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Abstract

In the context of distributions of ordinal variables and their in-

equality orderings, this paper provides three interesting contributions.

Firstly it explores the association between certain types of transfers

of population mass to the dominance rankings of distributions. Sec-

ondly it relates the inequality orderings of certain family of inequal-

ity indices to the dominance relationships of underlying distributions.

Finally, the paper characterizes the class of inequality indices which

allows comparison between ordinal distributions having different me-

dian categories. The same is illustrated using data on male and female

educational attainments in India.
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1 Introduction

Recently, studies on income inequality have attracted considerable attention

across the world (see Stiglitz, 2012; Piketty, 2014; Atkinson and Stiglitz,

2015). It is widely accepted that high inequality can have various undesir-

able socio-economic consequences (Stewart, 2004; Stiglitz, 2012). However,

both academicians and policy makers have reached the consensus that merely

focusing on inequalities based on income and wealth is not sufficient to un-

derstand disparities in human wellbeing (Sen, 1987; Sen et al., 1999). Recent

developments in this field, thus, have emphasized the importance of non-

income dimensions of individual well-being to formulate relevant policy pre-

scriptions1. Inclusion of non-income dimensions however, entails overcoming

a certain theoretical hurdle. While some of the non-income dimensions are

cardinal in nature, many of these dimensions are ordinal (examples include

self reported health status, happiness, educational attainments etc.) and

measuring inequality for ordinal variables has become an important require-

ment.

In this paper we present a study on the quasi approaches to inequality

ordering2 of ordinal variables. We generalize a number of important results

that establish an association between dominance orderings, inequality order-

ings and certain kinds of transfers of population mass. In addition to this,

we propose a new methodology that enables comparisons across dominance

and inequality orderings over a wider range of distributions compared to the

existing literature.

In the literature on quasi approaches to inequality ordering, it has become

customary to formulate indices that respond to certain characteristics of the

underlying distributions (for which the indices are computed) in a particular

way. The context of ordinal variables is no exception either and one funda-

mental requirement is that the inequality ranking of two distributions should

1For example, in 2011 the United Nations General Assembly adopted a unanimous
resolution that states “Recognizing that the gross domestic product indicator by nature
was not designed to and does not adequately reflect the happiness and well-being of peo-
ple in a country...Invites Member States to pursue the elaboration of additional measures
that better capture the importance of the pursuit of happiness and well-being in develop-
ment with a view to guiding their public policies;...Invites those Member States that have
taken initiatives to develop new indicators...(United Nations General Assembly Resolution
65/309).”

2A quasi order is a binary relation that is reflexive and transitive but not necessarily
complete.
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be unanimous for any choice of ordinal scale. This is however, not guar-

anteed if we consider the inequality indices like Gini coefficient, Theil etc.

Similarly, in this context, measures of central tendency like mean, conveys

no information (for illustrations, see the section “Problems with the mean”

by Allison and Foster (2004), pp 507). In order to remedy such problems,

researchers use the cumulative distribution as the domain of inequality mea-

sures and additionally consider order statistics such as the median instead

of the mean, respectively (Berry and Mielke Jr, 1992; Allison and Foster,

2004; Apouey, 2007; Naga and Yalcin, 2008; Zheng, 2008; Chakravarty and

Maharaj, 2015)3. An yet another desirable property of inequality indices for

cardinal variables, relates to the sensitivity of an inequality index to mean

preserving transfers that does not affect the relative rank of those affected

by such transfers (Atkinson, 1970). Following our earlier logic since mean

has no meaningful interpretation, it is not straightforward to extend such

a result in case of ordinal variables. For ordinal variables, one of the most

fundamental contributions in this direction by Allison and Foster (2004) con-

sidered median as the reference frame and viewed inequality as the spread

away from the median. Building on this notion, they introduced a dominance

condition based on first order inverse stochastic dominance4 which they re-

ferred to as S dominance. On the basis of the ideas of median preserving

spread, Kobus (2015) demonstrated the equivalence between finite sequences

of median preserving spread and S dominance. Based on second order in-

verse stochastic dominance, Chakravarty and Maharaj (2015) introduced a

cumulative version of the S dominance, which we refer as SS dominance for

the sake of brevity. SS dominance requires that any changes in the distribu-

tions is valued more if it takes closer to the median state. While introducing

SS dominance, the authors also show that SS dominance of one distribution

3However, following this procedure, it becomes difficult to differentiate the concepts
of inequality and polarization meaningfully (See Kobus, 2015, pp 277). In the context of
cardinal variables there are clear differences between inequality and polarization. For ex-
ample, inequality declines as a result of rank preserving Pigou Dalton progressive transfer
however, polarization may remain unchanged or even increase as a result of such trans-
fers (Esteban and Ray, 1994). Nonetheless, this is the most widely accepted norm and
many authors have developed polarization/inequality indices on the basis of that idea (see
Allison and Foster, 2004; Apouey, 2007; Naga and Yalcin, 2008; Kobus and Mi loś, 2012;
Chakravarty and Maharaj, 2015, for examples).

4The concept of stochastic dominance is well known. A related concept is inverse
stochastic dominance. This was introduced in Muliere and Scarsini (1989). Note that
for first and second orders, inverse stochastic dominance is equivalent to the stochastic
dominance of the respective order.
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over the other has a direct implication on the inequality ordering of the dis-

tributions for a particular class of additively separable inequality measures.

However, additive inequality indices represent only a subset of the whole class

of inequality indices and as noted in Dasgupta et al., “... additive separabil-

ity is a strong condition to impose on a general welfare function” (Dasgupta

et al., 1973, pp. 180). We show that the result of Chakravarty and Maharaj

(2015) may be generalized further and for the equivalence, we do not need

the additivity restriction. Thus eventually we can associate a bigger class of

inequality measure with SS dominance. Furthermore, we establish an anal-

ogy between SS dominance and an arbitrary sequence of transfers which is

referred to as Transfer Below and Above Median. This particular type of

transfer is already existing in the literature on polarization (Apouey, 2007;

Chakravarty and Maharaj, 2015).

Inequality orderings for two ordered response data following S and SS

dominance is applicable only when both the distributions share a common

median category. So far we have surveyed, we find that the current literature

on inequality orderings for ordered response data remains almost mute on

comparing distributions that do not share a common median category. The

only contribution till date is by Naga and Yalcin (2010). In their paper, the

authors extend the median preserving spread relation of Allison and Foster

(2004). They first define a criteria for equivalence between distributions5 and

using this notion, they construct an equivalence class for any given distri-

bution where members of the class are equivalent to each other as per the

criteria but may differ in their median categories. A partial ordering based

on median preserving spread is used to order two distributions belonging to

two different equivalence classes (but having the same median categories)

and this ordering is extended to all members of the equivalence classes (with

different median categories).

In this paper, we adopt a new strategy of comparing distributions having

different median categories through the use of “counterfactual” distributions.

For a given class of inequality measures endowed with certain characteristics,

the construction of “counterfactual distributions” to ascertain the inequality

rankings of the underlying original distributions is quite common in the field

of inequality ordering6. We show that whenever the original distributions

5We discuss some shortcomings of this approach in the relevant section.
6For example, consider comparing inequality between the distributions of two cardinal

variables X and Y , where one Lorenz dominates the other. If the inequality index used, is
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are not comparable because of their difference in median categories, there

exist certain counterfactual versions of the distributions which have same

median categories. We also show that for a family of inequality measures

which follows certain well known properties, conclusions drawn on the basis

of the dominance ordering of the counterfactual distributions up to the sec-

ond order have similar implications on the inequality ordering of the original

distributions. Thus we present a generalization over Naga and Yalcin (2010)

whose partial ordering is based on the first order dominance ordering of Al-

lison and Foster (2004). Moreover we show that, if the inequality indices are

restricted to a certain family of additive inequality indices, then the relation-

ship between the dominance ordering of the counterfactual distributions and

the inequality ordering turns out to be an equivalence. We illustrate inequal-

ity orderings for ordinal variables with different median categories using data

on male and female educational attainments in India.

The rest of the paper is organized as follows. The following section starts

with an introduction to the notations and definitions used throughout the

paper. Section 3 discusses the quasi approaches to ordering of distributions

when the distributions under scrutiny have the same median category. We

extend this in section 4 to incorporate distributions having different median

categories and this is followed by a short empirical application in section 5.

Finally, the last section concludes.

2 Preliminaries

2.1 Notations

We use the following notations throughout this paper:

Let n denote the finite number belonging to Z2+ where Zi+ denotes the set

of positive integers that are greater than or equal to i.

By O we denote an n category ordinal variable that takes values from the

Lorenz consistent i.e. the inequality measure satisfies the axioms of Pigou-Dalton Transfer,
Symmetry, Scale invariance and Replication Invariance (see pp 17 of Chakravarty, 2009, for
definitions of these axioms) and the sample sizes are nX and nY with nX 6= nY , the way to
conclude about the inequality rankings of the distributions is to construct counterfactual
versions of the distributions by replicating their profiles nY and nX times, respectively
(which makes sample sizes of both distributions equal to nXnY )(Foster, 1985). Since the
index of inequality satisfies replication invariance axiom, the inequality orderings of the
counterfactual distributions coincide with those of the original distributions of X and Y.
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ordered vector c = {c1, c2, .., cn}, such that ∀i > j ⇐⇒ ci > cj where “>”

is some strict ordering relation and i, j ∈ {1, 2, ..n}. For the ordinal vari-

able, the proportion of individuals belonging to the ith category is denoted

by xi ∈ [0, 1] and the vector x = {x1, x2, .., xn} denotes the Probability Dis-

tribution Function (PDF).

Xi =
i∑

j=1

xj, is the cumulative proportions of individual belonging in ith cat-

egory such that 0 ≤ Xk ≤ 1 ∀k ∈ {1, 2, .., n} and Xn ≡ 1.

Thus the vector X = {X1, X2, .., Xn} is the Cumulative Distribution Func-

tion (CDF). In the rest of this paper, we identify the distribution of an ordinal

variable by its CDF.

Cn denotes the set of CDFs of all n category ordinal variables.

m(X) is the median category of the distribution X, such that Xm(X) ≥ 0.5

and either Xm(X)−1 < 0.5 or m(X) = 1. Note that by definition, m(X) is

unique. Given the CDF X, we define:

X = {X1, X2, ..., Xm−1} or Xi ≡ Xi.

X = {Xm, Xm+1, ..., Xn} or Xi ≡ Xm+i−1.

X∗ = {0.5 − Xm−1, 0.5 − Xm−2, ..., 0.5 − X1} or X∗i ≡ 0.5 − Xm−i ∀i ∈
{1, 2, ...,m− 1}.
X
∗

= {Xm− 0.5, Xm+1− 0.5, ..., Xn− 0.5} orX
∗
i ≡Xi− 0.5 ∀i ∈ {1, 2, .., n−

m+ 1}.
Note that, either X or X may be a null set and this would imply that the

corresponding X
∗

or X∗ to also be a null set.

Given any vector V = {v1, v2, v3, .., vn} ∈ Rn, where vi ≤ vi+1∀i ∈ {1, 2, .., n},
we denote the cumulative (running) sum of V by CS(V ) where CS(V ) ≡

{v1, v1 + v2, v1 + v2 + v3, ..,
n∑
i=1

vi} i.e. CS(V )k ≡
k∑
i=1

vi where k ∈ [1, .., n].

Thus CS(A) = CS(B) ⇐⇒ A = B, also CS(A±B) = CS(A)± CS(B).

For any given α ∈ R, the column vector of m ≥ 0 rows with each of its

elements equal to α is denoted by αm. Note that α0 is a null matrix. Unless

stated otherwise, all vectors throughout this paper are considered as column

vectors.

For two vectors A,B ∈ Rn, A ≥ B ⇐⇒ Ai ≥ Bi∀i ∈ {1, 2, .., n} and

A > B ⇐⇒ Ai > Bi∀i ∈ {1, 2, .., n}. We say lim
j→∞

Aj = B if and only if

given any δ > 0,∃ nδ such that |Aji −Bi| < δ ∀j ≥ nδ and ∀i ∈ {1, 2, ., n}.
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2.2 Definitions

In this section we discuss some definitions that are necessary for the subse-

quent theoretical foundations of this paper. We begin with the concept of

Inverse Stochastic Dominance (ISD). ISD has wide applications in the field of

welfare economics, poverty and inequality ordering (Shorrocks, 1983; Foster

and Shorrocks, 1988a,b; Allison and Foster, 2004). We revisit the definition

of ISD in an ordinal setup.

Definition 1. Inverse Stochastic Dominance (First and Second Or-

der): For any two ordered vectors A = {A1, A2, .., An} and B = {B1, B2, .., Bn}
defined on Rn (n ≥ 2) such that Ai ≥ Ai−1 and Bi ≥ Bi−1∀i ∈ {2, 3, .., n}.;
A is said to be first order inverse stochastic dominate B, which is denoted by

A �FISD B if and only if A ≥ B and A 6= B. Also A is said to be second

order inverse stochastic dominate B which is denoted by A �SISD B if and

only if CS(A) ≥ CS(B) and A 6= B.

Remarks: First order ISD is a sufficient condition for second order ISD.

However, the reverse is not true. Second order ISD is a cumulative version of

first order ISD. Note that the notion of ISD can also be extended naturally

to orders n > 2 (n being an integer). However, we skip these extensions

since our applications are limited to only these two dominance criteria. ISD

relationships of arbitrary order satisfy transitivity. For example A �F/SISD B

and B �F/SISD C implies A �F/SISD C (see Chakravarty, 2009, for further

reading). Furthermore, ISD relationship is also transitive in limits, i.e., if

B1 �F/SISD (≺F/SISD) B2 �F/SISD (≺F/SISD) B3... and lim
j→∞

Bj = A then

Bj �F/SISD (≺F/SISD) A for any given finite j ∈ {1, 2, ...}7.

Allison and Foster (2004) in their seminal contribution used ISD for in-

equality ordering of ordinal variables. They introduced the concept of S

dominance. For any two distribution X, Y ∈ Cn; X S dominates Y when

both X and Y have the same median category and there is evidence of first

order ISD of X over Y below median and first order ISD of Y over X above

median. Formally:

Definition 2. S Dominance: For all X, Y ∈ Cn, and given m(X) =

m(Y ) = m, X S dominates Y (which is denoted by X �S Y ) if and only if

X 6= Y and exactly one of the following conditions hold:

7A version of the proof is available with the authors on request.
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1) Y �FISD X and X = Y or equivalently X∗ �FISD Y∗ and X
∗

= Y
∗

2) X �FISD Y and X = Y or equivalently X
∗ �FISD Y

∗
and X∗ = Y∗.

3) Y �FISD X (i.e. X∗ �FISD Y∗) and X �FISD Y (i.e. X
∗ �FISD Y

∗
).

Remarks: The S Dominance relation is transitive, both sequentially and in

limits (since the underlying FISD relationship is transitive in limits).

Given that X and Y have same median category, S Dominance con-

dition X �S Y can equivalently be expressed as the case where a mass

of population from Y moves towards the median category resulting in X.

For example, consider the following CDF’s: X = {0.1, 0.3,0.7, 0.8, 1} and

Y = {0.2, 0.3,0.6, 0.8, 1} with their PDF’s being x = {0.1, 0.2,0.4, 0.1, 0.2}
and y = {0.2, 0.1,0.3, 0.2, 0.2}, respectively. The median category for both

the distributions in this case is 3. It is quite straightforward to check that

X �S Y following definition 2. An alternative interpretation if we consider

the PDF’s, is that, X is obtained from Y following a shift of mass of 0.1

from category 1 to 2 (below median) and also from category 4 to 3 (above

median). Clearly, both these movements can be considered as movements

of population masses towards the median. Such movements were referred as

“Median Preserving Spread” by Kobus (2015). Formally:

Definition 3. Median Preserving Spread (MPS) For all X, Y ∈ Cn

and given m(X) = m(Y ) = m, we say that X is obtained from Y by a

median-preserving spread, if and only if for a given category i 6= m, there

is a shift in population proportion of δ such that 0 < δ ≤ yi and x = y +

(0′i−1,−δ, δ, 0′n−i−1)′ if i ≤ m− 1 or x = y + (0′i−2, δ,−δ, 0′n−i)′ if i > m.

Remarks: MPS may be equivalently expressed in terms of CDF. Using the

notations of definition 3:

If i ≤ m − 1 then X = Y + (0′i−1,−δ, 0′m−i−1)′ and X = Y or equivalently,

X∗ = Y∗ + (0′m−i−1, δ, 0
′
i−1)′ and X

∗
= Y

∗
.

In case where i > m, thenX = Y + (0′i−m−1, δ, 0
′
n−i+1)′ and X = Y or equiva-

lently, X
∗

= Y
∗

+ (0′i−m−1, δ, 0
′
n−i+1)′ and X∗ = Y∗.

In fact if two distributions are related through a S Dominance relation,

then one distribution may be derived from the other by a sequence of MPS

(Kobus, 2015).

In some cases certain distributions cannot be ranked according to S dom-

inance criteria. In such cases, a weaker version of S Dominance is available
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with the literature by Chakravarty and Maharaj (2015). Based on the con-

cept of SISD, these authors have introduced a cumulative version of S dom-

inance. For the sake of brevity, we refer to this as SS dominance. Formally:

Definition 4. SS Dominance: For all X, Y ∈ Cn, and given any m(X)=m(Y)

=m, X SS dominates Y (which is denoted by X �SS Y ); if and only if X 6= Y

and exactly one of the following conditions is satisfied:

1) X∗ �SISD Y∗ and X
∗

= Y
∗
(i.e. X = Y)

2) X∗ = Y∗(i.e. X = Y) and X
∗ �SISD Y

∗
(or equivalently X �SISD Y).

3) X∗ �SISD Y∗ and X
∗ �SISD Y

∗
(i.e. X �SISD Y).

Remarks: Note that unlike definition 2, X∗ �SISD Y∗ does not have an

equivalent representation in terms of X and Y but like the S dominance

relationship, SS dominance also exhibits transitivity. This follows from

transitivity of SISD relationship and from the fact that A �SISD B and

B = C =⇒ A �SISD C. Like S dominance, SS Dominance is also transi-

tive, in limits (because of the transitivity of the underlying SISD relationship

under limits).

Analogous to the correspondence between S dominance and MPS, this

paper establishes an association of SS dominance to a sequence of certain

type of transfer of population mass either below or above the median cat-

egory. This type of transfer of population mass has already been explored

in the literature (Apouey, 2007; Chakravarty and Maharaj, 2015) but in a

different context. Next, we restate this very form of transfer:

Definition 5. Transfer below and not below median category (TBN

BM): For all X, Y ∈ Cn and given m(X) = m(Y ) = m, X is said to be

obtained from Y following TBNBM if and only if given any two categories i

and j such that 1 < i ≤ j < n and either j + 1 ≤ m or i − 1 ≥ m, there

are shifts of population proportions δ (0 < δ ≤ min{yi, yj} if i 6= j and

0 < 2δ ≤ yi if i = j) from i to i-1 and from j to j+1. In terms of PDF:

x = y+(0′i−2, δ,−δ, 0′j−i−1,−δ, δ, 0′n−j−1)′. The transfer is said to occur below

median, if and only if the highest category involved in transfer is j + 1 ≤ m.

Similarly, we say that the transfer is not below the median category if and

only if the lowest category involved in the transfer is i− 1 ≥ m.

Remarks: In terms of CDF, the above transfer may be represented as:

X = Y + (0′i−2, δ, 0
′
j−i,−δ, 0′m−j−1)′ and X = Y if j + 1 ≤ m and

X = Y + (0′i−m−1, δ, 0
′
j−i,−δ, 0′n−j)′ and X = Y if i− 1 ≥ m. Equivalently,
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X∗ = Y∗ + (0′m−j−1, δ, 0
′
j−i,−δ, 0′i−2)′ and X

∗
= Y

∗
if j + 1 ≤ m and

X
∗

= Y
∗

+ (0′i−m−1, δ, 0
′
j−i,−δ, 0′n−j)′ and X∗ = Y∗ if i− 1 ≥ m.

For an illustration, consider the CDF of the following ordinal distributions

Y = {0.05, 0.2, 0.35, 0.4,0.6, 0.65, 0.8, 0.95, 1} and X = {0.1, 0.2, 0.3, 0.4,0.6,

0.7, 0.8, 0.9, 1}, with their PDF’s being y = {0.05, 0.15, 0.15, 0.05,0.2, 0.05,

0.15, 0.15, 0.05} and x = {0.1, 0.1, 0.1, 0.1,0.2, 0.1, 0.1, 0.1, 0.1}, respectively.

In this case X is obtained from Y following TBNBM (definition 5). Below

the median, a population mass of 0.05 is transferred from category 2 to 1 and

from category 3 to 4. On the other hand, above the median, the transfer of

the same mass of 0.05 takes place from categories 7 to 6 and from category

8 to 9. In this case it is quite straightforward to check that X �SS Y .

So far, the definitions we have discussed characterizes different properties

of distributions. Now we move on to some properties of functions that we

use to characterize the family of inequality indices. The first is the notion of

S concave/convex function. Formally it is defined as follows:

Definition 6. S concave/convex function: A function F : Rn → R
is called S concave if for all X ∈ Rn, F (QnX) ≥ F (X) where Qn is any

bistochastic matrix of order n that is not a permutation matrix. The function

is strictly S concave if F (QnX) > F (X). The function F is S convex if and

only if −F is S concave.8

We define a weaker version of S concave/convex functions as Piecewise S

Concave/Convex functions, as:

Definition 7. Piecewise S (PS) Concave/Convex functions: A func-

tion F : Rn −→ R is said to be PS concave at partition {n1, n2} with

n1, n2 ∈ Z1+ if and only if the following conditions are satisfied:

1) F (Qn1X1, X2) ≥ F (X1, X2) whenever X1 6= {φ}
2) F (X1, Qn2X2) ≥ F (X1, X2) whenever X2 6= {φ}
where X1 ∈ Rn1 and X2 ∈ Rn2 ∀ n1, n2 such that n1 + n2 = n. Qn1 and Qn2

are bistochastic matrix of order n1 and n2, respectively that are not permu-

tation matrices.

A function F is said to be strictly PS concave at the partition if and only if

8A square matrix is said to be bistochastic if all its entires are non-negative and the
sum of all rows and columns individually equates to unity. If a bistochastic matrix has
exactly one positive entry in each row and column, then it is called a permutation matrix.
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strict inequality holds in both the above conditions. F is (strictly) PS convex

at some partition if and only if −F is (strictly) PS concave at the partition.

Note that it is quite straightforward to show that all S concave (convex)

functions are PS concave (convex) for any arbitrary valid partition, however,

the converse is not true.

Given the notations and definitions we are now in a position to introduce

the various results of the paper to which we now turn.

3 Quasi approaches when median categories

are same

In this section we formally establish the relationship between the inequal-

ity orderings of a class of inequality indices having certain functional char-

acteristics and the dominance relationships (S and SS ) of the underlying

distributions.

The conceptual framework of this paper characterizes inequality of an

ordinal variable as the distance between an observed distribution to that of a

bipolar distribution (formalized by Apouey, 2007). A distribution is said to

be bipolar if half of the individuals belong to the first category and the rest to

the last category. Hence, the CDF of a bipolar distribution assumes the form

XBP = {0.5, 0.5, .., 0.5, 1}. The distance between an observed distribution

X = {X1, X2, .., Xn} ∈ Cn to that of XBP is given by {|0.5 − X1|, |0.5 −
X2|, ., |0.5 − Xn|} ≡ {X∗,X

∗}. Consequently, the domain of the inequality

measures considered here, is given by Dn ≡ [0, 0.5]n. Thus we denote the

inequality index defined on the distribution X by I(X∗,X
∗
) where I : Dn −→

R. For the purpose of analytical tractability we impose an assumption on

the index function I() as follows:

Assumption 3.1. The inequality index I, is bounded between m and M,

where m,M ∈ R and M > m.9

The class of all inequality indices satisfying assumption 3.1 is denoted by I,
i.e., I = {I|I : Dn −→ R and m ≤ I() ≤M}.

9Ideally one should restrict m = 0, which ensures that inequality index always takes
non negative values. Nevertheless, our consideration is more general.
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With the above formalizations, we first establish the equivalence of in-

equality orderings for the family of strictly monotonically decreasing inequal-

ity indices with the S dominance ordering of the underlying distributions.

Theorem 3.1. For all X, Y ∈ Cn, X 6= Y and m(X) = m(Y ). The follow-

ing statements are equivalent:

1) X �S Y
2) X is obtained from Y following arbitrary sequences of MPS.

3) I(X∗,X
∗
) < I(Y∗,Y

∗
) ∀I ∈ I such that I is strictly monotonically decreas-

ing in its arguments.

Proof : The equivalence between statements 1 and 2 has already been

established by Kobus (2015) for finite sequences of MPS. A finite sequence

of MPS can be readily expressed as an infinite sequence of MPS by splitting

the amount of population transfer from any category into (say) an infinite

AP series that adds up to the amount of population transfer from the cate-

gory and redefining each element of the AP series as an MPS. Thus, that S

dominance implies an arbitrary sequence of MPS is trivially true. So here

we first show that infinite sequence of MPS implies S dominance.

2 =⇒ 1

An MPS from any category i 6= m and i ∈ {1, 2, ..., n} can be expressed as:

X∗ = Y∗ + (0′m−i−1, δ, 0
′
i−1)′ and X

∗
= Y

∗
if i < m or, X

∗
= Y

∗
+ (0′i−m−1, δ,

0′n−i+1)′ and X∗ = Y∗ if i > m where δ > 0. Let the sequence of MPS be de-

noted by MPS1,MPS2, ... such that X is obtained from Y by this sequence

of MPS. Recursively define Z0 = Y and Zs as the distribution obtained from

Zs−1 by MPSs. Note that Zs is a valid distribution for all s = {1, 2, ...} and

lim
s→∞

Zs = X. From the definition of S dominance (definition 2) if X �S Y
then the relationship between X and Y can be expressed as:

X∗ = Y∗ + ε and X
∗

= Y
∗

+ ε̄

where εi ≥ 0∀i ∈ {1, 2, ..,m − 1} and ε̄j ≥ 0 ∀j ∈ {1, 2, .., n −m + 1} with

strict inequality for at least one i or j. Also ε̄n−m+1 = 0 and ε̄j and εi are

constrained such that X is a legitimate distribution. Thus, Zs �S Zs−1

and since S dominance is transitive in limits (see remarks to definition 2),

X �S Y holds.

Next we establish the equivalence between 1 and 3 in order to complete

the proof. For the proof, we define the following vectors:

X̃ =
(
X∗′,X

∗′)′
and Ỹ =

(
Y∗′,Y

∗′)′
12



1 =⇒ 3

Following the remarks to Definition 2, it is quite straightforward to show

that ∃ ε where εi ≥ 0 ∀i ∈ {1, 2, .., n} such that X �S Y ⇐⇒ X̃ = Ỹ + ε,

with strict inequality for at least one i. Hence for any strictly monotonically

decreasing function I () we have I(X∗,X
∗
) < I(Y∗,Y

∗
).

3 =⇒ 1

We prove this by contradiction. We begin with the assumption that X 6�S Y .

Since X̃ and Ỹ are of the same order, they can be written as X̃ = Ỹ + ε.

Following the remarks to definition 2, X 6= Y and X 6�S Y =⇒ ∃εk such

that εk < 0 for some k ∈ {1, 2, .., n}. Now, for any Z ∈ Cn with m(Z) = m,

define I (Z) as follows:

I(Z∗,Z
∗
) = −

m−1∑
i=1

αiZ
∗
i −

n−m+1∑
j=1

βjZ
∗
j (1)

where αi, βj > 0∀i, j and
m−1∑
i=1

αi+
n−m+1∑
j=1

βj = 1. Note that the restrictions

on α and β ensure that I () is bounded and strictly monotonically decreasing.

Given εk < 0, we choose the corresponding α or β (i.e. αk if k ≤ m−1 or

βk−m+1 if k ≥ m) high enough in order to get a contradiction i.e. I(X∗,X
∗
) >

I(Y∗,Y
∗
).

Q.E.D.

We denote the class of all strictly monotonically decreasing inequality indices

satisfying assumption 3.1 by I1 i.e.: I1 = {I() ∈ I|I(..., a, ...) R I(..., b, ...) ⇐⇒
a Q b}.

We now move on to characterize the inequality orderings of the class of

inequality indices that are strictly decreasing and strictly PS convex when the

underlying distributions can be ordered by SS dominance. A similar result

was introduced by Chakravarty and Maharaj (2015) for class of additive

inequality indices. We relax the additivity assumption and establish our

result for a more general class of inequality indices. Formally:

Theorem 3.2. For all X, Y ∈ Cn, X 6= Y and m(X) = m(Y ). The following

conditions are equivalent:

1) X �SS Y
2) I(X∗,X

∗
) < I(Y∗,Y

∗
) ∀I ∈ I1 such that I is strictly PS convex at partition

{m− 1, n−m+ 1}.

13



Proof :

1 =⇒ 2

Given X �SS Y ⇐⇒ exactly one of the following cases holds (following

Definition 4):

Case 1) X∗ �SISD Y∗ and X
∗

= Y
∗

Case 2) X∗ = Y∗ and X
∗ �SISD Y

∗
.

Case 3) X∗ �SISD Y∗ and X
∗ �SISD Y

∗
.

We provide a proof only for Case 3, the rest of the cases can be proved

following similar reasoning.

Following Marshall and Olkin’s theorem (lemma 7.1) we can write that

there exist two bi-stochastic matrix Q1 and Q2 (of appropriate orders) that

are not a permutation matrices, such that:

X∗ ≥ Q1Y∗ and X
∗ ≥ Q2Y

∗
(2)

Choose -I () as any strict monotonically increasing and a strict PS concave

function at partition {m− 1, n−m+ 1}. Following the strict monotonicity

of -I () we can write:

− I(X∗,X
∗
) ≥ −I(Q1Y∗,X

∗
) ≥ −I(Q1Y∗, Q2Y

∗
) (3)

Furthermore, since -I () is strict PS concave at partition {m−1, n−m+1},
following Definition 7, we can also write:

− I(Q1Y∗, Q2Y
∗
) > −I(Q1Y∗,Y

∗
) > −I(Y∗,Y

∗
) (4)

Combining 3 and 4 we obtain −I(X∗,X
∗
) > −I(Y∗,Y

∗
) =⇒ I(X∗,X

∗
) <

I(Y∗,Y
∗
) where I () is any strict monotonically decreasing and PS convex

function at partition {m− 1, n−m+ 1} .

2 =⇒ 1

We prove this by contradiction. We assume that X 6�SS Y . Given X 6= Y

exactly one of the following conditions hold:

Case 1) X∗ 6�SISD Y∗ and X
∗ 6�SISD Y

∗
.

Case 2) X∗ �SISD Y∗ and X
∗ 6�SISD Y

∗
.

Case 3) X∗ 6�SISD Y∗ and X
∗ �SISD Y

∗
.

Case 4) X∗ 6�SISD Y∗ and X
∗

= Y
∗
.

Case 5) X∗ = Y∗ and X
∗ 6�SISD Y

∗
.

We derive contradictions only for Case 3. Similar logic yields contradic-

tion for rest of the cases.
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Following lemma 7.3, we have X∗ 6�SISD Y∗ =⇒ ∃u such that
m−1∑
i=1

u(X∗i ) <

m−1∑
i=1

u(Y∗i ), where u() is strictly increasing and strictly concave. On the other

hand, sinceX
∗ �SISD Y

∗
for any strictly concave and strictly increasing func-

tion v(.), we have
n−m+1∑
j=1

v(X
∗
j) >

n−m+1∑
j=1

v(Y
∗
j) (following Marshall and Olkin’s

theorem (lemma 7.1)).

For all Z ∈ Cn such that m(Z) = m, define the function:

I(Z∗,Z
∗
) = θ

m−1∑
i=1

−u(Z∗i ) + (1− θ)
n−m+1∑
j=1

−v(Z
∗
j) (5)

where 0 < θ < 1.

Define I1(Z∗) ≡
m−1∑
i=1

u(Z∗i ) and I2(Z
∗
) ≡

n−m+1∑
j=1

v(Z
∗
j). Following lemma

7.2, I1(.) and I2(.) are strict monotonically increasing and strict S concave

functions. Since, I() ≡ −I1() − I2(), following definition 7, it is straight-

forward to show that I() is strictly decreasing and strictly PS convex func-

tion at partition {m − 1, n − m + 1}. In order to get a contradiction (i.e.,

I(X∗,X
∗
) > I(Y∗,Y

∗
)) we choose a value of θ that is sufficiently close to 1.

Q.E.D.

We denote the class of all strictly monotonically decreasing and strictly PS

convex inequality indices at partition {n1, n2} satisfying assumption 3.1 by

I1 i.e.: I2{n1,n2} = {I() ∈ I1|I() is strictly PS convex with partition {n1, n2}}.
The relationship between S dominance and MPS is already established in the

literature by Kobus (2015). However, an association between certain types

of transfers and SS dominance, has not been formulated in the literature so

far. In the next theorem we show the equivalence between SS dominance

with MPS and TBNBM.

Theorem 3.3. For all X, Y ∈ Cn and m(X) = m(Y ). The following condi-

tions are equivalent:

1) X �SS Y
2) X is limit of Y following arbitrary sequence of TBNBM and/or MPS.

Proof :

If the number of categories both below and above the median is less than
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two then SS dominance is analytically equivalent to S dominance. In such

cases TBNBM is not applicable and the equivalence between SS dominance

to a sequence of MPS is already provided in theorem 3.1.

From the definition of MPS, if X is obtained from Y through a MPS then

the relationship between X and Y can be written in terms of CS() as:

i) CS(X∗) = CS(Y∗) + (0′m−i−1, δ
′
i)
′ and CS(X

∗
) = CS(Y

∗
).

ii) CS(X
∗
) = CS(Y

∗
) + (0′i−m−1, δ

′
n−i+2)′ and CS(X∗) = CS(Y∗).

where 0 < δ ≤ yi denotes the shift of population proportion from category

i 6= m in accordance to definition 3.

From the definition of TBNBM (definition 5) we know that if X is ob-

tained from Y by TBNBM such that the two categories involved in the trans-

fer, (say i and j ) are equal (i.e. i = j) where either 1 < i < m or m < i < n,

and the shifts of population proportions are given by δ (0 < 2δ ≤ yi) then,

in terms of CS():

i) CS(X∗) = CS(Y∗) + (0′m−i−1, δ, 0
′
i−1)′ and CS(X

∗
) = CS(Y

∗
) if i+ 1 ≤ m.

ii) CS(X
∗
) = CS(Y

∗
) + (0′i−m−1, δ, 0

′
n−i+1)′ and CS(X∗) = CS(Y∗) if i− 1 ≥

m.

From the definition of SS dominance (definition 4) if X �SS Y then the

relationship between X and Y can be written in terms of CS() as:

CS(X∗) = CS(Y∗) + ε and CS(X
∗
) = CS(Y

∗
) + ε̄.

where εi ≥ 0∀i ∈ {1, 2, ..,m − 1} and ε̄j ≥ 0 ∀j ∈ {1, 2, .., n −m + 1} with

strict inequality for at least one i or j. Also ε̄n−m+1 = ε̄n−m and ε̄j and εi are

constrained such that X is a legitimate distribution.

2 =⇒ 1

Let the sequences of TBNBM or MPS be denoted by TBNBM/MPS1,

TBNBM/MPS2, ... . Define Z0 = Y and let Zs be obtained from Zs−1

applying TBNBM/MPSs on Zs−1. From the representation of TBNBM or

MPS in terms of CS we can write CS(Zs) = CS(Zs−1) + ε such that ε ≥ 0n.

Clearly, Zs �SS Zs−1 and lim
s→∞

Zs = X. From remarks to definition 4 thus,

X �SS Y .
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1 =⇒ 2

X �SS Y ⇐⇒



x1

x2

...

xm−2

xm−1

xm
xm+1

xm+2

...

xn−1

xn



=



y1

y2

...

ym−2

ym−1

ym
ym+1

ym+2

...

yn−1

yn



+



−εm−1 + εm−2

−2εm−2 + εm−1 + εm−3
...

−2ε2 + ε1 + ε3
−2ε1 + ε2
ε1 + ε̄1
−2ε̄1 + ε̄2
−2ε̄2 + ε̄1 + ε̄3

...

−2ε̄n−m−1 + ε̄n−m−2 + ε̄n−m
−ε̄n−m + ε̄n−m−1.



,

where εi ≥ 0 and ε̄j ≥ 0 with strict inequality for at least one i or j. Also, ε̄j
and εi are constrained such that x ≥ 0. We write this more succinctly as:

x = y + Tη, where

T ≡

−1 1 0n−2

A

0n−2 1 − 1

 and ηi =


εm−i if i < m;

0 if i = m;

ε̄i−m if i > m.

and A=[aij](n−2)×n with

aij =


1 if i = j or i = j − 2;

−2 if i = j − 1;

0 else

Define z0 = y, r0 = η and for all s = {1, 2, ...},
zs = zs−1 + Tτ s

τ s = min(0.5 zs−1, rs−1)

rs = rs−1 − τ s.
Evidently, x = zs + Trs, rs−1 ≥ rs ≥ 0, τ s ≤ zs−1 and τ s ≤ rs−1, ∀s =

{1, 2, ...}. Given the definition of τ s, Tτ s denotes a set of TBNBM and/or

MPS on zs−1. This is because 2τ si ≤ zs−1
i ∀i ∈ {1, 2, .., n} and ∀s ∈ {1, 2, ...}.

So, the sequential addition of matrices given by:

T

0i−1

τ si
0n−i


17



to zs−1 ∀i ∈ {1, 2, .., n} represents a TBNBM/MPS(if i = 1 or i = n) from

definitions 5 and 3, respectively, in the sense that the distribution obtained

after each such addition remains a legitimate distribution. In order to com-

plete the proof we need to show that lim
s→∞

rs = 0n. We prove this by contra-

diction. Note that lim
s→∞

rs must exist, since rs−1 ≥ rs ≥ 0 i.e., the sequence

is non-increasing and bounded below (since every bounded non-increasing

sequence has a limit point (see theorem 3.14, Rudin, 1971, pp 55). Since

rs is a convergent sequence, it must be Cauchy convergent (theorem 3.11,

Rudin, 1971, pp 53) i.e. given any δ > 0 ∃s′ such that rk − rl < δ ∀k, l > s′

and l > k. This implies, lim
s→∞

τ s = 0. If lim
s→∞

rs = rL where rL ≥ 0n, r
L 6= 0n.

Let rLi′ denote the maximal element of rL with i′ denoting the index of the

element, such that either rLi′+1 < rLi′ or rLi′−1 < rLi′ is true. Such rLi′ always

exists since rLm = 0. Thus, if i′ = 1 or i′ = n the i′ element of TrL is given by

−rLi′ + rLi′+1 or −rLi′ + rLi′−1, respectively and −2rLi′ + rLi′+1 + rLi′−1 otherwise.

Since rLi′ is the maximum with at least one of rLi′−1 or rLi′+1 strictly less than

the maximum value, this implies that the i′ element of TrL is strictly less

than 0. Furthermore, lim
s→∞

τ s = 0 and lim
s→∞

rsi′ > 0 =⇒ lim
s→∞

zsi′ = 0. But this

implies the i′ element of x is negative, since x = zs + Trs ∀s ∈ {1, 2, ...}: a

contradiction.

Q.E.D.

4 Quasi approaches when median categories

are different

So far our analysis on inequality ordering of ordinal variables, is restricted

to the case where the variables have same median category. In this section

we relax this assumption. When the median category of two distributions

do not coincide, we construct counterfactual versions of the original distri-

butions (henceforth, we refer to the original distributions as the “base distri-

butions”) such that their median categories coincide. Furthermore, we show

that for a class of indices satisfying some given properties, the dominance

conditions (S/SS ) of the counterfactual distributions have a direct implica-

tion on the inequality ordering of the original distributions. For the creation

of the counterfactual distributions we follow the Slide Invariance (SI) and

18



Zero Frequency Independence (ZFI) properties meted out in the literature

on polarization.

The first property SI, is adopted from Apouey (2007). It is applicable to

distributions where the first or the last category has zero mass. Formally:

Property 4.1. Slide Invariance (SI): For all X l, Xr, Y l, Y r ∈ Cn, if

X l, Xr and Y l, Y r are related as Xr = {0′k, Xr
k+1, X

r
k+2, .., X

r
n−1, 1}, X l =

{X l
k+1, X

l
k+2, .., X

l
n−k−1, 1

′
k+1}, Y r = {0′k, Y r

k+1, Y
r
k+2, .., Y

r
n−1, 1} and Y l =

{Y l
k+1, Y

l
k+2, .., Y

l
n−k−1, 1

′
k+1} for all k ∈ {1, 2, ..., n−1}, then X l(Y l) is said to

be obtained from Xr(Y r) by k slides to the left and likewise Xr(Y r) is said to

be obtained from X l(Y l), respectively by k slides to the right. Any inequality

index I(), is said to be slide invariant if and only if I(Xl∗,X
l∗

)R I(Yl∗,Y
l∗

) ⇐⇒
I(Xr∗,X

r∗
)R I(Yr∗,Y

r∗
).

The second property (ZFI) states that any deletion or inclusion of a sub-

group with zero population share does not change the level of polarization

(Chakravarty and Maharaj, 2012; Chakravarty, 2015). We consider a re-

stricted version of this property following which, inclusion(omission) of cat-

egories with zero population mass either at the bottom or at the top of

two distribution does not change the inequality rankings of the distribu-

tions. We refer to this property as “Insensitive to Terminal Unpopulated

Categories”(ITUC). Note that although ITUC is a technical property, a ma-

jority of inequality indices established in the literature on inequality ordering

of ordinal variables, satisfy this property. Letting R denote any one of the

relationships >, = and <, we can formally state ITUC as:

Property 4.2. Insensitive to Terminal Unpopulated Categories (IT

UC): For all X, Y ∈ Cn where k1, k2 ∈ Z0+ with at least one of k1 or k2

strictly positive, two inequality measures In1 () and In+k1+k2
2 () are said to be

associated through Insensitive to Terminal Unpopulated Categories if and only

if In1 (X∗,X
∗
) R In1 (Y∗,Y

∗
) ⇐⇒ In+k1+k2

2 ((0.5′k1 X∗′)′, (X
∗′

0.5′k2)
′) R

In+k1+k2
2 ((0.5′k1 Y∗′)′, (Y

∗′
0.5′k2)

′).

For the sake of simplicity we say that XF is obtained from X by addition

of unpopulated categories (ATUC) if and only if XF = {0′k, X ′} or XF =

{X ′, 1′k} ∀k ∈ Z1+.

In the analysis of the previous sections, the number of categories of the

ordinal variables in question were fixed at n. However, the construction

of the counterfactual distributions by ATUC, requires a higher number of
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categories compared to their base distributions. So in this section, whenever

required, we explicitly indicate the dimension of domain as a superscript to

the inequality indices as well as the class of the indices (i.e., instead of the

notation I() for an inequality index, we use the notation In() and similarly

instead of I, we use In).

Given the above definitions, we now discuss the main result of this section.

For this, we define I3 = {I()|I() ∈ I1 and I() satisfies SI}, I4{m1,m2} =

{I()|I() ∈ I2{m1,m2} and I() satisfies SI} and I{n,n+k}
5{m1,m2} = {The tuples(In1 (),

In+k
2 ())|In1 () ∈ In1 and In+k

2 () ∈ In+k
4{m1,m2} where In1 () and In+k

2 () are linked

through ITUC}.
Now suppose the median of X ∈ Cn is m + k and that of Y ∈ Cn is m;

where k is a strictly positive integer. In such cases two possibilities exist.

The first possibility is that there exists counterfactual version of X and Y

obtained by slide such that the median categories of the counterfactuals co-

incide 10. The second possibility is that either the distributions do not allow

slide or that slide is not able to equalize the median categories of the counter-

factuals. In this case, addition of a finite number of unpopulated categories

to both X and Y followed by slide of at least one of the distributions should

be able to generate counterfactuals with same median categories. First we

provide some results for the first possibility relating the S/SS dominance

ordering of the counterfactual distributions to the inequality ordering of the

original distributions for the family of inequality indices which belongs to I3

and I4. Formally:

Theorem 4.1. For all X, Y ∈ Cn such that m(X) = m + k, m(Y ) = m,

and k ∈ {1, 2, ..., n − m}, let XS ∈ Cn be obtained from X by k1 slides to

the left and Y S ∈ Cn be obtained from Y by k2 slides to the right (k1, k2 ∈
Z0+, k1 +k2 = k) such that m(XS) = m(Y S). Then the following conditions

hold:

1) XS �S (≺S) Y S =⇒ I(X∗,X
∗
) < (>) I(Y∗,Y

∗
) ∀I ∈ I3.

2) XS �SS (≺SS) Y S =⇒ I(X∗,X
∗
) < (>) I(Y∗,Y

∗
) ∀I ∈ I4{m−1,n−m+1}.

Proof: We provide the proof for statement 1. Statement 2 can be proved

using similar logic by replacing S dominance with SS dominance, using the-

orem 3.2 in place of theorem 3.1 and considering I4{m−1,n−m+1} instead of I3.

Following theorem 3.1 we can write XS �S (≺S) Y S =⇒ I(XS∗,X
S∗

) < (>

10For example, let X = {0, 0.1,0.6, 1} and Y = {0.3,0.55, 0.7, 1}. In this case m(X) =
3, m(Y ) = 2. The counterfactual distributions are XS = {0.1,0.6, 1, 1} and Y.
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) I(YS∗,Y
S∗

) ∀I() ∈ I3 ∵ I() ∈ I3 =⇒ I() ∈ I1 and following SI, we can

write I(XS∗,X
S∗

) < (>) I(YS∗,Y
S∗

) ⇐⇒ I(X∗,X
∗
) < (>) I(Y∗,Y

∗
).

Q.E.D.

We now move on to the second possibility where a slide of the distribu-

tion/s is not able to produce the counterfactual with same median categories.

However, it is quite straightforward to show that in such cases counterfac-

tual distributions with same median categories can always be produced by

ATUC and slide. To illustrate this consider the distributions X, Y ∈ Cn such

that m(X) = m + k and m(Y ) = m where k ∈ {1, 2, ..., n − m}. Denote

by slXmax the maximum number of slides towards the left possible for X i.e.

slXmax = {#i |Xi = 0} and likewise, srYmax = {#i |Yi = 1 and i < n} indicates

the maximum number of slides towards the right possible for Y (note that

either or both these values may be zero). Clearly m+ k+ slXmax > m+ srYmax
(otherwise it would be possible to construct counterfactuals from X and Y

by slide alone such that the counterfactuals have same median categories).

Define k′ as k′ = (m+k−slXmax)−(m+srYmax). The construction of the coun-

terfactual distributions with same median categories can be done as follows.

First we introduce k′ unpopulated categories before the first category of both

X and Y to obtain XF and Y F , respectively. Then we slide XF to the left

by k′ + slXmax and slide Y F to the right by srYmax to obtain XFS and Y FS,

respectively11. It is easy to check that m(XFS) = m(Y FS) = m + srYmax.

Alternatively, we may also introduce k′ unpopulated categories after the last

category to obtain XF and Y F , respectively. Then we slide XF to the left by

slXmax and slide Y F to the right by k′+srYmax to obtain XFS and Y FS, respec-

tively, in which case m(XFS) = m(Y FS) = m + k − slmaxX . The constructed

counterfactual distributions however, may never exhibit S dominance of ei-

ther distributions over the other. Formally:

Theorem 4.2. For all X, Y ∈ Cn with m(X) = m + k, m(Y ) = m, k ∈
{1, 2, ..., n − m} if X, Y is not transformable to XS, Y S by slide such that

m(XS) = m(Y S), then for the counterfactual distributions of X, Y obtained

11For example, let X = {0, 0.1, 0.3,0.6, 1} and Y = {0.3,0.55, 0.7, 0.8, 1}. In this
case m(X) = 4, m(Y ) = 2. Note that the only possible slide of X produces
XS = {0.1, 0.3,0.6, 1, 1} but fails to equalize the median category. In this case we
add one unpopulated category before the first category of the distributions to yield
Y F = {0, 0.3,0.55, 0.7, 0.8, 1} and XF = {0, 0, 0.1, 0.3,0.6, 1}. Next we slide XF to
obtain XFS = {0.1, 0.3,0.6, 1, 1, 1}. The counterfactual distributions are XFS and Y F .
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by ATUC and slide given by XFS, Y FS ∈ Cn+k′ (k′ ∈ Z1+, k
′ ≤ k) such that

m(XFS) = m(Y FS), both XFS 6�S Y FS and Y FS 6�S XFS hold.

Proof: For the proof, we use the notations defined during the construc-

tion of XFS and Y FS.

The construction of XFS and Y FS ensure the inequalities XFS
1 > 0, Y FS

1 =

0, XFS
n−1 = 1 and Y FS

n−1 < 1. The inequalities XFS
1 > 0 and Y FS

n−1 < 1 hold since

the construction of XFS and Y FS from X and Y , respectively, requires the

inclusion of k′(> 0) unpopulated categories to both X and Y either before the

first category or after the last category. That k′ = (m+k−slXmax)−(m+srYmax)

implies that k′ is the minimum number of unpopulated categories required

in the construction of the counterfactuals versions of X and Y that have the

same median categories. If XFS
1 = 0 or Y FS

n−1 = 1 then it necessarily implies

that inclusion of fewer than k′ unpopulated categories can yield counterfac-

tual distributions from X and Y that have the same median categories which

is a contradiction. That Y FS
1 = 0 and XFS

n−1 = 1 follows from the following

facts. If the unpopulated categories are added before the first categories of

both distributions then the construction of XFS entails at least one left slide

of XF . This would imply XFS
n−1 = 1. Since Y FS is obtained from Y F by slides

to the right, Y FS
1 = 0 is ensured since at least one unpopulated category is

added before the first category of Y . Alternatively, in the case where the

unpopulated categories are added after the last categories of both distribu-

tions, the construction of Y FS entails at least one right slide of Y F . This

would imply Y FS
1 = 0. Since XFS is obtained from XF by slides to the left,

XFS
n−1 = 1 is ensured since at least one unpopulated category is added after

the last category of X.

These inequalities reduce to XFS
1 > Y FS

1 and XFS
n−1 > Y FS

n−1. The later set of

inequalities prove the theorem as 1 < m(XFS) = m(Y FS) < (n+ k′).

Q.E.D.

Given the above theorem, it becomes apparent that for distributions hav-

ing different median categories such that no counterfactual distributions hav-

ing the same median categories can be generated from them with slide alone,

dominance relationship may exist for SS dominance (and maybe higher or-

ders) but not for S dominance. Even under such conditions, the relationship

between the SS dominance ordering may be related to the inequality order-

ings of the underlying distributions for certain class of inequality indices.

This is summarized in the next theorem:
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Theorem 4.3. For all X, Y ∈ Cn with m(X) = m + k, m(Y ) = m, k ∈
{1, 2, ..., n−m} and there exist no XS, Y S obtained by slide on X and Y , re-

spectively, such that m(XS) = m(Y S), let XFS, Y FS ∈ Cn+k′(k′ ∈ Z1+, k
′ ≤

k) be obtained from X and Y, respectively, by ATUC and slide such that

m(XFS) = m(Y FS) = m′, then for all (In1 (), In+k′

2 ()) ∈ I{n,n+k′}
5{m′−1,n+k′−m′+1},

XFS �SS (≺SS) Y FS =⇒ In1 (X∗,X
∗
) < (>) In1 (Y∗,Y

∗
).

Proof: For the proof, we use the notations defined during the construc-

tion of XFS and Y FS.

Let XFS = A, Y FS = B,XF = C and Y F = D. Clearly A,B,C,D ∈ Cn+k′

and m(A) = m(B) = m′. Following theorem 3.2 we can write A �SS (≺SS
) C =⇒ In+k

2 (A∗,A
∗
) < (>) In+k′

2 (B∗,B
∗
) ∀In+k′

2 () ∈ In+k′

2{m′−1,n+k′−m′+1} and

following the definition of SI, we can write In+k′

2 (A∗,A
∗
) < (>) In+k′

2 (B∗,B
∗
)

=⇒ In+k′

2 (C∗,C
∗
) < (>) In+k′

2 (D∗,D
∗
).

Since In1 () and In+k′

2 () are associated through ITUC, the following holds:

In+k′

2 (C∗,C
∗
) < (>) In+k′

2 (D∗,D
∗
) =⇒ In1 (X∗,X

∗
) < (>) In1 (Y∗,Y

∗
). Thus

XFS �SS (≺SS) Y FS =⇒ In1 (X∗,X
∗
) < (>) In1 (Y∗,Y

∗
).

Q.E.D.

Theorems 4.1 and 4.3 have a limitation: for the class of inequality in-

dices meted out in the theorems, S and/or SS dominance rankings among

the counterfactual distributions although sufficient to imply an inequality

ordering of the original distributions but not necessarily does so. In the rest

of the section we show that if we restrict the class inequality index further,

then S and/or SS dominance among the counterfactual distributions have

an equivalence with the inequality ordering of the original distributions. For

the same, we define the class of functions to assume the following form:

In(Z∗,Z
∗
) = H

(m(Z)−1∑
i=1

φi(Z
∗
i ) +

n−m(Z)+1∑
j=1

ψj(Z
∗
j)

)
(6)

where H() is a strictly monotonically increasing function and φi(), ψj() are

strictly decreasing functions with φi(0.5) = ψj(0.5) ∀i ∈ {1, 2, ...,m(Z) −
1},∀j ∈ {1, 2, ..., n−m(Z) + 1}.

Remarks: Note that In() is strictly decreasing function. Also note that

φi(0.5) = ψj(0.5) ∀i ∈ {1, 2, ...,m(Z)−1},∀j ∈ {1, 2, ..., n−m(Z) + 1} guar-

antees that In(Z∗,Z
∗
) satisfies SI. Thus all functions In() of the form given
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by equation 6 belongs to In3 .

We also define a further restricted version of the class of inequality indices

given by 6 to form:

In(Z∗,Z
∗
) = H

(m(Z)−1∑
i=1

φ(Z∗i ) +

n−m(Z)+1∑
j=1

ψ(Z
∗
j)

)
(7)

where H() is a strictly monotonically increasing function, φ() and ψ() are

strictly decreasing functions with φ(0.5) = ψ(0.5) and φ() and ψ() are strictly

convex functions.

Remarks: Note that as before, In() is strictly decreasing function that

satisfies SI. In addition to this, following 7.2 and definition 7, In() is strictly

PS convex with partition {m(Z), n −m(Z) + 1}. Furthermore since H () is

a strictly monotonically increasing function, any In() and In+k() ∀k ∈ Z1+,

are related through ITUC. Thus all functions In(Z∗,Z
∗
) of the form given by

equation 7 belongs to In4{m(Z)−1,n−m(Z)+1} and the tuples (In(), In+k(Z∗,Z
∗
))

∀k ∈ Z1+ belongs to In,n+k
5{m(Z)−1,n−m(Z)+1}.

We now establish the equivalence between dominance orderings of the

counterfactual distributions to that of inequality ordering of the base dis-

tributions considering family of inequality measures specified in equations 6

and 7. Formally:

Theorem 4.4. For all X, Y ∈ Cn where m(X) = m + k, m(Y ) = m and

k ∈ {1, 2, ..., n − m}, let XS ∈ Cn be obtained from X by k1 slides to the

left and Y S ∈ Cn be obtained from Y by k2 slides to the right (k1, k2 ∈
Z0+, k1 +k2 = k) such that m(XS) = m(Y S). Then the following conditions

hold:

1) XS �S (≺S) Y S ⇐⇒ I(X∗,X
∗
) < (>) I(Y∗,Y

∗
) ∀I having the form

specified in equation 6.

2) XS �SS (≺SS) Y S ⇐⇒ I(X∗,X
∗
) < (>) I(Y∗,Y

∗
) ∀I having the form

specified in equation 7.

Proof:

ONLY IF part of both conditions 1 and 2

Follows from theorem 4.1 and the remarks to equations 6 and 7.

IF part of conditions 1 and 2

Follows from the last part (ONLY IF ) of theorems 3.1 and 3.2, respectively,
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along with the fact that the inequality indices used in the theorems have the

functional form depicted in equations 6 and 7, respectively.

Q.E.D.

Theorem 4.5. For all X, Y ∈ Cn where m(X) = m + k, m(Y ) = m,

k ∈ {1, 2, ..., n −m} and there exist no XS, Y S obtained by slide on X and

Y , respectively, such that m(XS) = m(Y S), let XFS, Y FS ∈ Cn+k′(k′ ∈
Z1+, k

′ ≤ k) be obtained from X and Y such that m(XFS) = m(Y FS) = m′,

then XFS �SS (≺SS) Y FS ⇐⇒ In1 (X∗,X
∗
) < (>) In1 (Y∗,Y

∗
) ∀(In1 (), In+k′

2 ())

having the form specified in equation 7.

Proof:

ONLY IF part of the theorem

Follows from theorem 4.3 and the remarks to equation 7.

IF part of the theorem

We prove this by contradiction. Using the notations used in the construc-

tion of XFS and Y FS, let XFS = A, Y FS = B,XF = C and Y F = D.

The class of functions given by I(Z∗,Z
∗
) = θ

m(Z)−1∑
i=1

[u(Z∗i ) − u(0.5)] + (1 −

θ)
p−m(Z)+1∑

j=1

[v(Z
∗
j)−v(0.5)] where θ ∈ (0, 1) and u(), v() are strictly decreasing

and strictly convex functions, satisfy the form laid down in equation 7 as

well as the form of the inequality index used in the last part (ONLY IF)

of theorem 3.2. Thus using the logic used in the last part (ONLY IF) of

theorem 3.2, we can say that A 6�SS ( 6≺SS)B =⇒ ∃In+k′() of the form

specified above such that In+k′(A∗,A
∗
) > (<)In+k′(B∗,B

∗
). Following the

remarks to equation 7 it is evident that In+k′() follows SI property, thereby

implying In+k′(C∗,C
∗
) > (<)In+k′(D∗,D

∗
). In addition to this, it is also en-

sured that there exists In() of the form depicted in the equation such that

In+k′(C∗,C
∗
) > (<)In+k′(D∗,D

∗
) =⇒ In(X∗,X

∗
) > (<)In(Y∗,Y

∗
).

Q.E.D.

This concludes all the theoretical results of our analysis. At this junc-

ture, it is worthwhile to mention that Naga and Yalcin (2010) devised a

methodology of comparing distributions having different median categories

through the construction of “equivalence classes” as mentioned in the in-

troduction to this paper. To emphasize the generality of our analysis, we

present certain limitations of the methodology developed by Naga and Yal-

cin (2010) which are circumvented by our approach. The first shortcoming
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concerns the way equivalence between distributions is defined in their pa-

per. The authors formalizes the similarity between the distributions whose

PDFs are given by {1.0, 0, 0, 0}, {0,1.0, 0, 0}, {0, 0,1.0, 0} and {0, 0, 0,1.0}
under the pretext that all these distributions share the fundamental prop-

erty: that every member of the distributions reports being at the respective

median thus being most egalitarian distributions and (thus) exhibiting iden-

tical and the least amount of inequality. Building on this notion, the authors

define two distributions to be equivalent if and only if the absolute difference

between the CDFs of the distributions to that of the the most polarized dis-

tribution (where half of the population mass rests at the first and the last

categories) are equal up to a permutation. In doing so, the equivalence is

defined at the level of CDFs (in their deviation form from the most polar-

ized distribution) but not at the level of PDFs and no rationale is provided

for selecting CDFs over the PDFs. Thus although the distributions with

PDFs given by {0.4,0.4, 0.1, 0.1} and {0.1, 0.1,0.4, 0.4} are equivalent as

per their definition, the distributions with PDFs given by {0.4,0.4, 0.1, 0.1}
and {0.1,0.4, 0.1, 0.4} fail to qualify as being equivalent: both these PDFs

have the same distance in terms of the Euclidean norm from PDF of the most

polarized distribution given by {0.5, 0, 0, 0.5}. Furthermore, the above defi-

nition of equivalence is completely ad hoc as there may be competing ways of

defining equivalence between two distributions. As an example, consider the

PDFs given by {0.4,0.4, 0.1, 0.1} and {0.1,0.4, 0.4, 0.1} related to each other

by a mere permutation of the categories adjacent to the median. These dis-

tributions are not equivalent as per the definition of Naga and Yalcin (2010);

an alternative definition where any permutation of population mass over the

categories is defined to be equivalent might declare these two distributions

equivalent. Thus the definition of equivalence puts restrictions on the in-

equality indices that acquiesce to the definition12. An yet another shortcom-

ing of the methodology may be demonstrated with the distributions having

the PDFs given by {0.2, 0.1, 0.1,0.1, 0.4, 0.1} and {0.1, 0.2, 0.1,0.1, 0.3, 0.2}.
These distributions are equivalent as per the definition thus implying that

any “median independent inequality measure” must assign identical inequal-

ity values to these distributions. This however puts two restrictions on the

12Allison and Foster (2004) discuss an inequality index whose arguments are the values
of the PDF and under certain parametric restrictions is insensitive to permutations of the
PDF but fail to qualify for the families of “median independent inequality indices” as per
Naga and Yalcin (2010).
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functional form of the inequality indices. The first of these is that categories

below and above the median must contribute equally to the indices. In an

earlier article however, Naga and Yalcin (2008) have themselves acknowl-

edged that it might be necessary for the researcher to accommodate differing

judgments regarding inequality below and above the median. However, their

definition of equivalence imposes a kind of symmetry on the inequality indices

and thus it is not possible to assign different weights below and above the

median. The second restriction on the inequality indices is that the indices

may not weight categories based on their relative position in the distribu-

tion13 - something which again might be necessary from the viewpoint of the

researcher to accommodate differing judgments regarding inequality.

In the next section, we provide an application of the methodology of con-

structing counterfactuals from distributions that do not share a common

median category, developed in the present section.

5 Empirical Illustrations

For the illustration, we compare the inequality in educational attainments

(EA) among Indian males and females. For this exercise we consider data

compiled by National Sample Survey Office (NSSO) as a part of their regular

surveys on employment and unemployment. Data on EA provided by the

NSSO is ordinal in nature. So far we have surveyed, there is no study on

India that addresses intra gender inequality of EA considering the ordinal

nature of the data.

We consider three NSSO round data 61st, 66th and 68th round. These

data set that was collected for the period June 2004- July 2005, June 2009-

July 2010 and June 2011- July 2012, respectively. The main variable of in-

terest for this study is educational attainment (EA), which consists of the

following categories: not literate, literate without formal schooling: through

Non-formal Education Courses (NFEC) or Adult Education Centers (AEC)

or Education Guarantee Scheme (EGS), Total Literacy Campaign (TLC),

etc., literate with formal schooling: below primary, primary, middle, sec-

ondary, higher secondary, diploma/certificate course, graduate, postgraduate

and above. Since the categories EGS/NFEC/AEC/TLC and others can not

13See Chakravarty and Maharaj (2015) for an inequality index that weighs categories
based on their relative position in the distribution.
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be ordered, we have combined all these categories as literate without formal

schooling. For our study, we consider only the working age population (as

defined by OECD) and thus restrict the age groups to 15-64 years.

In table 1 we present the cumulative distribution of the educational at-

tainments for males and females across all the three NSSO survey rounds. It

is readily observed that the educational attainment of males are better than

that for females. For example, the percentages of illiterates is nearly double

for the females compared to that of the males. On the other hand the better

off categories like graduates and above, the percentages of female is much

lower than male. However, it is clearly evident from this table that Indian

educational attainment has improved substantially from the period 2004-05

to 2011-12.

Notice that the median category for the male and the female is different

across all the three NSSO rounds. For the males the median is 4, 5 and 5

for 61st, 66th and 68th round, respectively. On the other hand the median

category for the female for these NSSO rounds are 1,4, and 5, respectively.

We consider our theory introduced in the theoretical section of this paper for

addressing the issue of educational inequality. If we observe table 1 closely,

the proposed two step algorithm fails to provide conclusive result for 2004-05.

Nevertheless, for both 66th and 68th round there is clear evidence that males

have lower inequality in education compared to that of the females.

For an illustration, of the two-stepped algorithm we consider the 68th

round data. The median category for the males and females is 5 and 4, respec-

tively. In the first step we introduce 1 (=6-5) unpopulated category before

the first category of both the distributions. In the second step we slide the

distribution of the male once towards the left. Thus the counterfactual dis-

tributions following this two stepped algorithm for the males and females are

M = {0.187, 0.191, 0.282, 0.407, 0.603, 0.773, 0.88, 0.899, 0.976, 1, 1} and

F = {0, 0.372, 0.376, 0.463, 0.576, 0.727, 0.847, 0.926, 0.934, 0.984, 1},
respectively. Notice that median categories for both these counterfactual dis-

tributions (i.e., M and F ) are equal to 5. Further, it is straightforward to

show that the distribution M SS dominates F (see definition 4). The class

of indices that shows higher inequality among the females is characterized in

theorems 4.3 and 4.5 and exemplified in table 2.
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6 Conclusion

In this paper we address some problems associated with inequality order-

ing of ordinal variables. Most of the papers written in this area is built on

the ideas of median preserving spread and eventually on S dominance intro-

duced in a seminal article by Allison and Foster (2004). Unlike others we

do not limit our attention only on the S dominance but also focus on the

cumulative version of S dominance introduced by Chakravarty and Maharaj

(2015): SS dominance. We begin by exploring the association between cer-

tain types of transfers of population mass to that of SS dominance linked

through such transfers. We also establish the relationship between inequality

orderings of certain family of inequality indices to that of S and SS domi-

nance. Finally, the paper characterizes the class of inequality indices which

allows comparison between ordinal distributions having different median cat-

egories. We suggest a counterfactual based approach such that dominance

ordering of certain counterfactual distributions have a direct relationship on

the inequality ordering of the original distributions. We show that the pro-

posed approach is more general to the only contribution in this direction by

Naga and Yalcin (2010). To serve an example, the proposed methodology

is also applied to data on educational attainments in India. Inequality or-

derings of working age population (as per definition of OECD) of males and

the females is calculated where it is observed that in general, females have a

higher level of inequality compared to males.

This paper is amenable to further extensions. Throughout the paper we

assume that median category is unique. In a recent paper Kobus (2015)

have redefined median such that ordinal variables may have more than one

median. A future research direction is to extend this paper in the context

of non-unique median categories. An yet another area that holds promise is

to establish the equivalence between population transfers and families of in-

equality indices with higher order dominance orderings (i.e. orderings above

the second order).
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Table 1: Cumulative distribution of educational attainments in the
twenty major Indian States

Educational Categories Round 61 Round 66 Round 68
Males Females Males Females Males Females

Illiterate 0.264 0.510 0.195 0.397 0.187 0.372

Literate without formal schooling 0.289 0.530 0.200 0.402 0.191 0.376
Below Primary 0.377 0.601 0.282 0.484 0.282 0.463

Primary 0.527 0.715 0.419 0.607 0.407 0.576

Middle 0.723 0.842 0.623 0.755 0.603 0.727

Secondary 0.848 0.918 0.790 0.865 0.773 0.847
Higher Secondary 0.920 0.960 0.892 0.934 0.880 0.926
Diploma 0.933 0.966 0.908 0.941 0.899 0.934
Graduate 0.986 0.992 0.980 0.986 0.976 0.984
Post Graduate and above 1.000 1.000 1.000 1.000 1.000 1.000

Notes
1 Authors’ calculations based on data from: NSSO Employment-Unemployment Rounds 61, 66, 68

corresponding to years 2004-05,2009-10 and 2011-12, respectively.
2 Age Group: 15-64 years.
3 Median category is represented in the box.
4 In this table the figures corresponds to the cumulative distribution function of educational at-

tainments in twenty major states of India. Following are the descriptions of the educational
categories: not literate -1, below primary (including literate without formal schooling through
EGS/NFEC/AEC/TLC/ others) -2, primary -3, middle -4, secondary - 5, higher secondary -6,
diploma/certificate course -7, graduate -8, postgraduate and above -9.

Table 2: Index of inequality for educational attainments in the
twenty major Indian States

Educational Categories Round 61 Round 66 Round 68
Parameter Males Females Males Females Males Females
γ = 1 0.377 0.366 0.392 0.445 0.392 0.439
γ = 0.81 (Calibrated) 0.329 0.328 0.345 0.404 0.344 0.394
γ = 0.5 0.231 0.245 0.248 0.310 0.245 0.293
γ = .3 0.152 0.169 0.167 0.219 0.163 0.202

Notes
1 Authors calculations based on CDF table 1.
2 The mathematical form of the index may be written as follows:

I(X; γ) = 1−
2γ

n− 1

n−1∑
i=1

∣∣∣∣Xi − 0.5

∣∣∣∣γ

This index is bounded between 0 and 1. The parameter γ measures the weight given to
the median category. Whenever γ approaches zero, the relative weight given to the me-
dian category increases, and the relative contribution of the other categories is reduced.
Calibrated Parameter: Apouey has argued that polarization is medium when all indi-
viduals are uniformly distributed over categories. The author has provided calibrated
parameter γ∗, for which I(X; γ∗) = 1/2. The parameter γ∗, however, depends on n.
Since we have n=10, in that case γ∗ = 0.81.
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7 Mathematical appendix

We use two results from Marshall and Olkin 1979 as the following two lem-

mas:

Lemma 7.1. If a′ = {a1, a2, .., an} and b′ = {b1, b2, .., bn} be any two vectors

in Rn, such that a1 ≤ a2 ≤ ... ≤ an and b1 ≤ b2 ≤ ... ≤ bn, the following

conditions are equivalent:

1)There exists a bi-stochastic matrix Q which is not a permutation matrix

such that a ≥ Qb.

2) a1 + a2 + .. + ak ≥ b1 + b2 + .. + bk for all k ∈ {1, 2, .., n} with > for at

least one k, or equivalently a �SISD b.

3) For all strictly concave, increasing and real valued function u defined on

R;
n∑
i=1

u(xi) >
n∑
i=1

u(yi).

For the proof, see Marshall and Olkin (1979).

Lemma 7.2. If θ() is strictly increasing and strictly concave function then

the function W : Rn → R defined as W =
n∑
i=1

θ(Xi) is increasing and a

strictly S concave function.

For the proof, see (Marshall and Olkin, 1979, pp 64).

To prove theorem 3.2, we extend lemma 7.1 as follows:

Lemma 7.3. Using the notations of lemma 7.1, a 6�SISD b and a 6= b, implies

there exists a strictly increasing, strictly concave, continuous and real valued

u() such that
n∑
i=1

u(ai) <
n∑
i=1

u(bi) (8)

Proof: From lemma 7.1 a 6�SISD b =⇒ there exists a real valued

function u() which is strictly concave, strictly increasing such that either
n∑
i=1

u(ai) <
n∑
i=1

u(bi) or
n∑
i=1

u(ai) =
n∑
i=1

u(bi). If strict inequality holds, the proof

is complete. If
n∑
i=1

u(ai) =
n∑
i=1

u(bi) then we show that there necessarily ex-

ists a real valued function h() which is strictly concave and strictly increasing

such that
n∑
i=1

h(ai) <
n∑
i=1

h(bi). Clearly, a 6= b =⇒ ∃ a real scalar v such that

#ai|ai=v > #bi|bi=v∀i ∈ {1, 2, ..., n}. We select δ1 and δ2 with v ∈ [δ1, δ2] such
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that ai = v ⇐⇒ ai ∈ [δ1, δ2] and bi = v ⇐⇒ bi ∈ [δ1, δ2]∀i ∈ {1, 2, ..., n}.
Now define the following function

h(z) = u(z) if z 6∈ [δ1, δ2]

= λu(z) + (1− λ)

[
u(δ2)− u(δ1)

δ2 − δ1

(z − δ1) + u(δ1)

]
if z ∈ [δ1, δ2](9)

where λ ∈ (0, 1)∀z ∈ R.

Following lemma 7.7, h() is strictly increasing, strictly concave and h(z) <

u(z)∀z ∈ (δ1, δ2). Thus
n∑
i=1

h(ai) <
n∑
i=1

h(bi). Q.E.D

Lemma 7.4. If f(x) is strictly concave and L(x) is a linear function then

λf(x) + (1− λ)L(x) is strictly concave.

Proof: f(x) is strict concave =⇒

f(ηx+ (1− η)y) > ηf(x) + (1− η)f(y) (10)

Linearity of L() =⇒

L(ηx+ (1− η)y) = ηL(x) + (1− η)L(y) (11)

10 ×λ+ 11 ×(1− λ) =⇒

λf(ηx+ (1− η)y) + (1− λ)L(ηx+ (1− η)y) > ηL(x) + (1− η)L(y) >

η[λf(x) + (1− λ)L(x)] + (1− η)[λf(y) + (1− λ)L(y)]

Hence, proved.

Lemma 7.5. If f(x) is strictly concave and L(x) is a straight line then f(x) =

L(x) can be satisfied in at most 2 (distinct) points.

Proof : If f(x) = L(x) is satisfied in more than two points, we can take

three points , call them x, y and z with x < y < z and f(x) = L(x),

f(y) = L(y) and f(z) = L(z). We can also set a λ ∈ [0, 1] such that

λx + (1 − λ)y = z. Then by linearity of L(), L(z) = λL(x) + (1 − λ)L(y).

Strict concavity of f() =⇒ f(z) > λf(x) + (1 − λ)f(y) which violates

f(x) = L(x), f(y) = L(y) and f(z) = L(z). Q.E.D
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Lemma 7.6. If f() is strictly concave, L() is linear and f(p) = L(p) then

f(x) > L(x) for some x > p =⇒ f(x) < L(x)∀x < p

f(x) > L(x) for some x < p =⇒ f(x) < L(x)∀x > p

Proof: Suppose not, then f(x) > L(x) for some x > (<)p and f(x) ≥
L(x) for some x < (>)p.

Take any x > (<)p such that f(x) > L(x) and call it x1. Take any

x < (>)p such that f(x) > L(x) and call it x2. Note that p can be expressed

as p = λx1 + (1− λ)x2 : λ ∈ [0, 1]. Now, strict concavity of f() =⇒

f(p) > λf(x1) + (1− λ)f(x2)

and linearity of L() =⇒

L(p) = λL(x1) + (1− λ)L(x2)

which clearly violates f(p) = L(p), f(x1) > L(x1) and f(x2) ≥ L(x2).

Q.E.D

Lemma 7.7. Given lemma 7.4, 7.5 and 7.6 we can show that if f() is strictly

concave and

h(x) = f(x) if x 6∈ [a, b]

= λf(x) + (1− λ)

[
f(b)− f(a)

b− a
(x− a) + f(a)

]
if x ∈ [a, b] (12)

where λ ∈ [0, 1], then h(x) is strictly concave.

Proof : Define a function g : R −→ R

g(x) = λf(x) + (1− λ)

[
f(b)− f(a)

b− a
(x− a) + f(a)

]
(13)

and

L(x) =
f(b)− f(a)

b− a
(x− a) + f(a) (14)

Note that

L(a) = f(a)

L(b) = f(b) (15)
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By lemma 7.4, g(x) is strictly concave.

h(x) = f(x) if x 6∈ [a, b]

h(x) = g(x) if x ∈ [a, b] (16)

Note that ∀x ∈ (a, b), x can be expressed as x = ηb+ (1− η)a∀η ∈ (0, 1).

Following strict concavity of f() we can write

f(x) >
f(b)− f(a)

b− a
(x− a) + f(a) (17)

This implies f(x) > L(x) and since h(x) = λf(x) + (1 − λ)L(x) with

λ ∈ (0, 1), hence we can write:

f(x) > h(x) > L(x) ∀x ∈ (a, b) (18)

Now following lemma 7.6 we can also write f(x) < L(x) =⇒

∀x 6∈ [a, b], f(x) < g(x) < L(x) (19)

Consider x, y, z ∈ R such that x < z < y and ∃λ ∈ (0, 1); st z =

λx+ (1− λ)y. We have to show that

h(z) > λh(x) + (1− λ)h(y) (20)

There may be five cases which we prove individually to prove this lemma.

Case 1: If x, y, z 6∈ (a, b); h(z) > λh(x) + (1 − λ)h(y). It follows, since

∀x 6∈ (a, b)h(x) = f(x).

Case 2: If x ∈ (a, b) while y, z 6∈ (a, b) then f(z) > λf(x) + (1 −
λ)f(y) =⇒ f(z) > λh(x) + (1− λ)f(y) ∵ f(x) > h(x)∀x ∈ (a, b) following

equation 18. Thus, h(z) > λh(x) + (1 − λ)h(y) ∵ y, z 6∈ (a, b), h(z) = f(z)

and h(y) = f(y) following equation 12.

Using the same logic we can prove h() is concave when y ∈ (a, b) and

x, y 6∈ (a, b).

Case 3: If x, z ∈ (a, b) while y 6∈ [a, b]. Following lemma 7.4 g(x ) is

strictly concave =⇒ g(z) > λg(x) + (1 − λ)g(y) =⇒ g(z) > λg(x) +

(1− λ)f(y) ∵ f(y) < g(y) by following equation 19. Since x, z ∈ (a, b) =⇒
h(x) = g(x) and h(z) = g(z). This implies equation 20 holds for this case.

Similar logic also holds if y, z ∈ (a, b) while x 6∈ [a, b].
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Case 4 If x, y, z ∈ [a, b]; by lemma 7.4 g() is strictly concave, which

implies g(z) > λg(x) + (1− λ)g(y). By construction h(x) = g(x)∀x ∈ [a, b].

Hence, equation 20 is satisfied when x, y, z ∈ [a, b].

Case 5: If x, y 6∈ (a, b) while z ∈ (a, b). Following lemma 7.4, g(z) >

λg(x) + (1 − λ)g(y). This implies g(z) > λf(x) + (1 − λ)f(y) ∵ ∀x, z 6∈
(a, b), g(x) ≥ f(x) and g(y) ≥ f(y) (following equation 19). This implies,

following equation 16, that h(z) > λh(x) + (1− λ)h(y).

Thus strict concavity of h() is proved. Q.E.D
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