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Abstract

The paper studies matching markets where institutions are matched
with possibly more than one individuals. The matching market con-
tains some groups who view the pair of jobs as complements. The pa-
per specifies that the groups have a “weak” preference to be matched
together. The paper first assumes that that the institutions have the
same preference over all the individuals. It then finds out under which
weak preferences of groups do stable matching exist and then generalise
this idea. It further weakens the assumption of identical preference of
institutions and proves existence of stable matching for unrestricted
group preferences. Finally, the paper seeks to establish a result on
stability by relaxing the condition on identical institution preferences.
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1 Introduction

In many different contexts, there is a centralized matching procedure by
which individuals on one side of the market are matched with institutions on
the other side of the market. These include the market for lawyers in Canada,
children in schools in the USA, doctors and senior-level health-care profes-
sionals in several countries, etc. There is a huge literature which has been
developed on various market designs to find out an “optimal” matching proce-
dure to produce stable matching. A matching is stable if there it ensures that
there are no deviations of institution-individual pairs. Thus a stable match-
ing also gives an incentive to agents to correctly reveal their preferences1 It
was shown by Alvin E. Roth2 that it was possible to have mechanisms which
induced only one side of the market to correctly reveal their preferences.
However, the results on stability have been more encouraging as the received
doctrine is that stable matchings do exist under appropriate domain restric-
tions. But to achieve that, institutions must view individuals as substitutes
and individuals also must only care about the institution to which they are
matched. It was first pointed out by Roth3 that the presence of couples in the
labour market may lead to an impossibility result where no stable matching
may exist. This can happen because couples or groups may view pairs of
jobs as complements and thus the assumptions which consider the choices
individuals to be independent of each other might not apply. Bettina Klaus
and Flip Klijn4 identify the maximal domain of preferences of couples under
which stable matchings exist. The maximal domain satisfies Responsiveness
- so a couple is better off when any member of the couple is matched with a
more preferred institution. However, Fuhito Kojima, Parag A. Pathak, and
Alvin E. Roth5 point out that Responsiveness is not satisfied in their data

1[10] and [11] give illustrating surveys for this literature.
2Refer to [9].
3Refer to [8].
4Refer to [5].
5Refer to [6].

2



sets because couples show strong preference to be matched together in the
institutions situated in the same geographical area.

In this paper, we consider a set of doctors who come together to form a
group. In particular, if all the group sizes are two, then we get a matching
matket with couples. We focus on the issue of existence of stable matchings
with groups. Furthermore, we first look at the scenario when all the insti-
tutions have identical preferences. The starting point of our analysis is how
to model the identical preferences of the institutions and how to model the
preference ordering of any group over tuples of positions, given the individual
preferences of each member of the group. We look into a setting where the
set of institutions is a finite set and thus there is no information about the
“distance” between any pair of institutions. But when a group is matched
with the same institution, then the distance trivially becomes zero. Thus as
assumed by Bhaskar Dutta and Jordi Masso6, we have an option to assume
that group prefers to be matched at the same institution rather than being
matched with different institutions.

We analyse the situation where groups’ preferences violate responsiveness
as long as they can be together in any possible institution. We show that
under identical preferences of institutions we will have stable matchings if,
and only if, the groups’ preferences satisfy some joint condition over their
allocations.

We then try to restrict the condition of identical institution preferences
further and try to check if stable matchings exist with unrestricted joint
groups’ preferences. We assume that the institutions’ preferences are lexico-
graphic and members of the group are adjacent in the identical preference,
i.e. there is no other individual in between any two members of a group in
the common preference of the institution. We finally show that if groups’
preferences are unrestricted, then stable matchings exist if, and only if, the
identical preference of institutions follow the above condition.

Finally, we try to find out the consequences of relaxing the condition of
6Refer to [3].
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identical preferences of the institutions. We restrict the size of each group to
two, that is, we consider a matching market with couples. We try to establish
a result for the existence of stable matching when institutions’ preferences
are not identical. We find out, the results proved earlier are not sufficient
to prove the existence of stable matching in this scenario. Thus we need to
impose further restrictions on couples’ preferences in order to get a stable
matching.

2 The Framework

We consider many-to-one matching between doctors and hospitals. We de-
note by H the set of hospitals. We use the notation H̄ to denote H ∪ {∅}.
If some doctor is matched with with {∅}, then that doctor is unmatched.
Each hospital h ∈ H has a finite capacity κh ≥ 1. We denote by D the set of
doctors. We consider a fixed partition of the set of doctors D into subsets,
G1, . . . , Gm, S. Here, for all j = 1, . . . ,m, Gj = {gj1, . . . , gjnj

} with nj ≥ 2

denotes the set of doctors that are in group j, and S denotes the set of single
doctors who do not belong to any of the groups. By G̃ = {G1, . . . , Gm}
we denote the collection of all groups. Throughout this paper, we assume
|H| ≥ 2, |G̃| ≥ 1. Furthermore, if |G̃| = 1 then we assume |S| ≥ 2. We also
assume that the total number of vacancies in all hospitals in H is equal to
the total number of doctors available, i.e.,

∑
h∈H κh = |D|.

Consider a group of doctors G = {g1, . . . , gn} and let N = {1, . . . , n}.
Then, an allocation of the group G is an element h˜ of H̄N where the hospital
h˜1 is matched with doctor g1, hospital h˜2 is matched with doctor g2 and
so on. Here, for i ∈ N , by h˜i, we mean the ith component of h˜. Also, for
h˜−i ∈ H̄N\i and h ∈ H˜ , by (h˜−i, (h)i) we denote an allocation of the group
G where doctor gi is matched with h and gj is matched with (h˜−i)j for all
j 6= i. Furthermore, for hospitals h, h′ ∈ H̄, we denote by ((h)−i, (h

′)i) an
allocation of the group G where all doctors in G except gi are matched with
hospital h and gi is matched with h′. Similarly, for hospitals h, h′, h′′ ∈ H̄ and
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i, j ∈ {1, . . . , n} with i 6= j, we denote by ((h)−i−j, (h
′)i, (h

′′)j) an allocation
of the group G where all doctors in G except gi and gj are matched with
hospital h, gi is matched with h′, and gj is matched with h′′, and so on.
Finally, for h ∈ H̄, by (h, . . . , h) we denote an allocation of the group G

where all the doctors in G are matched with h.
For notational convenience, we do not use braces for singleton sets.

2.1 Matching

Definition 1 A matching is a mapping µ : H ∪D → H̄ ∪ 2D such that

(i) for all h ∈ H, µ(h) ⊆ D with |µ(h)| ≤ κh,

(ii) for all d ∈ D, µ(d) ∈ H̄, and

(iii) for all d ∈ D and h ∈ H, µ(d) = h if and only if d ∈ µ(h).

The first condition of the definition says that every hospital h ∈ H can be
matched with at most κh many doctors. The second and the third conditions
of the definition say that every doctor can be either matched with exactly
one hospital in H or be unmatched.

2.2 Preferences

In this section, we introduce the notion of preferences of doctors and hospi-
tals, and present the restrictions on them.

For a set X, we denote by L(X) the set of linear orders, i.e., complete,
transitive, and asymmetric binary relations over X. An element of L(X) is
called a preference over X.

2.2.1 Preferences of Hospitals

A preference of a hospital h ∈ H, denoted by Ph, is a linear order over the
feasible sets of doctors {D′ ⊆ D : |D′| ≤ κh}, i.e., Ph ∈ L({A ⊆ D : |A| ≤
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κh}). We assume hospitals’ preferences to be responsive which we define
below.

Definition 2 The preference ordering Ph of a hospital h ∈ H with capacity
κh satisfies Responsiveness if for any D′ ⊆ D with |D′| ≤ κh the following
hold:

(i) for any d′ ∈ D′ and any d ∈ D \D′, ((D′ ∪ d) \ d′)PhD
′ if and only if

dPhd
′, and

(ii) for any D′′ ( D′, D′PhD
′′.

Here the first condition says that there are no complementaries across
doctors, and the second condition says that all the doctors are acceptable
for hospital h. Throughout this paper, we assume that hospitals’ preferences
satisfy responsiveness.

Definition 3 The preferences of the hospitals satisfy Identical Hospital
Preferences(IHP) if for all pairs of hospitals h, h′ ∈ H and for all d, d′ ∈ D,
dPhd

′ if and only if dPh′d
′.

Note that, IHP implies that all the hospitals have common preferences
over individual doctors, however it does not impose any restriction on the
preferences of hospitals over larger subsets of doctors.

Unless mentioned otherwise, we assume that hospitals’ preferences satisfy
IHP. Under IHP, the common restriction of (Ph)h∈H over individual doctors
is defined as P 0 ∈ L(D) such that for all d, d′ ∈ D, dP 0d′ if dPhd

′ for all
h ∈ H. Throughout this paper P 0 denotes an IHP. Whenever we consider an
IHP P 0 we assume for ease of presentation that the indexation of the doctors
in groups is such that gjiP 0gji+1 for all i < nj and j ≤ m, and gjnj

P 0gknk
for

all j < k ∈ {1, . . . ,m}. This is without of loss of generality as we consider
only one IHP at every given context.
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2.2.2 Preferences of Doctors

A preference of a doctor d ∈ D, denoted by Pd, is a linear order over H̄, i.e.,
Pd ∈ L(H̄). We assume hPd∅ for all h ∈ H and all d ∈ D. For a doctor
d ∈ D, by hd, we denote the top ranked hospital of the doctor d according
to preference Pd. Having defined the preferences of the doctors (as singles),
now we proceed to define the preferences of the groups of doctors.

Preferences of Groups of Doctors
In this paper we intend to deviate from responsiveness in a ‘minimal’ way and
check what happens to stability. We assume that a groups’ preferences are
almost responsive except in the situations where all the members of the group
get to stay together in the same hospital. The usual definition of responsive
group preference means that for two group allocations, that differ in the
allocation for only one group member, then the group prefers the allocation
where that member is assigned to his more preferred hospital. However, here
we allow for the group to violate responsiveness only if all the members of
the group can be matched with the same hospital. We call this as preference
for togetherness.

We think some preference for togetherness should be adopted in a match-
ing model with groups, otherwise the fact that a few doctors act as group will
not have any impact on the model. Moreover, this is a very natural situation
that can occur in reality. However, we also do not wish to deviate far from
the assumption of responsiveness.

In the following, we define responsiveness for a preference of a group
of doctors. The notion of responsiveness is in principle same as that for a
preference of a hospital. However, for the sake of clarity, we present the
formal definition below.

Definition 4 Let G = {g1, . . . , gn} be any group of doctors and N =

{1, . . . , n}. Let for all i ∈ N , Pgi be a preference of gi. Then, a prefer-
ence PG ∈ L(H̄N) of the group G is called responsive if, for all i ∈ N , for all
h˜−i ∈ H̄N\i, and all h, h′ ∈ H̄, we have (h˜−i, (h)i)PG(h˜−i, (h′)i) if and only if
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hPgih
′. For a group G, by DR

G we denote the set of responsive preferences of
G.

Definition 5 Let G = {g1, . . . , gn} be any group of doctors and N =

{1, . . . , n}. Then, a preference ordering P̄G ∈ L(H̄N) of the group G sat-
isfies Responsiveness Violated for Togetherness (RVT) if and only if there is
a responsive preference PG ∈ DR

G of the group G such that

(i) for all h ∈ H and all h˜ ∈ H̄N , (h, . . . , h)PGh˜ implies (h, . . . , h)P̄Gh˜,
and

(ii) for all h˜, h˜′ ∈ H̄N such that h˜i 6= h˜j and h˜′k 6= h˜′l for some i, j, k, l ∈ N ,
h˜PGh

′˜ if and only if h˜P̄Gh
′˜ .

For a group G, by DRV T
G we denote the set of RVT preferences of G.

Note that, RVT implies that groups’ preferences can violate responsive-
ness only in order for all of them to be together in some hospital. Further
note that, by taking h˜ such that h˜1 = . . . = h˜n in Condition (i) of Definition
5, it follows that the relative ordering amongst the allocations where all the
doctors of a group G are in the same hospital does not change from PG to
P̄G.

Remark 1 In the rest of the paper, we assume that there exists a hospital
h ∈ H and a group G ∈ G̃ such that κh ≥ |G|. We assume this because if
κh < |G| for all h ∈ H and all G ∈ G̃, then the violation of responsiveness
would be on an infeasible set which will not play any role in the matching
mechanism.

2.2.3 Preference Profiles

In this section, we define the notion of a preference profile.

Definition 6 A preference profile P˜ for hospitals in H and doctors in D

with groups G̃ is defined as a collection of preferences ({P˜d}d∈D, {P˜G}G∈G̃, {P˜h}h∈H)
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where P˜d is a preference of doctor d, P˜G is a preference of group G, and P˜h

is a preference of hospital h for all d ∈ D, all G ∈ G̃, and all h ∈ H

respectively.

By a matching problem, we mean the set of hospitals with corresponding
capacities, the set of doctors with its partition into groups, and a preference
profile.

2.3 Stability

Our model is formally equivalent to a many-to-many matching market as
any group with n doctors looks for n positions and hospitals may have more
than one positions. Thus, one can have different notions of stability based
on different types of permissible blocking coalitions. 7

Blocking pairs can be a hospital and a single doctor, or a set of hospitals
and a group of doctors.

Let s ∈ S be a single doctor and h ∈ H be a hospital. Then, for two
matchings µ, µ′, we write µ→{h,s} µ′ if,

(i) µ′(h) = (µ(h) \D′) ∪ s for some (possibly empty) D′ ⊆ µ(h), and

(ii) µ′(h′) = µ(h′) \ s for all h′ 6= h.

Let G = {g1, . . . , gn} ∈ G̃ be a group of doctors and N = {1, . . . , n}. Let
h˜ = (h1, . . . , hn) ∈ HN . For h ∈ {h1, . . . , hn}, let Gh = {gi : h̃i = h} Then,
for two matchings µ, µ′, we write µ→{h˜,G} µ′ if,
(i) µ′(h˜) = (µ(h˜) \ Dh) ∪ Gh for all i ∈ N , for all h ∈ {h1, . . . , hn} and

some (possibly empty) Dh ⊆ µ(h˜), and

(ii) µ′(h) = µ(h) \ {g1, . . . , gn} for all h ∈ H \ {h1, . . . , hn}.
7Refer to [8, 9, 7, 4] for some alternative notions of stability in many-to-many matchings.
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The statement µ →{h,s} µ′ captures the idea that the hospital h and
the single doctor s can change their allocation under µ to that under µ′

because h can release some doctors and hire s. Moreover, hospitals other
than h continue to retain their allocations unless they were matched with
s. Similarly, the statement µ →{h˜,G} µ′ captures the idea that the set of
hospitals h˜ = (h1, . . . , hn) and the group of doctors G can change their
allocation under µ to that under µ′ because each of the hospital can release
some doctors and hire a doctor from the group. Moreover, hospitals other
than the hospitals in {h1, . . . , hn} continue to retain their allocations unless
they were matched with any member of the group G.

Definition 7 Let h ∈ H be a hospital and s ∈ S be a single doctor. Then,
(h, s) blocks µ through µ′ if µ→{h,s} µ′, µ′(h)Phµ(h), and hPsµ(s).

Definition 8 Let G = {g1, . . . , gn} be a group of doctors and N = {1, . . . , n}.
Let h˜ = (h1, . . . , hn) ∈ HN . Then, (h˜, G) blocks µ through µ′ if µ →{h˜,G}µ′, h˜PG(µ(g1), . . . , µ(gn)), and µ′(h)Phµ(h) for all h ∈ {h1, . . . , hn} with
|µ(h) ∩G| ≤ 1.

Thus for a hospital h and doctor s, (h, s) blocks µ, if there exists
a matching µ′ with µ→{h,s} µ′ such that h and s are better off in µ′

as compared to µ. Similarly, for hospitals h˜ = (h1, . . . , hn) and group
G, (h˜, G) blocks µ, ig there exists a matching µ′ with µ →{h˜,G} µ′such that G is better off in µ′ than in µ. Further, every hospital
in {h1, . . . , hn} which has at most one doctor from group G in µ is
better off in µ′ than in µ.

Definition 9 A matching µ is stable if it is not blocked by any pair (h, s)

where h ∈ H and s ∈ S, or by any pair (h˜, G) where h˜ ∈ H |G| and G ∈ G̃.
Note that, members of a group move according to their group prefer-

ence, in particular, a member of a group does not block according his/her
individual preference.
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Remark 2 By our assumptions on the preferences of hospitals and doctors,
hospitals find all doctors acceptable and doctors find all hospitals acceptable.
Therefore, all matchings are individually rational.

2.4 Algorithm

In this section we present a well-known doctor proposing deferred acceptance
algorithm (DPDA) that we will use throughout the paper to match hospitals
with doctors. Our existence proof uses a modification of the Gale-Shapley de-
ferred acceptance algorithm with the doctors making the proposals (DPDA).
We give a very short description of DPDA.

DPDA: In stage 1 of the algorithm, all doctors simultaneously propose to
their most preferred hospitals. Each hospital h provisionally accepts up to
κh most preferred doctors. If a hospital has received more than κh proposals,
then it rejects all the doctors after its κh most preferred doctors. In any step
k, the unmatched doctors propose to their most preferred hospital from the
remaining set of hospitals who have not rejected them in any of the earlier
steps. In any stage of DPDA, since each hospital accepts κh most preferred
doctors, it may reject some doctors that it had provisionally accepted ear-
lier. Hospitals whose provisional list of accepted doctors is less than their
maximum capacity can still add to their accepted list if they have received
fresh proposals. Thus the algorithm finally terminates when each doctor is
matched or has been rejected by all hospitals.

Now we present another well-known algorithm called Serial Dictatorship
Algorithm (SDA). In the SDA, the highest-ranked doctor according to the
identical hospital preference chooses his/her most-preferred hospital, and in
general the k-highest ranked doctor chooses his/her most preferred hospital
among the hospitals with available vacancy after all the higher ranked doctors
have made their choices.

Remark 3 DPDA and SDA produce the same matching under IHP.
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2.5 Conditions for Stability under RVT

In this section, we provide conditions on groups’ preferences satisfying RVT
that guarantee the existence of stable matchings.

Let P 0
G̃

= ({P 0
g }g∈D\S, {P 0

G}G∈G̃) be a given collection of preferences of the
doctors that are in some group, and of the groups in G̃. Let P 0 be an IHP.
Recall that, we assume the indexation of the doctors in groups to be such
that gjiP 0gji+1 for all i < nj and all j ≤ m. Then, by D˜ (P 0

G̃
, P 0) we denote

the set of preference profiles where doctors g ∈ D \ S and groups G ∈ G̃

have preferences as in P 0
G̃
and the IHP is P 0, i.e., D˜ (P 0

G̃
, P 0) = {P˜ : P˜ g =

P 0
g for all g ∈ D \ S, P˜G = P 0

G for all G ∈ G̃, and P 0 is the IHP of P˜}.
Condition 1 Suppose P 0

G̃
is such that P 0

G ∈ DRV T
G for all G ∈ G̃. Then, the

collection of preferences (P 0
G̃
, P 0) satisfies Condition 1 if: for each group G =

{g1, . . . , gn} ∈ G̃ and each gi ∈ {g1, . . . , gn−1}, (h, . . . , h)P 0
G((h)−i, (h

′)i) and
h′P 0

gi
h imply that there is be some j < i such that ((h)−j, (h

′)j)P
0
G(h, . . . , h).

Condition 1 says the following. Consider a group G and let gi be a doctor
in G who is not the least preferred doctor according to the IHP. Suppose gi
prefers some hospital h to another hospital h′. Suppose further that a RVT
preference of G prefers an allocation where all the doctors of G are in h to
another allocation where all the doctors of G except gi are in h and gi is in
h′. Then, there must exist a doctor gj who is preferred to gi according to
the IHP such that the RVT preference of G prefers the allocation where all
the doctors of G except gj are in h and gj is in h′ to the allocation where
all the doctors of G are in h. Note that, Condition 1 does not impose any
restriction on the preference of the least preferred doctor in G according to
the IHP. Further note that, Condition 1 implies that responsiveness is not
violated for togetherness with a compromise from the most preferred doctor
of G according to IHP.

Theorem 1 Suppose P 0
G̃
is such that P 0

G ∈ DRV T
G for all G ∈ G̃. Then, a

stable matching exists at every preference profile in D˜ (P 0
G̃
, P 0) if and only if

(P 0
G̃
, P 0) satisfies Condition 1.
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Proof : [Necessity] Suppose P 0
G̃
is such that P 0

G ∈ DRV T
G for all G ∈ G̃. Sup-

pose further that (P 0
G̃
, P 0) does not satisfy Condition 1. We show that there

is a preference profile in D˜ (P 0
G̃
, P 0) with no stable matching. Since (P 0

G̃
, P 0)

does not satisfy Condition 1, there exists a group G = {g1, . . . gn}, two hospi-
tals h1, h2 ∈ H, and i ∈ {1, . . . , n−1} such that (h1, . . . , h1)P

0
G((h1)−i, (h2)i),

h2P
0
gi
h1, and (h1, . . . , h1)P

0
G((h1)−j, (h2)j)for all j < i. Without loss of gen-

erality, we assume that gi is the highest ranked doctor of the group ac-
cording to IHP for which Condition 1 is violated. That is, for all k < i,
(h1, . . . , h1)P

0
G((h1)−k, (h2)k) and h2P 0

gk
h1 imply ((h1)−j, (h2)j)P

0
G(h1, . . . , h1)

for some j < k. Note that, this and the fact that (h1, . . . , h1)P
0
G((h1)−j, (h2)j)

for all j < i imply that h1P 0
gj
h2 for all j < i.

Since h2P 0
gi
h1, it follows from the definition of RVT that for all i′ 6= i, we

have ((h1)−i−i′ , (h2)i, (h2)i′)P
0
G((h1)−i′ , (h2)i′). Also, as h1P 0

gj
h2 for all j < i,

RVT implies ((h1)−i, (h2)i)P
0
G((h1)−j−i, (h2)j, (h2)i). Take doctors d1 and d2

such that d1, d2 /∈ G. Consider a preference profile P˜ in D˜ (P 0
G̃
, P 0) such that

the IHP P 0 satisfies giP 0d1P
0d2P

0gi+1, and hd1 = h1, hd2 = h2. Suppose
|{d : dP 0g1 and hd = h2}| = κh2 − 2, |{d : dP 0g1 and hd = h1}| = κh1 − n,
and |{d : dP 0g1 and hd = h}| = κh for all h 6= h1, h2. Suppose further that
the preferences of all groups other than G satisfy responsiveness. We show
that there is no stable matching at P˜ . Suppose µ is a stable matching at P˜ .
Since µ is stable, it must be that µ(d) = hd for all dP 0g1. Moreover, since
|{d : dP 0g1 and hd = h2}| = κh2−2 and |{d : dP 0g1 and hd = h1}| = κh1−n,
there are exactly 2 positions left in h2 and exactly n positions left in h1 after
matching all the doctors d such that dP 0g1. We distinguish the following
cases.

Case 1 : Suppose i = 1.

• If µ(G) = ((h1)−1−j, (h2)1, (h2)j) for any j ∈ {2, . . . , n}, then (h2, d2)

blocks µ as hd2 = h2 and d2P 0gj for all j ∈ {2, . . . , n}.

• If µ(G) = ((h1)−j, (h2)j), then (((h1)−1−j, (h2)1, (h2)j), G) blocks µ as
g1P

0d1P
0d2 and by RVT, ((h1)−1−j, (h2)1, (h2)j)P

0
G((h1)−j, (h2)j).
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• If µ(G) = (h1, . . . , h1), then (h1, d1) blocks µ as hd1 = h1 and d1P 0gj

for all j ∈ {2, . . . , n}.

• If µ(G) = ((h1)−1, (h2)1), then ((h1, . . . , h1), G) blocks µ as g1P 0d1P
0d2

and by RVT, (h1, . . . , h1)P
0
G((h1)−1, (h2)1).

Case 2 : Suppose i ∈ {2, . . . , n− 1}.

• Suppose µ(gi) = h2. If µ(gk) = h2 for any k > i, then µ is blocked
by (h2, d2) as d2P 0gk and hd2 = h2. Let µ(gj) = h2 for some j <

i. Note that, by RVT ((h1)−i, (h2)i)P
0
G((h1)−j−i, (h2)j, (h2)i). This,

together with the fact that gjP 0giP
0d1P

0d2, means µ is blocked by
(((h1)−i, (h2)i), G). Finally, let µ(G) = ((h1)−i, (h2)i). By RVT, we
have (h1, . . . , h1)P

0
G((h1)−i, (h2)i). This, together with the fact that

giP
0d1P

0d2, means µ is blocked by ((h1, . . . , h1), G).

• Suppose µ(gi) = h1. Let µ(G) = ((h1)−k, (h2)k) for some k 6= i. By
RVT, we have ((h1)−i−k, (h2)i, (h2)k)P 0

G((h1)−k, (h2)k). This, together
with the fact that giP 0d1P

0d2, means µ is blocked by (((h1)−i−k, (h2)i, (h2)k), G).
Finally, let µ(G) = (h1, . . . , h1). Then, µ is blocked by (h1, d1) as
d1P

0gi+1 and hd1 = h1.

This completes the proof of the necessity part.

[Sufficiency] The proof of this part is constructive. Suppose P 0
G̃
is such that

P 0
G ∈ DRV T

G for all G ∈ G̃. Suppose further that (P 0
G̃
, P 0) satisfies Condition

1. Take P˜ ∈ D˜ (P 0
G̃
, P 0). We construct an algorithm that produces a stable

matching in P˜ . For each group G = {g1, . . . , gn} and each hospital h, define
the conditional preference of gn given h, P 0

gn|h ∈ L(H), in the following way:
h′P 0

gn|hh
′′ if and only if ((h)−n, (h

′)n)P 0
G((h)−n, (h

′′)n). Recall that, by our
initial assumption on IHP, gjnj

P 0gknk
for all j < k ∈ {1, . . . ,m}. In the

following, we present our algorithm.

Algorithm: The algorithm involves m+ 1 steps. We present the 1st step, and
a general step of the algorithm.
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Step 1 : Use SDA to match all doctors ranked above g1n1
according to P 0. If

g11, . . . , g
1
n1−1 are all matched with same hospital, say h, then match g1n1

using
SDA, where g1n1

bids according to P 0
g1n1
|h. Else match g1n1

using SDA where
g1n1

bids according to P 0
g1n1

.
...

Step j : Use SDA to match all doctors ranked below gj−1nj−1
and above gjnj

according to P 0. If gj1, . . . , g
j
nj−1 are all matched with same hospital, say h,

then match gjnj
by SDA where gjnj

bids according to P 0
gjnj
|h. Else match gjnj

using SDA where gjnj
bids according to P 0

gjnj

.

...

Continue this process till Step m and then match the remaining doctors by
SDA at step m+ 1.

We show that the above algorithm produces a stable matching at P˜ . Let
µ be the outcome of the above mentioned algorithm. We distinguish the
following cases.

Case 1 : Suppose (h, s) blocks µ through µ′. Note that, by the nature of our
algorithm, all doctors that propose before s are more preferred to s according
to the IHP. Since s /∈ µ(h), by the nature of our algorithm, this means either
dP 0s for all d ∈ µ(h) and |µ(h)| = κh, or µ(s)P˜ sh. If dP 0s for all d ∈ µ(h)

and |µ(h)| = κh, then by responsiveness of hospitals’ preferences, we have
µ(h)P˜hµ

′(h). Thus hospital h does not block with s. On the other hand, if
µ(s)P˜ sh, then clearly s does not block with hospital h. This contradicts that
(h, s) blocks µ.

Case 2 : Suppose (h˜, G) blocks µ whereG = {g1, . . . , gn} and h˜ = (h1, . . . , hn).
We show ((µ(g1), . . . , µ(gn−1), hn), G) blocks µ. We show this by induc-

tion. Take i ∈ {1, . . . , n−1}. Suppose ((µ(g1), . . . , µ(gi−1), hi, hi+1, . . . , hn), G)

blocks µ through µ′. Here, for i = 1, we mean ((h1, . . . , hn), G) blocks µ. We
show that ((µ(g1), . . . , µ(gi), hi+1, . . . , hn), G) blocks µ.
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Note that, if µ(gi) = hi, then there is nothing to show. We claim
µ(gi)P

0
gi
hi. Assume for contradiction that hiP 0

gi
µ(gi). Note that, by the

nature of our algorithm, all the doctors that propose before gi are pre-
ferred to gi according to the IHP P 0. Since gi /∈ µ(hi), it must be that
dP 0gi for all d ∈ µ(hi) and |µ(hi)| = κhi

. By responsiveness of hospitals’
preferences, this means µ(hi)P˜hi

µ′(hi). This is a contradiction to the fact
that ((µ(g1), . . . , µ(gi−1), hi, hi+1, . . . , hn), G) blocks µ through µ′. Therefore,
µ(gi)P

0
gi
hi.

Now, we show that (µ(g1), . . . , µ(gi), hi+1, . . . hn)P 0
G(µ(g1), . . . , µ(gi−1), hi, . . . hn).

Suppose h′ 6= h′′ for some h′, h′′ ∈ (µ(g1), . . . , µ(gi−1), hi, . . . hn). Then by
RVT, it follows that (µ(g1), . . . , µ(gi), hi+1, . . . hn)P 0

G(µ(g1), . . . , µ(gi−1), hi, . . . hn).
Now suppose µ(g1) = . . . = µ(gi−1) = hi = . . . = hn = h. Since µ(gi)P

0
gi
hi, by

Condition 1 we have either ((h)−i, (µ(gi))i)P
0
G(h, . . . , h), or ((h)−j, (µ(gi))j)P

0
G(h, . . . , h)

for some j < i. Note that, if i = 1, then ((h)−i, (µ(gi))i)P
0
G(h, . . . , h). Sup-

pose i 6= 1 and ((h)−j, (µ(gi))j)P
0
G(h, . . . , h) for some j < i. Since j < i,

we have gjP
0gi. Then, according to SDA, gj proposes before gi. Since

gi is matched to µ(gi), this means either µ(gj) = µ(gi) or µ(gj)P
0
gj
µ(gi).

Since µ(gj) = h and µ(gi)P
0
gi
h, it must be that hP 0

gj
µ(gi). This contradicts

((h)−j, (µ(gi))j)P
0
G(h, . . . , h). Therefore, (µ(g1), . . . , µ(gi), hi+1, . . . hn)P 0

G(µ(g1), . . . , µ(gi−1), hi, . . . hn).
Since ((µ(g1), . . . , µ(gi−1), hi, . . . hn), G) blocks µ, (µ(g1), . . . , µ(gi), hi+1, . . . hn)P 0

G(µ(g1), . . . , µ(gi−1), hi, . . . hn)

implies ((µ(g1), . . . , µ(gi), hi+1, . . . hn), G) blocks µ. Hence, by the induction
argument we have ((µ(g1), . . . , µ(gn−1), hn), G) blocks µ.

Now we proceed to show that ((µ(g1), . . . , µ(gn−1), hn), G) cannot block
µ.

Case 2.1 : Suppose µ(gi) 6= µ(gj) for some i 6= j ∈ {1, . . . , n− 1}. Then, by
our algorithm, hnP 0

gnµ(gn). Note that, by the nature of the algorithm, all
doctors that propose before gn are preferred to gn according to the IHP P 0.
Since gn /∈ µ(hn), it must be that dP 0gn for all d ∈ µ(hn) and |µ(hn)| = κhn .
By responsiveness of hospitals’ preferences µ(hn)P˜hnµ

′(hn). This contradicts
that ((µ(g1), . . . , µ(gn−1), hn), G) is a block.

Case 2.2 : Suppose µ(g1) = . . . = µ(gn−1) = h. Then, by our algorithm and
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the definition of P 0
gn|h, we have hnP

0
gn|hµ(gn). By the nature of the algorithm,

all doctors that propose before gn are preferred to gn according to the IHP P 0.
Since gn /∈ µ(hn), it must be that dP 0gn for all d ∈ µ(hn) and |µ(hn)| = κhn .
By responsiveness of hospitals’ preferences µ(hn)P˜hnµ

′(hn). This contradicts
that ((µ(g1), . . . , µ(gn−1), hn), G) is a block.
This completes the proof of the theorem. �

2.6 Existence of Stable Matching with Adjacent IHP

In this section, we consider restrictions on the Identical Hospital Preference
and investigate the existence of stable matching under those restrictions.
We relax the RVT condition on the preferences of the groups of doctors.
By assuming that a group of doctors can have any preference over the sets
of hospitals irrespective of the preferences of the individual doctors in that
group over individual hospitals. Such preferences of the groups of doctors
are called unrestricted preferences. More formally, the set of unrestricted
preferences of a group G ∈ G̃ is L(H̄ |G|).

In the following, we define lexicographic preferences of the hospitals. Let
Ph be a preference of a hospital h and D′ ⊆ D. Then, define rk(Ph, D

′) = d

if and only if |{d′ ∈ D′ : d′Phd}| = k − 1.

Definition 10 A preference Ph of a hospital h with capacity κh is called
lexicographic if for all D′, D′′ ⊆ D with |D′′| = |D′| ≤ κh, D′PhD

′′ if and
only if there exists k ∈ {1, . . . , |D′|} such that rk(Ph, D

′)Phrk(Ph, D
′′) and

rl(Ph, D
′) = rl(Ph, D

′′) for all l < k. The set of lexicographic preferences of
a hospital h is denoted by DL

h .

Definition 11 A preference profile P˜ with lexicographic hospitals’ prefer-
ences and RVT groups’ preferences is defined as ({P˜d}d∈D, {P˜G}G∈G̃, {P˜h}h∈H)

where P˜d ∈ L(H̄) for all d ∈ D, P˜G ∈ DRV T
G for all G ∈ G̃, P˜h ∈ DL

h for
all h ∈ H, and hospitals’ preferences satisfy IHP. The set of preference pro-
files with lexicographic hospitals’ preferences and RVT groups’ preferences is
denoted by D˜LR.
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Definition 12 A preference profile P˜ with lexicographic hospitals’ prefer-
ences and unrestricted groups’ preferences is defined as ({P˜d}d∈D, {P˜G}G∈G̃, {P˜h}h∈H)

where P˜d ∈ L(H̄) for all d ∈ D, P˜G ∈ L(H̄ |G|) for all G ∈ G̃, P˜h ∈ DL
h for

all h ∈ H, and hospitals’ preferences satisfy IHP. The set of all preference
profiles with lexicographic hospitals’ preferences and unrestricted groups’ pref-
erences is denoted by D˜LU .

In the following, we introduce the notion of Adjacent IHP (AIHP). AIHP
implies that for any two doctors in any group, there cannot be a doctor
outside that group that lies in-between those two doctors in the identical
hospital preference. Recall that, whenever we consider an IHP P 0, we assume
the indexation of the doctors in groups to be such that gjiP 0gji+1 for all i < nj

and all j ≤ m. Below, we provide a formal definition of AIHP.

Definition 13 Let P 0 be an IHP. Then, P 0 satisfies Adjacent IHP (AIHP)
if for any group G = {g1, . . . , gn} ∈ G̃ and any d ∈ D, g1P 0dP 0gn implies
d ∈ G.

Definition 14 Let P 0 be an IHP. Then, the collection of preference profiles
where

• hospitals in H have lexicographic preferences and groups’ preferences
satisfy RVT, denoted by D˜LR(P 0), is defined as D˜LR(P 0) = {P˜ ∈ D˜LR :

P 0 is the IHP of P˜},
• hospitals in H have lexicographic preferences and groups’ preferences
are unrestricted, denoted by D˜LU(P 0), is defined as D˜LU(P 0) = {P˜ ∈D˜LU : P 0 is the IHP of P˜}.

Note that, for any IHP P 0 ∈ L(D), D˜LR(P 0) ⊆ D˜LU(P 0).
Our next theorem says that AIHP is a necessary condition for the ex-

istence of stable matching at every preference profile where hospitals have
lexicographic preferences and groups’ preferences satisfy RVT.
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Theorem 2 Let P 0 be an IHP. Suppose stable matching exists at every pref-
erence profile in D˜LR(P 0). Then, P 0 satisfies AIHP.

Proof : Consider an IHP P 0. Suppose P 0 does not satisfy AIHP. We show
that there exists a preference profile in D˜LR(P 0) with no stable matching.
Since P 0 does not satisfy AIHP, there exists a group G = {g1, . . . , gn} and
doctors d1 /∈ G such that giP 0d1P

0gi+1 for some i ∈ {1, . . . , n − 1} and
gnP

0d2. Take two hospitals h1, h2 ∈ H. Consider a preference profile P˜ in
D˜LR(P 0) such that hd1 = h1 and h2P˜d1h for all h ∈ H \ {h1}. Further,
hd2 = h2 and h1P˜d2h for all h ∈ H \ {h2}. Let the preference of group G be
such that hd = h1 and h2P˜dh for all h ∈ H\{h1} for all d ∈ {g2, . . . , gn}. Also,
hg1 = h2 and h1P˜ g1h for all h ∈ H \ {h2} but (h1, . . . , h1)P˜G((h1)−1, (h2)1).
An allocation of the group G, where at least one doctor in G is matched
to a hospital h /∈ {h1, h2} is assumed to responsive and is ranked below
all the allocations, where all the members of the group are either matched
to h1 or h2. Let |{d : hd = h2}| = κh2 − 2, |{d : hd = h1}| = κh1 − n, and
|{d : hd = h}| = κh for all h 6= h1, h2. Finally, we assume that the preferences
of all groups other than G satisfy responsiveness. We show that there is no
stable matching at this preference profile. Let µ be a stable matching at this
preference profile. Since µ is stable and

∑
h∈H κh = |D|, it must be that

µ(d) = hd for all d /∈ {g1, . . . , gn, d1, d2}. Now we distinguish the following
cases for the allocation of the group G.

• Suppose µ(G) = (h1, . . . , h1). Then, (h1, d1) blocks µ as h1P˜d1h2 and
d1P

0gi+1.

• Suppose µ(G) = ((h1)−1, (h2)1). Then, ((h1, . . . , h1), G) blocks µ as
g1P

0d1P
0d2 and (h1, . . . , h1)P˜G((h1)−1, (h2)1).

• Suppose µ(G) = ((h1)−j, (h2)j) for some j 6= 1. Note that since
h2P˜ g1h1, by RVT ((h1)−1−j, (h2)1, (h2)j)P˜G((h1)−j, (h2)j). This, to-
gether with the fact that g1P 0d1P

0d2, means µ is blocked by (((h1)−1−j, (h2)1, (h2)j), G).
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• Suppose µ(G) = ((h1)−j−k, (h2)j, (h2)k) for some j < i+1 and for some
k 6= j. Since (h1, . . . , h1)P˜G((h1)−j−k, (h2)j, (h2)k), gjP 0d1P

0d2 and
hospitals’ preferences are lexicographic, µ is blocked by (((h1)−k, (h2)k), G).

• Suppose µ(G) = ((h1)−j−k, (h2)j, (h2)k) for some j > k > i + 1. Note
that, since h1P˜ gih2, by RVT we have ((h1)−k, (h2)k)P˜G((h1)−j−k, (h2)j, (h2)k).
This together with the fact that gkP 0d2, means µ is blocked by (((h1)−k, (h2)k), G).

This completes the proof of Theorem 2. �

Now we prove the converse of Theorem 2 which states that if the hospitals’
preferences satisfy AIHP, then stable matching exists at every preference
profile where hospitals’ preferences are lexicographic and groups’ preferences
satisfy RVT. However, we prove a stronger version of this, where we show
that if the hospitals’ preferences satisfy AIHP, then stable matching exists
at every preference profile where hospitals’ preferences are lexicographic and
groups’ preferences are unrestricted.

Theorem 3 Let P 0 be an IHP. Suppose P 0 satisfies AIHP. Then, stable
matching exists at every preference profile in D˜LU(P 0).

Proof : The proof of Theorem 3 is constructive. Suppose P 0 satisfies AIHP.
We construct an algorithm that produces a stable matching at every pref-
erence profile in D˜LU(P 0). Take P˜ ∈ D˜LU(P 0). Recall that, by our initial
assumption on IHP, gjnj

P 0gknk
for all j < k ∈ {1, . . . ,m}. Since P 0 is AIHP,

this means gj1P 0gk1 for all j < k ∈ {1, . . . ,m}. Now we present our algorithm.
Algorithm: The involves m+ 1 steps. We present the 1st step, and a general
step of the algorithm. At every step, a doctor from a group proposes to a set
of hospitals, one for each member of the group. Whenever a hospital receives
a set of proposals at some step, it accepts all proposals if it has adequate
vacancies, otherwise it rejects all the proposals.

Step 1 : Use SDA to match all the doctors ranked above g11 according to P 0.
Let g11 propose on behalf of G1 to the top n1-tuple of hospitals according to
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P˜G1 . If at least one doctor of the group is rejected, then let g11 propose to the
next ranked n1-tuple of hospitals according to P˜G1 . Continue this process
till the whole group G1 is accepted by a set of hospitals.

...

Step j : Use SDA to match all the doctors that ranked below gj−1nj−1
and above

gj1 according to P 0. Let gj1 propose on behalf of Gj to the top nj-tuple of
hospitals according to P˜Gj . If at least one doctor of the group is rejected,
then let gj1 propose to the next ranked nj-tuple of hospitals according to P˜Gj .
Continue this process till the whole group Gj is accepted by a set of hospitals.

...

Continue this process till Step m and then match the remaining doctors by
SDA at the m+ 1th step.

We show that the above algorithm produces a stable matching at P˜ . Let
µ be the outcome of the above mentioned algorithm. We distinguish the
following cases.

Case 1 : Suppose (h, s) blocks µ through µ′. Note that, by the nature of
our algorithm, all the doctors that propose before s are more preferred to
s according to the AIHP P 0. Moreover, for any G = (g1, . . . , gn), if g1P 0s,
then AIHP implies gnP 0s. Since s /∈ µ(h), by the nature of the algorithm, we
have either dP 0s for all d ∈ µ(h) and |µ(h)| = κh, or µ(s)P˜ sh. If dP 0s for all
d ∈ µ(h) and |µ(h)| = κh, then by responsiveness of hospitals’ preferences,
we have µ(h)P˜hµ

′(h). This means hospital h does not block with s. On
the other hand, if µ(s)P˜ sh, then s does not block with hospital h. This
contradicts that (h, s) blocks µ.

Case 2 : Suppose (h˜, G) blocks µ through µ′ where G = {g1, . . . , gn} and
h˜ = (h1, . . . , hn). Then, it must be that h˜P˜G(µ(g1), . . . , µ(gn)). By the nature
of the algorithm, this means g1 proposes to (h1, . . . , hn) before proposing to
(µ(g1), . . . , µ(gn)), and some hospital, say hi, rejects at least one member of
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the group G. Let {gi1 , . . . , gil} be the set of doctors of group G that apply
to hi and get rejected. Because hi rejects those doctors, it must be that
hi has less than l vacancies when g1 proposes to (h1, . . . , hn) on behalf of
G. Let D′ be the set of doctors that are present in hi at that time. By
AIHP assumption and the nature of the algorithm, this means each doctor
in D′ is preferred to all the doctors of the group G. Again, by the nature of
the algorithm, it follows that D′ ⊆ µ(hi). This means hi must release some
doctors from D′ for the block (µ′, h˜, G) to µ. Since dP˜hi

gik for all d ∈ D′

and k ∈ {1, . . . , l}, and P˜hi
is lexicographic, we have µ(hi)P˜hi

µ′(hi). This
contradicts that (h˜, G) blocks µ. This completes the proof of Theorem 3. �

In what follows, we show by means of an example that the lexicographic
assumption on the hospitals’ preferences is necessary for Theorem 3. In
other words, we show that if hospitals’ preferences are not lexicographic, then
existence of stable matching is not guaranteed even if hospitals’ preferences
follow AIHP. In fact, we show a stronger version where the existence of stable
matching is not guaranteed under the additional assumption that groups’
preferences satisfy RVT.

Example 1 Consider a matching problem where H = {h1, h2} with κh1 =

κh2 = 2, D = {g1, g2, s1, s2} and there is exactly one group G = {g1, g2} in
G̃. The preferences of individual doctors, preference of the group and AIHP
of hospitals on the set of individual doctors is given in Table 1. The group’s
preferences over pairs where one member is matched with a hospital h ∈ H
and the other one is unmatched is not shown in the table, but assumed to
be responsive and ranked below the shown pairs. Finally, we assume that
for hospital h1, {g1, g2}Ph1{s1, s2}. Note that, the preference of the hospital
h1 is not lexicographic. Further note that, the preference of the group G

satisfies RVT.

Clearly, for a stable matching µ, each hospital should get exactly 2 doctors.
We consider all 4 possible cases of group matching.
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P 0 Ps1 Ps2 Pg1 Pg2 PG

s1 h1 h2 h1 h2 (h1, h1)

g1 h2 h1 h2 h1 (h2, h2)

g2 (h1, h2)

s2 (h2, h1)

Table 1: Preferences

• Suppose µ(G) = (h1, h1). Since s1P 0g2 and h1Ps1h2, µ is blocked by
(h1, s1).

• Suppose µ(G) = (h2, h2). Since {g1, g2}Ph1{s1, s2} and (h1, h1)PG(h2, h2),
it follows that µ is blocked by ((h1, h1), G).

• Suppose µ(G) = (h1, h2) or (h2, h1). We show µ is blocked when µ(G) =

(h1, h2), the proof of the same for µ(G) = (h2, h1) can be obtained by
changing the roles of g1 and g2. Since h1Ps1h2 and s1P 0s2, if µ(h1) = s2,
then µ is blocked by (h1, s1). Now suppose µ(s1) = h1. Since µ(g1) =

h1, this means µ(s2) = h2. Then, (h2, h2)PG(h1, h2) and g1P 0s2 imply
µ is blocked by ((h2, h2), G).

This shows that there is no stable matching at the above mentioned prefer-
ence profile.

2.7 Matching Market with Non-Identical Hospital Pref-
erence and Couples

In this section, we investigate what happens if the IHP condition is slightly
relaxed. We further assume that the groups are couples. ThusD = S∪M∪F
with |M | = |F |, where M = {m1, . . . ,mk} is the set of males and F =

{f1, . . . , fk} is the set of females. Further, we denote the set of couples by
C = {{m1, f1}, . . . , {mk, fk}}. We assume that for all couples c = {m, f} ∈
C and for all hospitals h ∈ H, mPhf .
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Recall that, for a given set of hospitals H and set of doctors D with
couples C, a preference profile P˜ is defined by a collection of preferences
({P˜d}d∈D, {P˜ c}c∈C , {P˜h}h∈H) where P˜d is a preference of doctor d, P˜ c is a
preference of couple c and P˜h is a preference of hospital h for all d ∈ D, all
c ∈ C, and all h ∈ H.

In what follows, we show by the means of an example that IHP assump-
tion on hospitals’ preferences is necessary for Theorem 1. In other words, we
show that if hospitals’ preferences do not satisfy IHP, then stable matching
is not guaranteed even if couples’ preferences satisfy Condition 1.

Example 2 Consider a matching problem where H = {h1, h2, h3} with
κh1 = κh2 = 1, κh3 = 2, D = {m, f, s1, s2} and there is exactly one cou-
ple c = {m, f} in C. The preferences of individual doctors, preference of the
group and preferences of hospitals on the set of individual doctors is given
in Table 2. The couple’s preference over pairs where one member is matched
with a hospital and the other one is unmatched is not shown in the table,
but assumed to be responsive and ranked below the shown pairs. Note that,
the preference of the couple c satisfies Condition 1.

Ph1 Ph2 Ph3 Ps1 Ps2 Pm Pf Pc

s1 m m h2 h3 h1 h2 (h1, h2)

m f f h1 h1 h3 h1 (h1, h3)

f s1 s1 h3 h2 h2 h3 (h3, h3)

s2 s2 s2 (h3, h2)

(h3, h1)

(h2, h1)

(h2, h3)

Table 2: Preferences

Let µ be a stable matching at the preference profile given in Table 2. Since
s1Phs2 for all h ∈ H, it must be that either µ(s1) = µ(s2) or µ(s1)Ps1µ(s2).

• Suppose µ(c) = (h1, h2). Since h1Ps1h3 and s1Ph1m, µ is blocked by
(h1, s1).
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• Suppose µ(c) = (h1, h3). Since (h1, h2)Pc(h1, h3) and fPh2s1, µ is
blocked by (h2, f).

• Suppose µ(c) = (h3, h3). Since (h1, h2)Pc(h3, h3), fPh2s1 and mPh1s2,
µ is blocked by ((h1, h2), c).

• Suppose µ(c) = (h3, h2). Since (h3, h3)Pc(h3, h2) and fPh3s2, µ is
blocked by (h3, f).

• Suppose µ(c) = (h3, h1). Since (h3, h3)Pc(h3, h1) and fPh3s2, µ is
blocked by (h3, f).

• Suppose µ(c) = (h2, h1). Since h1Ps1h3 and s1Ph1f , µ is blocked by
(h1, s1).

• Suppose µ(c) = (h2, h3). Since (h3, h3)Pc(h2, h3) and mPh3s2, µ is
blocked by (h3,m).

Thus, there is no stable matching at this preference profile.

In view of the above example, we look for condition on couples’ prefer-
ences that is sufficient to ensure existence of stable matching when hospitals’
preferences are non-identical over individual doctors. Recall that, we have a
mild condition on hospitals’ preferences that m is preferred to f for all the
hospitals h.

Let P 0
C = ({P 0

d }d∈D\S, {P 0
c }c∈C) be a given collection of preferences of the

doctors that are in some couple, and of the couples in C. Then, by D˜ (P 0
C)

we denote the set of preference profiles where doctors d ∈ D \ S and couples
in c ∈ C have preferences as in P 0

C , i.e., D˜ (P 0
C) = {P˜ : P˜d = P 0

d for all d ∈
D \ S and P˜ c = P 0

c for all c ∈ C}.

Condition 2 Suppose P 0
C is such that P 0

c ∈ DRV T
c for all c ∈ C. Then,

P 0
C satisfies Condition 2 if there exists responsive preference Pc ∈ DR

c for
all c ∈ C such that for all c = {m, f} ∈ C and all (h1, h2), (h3, h4) ∈
(H̄×H̄)\(hm, hm), we have (h1, h2)Pc(h3, h4) if and only if (h1, h2)P

0
c (h3, h4).
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Note that, Condition 2 implies that for a couple c = {m, f}, P 0
c satis-

fies responsiveness over all pairs of hospitals except (hm, hm). Furthermore,
P 0
c violates responsiveness for togetherness only when both members of the

couple get a position at hm. In the following theorem, we show that exis-
tence of a stable matching is guaranteed at a preference profile if the couples’
preferences satisfy Condition 2.

Theorem 4 Suppose P 0
C is such that P 0

c ∈ DRV T
c for all c ∈ C. Then, stable

matching exists at every preference profile in D˜ (P 0
C) if P 0

C satisfies Condition
2.

Proof : The proof of Theorem 4 is constructive. We construct an algorithm
that produces a stable matching at every preference profile where couples’
preferences satisfy Condition 2. Suppose P 0

C is such that P 0
c ∈ DRV T

c for
all c ∈ C. Suppose further that P 0

C satisfies Condition 2. Then, for each
c = {m, f} ∈ C there exists some Pc ∈ DR

c such that for all (h1, h2), (h3, h4) ∈
(H̄×H̄)\(hm, hm), we have (h1, h2)Pc(h3, h4) if and only if (h1, h2)P

0
c (h3, h4).

For each couple c = {m, f}, define a conditional preference P 0
f |h ∈ L(H) of f

in the following way: h′P 0
f |hh

′′ if and only if (h, h′)P 0
c (h, h′′). In the following

lemma we establish a connection between P 0
f and P 0

f |hm
.

Lemma 1 Suppose c = {m, f} is a couple and h1, h2, hm are all distinct
hospitals. Then, h1P 0

f h2 implies h1P 0
f |hm

h2.

Proof : Assume for contradiction that h1P 0
f h2 and h2P 0

f |hm
h1. Since h2P 0

f |hm
h1,

we have (hm, h2)P
0
c (hm, h1). Because h1, h2, hm are all distinct, by Condition

2 we have (hm, h2)Pc(hm, h1). Because Pc ∈ DR
c , this means h2P 0

f h1, which
is a contradiction. This completes the proof. �

Take P˜ ∈ D˜ (P 0
C). In the following, we present our algorithm that pro-

duces a stable matching at P˜ .
Algorithm: Use DPDA where every doctor bids as a single doctor. For all
c = {m, f}, m proposes according to P 0

m and f proposes according to P 0
f |hm

26



where hm is the P 0
m maximal hospital. For all s ∈ S, s proposes according

to P˜ s.

The following lemma establishes an important property of DPDA. The
proof of the lemma is elementary, however we present the proof for the sake
of completeness. Let µ be the outcome of the above mentioned algorithm.

Lemma 2 Suppose a doctor d is rejected by hospital h at some stage of the
algorithm. Then µ cannot be blocked such that d moves to the hospital h from
µ(d).

Proof : Since h has rejected d during some stage of the algorithm, hospital h
had κh many better proposals from doctors that are better than d according
to Ph at the time when h rejected d. Therefore, by the nature of DPDA all
the doctors that are matched with h at the end of the algorithm must be
better than d according to Ph. So h will not block with d. This completes
the proof. �

Now, we show that the above mentioned algorithm produces a stable
matching at P˜ . We distinguish the following cases.

Case 1 : Suppose (h, s) blocks µ through µ′. Since s blocks with h, we have
sP˜ sµ(s). Therefore, it must be that h rejected s earlier in the algorithm.
Hence by Lemma 2, (h, s) cannot block µ.

Case 2 : Suppose (h˜, c) blocks µ through µ′ where c = {m, f} and h˜ =

(h1, h2). Note that, h1 and h2 are not necessarily different. Since c blocks
with (h1, h2), we have (h1, h2)P

0
c (µ(m), µ(f)).

Case 2.1 : Suppose µ(m) = hm. By the definition of P 0
c , this means (hm, h2)P

0
c (h1, h2).

Since (h1, h2)P
0
c (hm, µ(f)), this implies (hm, h2)P

0
c (hm, µ(f)). Because (µ′, h˜, c)

blocks µ where µ(m) = hm, it follows that (µ′, (hm, h2), c) also blocks µ. Note
that, (hm, h2)P

0
c (hm, µ(f)) implies h2P 0

f |hm
µ(f). Therefore, by the definition

of the algorithm, it must be that f proposed to h2 and got rejected at an
earlier stage of the algorithm. Hence, by Lemma 2, (µ′, (hm, h2), c) cannot
block µ.
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Case 2.2 : Suppose µ(m) 6= hm. Since m bids according to P 0
m, using similar

logic as before, it follows that either h1 = µ(m) or µ(m)P 0
mh1. This, together

with the facts that (h1, h2)P
0
c (µ(m), µ(f)) and µ(m) 6= hm, implies that

h2P
0
f µ(f). Because µ(m) 6= hm, it must be that |µ(hm)| = κhm and dP˜hmm

for all d ∈ µ(hm). Since mP˜hf for all h ∈ H, this means dP˜hmf for all
d ∈ µ(hm). Therefore µ(f) 6= hm. Moreover, since (µ′, h˜, c) blocks µ, it
follows that h2 6= hm. Because h2P 0

f µ(f), it must be that h2 6= µ(f). As
µ(f), h2, hm are all distinct and h2P 0

f µ(f), by Lemma 1 we have h2P 0
f |hm

µ(f).
Therefore, by the definition of the algorithm, it must be that f proposed to
h2 and got rejected at an earlier stage of the algorithm. Hence, by Lemma
2, (h˜, c) cannot block µ.
This completes the proof. �

3 Conclusion

We consider many-to-one matching problem between doctors and hospitals
where doctors are divided into groups. We assume that the preferences of
the groups do not follow responsiveness and hospitals have identical prefer-
ences over the individual doctors. We show by means of an example that
existence of stable matching is not guaranteed in such scenarios. In view of
this, we find restriction on the preferences of groups that is necessary and
sufficient for the existence of stable matching. We further consider an ad-
ditional restriction on the identical hospital preference that we call adjacent
identical hospital preference, and show that stable matching always exists
under this restriction. Afterwards, we relax the condition of identical hospi-
tal preferences. However, in order to make the problem tractable, we restrict
the groups to be couples. Finally, we provide a sufficient condition for the
existence of stable matching for such matching problems.

28



References

[1] B. Douglas Bernheim, Bezalel Peleg, and Michael D. Whinston, Coalition-
proof Nash equilibria I. concepts, Journal of Economic Theory 42 (1987),
no. 1, 1–12.

[2] Francis Bloch and Bhaskar Dutta, Formation of networks and coalitions,
Handbook of Social Economics, North Holland: Amsterdam, 2011, Edited
by J. Benhabib, A. Bisin, and M. O. Jackson.

[3] Bhaskar Dutta and Jordi Massó, Stability of matchings when individuals
have preferences over colleagues, Journal of Economic Theory 75 (1997),
no. 2, 464–475.

[4] Federico Echenique and Jorge Oviedo, A theory of stability in many-to-
many matching markets, Theoretical Economics 1 (2006), no. 2, 233âĂŞ-
273.

[5] Bettina Klaus and Flip Klijn, Stable matchings and preferences of couples,
Journal of Economic Theory 121 (2005), no. 1, 75–106.

[6] Fuhito Kojima, Parag A. Pathak, and Alvin E. Roth, Matching with
couples: Stability and incentives in large markets, Working Paper, Stanford
University, 2010.

[7] Hideo Konishi and M. Utku Ünver, Credible group stability in many-to-
many matching problems, Journal of Economic Theory 129 (2006), no. 1,
57–80.

[8] Alvin E. Roth, The evolution of the labor market for medical interns and
residents: A case study in game theory, The Journal of Political Economy
(1984), 991–1016.

[9] Alvin E. Roth, Misrepresentation and stability in the marriage problem,
Journal of Economic Theory 34 (1984), no. 2, 383–387.

29



[10] Alvin E. Roth and Marilda A. Oliveira Sotomayor, Two-sided match-
ing: A study in game-theoretic modelling and analysis, vol. 18, Cambridge
University Press, 1990.

[11] Tayfun Sonmez and M. Utku Ünver, Matching, allocation, and ex-
change of discrete resources, Handbook of Social Economics, vol. 1, North-
Holland, 2011, Edited by Jess Benhabib, Alberto Bisin, and Matthew O.
Jackson, pp. 781–852.

[12] Marilda Sotomayor, Three remarks on the many-to-many stable match-
ing problem, Mathematical social sciences 38 (1999), no. 1, 55–70.

30


