of literature in revealed preference theory.

Thus we address the concerns as raised by Manzini and Mariotti (2014) in

their paper and fully characterize the decision-making procedure from lists

and also identify the underlying parameters.

2 Random choice from lists

Let X be a non-empty finite set of alternatives. A list ` is a finite sequence of

alternatives drawn from X. We assume that each alternative from X appears

only once in a list, and denote the set of all possible lists from X by Λ. For

` ∈ Λ, X(`) is the set of alternatives appearing in `, while the length le(`)

of ` is defined by le(`) := |X(`)|. That is, ` = (a1, . . . , ale(`)). Given any list

l ∈ Λ, a sub-list l′ of l (denoted by l′ ⊆ l) is a list where X(l′) ⊆ X(l) and

the order in which the alternatives appear in l′ is the same as they appear

in l. For any x ∈ X, we let (x) denote the (singleton) list containing only x.

The set Λ(k) contains all lists of length at most k.

The decision-maker observes a list and chooses an alternative from it.

The decision-maker, however has an option not to pick any alternative from

a list- in this case we assume that a default alternative x∗ is chosen by the

decision-maker. Let X∗ = X ∪ {x∗}.
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Definition 1 A random choice rule (from lists) is a mapping P : X∗×Λ→
[0, 1] such that:

∑
a∈X(`)∪{x∗} P (a, `) = 1 for each ` ∈ Λ; P (a, `) = 0 for each

a ∈ X \X(`); and P (a, `) ∈ (0, 1) for each ` ∈ Λ and a ∈ X(`)

In our model the DM does not necessarily consider the whole list, but may

pay attention only to a sub-list (called “consideration list”) and chooses an

element from it. Thus it is a two-stage decision making process as in Manzini

and Mariotti (2014)- in the first stage the decision-maker (randomly) decides

on a sub-list to consider and in the final stage she chooses an element from

that sub-list. The randomness in the choice data arises from the first stage

as in the second stage, the choice from the consideration list is assumed to

be deterministic. Note that x∗ is chosen from any list l only if no sub-list

draws attention in the first stage. We denote by cj(`), a consideration sub

list drawn from a list `, containing those alternatives in ` that are paid

attention to until the decision maker observes the jth alternative. When the

jth alternative is the last alternative in the list `, the consideration sub list

is the decision-maker’s consideration list, c(`).

Definition 2 A random consideration function (from lists) is a mapping

π : Λ × Λ → [0, 1] such that: π(`′, `) ∈ [0, 1] for each `′ ⊆ ` ∈ Λ and∑
`′⊆` π(`′, `) = 1.

A random consideration function from lists (henceforth, rcf) tells us the

probability of considering (or paying attention to) a particular sub-list from

any given list. We note that the consideration list from any list l ∈ Λ

can be empty and in this case the default alternative x∗ is chosen. Thus

P (x∗, l) = π(φ, l) for any l ∈ Λ. Since the decision-maker does not necessarily

pay attention to the entire list, P (x, l), x ∈ X(l) may not reflect the genuine

taste or preference for x compared to the other alternatives in l. As discussed
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in Manzini and Mariotti (2014), if P (x, l) > P (y, l), x, y ∈ X(l), it may be

due to the fact that the decision-maker pays attention to x more frequently

than to y even though she prefers y more to x (perhaps in a stochastic sense).

Let δ : X × Λ → [0, 1] denote attention parameter from lists, i.e. δ(x, l),

x ∈ X(l), l ∈ Λ is the probability of drawing attention to x in any list l.

When a decision-maker observes alternatives in a list, the sequence in which

the alternatives appear can influence the probability that attention is paid

to an alternative. The probability that attention is paid to an alternative b

in the lists (a, b) and (b, a) may differ. In the list (a, b), the probability that

attention is paid to b is conditioned by the event that a has been considered

(or has not been considered). When a is considered by the decision-maker,

the probability that attention is paid to b is δ(b, (a, b)|a ∈ c((a, b))). When a

is not considered, the corresponding attention parameter for b is δ(b, (a, b)|a /∈
c((a, b))). Thus, for any list ` ≡ (`1, . . . , `K) and any sub-list `′ ≡ (`′1, . . . , `

′
k),

`′j ∈ X(`), ∀1 ≤ j ≤ k, we have the following:

π(`′, `) = Πj=k
j=1Πj=k

i=1 δ(`
′
j, `|cj(`))(1− δ(`′′i , `|cj(`))

where `′′i ∈ X(`) \ {`′1, . . . , `′k}
In this model the decision-making follows a two-stage process: given any

list, a consideration list is formed (with some probability based on δ) in

the first stage and then an alternative is chosen from the consideration list

formed in the first stage. Given this process we can express the probability

of choosing an alternative (say, x) from any list l as follows:

P (x, l) = Σ{l′⊆l|x∈X(l′)}π(l′, l).s(x, l′).

Here s : X×Λ→ [0, 1], such that s(a, l′) = 0 if a /∈ X(l′), s(x, l′) ∈ {0, 1}
for any x ∈ X(l′) and Σ{x∈X(l′)}s(x, l

′) = 1, l′ ∈ Λ. s can be viewed as a
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degenerate probability distribution which takes either of the two values 0 or

1. This is because the choice from the consideration list in the second stage

is deterministic. The true preference of a decision maker is represented by

s, as it tells us the probability of an alternative being chosen when all the

alternatives in the list are considered.

We note that in Manzini and Mariotti (2014), the “attention parame-

ters” measure the probability with which an alternative can be shortlisted

from any set. However, Manzini and Mariotti (2014) assume that the at-

tention parameter of any alternative remains the same irrespective of the set

from which the alternative is being considered. They call this assump-

tion “menu independence”. Thus in Manzini and Mariotti (2014)

the attention parameters are “menu independent” where menu is

the set of feasible alternatives. As Manzini and Mariotti (2014)

mention in their paper, this assumption is a significant one. This

is because, the probability with which an alternative grabs attention in a

set is likely to depend on what other alternatives are available in the set,

i.e. the entire feasible set of alternatives. For example, more colorful ob-

jects are likely to attract more attention when some shabby objects are also

present in the feasible set (“Contrast effect” (Rubinstein and Salant, 2006)).

But Manzini and Mariotti (2014) show that relaxing this assumption in their

setup would lead to a highly permissive result and also the underlying pref-

erences remain unidentified: “Unrestricted menu dependence yields a model

with no observable restrictions (Theorem 2), while it is not clear a priori what

partial restrictions should be imposed on menu dependence.” (Manzini and

Mariotti, 2015). In this paper, we characterize the problem while allowing

attention parameters to be list dependent.

Let P be a random choice rule and let π and δ denote the random con-
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sideration function and the attention parameter. For any a, b ∈ X, we have

the following:

P (a, (a)) = π(a, (a)) = δ(a, (a)) = δ(a, (b, a)|x /∈ c((b, a)))

P (a, (a, b)) = π((a, b), (a, b))s(a, (a, b)) + π((a), (a, b))s(a, (a)) =

δ(a, (a, b))δ(b, (a, b)|a ∈ c((a, b))).s(a, (a, b)) + δ(a, (a, b))(1− δ(b, (a, b)|a /∈
c((a, b))).

P (b, (a, b)) = δ(a, (a, b))δ(b, (a, b)|a ∈
c((a, b))).s(b, (a, b)) + (1− δ(a, (a, b)))δ(b, (a, b)|a /∈ c((a, b)))

Next we will define a particular random consideration function- “refer-

ence dependent random consideration function”. Informally the probability

of “considering” (or “paying attention to”) any sub-list from a list (say, `′

from `) in this rule can be described as follows: the decision-maker picks an

alternative as a reference point, and then compares all other alternatives to

it, one at a time. The probability of paying attention to a particular sub-list

`′ with aj as the reference is the joint probability of paying attention to all

those alternatives ai that occur in `′ in binary list (ai, aj) or (aj, ai) (depend-

ing on whether ai precedes or succeeds aj in the list `), and the probability

of not paying attention to those alternatives al in binary lists (al, aj) (or

(aj, al)) which do not occur in `′. We define it formally.

Definition 2 Let δ : X × Λ→ [0, 1] be an attention parameter for lists.

A random consideration function π is a reference dependent rcf, denoted

πj, if for any ` = (a1, . . . , ak) ∈ Λ; and aj ∈ `′ ⊆ `

πj(`
′, `) = Πi=1,...j−1;ai∈X(l′)δ (ai, (ai, aj)) .δ(aj, (ai, aj)|ai ∈ c((ai, aj)))
.Πl=j+1,...k;al∈X(`′)δ(aj, (aj, al)).δ(al, (aj, al)|aj ∈ c((aj, al)))
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.Πi=1,...j−1;ai∈X(`)\X(`′)(1− δ(ai, (ai, aj)))δ(aj, (ai, aj)|ai /∈ c((ai, aj)))
.Πl=j+1,...k;al∈X(`)\X(`′)δ(aj, (aj, al)).(1− δ(al, (aj, al)|aj ∈ c((aj, al)))

Thus a reference based rcf computes the probability of any sublist `′

from ` as the probability of a joint event where any element in `′ (say, y)

draws attention in binary list (x, y) ⊆ `′ (or in (y, x) ⊆ `′ but any element

(say, z) in ` \ `′ fails to draw attention in binary lists (x, z) ⊆ ` \ `′ (or

(z, x) ⊆ ` \ `′, when x is the reference alternative.

3 Characterization of “dominated sub-lists rule”

3.1 Axioms and characterization

We borrow the idea of “impact of an alternative on the other” from Manzini

and Mariotti (2014) and adapt it in our setting as follows: consider a list

` ∈ Λ, ` = (a1, . . . , ak, . . . , aK). Suppose that x ∈ X(`), x 6= ak. We define

the “impact” of x on the choice probability of ak in ` as follows: P (ak,`\x)
P (ak,`)

.

Note that x could be an alternative that appears before or after ak in `. From

lemma 1, it is clear that in any binary list, the impact of an alternative on

the other is greater than or equal to unity. Thus the removal of an alternative

from a binary list weakly increases the probability of the other alternative.

We adapt Manzini and Mariotti’s (2014) axioms to the framework of lists:
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Axiom 1: List regularity (LR) For any a, b ∈ X(`)

P (a, (a)) ≥ P (a, (b, a))

Axiom 2: List assymetry (LA) For any a, b ∈ X(`)

P (b, (b))>P (b, (a, b)) ⇐⇒ P (a, (a)) = P (a, (b, a))

LR states that when an alternative is removed from a binary list, the

choice probability of the remaining alternative may increase or may remain

the same. This rules out situations in which the removal of an alternative

reduces the chances of another alternative being chosen. For example, a

decision-maker may be more likely to choose coffee from the list (tea,coffee)

than from the singleton (coffee). Such situations do not conform to list

regularity. LA requires that for any two alternatives, only one may impact the

other. When the decision-maker observes the list (a, b), and observing a prior

to b influences her probability of choosing b, then if b were observed prior to a,

a′s choice probability would remain unaffected. Notice that s represents the

probability of choosing an alternative when all the alternatives in the list are

considered, i.e., there is no problem of imperfect attention. As an alternative

may or may not be chosen, s(x, `) can take only one of the two values: 0 or

1. In a binary list (a, b), s(a, (a, b)) = 1 indicates that when both a and b

are considered, the decision maker chooses a. As s(a, (a, b) + s(b, (a, b)) = 1,

s(b, (a, b)) must be 0. Hence, s in this example reveals that the decision-maker

has a preference for a over b.With the above two axioms, we can identify the

genuine preference s in our model:

Suppose for some a, b ∈ X, P (a, (a)) = P (a, (b, a)). Then,

P (a, (a)) = P (a, (b, a)) = δ(b, (b, a)).δ(a, (b, a)|b ∈ c((a, b))).s(a, (b, a)) + [1−
δ(b, (b, a))].δ(a, (b, a)|b /∈ c((a, b))) (1)

As P (a, (a)) = δ(a, (b, a)|b /∈ c((a, b))); (1) can be written as:
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P (a, (a))−[1−δ(b, (b, a))].P (a, (a)) = δ(b, (b, a)).δ(a, (b, a)|b ∈ c((a, b))).s(a, (b, a))

Which implies

δ(b, (b, a)).P (a, (a)) = δ(b, (b, a)).δ(a, (b, a)|b ∈ c((a, b))).s(a, (b, a)) (2)

As P : X → (0, 1), δ(b, (b, a)) 6= 0. Also, P (a, (a)) 6= 0. The left hand side

in (2) is therefore non zero.

It follows that in the right hand side of (2), s(a, (b, a)) = 1. Thus, s is

identified.

Further, s(a, (b, a)) = 1 implies that s(b, (b, a)) = 0. Therefore, we know

that:

P (b, (b, a)) = δ(b, (b, a))− δ(b, (b, a)).δ(a, (b, a)|b ∈ c((b, a)))

Which can be re-written as:

δ(b, (b, a)).δ(a, (b, a)|b ∈ c((b, a))) = δ(b, (b, a))− P (b, (b, a)) (3)

and

P (a, (b, a)) = δ(b, (b, a)).δ(a, (b, a)|b ∈ c((b, a)))+P (a, (a))[1−δ(b, (b, a))] (4)

From (3) and (4):

P (a, (b, a))− P (a, (a)) = δ(b, (b, a))− P (b, (b, a))− P (a, (a)).δ(b, (b, a))

Which implies

δ(b, (b, a)) = P (a,(b,a))+P (b,(b,a))−P (a,(a))
1−P (a,(a))

Thus, the list dependent attention parameter δ(b, (b, a)) is identified.

Using the expression derived for δ(b, (b, a) in P (b, (b, a)) with s(b, (b, a)) =

0, we get:

δ(a, (b, a)|b ∈ c((b, a))) = P (a,(b,a))−P (a,(a))[1−P (b,(b,a))]
P (a,(b,a))+P (b,(b,a))−P (a,(a))

Thus, the attention parameter δ(a, (b, a)|b ∈ c((b, a))), which represents the

conditional probability that attention is paid to a in the list (b, a), given that

the decision-maker pays attention to b is also identified.
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We introduce our final axiom which is based on the influence of proximity

on the impact of an alternative on the choice probability of another alterna-

tive.

Axiom 3: Proximity Let P be a random choice rule. For any ` ∈ Λ, ` =

(a1, . . . , ak, . . . , aK), we have that for each t ∈ {−k + 1,−k + 2, . . . ,−k +K}\
{0},

P (ak, `)

P (ak, ` \ (ak+t))
=

P (ak, `
′)

P (ak, `′ \ (ak+t))

holds for each `′ = ` \ (x), x ∈ {a1, . . . , ak+t−1, ak+t+1, . . . , aK}.

The idea behind this axiom is simple: impact of an alternative (say, x) on

another (say, y) is independent of the alternatives not appearing in between

x and y. We explain with an example. Suppose that the decision-maker

is choosing a product from a shelf in a store and observes the product as

displayed on the shelf, i.e. in the form of a list. The impact of a product

x on the choice probability of another product y in this case depends only

on the products the decision-maker encounters between x and y. This axiom

promotes the idea that only the alternatives that are in proximity to both x

and y affect the measure of the impact.

A very useful implication for a random choice rule from lists satisfying

the above requirement is captured by the following lemma.

Lemma 1 A random choice rule P satisfies Proximity if and only if for any

` ∈ Λ, ` = (a1, . . . , aK),

P (aj, `) =
Πi=1,...,j−1P (aj, (ai, aj))Πi=j+1,...,KP (aj, (aj, ai))

[P (aj, (aj))]K−2

Proof. Let P satisfy Proximity. Take ` = (a1, . . . , aK) ∈ Λ and aj ∈ X(`).

Consider first the list `′ = (a1, . . . , aj) and notice that by the repeated use of
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Proximity we have

P (aj, `
′)

P (aj, `′ \ (aj−1))
=
P (aj, (aj−1, aj))

P (aj, (aj))

and thus

P (aj, `
′) =

P (aj, `
′ \ (aj−1))P (aj, (aj−1, aj))

P (aj, (aj))

holds.

We have further that

P (aj, `
′ \ (aj−1))

P (aj, `′ \ (aj−2, aj−1))
=
P (aj, (aj−2, aj))

P (aj, (aj))

resulting in

P (aj, `
′ \ (aj−1)) =

P (aj, `
′ \ (aj−2, aj−1))P (aj, (aj−2, aj))

P (aj, (aj))
.

Thus,

P (aj, `
′) =

P (aj, `
′ \ (aj−2, aj−1))P (aj, (aj−2, aj))P (aj, (aj−1, aj))

[P (aj, (aj))]2
.

Continuing in the same way we get

P (aj, `
′) =

Πi=1,...,j−1P (aj, (ai, aj))

[P (aj, (aj))]j−1
.

Consider then the list `′′ = (`′, aj+1) and notice that

P (aj, `
′′)

P (aj, `′′ \ (aj+1))
=
P (aj, (aj, aj+1))

P (aj, (aj))

and thus

P (aj, `
′′) =

P (aj, (aj, aj+1))P (aj, `
′′ \ (aj+1))

P (aj, (aj))

=
P (aj, (aj, aj+1))P (aj, `

′)

P (aj, (aj))

=
P (aj, (aj, aj+1))Πi=1,...,j−1P (aj, (ai, aj))

[P (aj, (aj))]j
.
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Consequentially adding all alternatives from ` to `′ results then in

P (aj, `) =
Πi=1,...,j−1P (aj, (ai, aj))Πi=j+1,...,KP (aj, (aj, ai))

[P (aj, (aj))]K−2

as required to be shown.

Suppose now that P (aj, `) =
Πi=1,...,j−1P (aj ,(ai,aj))Πi=j+1,...,KP (aj ,(aj ,ai))

[P (aj ,(aj))]K−2 holds

for ` = (a1, . . . , aK) ∈ Λ and aj ∈ X(`). Take ag, ah ∈ X(`) and suppose

that w.l.o.g. g < h < j. Notice that

P (aj, `) =
P (aj, ` \ (ag, ah)).P (aj, (ag, aj)).P (aj, (ah, aj))

[P (aj, (aj))]2

=
P (aj, ` \ (ah)).P (aj, (ag, aj))

P (aj, (aj))

=
P (aj, ` \ (ag)).P (aj, (ah, aj))

P (aj, (aj))

and thus,
P (aj, `)

P (aj, ` \ (ah))
=

P (aj, ` \ (ag))

P (aj, ` \ (ag, ah))

immediately follows as required to conclude that Proximity is satisfied.

Let us state the random choice rule which we characterize in this section.

Definition 3: Let πj be a reference dependent rcf. A random choice

rule from lists P is called “dominated sub-lists rule” if for any l ∈ Λ,

there is a complete and antisymmetric binary relation T l over X(l) such that

x ∈ X(l),

P (x, l) = Σ{l′⊆l|x∈X(l′),xT ly∀y∈X(l′)}πx(l
′, l)

Consider any x ∈ X(l), l ∈ Λ. Let πδ be a reference dependent rcf. For

every l∗ ∈ Λ there exists a complete and antisymmetric relation T l
∗

over

X(l∗). The rule defined as above computes the probability of choosing x

from l as follows: consider all sub-lists of l where x appears and the other
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alternatives in those sub-lists are dominated by x according to T l
∗
. Next,

add the probabilities of shortlisting these sub-lists from l as provided by

πx. This value is P (x, l). One can argue that the rule is a natural one- the

randomness is generated by the shortlisting stage (i.e. the first stage) of the

decision-making process and the event of selecting any alternative x from

any list is just the union of all events in which a sub-list is considered where

x is the best alternative.

Let Pδ,T denote a representative dominated sub-lists rule with δ as the

underlying attention parameter of the rule and and T = {T l}l∈Λ is the set

of complete and antisymmetric binary relations- one for each admissible list

l ∈ Λ.

We are now ready to present our main result.

Theorem 1 A random choice rule P satisfies Proximity if and only if it is

“dominated sub-lists” rule.

Proof. In view of the proof of Lemma 2, a dominated sub-lists rule satisfies

Proximity.

Suppose P is a random choice rule satisfying Proximity. Let l ∈ Λ.

Define the following binary relations for any `i, `j ∈ X(l), i < j:

liT
l
1lj if s(li, (li, lj)) = 1,

ljT
l
2li if s(lj, (li, lj)) = 1.

For any x, y ∈ X(l), we say that xT ly if either xT l1y or xT l2y.

T l is a complete and antisymmetric relation over X(l).

We know from Lemma 1 that for any ` = (a1, . . . , aK) ∈ Λ, any j : 1 ≤ j ≤ K,

we have that

P (aj, `).{[P (aj, (aj))]
K−2} =

Πi=1,...,j−1P (aj, (ai, aj))Πk=j+1,...,KP (aj, (aj, ak)) (1)
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Notice that

P (aj, (ai, aj)) =

πaj((ai, aj), (ai, aj)).s(aj, (ai, aj)) + πaj((aj), (ai, aj)).s(aj, (aj))

Here πaj is the reference based rcf as follows from the previous discussion.

Expressing πaj in terms of attention parameters and setting s(aj, (aj)) = 1,

we get:

P (aj, (ai, aj)) =

δ(ai, (ai, aj)).δ(aj, (ai, aj)|ai ∈ c((ai, aj))).s(aj, (ai, aj))
+ (1− δ(ai, (ai, aj))).δ(aj, (ai, aj)|ai /∈ c((ai, aj)))

Similarly,

P (aj, (aj, ak)) =

δ(aj, (aj, ak)).δ(ak, (aj, ak)|aj ∈ c((aj, ak))).s(aj, (aj, ak))
+ δ(aj, (aj, ak))(1− δ(ak, (aj, ak)|aj ∈ c((aj, ak))).

Therefore,

Πi=1,...,j−1P (aj, (ai, aj))Πk=j+1,...,KP (aj, (aj, ak)) =

Πi=1,...,j−1{δ(ai, (ai, aj)).δ(aj, (ai, aj)|ai ∈ c((ai, aj))).s(aj, (ai, aj))
+ (1− δ(ai, (ai, aj))).δ(aj, (ai, aj)|ai /∈

c((ai, aj)))}.Πk=j+1,...,K{δ(aj, (aj, ak)).δ(ak, (aj, ak)|aj ∈
c((aj, ak))).s(aj, (aj, ak))

+ δ(aj, (aj, ak))(1− δ(ak, (aj, ak)|aj ∈ c((aj, ak)))}

Notice that for all ai, ak such that s(aj, (ai, aj)) = 0 and s(aj, (aj, ak)) = 0,

the first term of the expression for P (aj, (ai, aj)) (or P (aj, (aj, ak))) becomes

0. Expanding the above expression yields the following:
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Πi=1,...,j−1P (aj, (ai, aj))Πk=j+1,...,KP (aj, (aj, ak)) =

Σ`′⊆`|∀a′i,a′k∈X(`′),ai,ak∈X(`)\X(`′);ajT la′i,ajT
la′k

Πi=j−1
i=1 δ(aj, (a

′
i, aj)|a′i ∈

c((a′i, aj))).δ(a
′
i, (a

′
i, aj)).δ(aj, (ai, aj)|ai /∈

c((ai, aj))).[1− δ(ai, (ai, aj))].Πk=K
k=j+1δ(aj, (aj, a

′
k)).δ(a

′
k, (aj, a

′
k)|aj ∈

c((aj, (aj, a
′
k)).δ(aj, (aj, ak)).[1− δ(ak, (aj, ak)|aj ∈ c((aj, ak))]

Using the definition of πaj in the above expression, we get the following:

Πi=1,...,j−1P (aj, (ai, aj))Πk=j+1,...,KP (aj, (aj, ak)) =[
Σ`′⊆`|aj∈X(l′),∀x 6=aj∈X(`′);ajT lxπaj(`

′, `)
]

Using (1) in the right hand side of the above equation, we get:

P (aj, `).{P (aj, (aj))}k−2 =[
Σ`′⊆`|aj∈X(l′),∀x 6=aj∈X(`′);ajT lxπaj(`

′, `)
]

Thus, P (aj, `) is simply the probability of considering those sublists in which

aj is the dominant alternative according to preference relation T l, normalized

for the probability of choosing aj in the singleton list (aj).

4 Concluding remarks

We have characterized two-stage decision making with randomness in the

first stage within the framework of lists, based on the notion that choice

probabilities are influenced by proximal alternatives. Our characterization

introduces a new class of stochastic choice rules and does not require the
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stringent menu independence assumption of Manzini and Mariotti (2014).

Within the list based probabilistic framework, we allow the attention to be

menu or list dependent. Also, the genuine preferences of the decision maker

and the attention parameters are fully identified.
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