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Abstract

The last five decades have witnessed dramatic changes in crude oil price dynamic. We

identify the influence of extreme oil shocks and changing oil price uncertainty dynamic

associated with economic and political events. Neglecting these features of the data can

lead to model misspecification that gives rise to an explosive volatility process for oil price

uncertainty and erroneous output growth dynamic responses to oil shocks. Unlike past

studies, our results show that the sharp increase in oil price uncertainty post mid-1985

has a pernicious effect on output growth. Output growth responds symmetrically

(asymmetrically) to positive and negative shocks in the period when oil price

uncertainty is lower (higher) and more (less) persistent. These contrasting results

from Elder and Serletis (2010) highlight the importance of accounting for outliers and

volatility breaks in oil price and output growth to better understand the response of

economic activity to oil shocks in the presence of oil price uncertainty.

Keywords: Oil price uncertainty, Impulse response, Volatility breaks, Outliers
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1 Introduction

There is an established literature that uncertainty about oil prices will tend to reduce current in-

vestment (Bernanke, 1983; Elder and Serletis, 2010) and consumer expenditures (Edelstein and

Kilian, 2009). The theoretical underpinning for real options in firm-level investment decisions

predicts that firms are likely to delay making irreversible decisions in the face of uncertainty

about oil prices particularly when the cash flow from investment is contingent on oil prices

(Brennan and Schwartz, 1985; Majd and Pindyck, 1987; Brennan, 1990). The decision by

firms to postpone investment can in aggregate give rise to cyclical fluctuations in investment

(Bernanke, 1983; Pindyck, 1991). On the other hand, people’s increased precautionary sav-

ings in response to greater risks of being made unemployed as the economy slows down in the

face of increased oil price uncertainty will result in falling consumer expenditures, particularly

consumer durables. Together, these effects will cause aggregate output to further decline.

This paper investigates how oil price uncertainty and oil price shocks affect real economic

activity. Our contributions lie in the empirical assessment of how changes in oil price uncertainty

dynamics and oil price shocks in the last five decades have impacted on aggregate output

in the U.S. economy. Past studies have neglected to consider the change in the underlying

dynamic of oil prices over this period, which we show have ramifications for the study of oil

price shocks on real economic activities in the presence of oil price uncertainty. We document the

systematic increase in the volatility of crude oil prices since the beginning of 1986 by dating the

structural break in oil price return volatility. Our results corroborate the findings of Baumeister

and Peersman (2010) who argue that the rise in oil price volatility since 1986 is attributed

to decreasing short-run price elasticities of oil supply and oil demand. The lack of spare oil

production capacity and limited investment in oil industry post mid-1980s have given rise to

an increase in oil price volatility. At the same time, this increased uncertainty has deepened

oil futures markets leading to further reduction in the sensitivity of oil supply and demand to

changes in crude oil prices. We also show that there are mean breaks in the data on output
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growth and oil price changes which need to be accounted for when studying the effect of oil

price uncertainty on output growth.

The empirical framework follows the approach of Elder and Serletis (2009, 2010, 2011) and

Bredin et al. (2011), who measure the impact of oil price uncertainty in a vector autoregressive

(VAR) model. Oil price uncertainty is characterised by a generalised autoregressive conditional

heteroskedasticity (GARCH) process. Using the GARCH process to model macroeconomic

uncertainty has become very popular in the literature on understanding the effect of uncertainty

on macroeconomic performance (Chua et al., 2011).1 Further, by endogenising the movement

of oil prices within the VAR system, the assumption of exogenous oil prices is relaxed. The

impact of oil price uncertainty on output is examined through the coeffi cient associated with

the GARCH-in-Mean term in the VAR specification. The effect of oil price shocks on output,

conditional on the sign of shock, is analysed through the impulse response function obtained

from the VAR GARCH-in-Mean model.

An important, yet often neglected, feature of crude oil price when examining its effect on

economic activity is that crude oil price has undergone dramatic changes in its behaviour in the

last five decades. Following World-War II, oil prices experienced a number of extreme shocks

which include the OPEC oil embargo of 1973-1974, the Iranian revolution of 1978-1979, the

Iran-Iraq War between 1980-1988, the first Persian Gulf War in 1990-91, the oil price spike of

2007-2008, and the oil price plunge of 2015. These shocks can cause abrupt shifts not only

in the mean of oil prices but also in the unconditional and conditional variances (Charles and

Darné, 2014). The latter, which is used as a proxy for oil price uncertainty may also experience

breaks in the GARCH process parameters, thereby influencing the degree of persistence in the

uncertainty process.

1The proxy for uncertainty which is measured by the conditional variance of oil prices is subject to certain
caveats. This proxy measures the dispersion in the forecast error produced by the econometric model estimated
using historical data, and it therefore may not capture other forward-looking components of uncertainty other
than the one parameterised in the model. Nevertheless, the use of autoregressive conditional heteroskedasticity-
based measures of uncertainty is widespread in the empirical literature for modelling output growth uncertainty
(Grier et al., 2004; Chua et al., 2011), inflation uncertainty (Engle, 1982; Elder, 2004), and oil price uncertainty
(Elder and Serletis, 2009, 2010).
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A known fact about oil price return volatility is that it can exhibit long-range dependence

or integrated generalised conditional heteroskedasticity (IGARCH) effects. This empirical fea-

ture can emanate from non-constant unconditional variances (Diebold, 1986; Lamourex and

Lastrapes, 1990). More recently, it has been shown both empirically and theoretically that

volatility models which accommodate structural changes can also give rise to this IGARCH

effect (Mikosch and Stărică, 2004; Hillebrand, 2005; Perron and Qu, 2010). These structural

changes can arise from outliers in the form of extreme oil shocks and/or variance shifts in oil

prices. Identification of variance shifts can be diffi cult in the presence of outliers. Rodrigues

and Rubia (2011) show that outliers like extreme oil shocks can give an impression that there

are volatility breaks when in fact there are none. For this reason, we first identify the presence

of breaks in mean and adjust the data for these breaks before detecting the presence of variance

shifts.

Like oil price uncertainty, the degree of persistence in conditional macroeconomic volatility

can be a result of failing to account for breaks in variance caused by extreme shocks (Diebold,

1986). Stock and Watson (2012) also point to the observation that macroeconomic shocks

were much larger than previously experienced, particularly in the U.S., and they were largely

attributed to shocks associated with financial disruptions and heightened uncertainty. One

example is the effect of the recent global financial crisis when the U.S. economy experienced

significant contraction. When assessing the effect of oil price uncertainty on output growth in

the presence of these outlier events, it is important to separate the fall in output growth caused

by the crisis from oil price uncertainty, so that the output growth retarding effect of oil price

uncertainty is not overstated.

We rely on the outlier detection test of Laurent et al. (2016) and the volatility break detection

test of Sansó et al. (2014), which is based on the iterative cumulative sum of squares (ICSS)

algorithm developed by Inclán and Tiao (1994).2 Accounting for outliers in the volatility of

2Recently, Rodrigues and Rubia (2011) studied the size properties of Sansó et al.’s (2004) ICSS algorithm
for detecting structural breaks in variance under the hypothesis of additive outliers. Their results indicate that
neglected outliers tend to bias the ICSS test. They advise applying the modified ICSS algorithm on outlier-
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crude oil markets is paramount for modelling oil price uncertainty because they can bias: (i) the

estimates of the parameters of the equation governing volatility dynamics; (ii) the regularity

and non-negativity conditions of GARCH-type models; and (iii) the detection of structural

breaks in volatility. Equally, breaks in the volatility of oil prices have repercussions for the

choice of model used to characterise oil price uncertainty. More importantly, for the purpose

of evaluating the effect of oil price shocks and oil price uncertainty on economic activity, the

correct specification of the conditional variance of output and oil price is also important for

three reasons. Firstly, hypothesis tests about the mean in a model in which the variance is

misspecified can lead to invalid inference. Secondly, inference about the conditional mean can

be inappropriately influenced by outliers and high-variance episodes if they are not accounted for

(Hamilton, 2008). Lastly, impulse responses generated from the misspecified model parameter

estimates due to outliers and high-variance episodes may misrepresent the effects of oil shocks

on real economic activity.

Our empirical results for crude oil price return volatility demonstrate that it is important

to account for both outliers and volatility breaks when characterising oil price uncertainty in

the last five decades. Failing to accommodate structural changes in the oil price uncertainty

can exaggerate the extent of volatility persistence and distort the effects of oil shocks on real

economic activity examined through impulse response functions. We show that following proper

accounting of breaks in mean and variance by dividing our sample into two sub-samples with the

break date chosen to coincide with the date when the conditional variance in oil price shifted,

the effects of oil price uncertainty on output growth differ starkly across the two samples. There

is no evidence to suggest that oil price uncertainty has a pernicious effect on output growth in

the period 1973:10-1985:06 when oil price uncertainty was deemed to be lower. However, after

mid-1985 the rise in oil price uncertainty tends to cause output growth rate to decline. The

response of output growth to positive and negative oil shocks in the two sub-samples also differ

significantly, with a bigger response observed in the period prior to the increase in oil price

adjusted return series to identify sudden shifts in volatility.
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uncertainty.

The remainder of the paper is structured as follows. Section 2 introduces the model VAR

GARCH-in-Mean model commonly used to study the response of oil price shock and uncertainty

on output growth. The implications of the volatility persistence from the different GARCH

specifications on the impulse responses generated by this model are also discussed. Finally, the

section ends by discussing the method for identifying possible extreme oil shocks and break in

variance, and the treatment of the series when subject to these structural changes. Section 3

describes the U.S. data, and the empirical results are presented in Section 4. Section 5 concludes.

2 Model and Estimation

2.1 A model of oil price uncertainty and output growth

Our empirical model is a structural VAR with multivariate GARCH-in-Mean which is employed

by Elder (2003, 2004) and Elder and Serletis (2009, 2010). The VAR model includes only two

variables, namely output growth and change in oil prices. The choice of the two variables is

consistent with the recommendation of Edelstein and Kilian (2007) who argue that the bivari-

ate VARs in output growth and the change in price of oil are adequate and appropriate for

summarising the relevant dynamics. More generally, the model can be written as follows:

Ayt = C + Γ(i)yt−i + ΛH
1/2
t + et (1)

and more specifically,

[
1 0
a21 1

] [
∆IPIt
∆Oilt

]
=

[
C11
C22

]
+

p∑
i=1

[
Γ11(i) Γ12(i)
Γ21(i) Γ22(i)

] [
∆IPIt−i
∆Oilt−i

]
+

[
λ
√
hOil,t
0

]
+

[
eIPI,t
eOil,t

]
.

(2)

Here, we assume that Cov(eIPI,t, eOil,t) = 0. Note also that the specification in equation (2) or-

thogonalises the reduced form errors by allowing ∆Oilt to depend on contemporaneous ∆IPIt
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through the coeffi cient a21 while restricting ∆Oilt from influencing ∆IPIt contemporaneously.

This restriction implies that ∆Oilt responds quickly to innovations in ∆IPIt, while ∆IPIt re-

sponds to ∆Oilt innovations with a one-month lag. This restriction is deemed appropriate given

that oil is traded as a commodity and its price adjusts rapidly to new information. By orthog-

onalising the reduced form errors with this restriction, we are able to identify the structural

coeffi cients.

In equation (1) the 2 × 1 vector of observable variables, yt follows a vector autoregres-

sive process whose lag order is determined by the Schwarz criterion (SC), and its dynamic is

determined by a multivariate GARCH-in-Mean process, which captures the possible effect of

changes in oil price uncertainty on output growth. Given Ft−1 is the information set at time

t−1, et|Ft−1 ∼ (0, Ht) such thatHt follows a VEC formmultivariate GARCH process. The VEC

model is a direct generalisation of the univariate GARCH and assumes that Ht is determined

by reference to past errors and historical volatility:

ht = vec(Ht) = A1 + A2vec(et−1e
′
t−1) + A3ht−1, (3)[

hIPI,t
hOil,t

]
=

[
a111
a121

]
+

[
a211 0
0 a222

] [
e2IPI,t−1
e2Oil,t−1

]
+

[
a311 0
0 a322

] [
hIPI,t−1
hOil,t−1

]
(4)

et = H
1
2
t zt,

zt ∼ i.i.d. N(0, I).

Because A2 and A3 assumed a diagonal matrix with zero off-diagonal elements, there are no

covariance terms in the conditional variance specification. This assumption can be relaxed.3

Nevertheless, for the purpose of comparison with earlier studies by Elder and Serletis (2009,

2010), we have retained this assumption.

Our measure of oil price uncertainty is hOil,t, the conditional variance of oil which represents

3Rahman and Serletis (2012) study the effects of oil price uncertainty on the Canadian economy using a
multivariate conditional variance specification that does not impose this assumption.
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the one-month ahead forecast for oil price change and the dispersion of the forecast error. The

greater is hOil,t the more uncertain is the impending realisation of oil prices. The effect of

changes in oil price uncertainty on output growth is captured by the parameter λ in equation

(2). If the real effect of oil price uncertainty tended to retard output growth, then the λ estimate

should be negative and significant. It is common in the literature to refer to the dampening

effect of oil price uncertainty on output growth arising from both positive and negative oil price

shock as an asymmetric response in the VAR model (Brennan and Schwartz, 1985; Bernanke,

1983). This is usually analysed by examining the response of production to positive and negative

oil shocks using impulse-response functions. In the event that the response of production to a

positive oil shock does not mirror the response to a negative oil shock in terms of having the

same magnitude but with opposite sign, then the response of production is asymmetric. The

model parameters are obtained using maximum likelihood estimation.

2.2 Impulse Response Function

In understanding the response of endogenous variables to the impact of a unit or standard

deviation shock in the VAR system, it is common to study the impulse-response function.

Elder (2003) provides an analytical representation of the impulse responses in a VAR model

with GARCH-in-Mean. The impulse-response function captures the time profile of the effect of

a shock on the m−th variable, m ∈ {1, 2}, at time t, being emt, on the expected value of yv,t+n

where n ≥ 0. Note that in the case of our model, m = 1 denotes IPI while m = 2 denotes Oil.

Mathematically, we write the impulse-response function of yv,t+n at horizon n given information

up to Ft−1 as:
∂E(yv,t+n|em,t,Ft−1)

∂em,t
. (5)

The impulse response for yv,t+n stemming from a shock em,t takes the following analytical
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expression

∂E(yv,t+n|em,t,Ft−1)
∂em,t

=
(
ΘnA

−1)
{v,m} +

n−1∑
i=0

(
ΘiA

−1Λ (A2 + A3)
n−i−1A2

)
{v,:}

(Υ1 + Υ0) (6)

where Υ1 is an 4 × 1 vector such that its (2(m− 1) +m)-th row contains 2emt and zeros else-

where, andΥ0 is an 4×1 vector such that its ((j − 1) 2 + i)-th row and its (2 (i− 1) + 1 + (j − 1)-

th row contain ejt for i, j = 1, 2 and i 6= j. The subscripts {v,m} indicate elements in the v-th

row and m-th column of a matrix and {v, :} indicates the v-th row vector. Here, Ξi and Θi are

sub-matrices of Ω∗i where Ω∗i =

[
Ξ̃i Θ̃i

Ξi Θi

]
and is a product of Ω1 and Ω∗i−1with Ω∗0 = I3 and

Ω∗s = 0 for s < 0. Note also that Ω(L) = I −
[

Φ(L) Ψ∗(L)
0 A−1Γ(L)

]
where Ψ∗ is an null matrix.

It is important to highlight that the coeffi cient estimates of the GARCH process hOil,t given

by â222 + â322 need to be strictly less than unity to ensure that the effect of oil shock on output

growth will dissipate over time. In this regard, it is important that any outliers and regime

changes in the underlying oil price volatility are identified and accounted for appropriately to

ensure that the GARCH parameter estimates are not biased towards an integrated or even an

explosive GARCH process. An evaluation of the response of output growth to oil price shocks

critically relies on unbiased parameter estimates of the model.

2.3 Detecting additive outliers

There are methods for detecting outliers in GARCH-type models based on interventional analy-

sis approach which was first put forward by Box and Tiao (1975). In this study we apply the

semi-parametric procedure to detect additive outliers proposed by Laurent et al. (LLP) (2016).4

They assume that the returns rt are described by the ARMA(p,q)-GARCH(1,1) model, which

is defined in equations (7)-(9).

4The test of Laurent et al. (2016) is similar to the non-parametric tests for jumps proposed by Lee and
Mykland (2008) and Andersen, Bollerslev, and Dobrev (2007) for low-frequency data.
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Consider the return series with an independent outlier component atIt, defined as

r∗t = rt + atIt (7)

where r∗t denotes observed returns, It is a dummy variable taking the value 1 in the case of an

additive outlier on day t and 0 otherwise while at is the outlier size. The model for r∗t has the

properties that an additive outlier atIt will not affect σ2t+1 (the conditional variance of rt+1), and

it allows for non-Gaussian fat-tailed conditional distributions of r∗t . LLP then use the bounded

innovation propagation (BIP)-ARMA model proposed by Muler, Peña and Yohai (2009) and

the BIP-GARCH(1,1) model proposed by Muler and Yohai (2008) to obtain robust estimations

of µt and σ
2
t , respectively. These are shown in equations (7)-(9) as µ̃t and σ̃t, respectively and

that they are robust to potential presence of additive outliers atIt. In other words, the model is

estimated based on r∗t and not on rt. The BIP-ARMA and BIP-GARCH(1,1) are defined as

µ̃t = µ+
∞∑
i=1

ξiσ̃t−iω
MPY
kδ

(J̃t−i) (8)

σ̃2t = ω + α1σ̃
2
t−1cδω

MPY
kδ

(
J̃t−1

)2
+ β1σ̃

2
t−1 (9)

, respectively where ξi are the coeffi cients of the AR(p) and MA(q) polynomials defined in

equation (8), ωMPY
kδ

(.) is the weight function, and cδ a factor which ensures that the conditional

expectation of the weighted squared unexpected shocks is the conditional variance of rt in the

absence of outliers (Boudt et al., 2013).

Consider the standardized return on day t, which is given by

J̃t =
r∗t − µ̃t
σ̃t

. (10)

To detect the presence of additive outliers they test the null hypothesis H0 : atIt = 0 against
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the alternative H1 : atIt 6= 0. The null is rejected if

max
T
|J̃t| > gT,λ, t = 1, . . . , T (11)

where gT,λ is the suitable critical value.5 If H0 is rejected, a dummy variable is defined as follows

Ĩt = I
(
|J̃t| > k

)
(12)

where I(.) is the indicator function, with Ĩt = 1 when an additive outlier is detected at time t

and 0 otherwise. LLP show that their test does not suffer from size distortions irrespective of

the parameter values of the GARCH model from Monte Carlo simulations. The filtered returns

or adjusted data are obtained as follows:

r̃t = r∗t − (r∗t − µ̃t)Ĩt. (13)

2.4 Detecting variance changes

Having identified and adjusted the data for possible additive outliers, we apply the CUSUM-

type test of Sansó et al. (2004) to the series ∆IPIt and ∆Oilt. The test is based on the

iterative cumulative sum of squares (ICSS) algorithm developed by Inclán and Tiao (1994).

This algorithm makes it possible to detect multiple breakpoints in variance.

Define ỹt as the mean-adjusted series for yt so that it has a mean of zero for yt = {∆IPIt,∆Oilt}.

Further assume that {ỹt} is a series of independent observations from a normal distribution with

zero mean and unconditional variance σ2t for t = 1, .., T. We know from the data summary sta-

tistics that both ∆IPIt and ∆Oilt display serial dependence/correlation (see Section 3) and

that the violation of the independence property of the series will cause serious size distortions

to the ICSS test statistic (Sansó et al., 2004). Sansó et al. (2004), therefore, propose a test

5The critical values are defined by gT,λ = − log (− log(1− λ)) bT + cT , with bT = 1/
√
2 log T , and cT =

(2 log T )1/2 − [log π + log(log T )]/[2(2 log T )1/2]. Laurent et al. (2016) suggest setting λ = 0.5
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that explicitly takes into consideration the fourth moment properties of ỹt and the conditional

heteroskedasticity. The non-parametric adjustment to the test statistic allows for ỹt to obey a

wide class of dependent processes under the null hypothesis. This is discussed below.

Assume that the variance within each interval is denoted by σ2j for j = 0, 1, ..., NT where

NT is the total number of variance changes with 1 < κ1 < κ2 < ... < κNT < T being the set of

breakpoints. Accordingly, the variances over the NT intervals are defined as:

σ2t =


σ20, 1 < t < κ1
σ21, κ1 < t < κ2

...
σ2NT , κNT < t < T

(14)

The cumulative sum of the squared observations, Ck, is used to estimate the number of

variance changes and to identify the point in time when the variance shifts such that Ck =
k∑
t=1

ỹ2t for k = 1, ..., T. Sansó et al. (2004) propose the adjusted test statistic —non-parametric

adjustment based on the Bartlett kernel —given by:

AIT = sup
k

∣∣(T/2)0.5Gk

∣∣ (15)

where Gk = λ̂
−0.5 [

Ck −
(
k
T

)
CT
]
and λ̂ = γ̂0 + 2

∑m
l=1 [1− l(m+ 1)−1] γ̂l.

Here, γ̂l = T−1
T∑

t=l+1

(
ỹ2t − σ̂2

) (
ỹ2t−l − σ̂2

)
and σ̂2 = T−1CT , with CT =

T∑
t=1

ỹ2t . The lag

truncation parameter m is selected using the Newey and West (1994) procedure. Under general

conditions, the asymptotic distribution of AIT is also given by supr |W ∗(r)| and the finite

sample critical values are obtained from simulation.

3 The Data and Summary Statistics

The empirical investigation is based on monthly observations on a domestic index of industrial

production (IPI) for the U.S. economy for the period from October 1973 to December 2015.

Given that many production decisions have real option components with related labour costs
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such as hiring, training and firing, as well as short-lived physical capital such as machinery, and

other materials which may not be recoverable, the use of IPI is appropriate for the purpose of

analysis. In addition, IPI data measure output production in industries that are both energy

intensive and extensive with such industries including mining, manufacturing and utilities.6

Mining industries engage in direct exploration of oil and gas and other energy intensive mining

operations. Manufacturing and utilities industries are equally energy intensive. The output

data are seasonally adjusted at 2012 constant prices.

Bredin et al. (2011) point out a potential problem with the inclusion of IPI data in 2008 when

the global financial crisis had an adverse impact on output growth in the U.S. and Canadian

economies, to the extent that measuring the impact of oil price uncertainty on output growth

may be biased by the adverse effect of the crisis. This issue, however, does not present a problem

to our analysis as the break detection in the mean of output growth identifies the adverse effect

of the financial crisis on output growth and the output growth series can be adjusted for this

effect.

For oil prices they are measured in nominal local currency. Like Blachard and Gali (2007)

and Bredin et al. (2011) nominal oil prices are preferred to real oil prices for the reason that the

former allows the isolation of uncertainty associated with oil prices from uncertainty associated

with the aggregate price level. The U.S. oil price is the cost of imported crude oil free on board,

which is approximately the average of OPEC and non-OPEC free on board crude oil prices

since the U.S. imports oil largely from Canada and other OPEC countries. The oil price series

is obtained from the U.S. Department of Energy.

- Table 1 about here -
6While aggregate investment data may be deemed more appropriate, the downside of using such data is that

many of the industries, for example, software industries, included in aggregate investment are not energy inten-
sive. Data for aggregate investment exist at a lower frequency, usually quarterly. Lastly, aggregate investment
data do not include production decisions and hence the real options component which is sensitive to oil or energy
prices may not be adequately reflected in the data (Bredin et al., 2011).
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Table 1 presents summary statistics of the data. Output and oil prices are also expressed

in annualised growth rate, each is denoted by the log first difference of the series multiplied by

1200, so that∆IPIt = 1200×ln(IP İt/IPIt−1) and∆Oilt = 1200×ln(Oilt/Oilt−1), respectively.

All series, be they in levels or first difference, show deviation of skewness and kurtosis from zero

except for the IPIt of the U.S. The Jarque-Bera test of normality strongly rejects the null

of normality for all series. The ARCH test also indicates significant evidence of conditional

heteroskedasticity in the data, at least up to lag order 6. The Augmented Dickey Fuller (ADF)

test fails to reject the null of a unit root in the series in levels. However, a cursory look at the

plots of the series in levels (see Figure 1, Panel 3) suggests that oil prices may be subject to

structural breaks. The data in first difference of the series for IPI and oil prices also exhibit

significant shifts in their mean, suggesting that the standard unit root test may not be adequate

in identifying the stationarity property of the series. It is evident in Panel 4 that the spikes and

plunges in oil price changes reflect the following events: OPEC oil embargo of 1973-1974, the

Iranian revolution of 1978-1979, the Iran-Iraq War initiated in 1980, the first Persian Gulf War

in 1990-91, the oil price spike of 2007-2008, and the oil price plunge of 2015. It is also evident

that the degree of variability in changes in oil prices is much higher post-1985 than at the start

of the sample period in the 1970s.

- Figure 1 about here -

One possibility is to perform the Zivot and Andrews (1992) test (ZA henceforth) and the

Perron (1997) test to determine the stationarity property of the data in the presence of a

structural break that is determined endogenously. However, the problem with employing such

tests is that in the presence of structural break(s) in the unit-root process, the ZA test statistic

suffers from size distortion that could lead to a spurious conclusion that a time series is trend

stationary when in fact it is nonstationary with breaks (Lee and Strazicich, 2001). To remedy the

problem, we employ the Carrion-i-Silvestre et al. (2009) tests which allow for multiple structural
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breaks in the level and/or slope of the trend function under both the null and alternative

hypotheses. Because the Carrion-i-Silvestre et al. (2009) tests allow for breaks under both the

null of a unit root and the alternative hypothesis of a stationary process, their tests are robust to

the presence of breaks under the unit-root null hypothesis. The Carrion-i-Silvestre et al. (2009)

test procedure is explained in the Appendix. Results of the Carrion-i-Silvestre et al. (2009)

tests are shown in the rows with MZGLS
α , MZGLS

t and MZGLS
T in Table 1. The superscript

GLS indicates that the tests employ the generalised least squares (GLS) detrending procedures

to estimate the parameters of the model. These test statistics follow the M-class tests in Ng and

Perron (2001) but they allow for multiple structural breaks. We perform the test by allowing

for a maximum of 5 breaks, although we only found a single break and therefore only the results

for one break are reported. It can be seen that in the case of data series in levels, the test fails

to reject the unit-root null hypothesis with one break suggesting that all rates are I(1) process

with the structural break reported in the row with the heading "Break date". With regard to

results of the test for ∆IPIt and ∆Oilt the test statistics for the Carrion-i-Silvestre et al. (2009)

test, comfortably reject the null hypothesis of I(1) with a break at the 1% significance level,

implying that the series are stationary with a break. On the basis of these results, we proceed

with modelling ∆IPIt and ∆Oilt.

4 Empirical Results

4.1 Additive outliers and variance shift

As suggested by Rodrigues and Rubia (2011), the modified ICSS algorithm to detect breaks

in variance should be applied on the data in differences corrected for the presence of additive

outliers. Consequently we use the outlier detection test of Laurent et al. (LLP) (2016) based on

GARCH models on the first differenced data. We find one additive outlier in September 2008

for the U.S. IPI which can be explained by the Great Recession (see Table 2). For oil prices
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we detect several additive outliers where the corresponding dates are associated with various

specific economic, political and financial events: in March 1974 with the end of the OPEC

oil embargo, in February 1986 with the Iran—Iraq war, in August 1990 with the invasion of

Kuwait by Iraq, in November 2008 with the Global Financial Crisis, and in December 2014 as

U.S. production strongly exceeded demand. When applying the ICSS algorithm on the outlier-

adjusted series, we find one break in variance in June 1985 for the oil prices and none for the

IPI.

- Table 2 about here -

4.2 Results for unadjusted series

Our purpose is to demonstrate that failing to identify breaks in mean and variance, and therefore

neglecting to accommodate these features of the data in the empirical modelling can give rise

to erroneous inference. To this end, we first estimate a bivariate GARCH-in-Mean VAR with

three lags using the entire sample. We also estimate a VAR model with no GARCH-in-Mean for

purpose of comparison. The Schwarz criterion (SC) reveals significant improvement with the

inclusion of GARCH-in-Mean specification implying the superior characterisation of the data

by the bivariate GARCH-in-Mean VAR model. The SC for VAR(3) model is 9386 while that of

the GARCH-in-Mean VAR(3) model is 9117.

The point estimates of the GARCH specification parameters of the bivariate GARCH-in-

Mean VAR model are reported in Table 3. There is evidence of GARCH in both output growth

rate and annualised oil price returns. The volatility process for output growth rate is clearly

less persistent than oil price returns. The coeffi cient of hIPI,t−1 is significantly smaller than that

of hOil,t−1. Moreover, the sum of the coeffi cients of e2t−1 and ht−1 is smaller for ∆IPIt (1.07)

than that of ∆Oilt (0.63). One obvious concern is the sum of the parameter estimates of e2Oil,t−1

and hOil,t−1 which comes up to 1.076 implying that shocks to the volatility process will not die

out. This also violates the condition of covariance stationarity and it will not result in well
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behaved impulse response functions. The coeffi cient of interest, which captures the effect of oil

price uncertainty on output growth is -0.021 and it is statistically significant at conventional

levels. The negative coeffi cient supports the hypothesis that higher oil price uncertainty has a

pernicious effect on real economic activity. Our estimate in terms of the magnitude of the effect

of oil price uncertainty on output growth is comparable with Elder and Serletis (2010), even

though their sample period is shorter than ours covering the period 1975Q2 - 2008Q1, and they

employ real quarterly GDP data and real oil price.

- Table 3 about here -

Turning to the effect of incorporating oil price uncertainty on the dynamic response of output

growth to an oil price shock, we refer to the plot of the impulse responses in Figure 2. The

impulse responses are based on an oil shock which is the unconditional standard deviation of the

annualised change in nominal oil prices. This shock magnitude is chosen to allow comparison

to those of standard homoskedastic VAR. The response of output growth to both positive and

negative oil price shock are also plotted to determine whether there is asymmetry in the response

to positive and negative shocks.

−Figures 2 and 3 about here−

In Figure 2, we plot the impulse responses based on the standard homoskedastic VAR and

the GARCH-in-Mean VAR together to faciliate comparison. It seems apparent that the impulse

responses of output growth for the standard homosedastic VAR responded differently to positive

and negative shocks. There is an increase (decrease) in output growth by about 60 basis points

a month after the occurrence of a positive oil shock but this effect dissipates very rapidly so

that by the third month the response of output growth to oil shock is nullified. In contrast,

when oil price uncertainty is accounted for, the response to positive oil price shock is less than
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that of the standard homoskedastic VAR model in the first month, but the effect of the shock

continues to affect output growth negatively as time goes by. In fact, there is no evidence that

the effect of oil price shock on output growth will dissipate. The same persistence in response

of output growth to a negative oil shock is also observed. The inclusion of oil price uncertainty

from the output equation shows an amplified response in output growth to a negative oil price

shock. Output growth falls by close to 100 basis points a month after the shock occurred. In

our model the responses to positive and negative shocks are asymmetric.

Recall that the sum of the parameter estimates of e2Oil,t−1 and hOil,t−1 is greater than unity,

and it is precisely due to the violation of the covariance stationarity condition that oil price shock

has a persistent effect on the impulse response function of output growth, as seen in equation

(6). Figure 3 shows the impulse responses of output growth to oil shocks with one-standard

error bands. It is apparent from this Figure that the oil shock is persistent and continues to

retard output growth over time. These results are intuitively unappealing as they imply that

aggregate output will contract indefinitely. Could these erroneous results be caused by failing

to account for breaks in mean and variance of oil price returns and output growth so that the

GARCH-in-Mean VAR model is misspecified? We next turn to the results for the adjusted

series.

4.3 Results for adjusted series

We have identified that there are breaks in means in the form of outliers in both output growth

and change in oil price, as well as the presence of a variance shift in oil price uncertainty around

June 1985. We remove the influence of outliers and split the total sample into two sub-samples,

namely the samples prior to and after mid-1985. The model defined by equations (1) to (3)

is re-estimated for each sub-sample and the results are reported in Table 3 under the adjusted

data for samples 1 (1973:10-1985:06) and 2 (1985:07-2015:12). The level of volatility of output

growth is higher and more persistent in the period prior to mid-1985. In fact, for the second
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sub-sample, we estimated an ARCH(1) process for the volatility of output growth.

It can be seen from the parameter estimates of the GARCH specification of ∆Oilt that while

the unconditional variance prior to 1985:06 is significantly smaller than that of after mid-1985,

the degree of persistence measured by the sum of coeffi cients of e2t−1 and ht−1 is much higher

in the former than the latter sample. The degree of persistence in oil price uncertainty is 0.987

prior to the variance shift. It can be seen from these results that there is a structural break in

the underlying oil price dynamic, which could have an impact on the output growth effect of

oil price uncertainty. The coeffi cient of oil price uncertainty proxied by
√
hOil,t has a positive

sign in the period when oil price volatility was regarded as being tranquil. Nevertheless, the

coeffi cient estimate is not statistically significant at all conventional levels, implying that there

is no evidence to support the view that oil price uncertainty has a negative effect on U.S. output

growth. In contrast, the effect of oil price uncertainty on output growth is negative in the period

when oil price uncertainty peaked. The coeffi cient estimate is more than double the estimate

for the total sample and it is statistically significant at the 1% level. Taken together, we can

infer that oil price uncertainty did not have a pernicious effect on output growth until after the

break in oil price uncertainty in 1985:06 when there was heightened uncertainty about the price

of oil. It is important to recognise that the response of real economic activity to this increase

in oil price uncertainty has doubled when we account for the structural break in the behaviour

of oil price volatility and breaks in mean caused by outliers.7

−Figures 4 and 6 about here−
7For the purpose of comparison and completeness, we also estimated the model with data that are not

adjusted for outliers and for the period that coincides with the second sub-sample. Our results which are not
reported here for brevity but are available upon request, indicate that the coeffi cient of the GARCH specification
e2t−1 increases from 0.208 to 0.298 in the presence of neglected outliers, while the coeffi cient of ht−1 falls from
0.665 to 0.537 in the case of hOil,t. As for the GARCH parameters associated with hIPI,t, the coeffi cient of e2t−1
in the presence of outliers is larger, 0.332 compared to 0.247 while that of ht−1 remains statistically insignificant
at conventional levels. The effect of oil price uncertainty on output growth remains unchanged; it is negative
with a magnitude similar to that for the outliers adjusted data. The impulse response functions are qualitatively
unchanged.
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The result of removing outliers and accounting for a break in oil price uncertainty is also

evident in the impulse responses of output growth to positive and negative oil price shocks.

Figure 4 shows that output growth decreases with respect to a positive oil price shock, falling

by as much as 300 basis points before revising upward to 250 basis points two months later.

The effect of the shock dissipates gradually over time. The opposite response is observed for a

negative oil price shock, reflecting the mirror image in the response of real economic activity to

a positive shock. Given the response of output growth to both positive and negative oil shocks,

we can see from the impulse responses that it is symmetric. An interesting observation is made

about the impulse responses generated by both the standard homoskedastic VAR model and

the GARCH-in-Mean VAR model; the inclusion of GARCH-in-Mean effect in the VAR model

does not appear to bring about significant changes to the response of economic activity to oil

price shock. This is perhaps not surprising given that λ̂ = 0.007 is not economically significant,

which suggests that oil price uncertainty has a negligible effect on the response of output growth

to oil price shock.

Figure 5 shows impulse responses of output growth to oil price shocks post-1985:06. The

impulse responses of output growth for the standard homoskedastic VAR adjust rapidly much

like the responses in the whole sample although they differ from the responses in the first sub-

sample. Output growth rises (falls) by about about 60 basis points a month after the occurrence

of a positive (negative) oil shock but this effect dissipates very rapidly so that by the third

month the response of output growth to oil shock is nullified. However, when we incorporate

oil price uncertainty in the model, in response to a positive oil shock, output growth displays

an immediate increase by about 20 basis points followed by a downward revision. This leads to

a reduction in output growth by about 60 basis points before the effect of the shock dissipates

over a period longer than a year (see Figure 6). For a negative oil price shock, output growth

decreases by about 10 basis points and it further adjusts downward by about 110 basis points

before the shock dies out over time. Elder and Serletis (2010) find some evidence that controlling

for oil price uncertainty tends to exacerbate (dampen) the negative dynamic response of real
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output to a positive (negative) oil shock. On the contrary, we find that accounting for oil price

uncertainty tends to exacerbate the dynamic response of output growth to positive and negative

oil price shocks in the period when oil price uncertainty peaked.

It is also interesting to observe the difference in response of output growth to oil price shocks

in the two sub-samples; a positive (negative) oil price shock before mid-1985 causes a significant

contraction (expansion) in U.S. output, but this effect is not observed in the post-1985 sample.

These results suggest that the effect of the 1970s oil price shock could have resulted in more

acute economic recession than those experienced in the 1990s.

5 Conclusion

This paper tests the pernicious effect of oil price uncertainty on U.S. real economic activity in

which the effect is to reduce current investment and consumption leading to a contraction in

output. Using a long time-series data spanning over half a century, we show that there are

outliers in both output growth and oil price changes, and the presence of a structural change

in oil price uncertainty. Following Elder and Serletis (2010), we estimate a structural vector

autoregression model with GARCH-in-Mean specification based on the original data and on

the data that are adjusted for these stylised features. The results show that it is important to

account for the presence of outliers in both oil prices and output growth, and a variance shift

in oil price uncertainty. Failing to do so can lead to erroneous inference and mask the change

in the dynamic response of output growth to oil price shock over the period 1973:10-2015:12.

Our empirical result shows that oil price uncertainty peaked in June of 1985. The shift

in the variance of oil prices implies that oil price uncertainty has a pernicious effect on U.S.

output growth after mid-1985. This effect was absent in the data prior to the increase in oil

price uncertainty in mid-1985. The growth retarding effect of oil price uncertainty was found

to be double the effect which is estimated from a model that does not take into consideration

these outliers and variance shifts. Accounting for oil price uncertainty tends to exacerbate the
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response of output growth to positive and negative oil price shocks in the period following mid-

1985. On the other hand, we fail to find any difference in the response of output growth to oil

price shocks prior to mid-1985 even when we accommodate the effect of oil price uncertainty.

The evidence of a shift in oil price uncertainty during 1985 is well supported by Baumeister

and Peersman (2010) who attribute the rise in oil price uncertainty to falling short-run price

elasticities of oil supply and oil demand which are caused by shrinking spare oil production

capacity and limited investment in the oil industry. Our results also demonstrate that the effect

of oil price shock on output growth is substantially larger in the pre-1985 period before oil price

uncertainty peaked.

6 Appendix

6.1 The Carrion-Kim-Perron (CKP) Test

Carrion-i-Silvestre et al. (2009) propose a testing procedure which allows for multiple structural

breaks in the level and/or slope of the trend function under both the null and alternative

hypotheses. The model is given by

yt = dt + ut, t = 1, . . . , T, (16)

ut = αut−1 + vt, t = 2, . . . , T, u1 = v1 (17)

with dt denotes the deterministic component given by

dt = z′t(T
0
0 )ψ0 + z′t(T

0
1 )ψ1 + · · ·+ z′t(T

0
m)ψm ≡ z′0t )ψ (18)

where zt(T 00 ) = (1, t)′, ψ0 = (µ0, β0)
′), and zt(T 0j ) =

(
DUt(T

0
j ), DTt(T

0
j )
)′
for 1 ≤ j ≤ m, with

m is the number of breaks. DUt(T 0j ) = 1 and DTt(T 0j ) = (t − T 0j ) for t > T 0j and 0 elsewhere,

with T 0j = [Tλ0j ] is the jthe break date, with [.] the integer part and λ0j ≡ T 0j /T ∈ (0, 1) the
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break fraction parameter.

Carrion-i-Silvestre et al. (2009) consider extensions of theM class of unit root tests analysed

in Ng and Perron (2001) and the feasible point optimal statistic of Elliott et al. (1996). The

GLS-detrended unit root test statistics are based on using the quasi-differenced variable ytᾱ =

(1 − ᾱL)yt and ztᾱ(λ0) = (1 − ᾱL)zt(λ
0) for t = 2, . . . , T , with ᾱ = 1 + c̄/T and c̄ = −13.2

when zt(T 00 ) = (1, t)′. The feasible point optimal statistic is given by

PGLS
T (λ0) =

{
S
(
ᾱ, λ0

)
− ᾱS

(
1, λ0

)}
/s2(λ0)

where S
(
ᾱ, λ0

)
is the minimum of the following sum of squared residuals from the quasi-

differenced regression S
(
ψ, ᾱ, λ0

)
=
∑T

t=1

(
ytᾱ− ψ′ytz̄(λ0)

)2
, and s2(λ0) is an estimate of the

spectral density at frequency zero of vt defined by

s2(λ0) = s2ek/

(
1−

k∑
j=1

b̂j

)2
(19)

where s2ek = (T − k)−1
∑T

t=k+1 ê
2
t,k and {b̂j, êt,k} are obtained from the following OLS regression

∆ỹt = b0ỹt−1 +
k∑
j=1

bj ỹt−j + et,k (20)

with ỹt = ytψ̂
′
zt(λ

0), where ψ̂ minimizes S
(
ψ, ᾱ, λ0

)
. The lag order k is selected using the

modified information criteria suggested by Ng and Perron (2001) with the modification proposed

by Perron and Qu (2007).
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The M -class of tests are defined by

MZGLS
α (λ0) =

(
T−1ỹ2T − s(λ0)2

)(
2T−1

T∑
t=1

ỹ2t−1

)−1
(21)

MZGLS
t (λ0) =

(
T−1ỹ2T − s(λ0)2

)(
4s(λ0)2T−2

T∑
t=1

ỹ2t−1

)−1/2
(22)

MPGLS
T (λ0) =

[
c̄2T−2

T∑
t=1

ỹ2t−1 + (1− c̄T−1ỹ2T

]
/s(λ0)2 (23)
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Table 1 U.S. Data Summary Statistics 

 IPI௧ Oil௧ ΔIPI௧ ΔOil௧ 
Mean 75.41 33.88 0.19% 0.05% 
Std Dev 20.94 27.66 0.09% 0.93% 
ADF -1.76 -2.17 -6.80*** -6.66*** 
CKP Test     
 ఈீ௅ௌܼܯ -9.37 -4.84 -27.61*** -85.92*** 
௧ܼܯ

ீ௅ௌ  -2.16 -1.55 -3.75*** -6.54*** 
ܯ ்ܲ

ீ௅ௌ 12.73 24.42 4.31*** 1.47*** 
Break date 2001:03 2011:08 1993:01 1998:08 
ARCH(6) 500.67*** 492.68*** 75.64*** 132.59*** 
Skewness 0.02 1.02*** 6.04*** 4.92*** 
Kurtosis -1.56*** 1.02*** 6.04*** 4.92*** 
Jarque-Bera 51.37*** 205.83*** 921.77*** 528.76*** 
Note: IPI௧ denotes industrial production index while Oil௧ denotes oil price. Annualised output growth is 
denoted by ΔIPI௧ =1200×ln(IPI௧/IPI௧ିଵ) while annualised first difference in oil price is given by 	
ΔOil௧=1200×ln(Oil௧ /Oil௧ିଵ). ADF is the Augmented Dickey Fuller test statistic for unit root with critical 
values -3.98(10%), -3.42(5%), -3.13(1%). CKP test is the Carrion-i-Silvestre, Kim and Perron (2009) test 
statistic for unit root with multiple structural breaks under the null of a unit root and the alternative of 

stationarity. It consists of three different test statistics, namely ܼܯఈீ௅ௌ, ܼܯ௧
ீ௅ௌ and ܯ ்ܲ

ீ௅ௌ.  The critical 

values are -17.78(10%), -21.03(5%), -29.11(1%) for ܼܯఈீ௅ௌ; -2.93(10%), -3.23(5%), -3.78(1%) for 

௧ܼܯ
ீ௅ௌ; and 7.53(10%), 6.26(5%), 4.37(1%) for ܯ ்ܲ

ீ௅ௌ. ARCH(6) is the LM test for sixth order ARCH 
from the squared residuals of the univariate autoregression under the null of no ARCH effect up to lag 
order 6. The LM test is distributed as a χ₍₆₎². *, **, *** denote significance at the 10%, 5% and 1% level, 
respectively. 
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Table 2 Additive outliers and variance changes 

Panel A: Additive outliers Laurent et al. (2016) test 
Series Date |ܬሚ௧| Event 
ΔIPI௧ 2008:09 4.15 The Great Recession 
ΔOil௧ 1974:03 3.42 End of the OPEC oil embargo 
 1986:02 3.61 Iran-Iraq war 
 1990:08 3.97 Invasion of Kuwait by Iraq 
  2008:11 3.69 The Global Financial Crisis 
  2014:12 3.48 High U.S. production  
Panel B: Break point in variance Sansó et al.(2004) test 
Series Date No. of change points  
ΔIPI௧   -- 0  
ΔOil௧ 1985:06 1  
Note: |ܬሚ௧| denotes the test statistic of Laurent et al. (2016) for the additive outliers.    



31 
 

Table 3 Coefficient Estimates for the GARCH specification and Oil Volatility of the Bivariate 
GARCH-in-Mean VAR  

Equation Conditional 
Variance 

Constant ݁௧ିଵ
ଶ  ݄௧ିଵ 

Unadjusted data    
Whole sample (1973:10 - 2015:12)    
ΔOil௧ ݄ூ௉ூ,௧ 60.843*** 0.353*** 0.723*** 
ΔIPI௧ ݄ை௜௟,௧ 22.368*** 0.329*** 0.302*** 

Coefficient of ඥ݄ை௜௟,௧ -0.021***   

Adjusted data    
Sample 1 (1973:10-1985:06)    
ΔOil௧ ݄ூ௉ூ,௧ 76.311*** 0.455*** 0.532*** 
ΔIPI௧ ݄ை௜௟,௧ 51.703** 0.444*** 0.029 

Coefficient of ඥ݄ை௜௟,௧ 0.007   

Adjusted data    
Sample 2 (1985:07-2015:12)    
ΔOil௧ ݄ூ௉ூ,௧ 993.387*** 0.208*** 0.665*** 
ΔIPI௧ ݄ை௜௟,௧   29.188*** 0.247*** 0.000 

Coefficient of ඥ݄ை௜௟,௧ -0.045***   

Note: The constant is the parameter estimate of the elements ܽଵଵ
ଵ  for ݄ூ௉ூ,௧ and ܽଶଵ

ଵ  for ݄ை௜௟,௧ in equation 

(4). The coefficient associated with ݁௧ିଵ
ଶ  is the parameter estimate of the elements ܽଵଵ

ଶ  for ݄ூ௉ூ,௧ and ܽଶଶ
ଶ  

for ݄ை௜௟,௧. The coefficient associated with ݄௧ିଵ is the parameter estimate of the elements ܽଵଵ
ଷ  for ݄ூ௉ூ,௧ and 

ܽଶଶ
ଷ  for ݄ை௜௟,௧. The coefficient of ඥ݄ை௜௟,௧ିଵ is the parameter ߣ in equation (2). *, **, *** denote 

significance at the 10%, 5% and 1% level, respectively. 
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Figure 1 Plot of U.S. Production and Oil Prices
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Figure 2 Impulse Responses for Standardised Homoskedastic VAR and Bivariate GARCH-in-Mean VAR for the Whole Sample 

 

Note: The blue line denotes the impulse response function for the Bivariate VAR with no GARCH-in-Mean. The black line denotes the impulse 
response function for the Bivariate VAR with GARCH-in-Mean. 

   



34 
 

Figure 3 Impulse Responses for Bivariate GARCH-in-Mean VAR for the Whole Sample 1973:10-2015:12 

 

Note: The blue lines denote the one standard error bands estimated using the Monte Carlo method described in Elder (2004). 
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Figure 4 Impulse Responses for Standardised Homoskedastic VAR and Bivariate GARCH-in-Mean VAR for Sub-sample 1973:10-
1985:06 

Note: The blue line denotes the impulse response function for the Bivariate VAR with no GARCH-in-Mean. The black line denotes the impulse 
response function for the Bivariate VAR with GARCH-in-Mean. 
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Figure 5 Impulse Responses for Standardised Homoskedastic VAR and Bivariate GARCH-in-Mean VAR for Sub-sample 1985:07-
2015:12 

 

Note: The blue line denotes the impulse response function for the Bivariate VAR with no GARCH-in-Mean. The black line denotes the impulse 
response function for the Bivariate VAR with GARCH-in-Mean. 
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Figure 6 Impulse Responses for Bivariate GARCH-in-Mean VAR for Adjusted Sample 1985:07-2015:12 

 

 

Note: The blue lines denote the one standard error bands estimated using the Monte Carlo method described in Elder (2004). 

 

 

 


