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Abstract

Agents compete for a reward by forming coalitions through a sequential process.

The probability that a coalition wins the reward depends on the relative size of the

coalition in the economy. The winning coalition equally divides the reward among all its

members. Agents strategically form coalitions to maximise the expected value of their

individual reward share. We extend the three axioms for contest success functions

(formalized by Skaperdas(1996)) to coalition structures and show that the coalition

structure at the Stationary Perfect Equilibrium contains at least two coalitions. One

coalition necessarily consists of at least a majority of the agents and the size of that

coalition is characterised. Further, we derive conditions under which the remaining

agents form a single coalition. As examples to this theory, we use the two common

functions used in this literature: ratio and difference functions. We plot the size of the

majority coalition against the number of agents in the economy discuss the differences

between the two.
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1 Introduction

Consider a contest where competing agents benefit by forming coalitions with their rivals in

self interest. The synergy created by forming a coalition increases the probability of their

coalition winning the reward. There are plenty of examples such as formation of alliances

during wars, political parties to win elections, cartels of firms to lobby in the government,

etc. In all these applications agents not just invest staggering amount of resources, but also

form coalitions to enhance their chance to win the scarce reward. This paper contributes

significantly to literature, first, by extending the axiomatizing of the contest success func-

tion by Skaperdas (1996) to partitions of agents (or coalition structures). The second, and

the major contribution, is that we show that the stationary perfect equilibrium consists of

coalition structure with at least two coalitions. One of those coalitions consists of at least a

majority of agents in the economy, but not the grand coalition, and characterise its size for

any general contest success function satisfying the axioms.

This problem can be formulated as the endogenous coalition formation in non-cooperative

terms by Hart and Kurz (1983). The individual payoff to agents in their model depends not

only on the members of their own coalition, but also on the coalitions formed by agents

outside their own coalition. Thus, agents form coalitions with their rivals, accounting for

the actions of other agents. The time line for the game is the following: Formation of coali-

tions - Choose efforts - Compete - Outcome The process of coalition formation is modelled

sequentially formed as in the game ∆ introduced by Hart and Kurz(1983) where agents an-

nounce coalitions from the strategy space Si = {C ⊂ N, i ∈ C}. The coalitions are formed

by all players who have announced the same coalition, whether or not the formation of the

coalition has been approved unanimously by all its members. As noted by Bloch (2003)

solution concepts such as Strong Nash or Coalition Proof Nash Equilibrium are appropriate

for coalition formation in non-cooperative setting. However, Hart and Kurz (1984) show

that such models may not admit a Strong Nash Equilibrium. For this reason, we cannot

make any predictions in the general model using SNE as the solution concept. Therefore,

I use a sequential coalition formation mechanism as defined by Bloch(1993) and Stationary
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Perfect Equilibrium as the solution concept.

To get a sense of the model, consider the rent-seeking game introduced by Tullock (1967).

In this model, agents invest resources to compete for a reward of fixed value R. In a group

contest, agents form groups and agree on a sharing rule to allocate the reward when a group

wins the contest. The probability that agent i wins the prize increases with an increase in

the resources invested by his group and decreases with an increase in resources invested by

other groups. Consider the simplest sharing rule – equal sharing where every group member

has an equal probability of getting the prize. The formation of a group induces two opposing

effects on an agent’s utility: on the one hand, it increases her probability of winning the

contest, on the other hand, it reduces the expected value of the prize if the group wins the

contest. The balance between these two effects shapes the incentives to form groups, or

secede from the universal agreement.

We extend the three axioms introduced by Skaperdas (1996) to the coalition structures.

The three axioms are (1) increasing amount of resource invested by coalition Ck increases

the probability that it wins (2) If coalition Cl increases the resource invested, it decreases

the winning probability of Ck (3) Coalitions investing equal resource have equal chance of

winning. Our main result is that at the Stationary Proof Equilibrium, the coalition structure

consists of at least two coalitions. Thus, the grand coalition is not formed. One coalition

consists of at least a majority of agents in the economy. The size of this coalition is that

which maximises the individual expected payoff to its members. Further, we state a sufficient

condition for the remaining members to form a coalition.

In the rent-seeking literature, the issue of group and alliance formation has received

some attention since the early 80’s (See Tullock (1980), Katz, Nitzan and Rosenberg (1991),

Nitzan (1991), and the survey by Sandler (1993).) The early literature treated groups and

alliances as exogenous, and did not consider incentives to form groups in contests. Baik

and Shogren (1995), Baik and Lee (1997) and Baik and Lee (2001) obtain partial results on

group formation in rent seeking models with linear costs. They consider a three-stage model,

where players form groups, decide on a sharing rule, and then choose noncooperatively the

resources they spend on con‡ict. Baik and Shogren (1995) analyze a situation where a single
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group faces isolated players, Baik and Lee (1997) consider competition between two groups

and Baik and Lee (2001) analyze a general model with an arbitrary number of groups. In

all three models, through examples, it appears that the group formation model leads to the

formation of groups containing approximately one half of the players. This fits in with our

main result in the paper.

In section 2 we describe the sequential coalition formation. Section 3 builds our model

and Section 4 contains the analysis for the results. Section 5 uses two standard contest

success functions in literature and contrasts the size of the majority coalition with the size

of the economy.

2 Sequential Coalition Formation

The coalition formation game is played in two stages: first agents form coalitions and then

they receive their payoffs. This model of coalition formation is formed sequentially based on

the process given in Bloch(1993). The coalition formation mechanism is based on Rubinstein

(1982)’s alternating offers bargaining game and its extensions to n players by Selten (1981)

and Chatterjee et al. (1993) that is modelled for non-cooperative coalition formation game

with a fixed sharing rule; identical to the model here. The process is as follows.

A randomly chosen agent makes the coalition proposal si = {C ∈ N, i ∈ C}. Prospective

members of C play strategies from the set {Y,N}. If any prospective member rejects the

proposal, the first member to reject it is chosen as the initiator in the next round and he

must make a counteroffer and propose a coalition C ′ to which he belongs. If all prospective

members of C accepts the proposal, the coalition is formed. A random agent, among the

remaining agents in N \C, is chosen as the initiator. This process continues till no initiator is

left. Once a coalition has been formed, the game is only played among the remaining players.

The horizon for this game is infinite. There is no discount of payoff, but in case of infinite

play I assume all agents to get zero payoff. The outcome of the sequential coalition formation

game is a partition of the set of agents into disjoint coalitions, called a coalition structure.

A stationary perfect Equilibrium (SPE) of the coalition formation game is a strategy profile
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S = {s1, s2..sn} such that (1) for every agent i, the strategy si is a stationary strategy and

(2) for every agent i after every history at which i moves si is a best response to the strategies

of the other players s−i.

3 The Model

Consider a set N composed of n ex-ante identical agents who compete for a reward R > n.

A coalition structure π = {C1, C2..., CK} is a partition of N into a collection of disjoint

coalitions indexed by k. Let |Ck| denote the cardinality of the coalition Ck. Without loss

of generality, within any coalition structure, we order coalitions in ascending order of sizes:

|Ck| < |Ck+1|. Once a coalition is formed, each agent i ∈ Ck chooses to invest an amount

yi ∈ [0, Y ] of the resource in order that his coalition wins the contest. The total resources

invested by coalition Ck is Yk =
k∑
i=1

yi. The time horizon of the game is as follows: in the

first period agents endogenously form coalitions. They choose amount of resource to invest

for winning in the second period. The outcome of the contest is decided in the third period.

Only one of the K competing coalitions wins the reward. The reward is split equally among

all members of the coalition.

The contest success function (CSF) maps every vector of resources invested by all coali-

tions Y = {Y1, Y2..., YK} into a vector p(Y) = {pk(Y)}Kk=1 of coalitional winning probabili-

ties. pk(Y) is interpreted as an agent’s prior that coalition Ck wins, given that the resources

invested are Y. All agents have identical priors. The resource invested, yi, is private infor-

mation.The payoff to agent i ∈ Ck is:

vi(|Ck|,Y) =
pk(Y)R

|Ck|
− yi

We assume that more the resource a coalition invests, the greater is its winning proba-

bility. This assumption is quite intuitive. We show that the problem of moral hazard does

not arise when the reward is sufficiently large, R > n.
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Proposition 1: If winning probability of a coalition, pk(Y, is increasing in the amount

of resource invested Yk:
∂pk(Y)
∂Yk

> 0 and the reward is sufficiently large, R > n, then it is

optimal for every agent to invest yi = Y .

Proof. The payoff1 to agent i ∈ Ck is:

vi(|Ck|,Y) =
pk(Y)R

|Ck|
− yi where Ck ∈ π

If the marginal increase in agent i’s utility is positive, the agent will want to put in the

maximum possible effort.

∂vi
∂yi

=
∂pk(Y)

∂yi

R

|Ck|
− 1

=
∂pk(Y)

∂Yk

R

|Ck|
− 1

The maximum value of |Ck| = n (grand coalition). Thus, when R > n the marginal

increase is the agents utility is always positive: ∂vi
∂yi

> 0

Thus, it is optimal for every agent in Ck to invest all resources: yi = Y .

Thus, agents have no incentive to invest less than Y and eliminate the problem of moral

hazard: incentive exists for agents to invest lesser than the amount committed ex-ante.

This also speaks about the efficiency of the sharing rule. It induces the agents to invest

full resources. If the resources are interpreted as efforts, it is a desirable outcome from the

perspective of the principal who is offering the reward for the contest.

Under the assumptions of increasing winning probabilities and sufficiently large rewards,

the resource invested is proportional to coalition size: Yk = |Ck|Y . Thus, an increase

(decrease) in the invested resources is equivalent to increasing (decreasing) coalition size.

Normalising Y = 1, we have the winning probability as a function of the coalition sizes.

pk(π) = f(|Ck|, |C−k|)
1Throughout the paper we use payoff and expected payoff equivalently
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where |C−k| is the sizes of all coalitions in π except Ck.

Although, the arguments of f(.) are discrete, it is a continuous and differentiable function.

Also,
K∑
k=1

f(|Ck|, |C−k|) = 1 follows as it is the winning probability. An example for this

function is

f(|Ck|, |C−k|) =
|Ck|α
K∑
k=1

|Ck|α

As every agent invests all resources, the only way a coalition can increase its winning

probability is by increasing the size of their coalition. The transfer of one or more members

from one coalition to another must imply that while the winning probability of one coalition

increases, it must also decrease the winning probability of at least one coalition. To formalise

this concept consider the coalition structure π = {C1, C2..., CK}. Choose any coalition

Cl 6= Ck and keep the coalitions sizes of all coalitions, except Ck and Cl, constant such that

m =
K−2∑
i=1

|Ci|. Writing the coalition size of Cl in terms of Ck:

|Cl| = (n−m)− |Ck|

Restating the assumption of increasing winning probability with resources in terms of coal-

tion size.

Assumption 1: The winning probability of a coalition Ck increases with an increase in

its size |Ck|.
∂pk(π)

∂|Ck|
=
∂f(|Ck|, (n−m)− |Ck|)

∂|Ck|
> 0

where 0 ≤ |Ck| ≤ n−mfor all m ∈ [K − 2, n− 2] and Cl ∈ π,Cl 6= Ck

This assumption means that transferring members from Cl to Ck increases the winning

probability of Ck. It also implies that the winning probability of Cl decreases. Further, by

allowing |Ck| to take boundary values of 0 and n−m, we can compare the winning probability

across coalition structures with unequal number of coalitions. For example, consider a three
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element coalition structure π = {2, 3, 6} where 2, 3 and 6 are the coalition sizes of C1, C2 and

C3 respectively. Henceforth, we use this shorthand for examples. Transfer all members of

C1 to C2 to get a two element coalition structure π′ = {5, 6}. By Assumption 1, the winning

probability of C ′1 is greater than C1.

Note that Assumption 1 does not allow a complete comparison of winning probabilities

among all coalition stuctures; π = {3, 3} and π′ = {1, 1, 4} cannot be compared. As this

incompleteness does not interfere with our results, we ignore this issue.

We deviate slightly from our story to define convexity of f(.) using the terms above.

Definition 1:The function f(.) is convex in |Ck| if

∂2f(|Ck|, (n−m)− |Ck|)
∂|Ck|2

> 0

Similarly, f(.) is concave if ∂2f
∂|Ck|2

< 0 and linear if ∂2f
∂|Ck|2

= 0. Such a definition is

required as the arguments of f(.) are dependent on each other. Thus, one argument cannot

be changed while keeping all the rest unchanged.

Going back to the example where we compare π = {2, 3, 6} and π′ = {5, 6}, the effect

of such a transfer on the winning probability of C3 is not specified. We assume that such a

transfer reduces the winning probability of C ′3. Thus, we assume negative spillovers in our

model. To formalise this, let Cx and Cy be any coalitions in π = {C1, C2..., CK} such that

|Cx| ≥ |Cy|. Keeping all other coalitions constant,
∑
i 6=x,y
|Ci| = m. Thus, Cy = (n−m)−Cx.

Assumption 2: If agents are transferred from coalition Cy to Cx, where |Cx| ≥ |Cy|,
winning probability of coalition Ck decreases (increases) with an increase (decrease) in its

size of Cx.
∂pk(π)

∂|Cx|
=
∂f(|Ck|, |Cx|, (n−m)− |Cx|)

∂|Cx|
< 0

where 0 ≤ |Ck| ≤ n−m for all m ∈ [K − 2, n− 2], Cx, Cy ∈ π,Cx 6= Cy 6= Ck
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The intuition behind this is that, for an increase in resource invested by other coalitions,

keeping the resource invested by Ck unchanged, the winning probability of Ck decreases.

Note that it is essential that members of a Cy are transferred to a coalition, Cx, of equal

or greater size. Such a requirement ensures that transfers that lead to equivalent coalition

structures are excluded. For example, consider π = {3, 4, 5}. Transfer an agent from C3 to

C2. As agents are identical, the coalition structure after the transfer remains the same. The

requirement |Cy| ≤ |Cx| ensures that such a transfer does not change the winning probability

of |C1|.
Lastly, we assume that coalitions investing equal resources have equal winning probabil-

ities.

Assumption 3: If |Ck| = |Cl| where Ck, Cl ∈ π, then it must be that pk(π) = pl(π).

It follows that in a coalition structure π = {C1, C2..., CK} if |C1| = |C2|... = |CK |, then

p1(π) = p2(π)... = pK(π) = 1
K

. Such symmetric coalition structures are frequently used as

reference points while proving the results ahead.

All information, including the assumptions, are common knowledge. However, the nature

of function f(.): the extent of increase or decrease the winning probabilities, is unknown to

the agents. In the next section, we prove our main results.

4 Results

From Proposition 1 we have yi = Y for every i ∈ N . Thus, the payoff to agent i ∈ Ck is

vi(|Ck|, π) =
pk(π)R

|Ck|
− Y

To simplify our analysis, we use a linear transformation of the function above:

ui(|Ck|, π) = u(avi(.) + b) =
pk(π)

|Ck|
where a =

1

R
, b =

Y

R
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A coalition’s worth is defined as the sum of payoffs to all members of a coalition. The

coalition worth for Ck ∈ π is

U(|Ck|, π) =
∑
i∈Ck

ui(|Ck|, π) = pk(π)

Thus, the winning probability of a coalition can also be interpreted as its worth. The convex-

ity ( and concavity) of the winning probability function, f(.), defined earlier in this section

have an interesting interpretation here.

Proposition 2: If the nature of f(.) is

(1) Linear in Ck, the individual payoff is ui(|Ck|, π) = 1
n

for all i ∈ N
(2) Concave in Ck, the individual payoff is ui(|Ck|, π) > 1

n
for all i ∈ Ck

(3) Convex in Ck, the individual payoff is ui(|Ck|, π) < 1
n

for all i ∈ Ck

Proof. First, we prove the result for the case where f(.) is linear. Using that result, the

other two can be proved easily.

Let f(.) be linear in |Ck|
Let f(|Ck|, |C−k|) = a|Ck| where a is a non-zero constant. Summing the winning probabilities

across all coalitions
K∑
k=1

f(|Ck|, |C−k|) = a
K∑
k=1

|Ck| = 1

a =
1

K∑
k=1

|Ck|
=

1

n

Thus, the coalition worth is U(|Ck|, π) = |Ck|
n

and the individual payoff is ui(|Ck|, π) = 1
n
.

Note that this will be the payoff to all agents, irrespective of the coalition to which they

belong.

A linear function f(.) implies that adding more members to Ck proportionally increases

its worth such that the individual payoff remains unchanged. Adding members increases the
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worth more than proportional if f(.) is convex and less than proportional if concave. There

is some cost of cooperation while forming coalitions, that is considered negligible here. Thus,

if f(.) is linear, agents do not form any coalitions, as forming coalitions provides them with

no increase in payoffs.

Next, we show that rational agents cannot have a prior that the f(.) is either strictly

convex or strictly concave over the entire interval of coalition sizes.

Proposition 3: For a K element coalition structure π = {C1, C2..., CK}, if agents have

rational priors, then it cannot be that ∂f(|Ck|,(n−m)−|Ck|)
∂|Ck|

> 0 or ∂f(|Ck|,(n−m)−|Ck|)
∂|Ck|

< 0 for all

0 < |Ck| < n−m and m ∈ [K − 2, n− 2].

For all K partitioned coalition structures, it is not possible that a coalition U(|Ck|, π)

is concave or convex for all values of |Ck|. The intuition for this proposition is that when

U(|Ck|, π) is concave for, say, c1 ≥ |Ck| < c2, every members payoff is greater than 1
n
.

As it is a constant sum game, there must be at least one other coalition, say Cl, whose

members receive less than 1
n
, hence their coalition worth is convex. The interval of Cl will

be different from Ck, say d1 ≥ Cl ≥ d2. Now as agents are identical, when c1 ≥ |Cl| < c2

and d1 ≥ |Ck| < d2 the coalition worth of Cl will be concave and Ck will be convex. Hence,

our result.

For the rest of the paper consider a two element coalition structure π = {C1, C2} where

|C2| = n − |C1|. There are two reasons for analysing this coalition structure. First, it can

be represented in a two dimensional graph, hence explaining the analysis is easier. Second,

is these results can then be extended for K element coalition structures.

We begin by plotting the coalition worth U(|Ck|, π) against its coalition size |Ck|. The

graph in Figure 1 is a box plot where

(1) The bottom horizontal axis represents |C1| where its range is 0 < |C1| < n from left to

right.

(2) The top horizontal axis represents the coalition size |C2| = n − |C1| where its range is

0 < |C2| < n from right to left.

(3) The left vertical axis represents the coalition worth U(|C1|, π) of |C1| where its range is
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0 < U(|C1|, π) < 1 from bottom to top.

(4) The right vertical axis represents the coalition worth U(|C2|, π) = 1− U(|C1|, π) of |C2|
where its range is 0 < U(|C1|, π) < 1 from bottom to top.

The red curve is the coalition worth of C1: f(|C1|, π) and blue curve is that of C2:

f(|C2|, π). The intersection of the red and blue curves, point O, is a symmetric coalition

stucture: |C1| = |C2| = n
2
. Note that line XX ′ is the plot of the coalition worth against its

size when f(.) is linear.

In Lemma 1, we prove that the nature of the curves is as shown in Figure 1, that is,

the coalition worth of |C1| is concave when its size is above n
2

and convex below n
2
. As C2

is the only other coalition, U(|C2|, π) = 1 − U(|C1|, π) must be convex for the interval the

coalition worth of C1 is concave and vice versa (as proved in Proposition 3). This lemma is

a foundation for Theorem 1.

Lemma 1: In a two element partition π = {C1, C2}, the coalition worth for Ck where

k = 1, 2 is always a concave for n
2
≤ |Ck| ≤ n and convex for 0 ≤ |Ck| ≤ n

2
.

Proof. We prove it through the contrapositive approach:

(1) Assume the coalition worth to be linear.

A sequential coalition formation process, allows the formation of the following coalition struc-

tures where c1 <
n
2
:

π = {c1,
n

2
,
n

2
− c1}

π′ = {c1, n− c1}
π′′ = {n

2
,
n

2
}

π′′′ = {c1 +
n

2
,
n

2
− c1}

Except the first coalition structure, the individual payoff to every agent in π′, π′′ and π′′′
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Figure 1: Concave Coalition worth beyond c1 = n
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is 1
n

as the coalition worth is linear with coalition size (proposition 2):

ui(|Ck|, π′) = ui(|Ck|, π′′) = ui(|Ck|, π′′′) =
1

n
where k = {1, 2}

By assumption 2, we have

ui(|C1|, π) > uj(|C ′1|, π′) =
1

n

ui(|C2|, π) > uj(|C ′′1 |, π′′) =
1

n

ui(|C3|, π) > uj(|C ′′′2 |, π′′′) =
1

n

Thus,

u|C1|ui(|C1|, π) + |C2|ui(|C2|, π) + |C3|ui(|C3|, π) > 1

U(|C1|, π) + U(|C2|, π) + U(|C3|, π) > 1

However, this cannot be possible as
K∑
k=1

U(|Ck|, π) =
K∑
k=1

pk(π) = 1 Hence, the coalition

worth cannot be linear.

(2) Assume the coalition worth to be convex when the size of C1 is less than n
2

and concave

when greater than n
2

.

The analysis for this case is similar to the one above. Let c1 <
n
2

and

π = {c1,
n

2
,
n

2
− c1}

π′ = {c1, n− c1}
π′′ = {n

2
,
n

2
}

π′′′ = {c1 +
n

2
,
n

2
− c1}

As U(|C1|, π) is concave for 0 < |C1| < n
2
, ui(|C ′1|, π′) > 1

n
. Similarly, ui(|C ′′′2 |, π′′′) > 1

n
.

As π′′ is a symmetric coalition strucutre, ui(|C ′′1 |, π′′) = ui(|C ′′2 |, π′′) = 1
n
.
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As before, by assumption 2, we have

ui(|C1|, π) > uj(|C ′1|, π′) >
1

n

ui(|C2|, π) > uj(|C ′′1 |, π′′) =
1

n

ui(|C3|, π) > uj(|C ′′′2 |, π′′′) >
1

n

Thus,

u|C1|ui(|C1|, π) + |C2|ui(|C2|, π) + |C3|ui(|C3|, π) > 1

U(|C1|, π) + U(|C2|, π) + U(|C3|, π) > 1

However, this cannot be possible as
K∑
k=1

U(|Ck|, π) =
K∑
k=1

pk(π) = 1 Hence, the coalition

worth of C1 cannot be concave when the size of C1 is less than n
2

and convex when greater

than n
2

in a two element coalition structure π = {C1, C2}.
Conducting such an analysis for the case when C1 is convex when the size of C1 is less

than n
2

and concave when greater than n
2

shows that such an impossibility does not exist.

As the analysis is almost identical to the ones above, we leave it to the interested reader to

verify it.

The intuition for this lemma is that when the coalition worth is linear in coalition size

(figure 2) or concave for size less and concave for size more than ′ n
2

(figure 3), for certain

coalition structures, either assumption 2 is violated or the winning probabilities sum up to

greater than one. As rational agents are not supposed to violate our assumptions, we prove

that the such functions for coalition worth cannot exist. Using this result we show in theorem

1 that the Stationary Perfect Equilibrium always contains a coalition that consists, at least,

of a majority. We also characterise the size of the coalition.

Theorem 1: The Stationary Perfect Equilibrium is a K + 1 element coalition structure
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π = {CM , C1..., CK} where n
2
< |CM | < n is the solution to df(|Ck|,n−|Ck|)

d|Ck|
= f(|Ck|,n−|Ck|)

|Ck|
and

K ≥ 1.

Proof. Assume that in the first step of the sequential process of coalition formation, the

coalition of size |CM | is formed. In an SPE, the coalition formed at every step is a best

response. The payoff to a coalition is minimum when all remaining agents form a coalition.

Therefore, the size of CM , at which individual payoff is maximised, is calculated when the

remaining agents form C1 of size n− |CM |.
From Proposition 1, we know that ui(|CM |, π) > 1

n
when concave, ui(|CM |, π) < 1

n
when

convex and ui(|CM |, π) = 1
n

when linear or |CM | = n
2
. As π consists of only two coalitions,

from lemma 1 we know that the coalition worth of CM is concave for |CM | > n
2

and convex

for |CM | < n
2
. Therefore, it is always the case that |CM | > n

2
as its members will receive the

maximum payoff that way. Agents will not form the grand coalition because ui(|CM |, π) = 1
n

when |CM | = n. Therefore, n
2
< |CM | < n. The value of the individual payoff to agents in

CM is maximised when ∂ui(|CM |,π)
∂|CM |

=0.

dui(|CM |, π)

d|CM
| =

dU(|CM |,π)
|CM |

d|CM |

=

df(|Ck|,n−|Ck|)
d|Ck|

− f(|Ck|,n−|Ck|)
|Ck|

|Ck|2
= 0

Theorem 1 shows that the equilibrium coalition structure always contains one coalition

of at least a of majority members, c∗, but never forms the grand coalition. However, nothing

can be said about the remaining n− c∗ members in the economy. They may form multiple

coalitions among themselves depending on the estimated winning probability function. In

the corollary below we state the condition under which the remaining members form a single

coalition.
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Corollary 1: The SPE is a coalition structure consisting of two coalitions π = {c1, c2} of size

c1 = c∗,c2 = n− c∗ where c∗ is the solution of df(c1,n−c1)
dc1

= f(c1,n−c1)
c1

if f(c2,c1)
c2

>
f(c′2,c2−c′2,c1)

c′2

where c′2 ⊂ c2.

The necessary condition simply formalises the idea that the individual payoff to members

of c2 must be greater than the individual payoff to any defecting subcoalition. In the next

sections we consider two different parameters by which agents estimate the winning proba-

bilities and contrast the differences in the results.

5 Estimating Winning Probabilities from Coalition’s

Power

Consider a setting where agents perform equally at a. By forming a coalition, the per-

formance of the coalition is greater than the aggregate of their abilities. The cooperation

enhances their performance by cαδ, where c is the coalition size and α, δ > 0. The final

performance of coalition c is ac = ca + δck. The true probability of winning the reward

K depends on the relative performance of the coalition. Agents estimate the true winning

probability of their coalition based on its power: the share of its performance in the economy

(Morelli and Park(2015)). Let the coalition structure be π = {c1, c2..., cm}. The winning

probability of coalition ck ∈ π is

pk(π) =

∑
i∈ck

ai∑
j∈N

aj
=

cka+ cαkδ

(c1a+ cα1 δ) + (c2a+ cα2 δ) + ...(cma+ cαmδ)

pk(π) satisfies Assumption 1’s property 1 for all values of α: the estimated winning proba-

bility, increases with an increases in the coalition size. However, property 2 in Assumption

1: that the more concentrated π \{ck} gets, lesser is the winning probability, is satisfied only
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for α > 1. Hence, we restrict this example only to the case α > 1. The expected reward

or coalition’s worth is v(ck, π) = pk(π)K and individual payoff is vi(ck, π) = pk(π)K
ck

. In the

result below, we predict the coalition structure and the size of the coalitions formed.

Proposition 1: Normalising endowed ability to zero, the coalition structure π = {c∗, n−
c∗} is the SPE where c∗ is the solution to (n

c
− 1)α−1

(
n
c
(α − 1) + 1

)
= 1. The maximum

value of c∗ tends to 0.8n when α→ 1 and c∗ → 0.5n as α→∞

Proof. Assume that coalition c1 forms where every individual maximises his individual payoff

vi(c1, π) = p1(π)K
c1

. vi(c1, π) will be minimum when n−c1 agents all form a coalition c2. Thus,

the minimum winning probability is

pk(π) =
c1a+ cα1 δ

(c1a+ cα1 δ) +
(

(n− c1)a+ (n− c1)αδ
)

And the individual payoff at best response is

vi(c1, π) =
(c1a+ cα1 δ)K

na+ cα1 δ + (n− c1)αδ

Maximizing vi(c1, π) with respect to c1 and normalising a = 0 we have c1 = c∗ where c∗ is

the solution to

(
n

c
− 1)α−1

(n
c

(α− 1) + 1
)

= 1

Next, to show that the remaining n − c1 agents do not benefit from forming two or more

coalitions it must be the case that

v(n− c∗, π) > v(n− c ∗ −d, π′) for all interger values of d ∈ (0, n− c∗)

Solving the equation

(n− c∗)α

(c∗)α − (n− c∗)α
− (n− c ∗ −d)α

(c∗)α + (n− c ∗ −d)α + dα
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we have

(c∗)α + dα − (c∗)α
(

1− d

n− c∗

)α
It can be easily shown that

(c∗)α + dα > (c∗)α
(

1− d

n− c∗

)α
∀ α > 1

Thus, the remaining n− c∗ agents form a coalition.

To prove the convergence of the coalition c∗, rewriting equation (3)

n

c∗
− 1 =

(
(α− 1)

n

c∗
+ 1
) 1

1−α

Thus, as α→∞, c∗ → n
2

The result in Proposition 1 is a derivative of Corollary 1 and we see that the largest

coalition is always n
2
< c∗ < n which is in accordance with Theorem 1. Note that when the

benefit of forming a coalition, cαδ, increases the size of the majority coalition, c∗, decreases.

However, this phenomenon depends on the method by which agents estimate the winning

probability. As we see in the next section, estimating winning probability from relative rank

produces a completely different effect on the increase of coalition benefit.

6 Estimating Winning Probabilities from Relative Ranks

Using the same setting as in the previous section, now assume agents to estimate their

winning probabilities based on their relative rank: the sum of the difference between an

agent’s ability and all other agents. The relative rank of agent i given by

Ri =
n∑
j=1

(ai − aj)

. As before, ai = a + cαδ where c is the size of the coalition agent i belongs to. Unlike the

previous example, agents here form individual probabilities based on their relative rank. Let
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p(.) be a probability distribution over all agents such that the function p(.) strictly increases

in rank and
n∑
i=1

p(Ri) = 1. The expected individual payoff is p(Ri)K. The coalition worth is

the sum of the expected rewards of each member: v(c, pi) =
∑
i∈C

pRiK. As Thus, this model

to conforms with the general theory presented earlier. The two properties in Assumption

1 is satisfied for all positive values of α for this example. Agents now form coalition c to

maximise their individual payoff.

Proposition 2: The coalition structure π = {c∗, n− c∗} is the SPE where c∗ is the solution

to (n
c
− 1)α = 1 − αn

(α+1)c
. The miminum value of c∗ is 0.75n when α = 1. Also, c∗ → n as

α→∞ and c∗ → 0.8n as α→ 0

Proof. We begin by maximising p(Ri)K with respect to c. As p(.) strictly increases with

relative rank, let agents form a coalition c to maximise their relative rank,dRi
dc

= 0 to get the

equation

(
n

c
− 1)α = 1− αn

(α + 1)c
(1)

Next, to show that the remaining n − c1 agents do not benefit from forming two or more

coalitions it must be the case that

v(n− c∗, π) > v(n− c ∗ −d, π′) for all integer values of d ∈ (0, n− c∗)

Solving the equation

c
(

(n− c∗)α − (c∗)α
)
− c ∗

(
(n− c ∗ −d)α − (c∗)α

)
+ d
(

(n− c ∗ −d)α − dα
)

we have

c ∗ −d

[
(1− d

n−c)
α − ( d

n−c)
α
]

1−
[
1− d

n−c)
α
]

It can easily be shown that the

numerator =
[
(1− d

n−c)
α − ( d

n−c)
α
]
< denominator = 1−

[
1− d

n−c)
α
]
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Also, d < c∗ as c ∗ .n
2
. Therefore,

c ∗ −d

[
(1− d

n−c)
α − ( d

n−c)
α
]

1−
[
1− d

n−c)
α
] > 0

and

v(n− c∗, π) > v(n− c ∗ −d, π′) for all integer values of d ∈ (0, n− c∗)

To prove the convergence of the coalition c∗, rewriting equation (2).

n

c
− 1 = 1−

( n \ c
1 + 1

α

) 1
α

Thus as α→∞, c→ n.

Note that in this proof, the endowed skill is homogeneous, but not normalised to zero.

Further, it can be shown that this result holds true for the case of heterogeneous agents too.

Proposition 2 contrasts with Proposition 1 : as the benefit of forming a coalition increases,

the coalition with the majority of the members tend to forming a grand coalition. However,

in the previous example, the majority of the members tend to form a coalition of size n
2

with

an increase the benefit. This shows the method used by the agents to estimate the winning

probability greatly affects the way they form coalitions.

7 Future Research

The directions I plan to proceed is the following. There is a cost associated with forming a

coalition such that benefit of a coalition increases with size till an optimal point and then

declines. This is modelled by the benefit of a coalition being h(c)δ, where h(c) is a quadratic

concave function. The question here is that when agents maximise individual payoff do

they form coalitions above this optimal point. This set up can also be extended to a social

network where agents estimate winning probabilities based on their neighbours’ performance.
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However, the estimate here is an independent probability, it is not a distribution, as agents are

aware that their estimate based on localised information. Agents form bilateral cooperative

links to maximise their winning probability. The problem here is what network structures

are formed at equilibrium.
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