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Abstract

We generalize the notion of single-peakedness by allowing existence of preferences that are

not single-peaked. We call such domains mixed single-peaked domains. Such domains occur

when there is no complete prior ordering, or there are multiple prior orderings over alterna-

tives that agents use to derive their preferences. Examples of such domains include multiple

single-peaked domain, partially single-peaked domain etc. The importance of such domains

in modeling preferences of agents over political parties, tax policies etc. is well-established in

literature. We characterize all strategy-proof and unanimous random social choice rules over

these domains. It turns out that, such a rule is partially random dictatorial and partially ran-

dom min-max rules. Further, we explore the minimal conditions on a domain under which

the strategy-proof and unanimous rules will be partially random dictatorial and partially

random min-max. We also show that, each strategy-proof and unanimous random rule on

mixed single-peaked domain is a probabilistic mixture of the strategy-proof and unanimous

deterministic rules on the same domain.
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1 Introduction

We analyze the classical social choice problem of choosing an alternative from a set of feasible al-

ternatives, based on the preferences of the individuals in a society. Such a procedure is called de-

terministic social choice function (DSCF). Desirable properties such as imposed by Arrow, Gibbard,

Satterthwaite on such a DSCF are strategy-proofness and unanimity. A DSCF is strategy-proof if a

strategic individual cannot change its outcome in his/her favor by misreporting his/her prefer-

ences, and is unanimous if it always choses a unanimously agreed alternative whenever there is

one. The classic Gibbard (1973)-Satterthwaite (1975) impossibility theorem shows that, if there

are at least three alternatives and the preferences of the individuals are unrestricted, then the only

DSCFs that are strategy-proof and unanimous are the dictatorial ones. That is, there is an indi-

vidual, called the dictator, such that the DSCF always choses the most preferred alternative of

that individual.

Although strategy-proofness and unanimity are desirable properties of a DSCF, the unre-

stricted domain assumption in Gibbard-Satterthwaite Theorem is quite strong. There are many

political and economic situations where the preferences of an individual satisfy natural restric-

tions. Thus, domain restriction turns out to be a natural and useful way in evading the dictator-

ship result in social choice theory.

One such well-known domain restriction is the single-peaked property that occur in an envi-

ronment where strictly quasi-concave utility functions are maximized over a linear budget set.

Other well-known domain restrictions are single-dipped and single-crossing properties. Single-

dipped property is commonly used in public bad location problem. Usefulness of single-crossing

property is well-established in literature (see, for example, Romer (1975), p. 181, and Austen-

Smith and Banks (2000), pp. 114-115). Single-crossing domains are flexible enough to accommo-

date the non-convexities that appear in case of majority voting. Such domains arise in models

of income taxation and redistribution (Roberts (1977), Meltzer and Richard (1981)), local public

goods and stratification (Westhoff (1977), Epple and Platt (1998), Epple et al. (2001)), coalition

formation (Demange (1994), KUNG (2006)) and, in models that study the selection of policies in

the market for higher education (Epple et al. (2006)) and the choice of constitutional and voting

rules (Barbera and Jackson (2004)). Saporiti (2009) has a detailed exposition on various applica-

tions, interpretations, and scopes of single-crossing domains.

The study of single-peaked domains at least goes back to Black (1948) where he shows that
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the majority rules are strategy-proof and unanimous on these domains. Moulin (1980) and Wey-

mark (2011) show that the strategy-proof and unanimous DSCFs on a single-peaked domain

are min-max rules. A special class of min-max rules, called the median rules, satisfy an addi-

tional property called anonymity. Anonymity implies that every individual in a society is treated

equally. The strategy-proof and unanimous DSCFs on single-dipped domains are characterized

in Peremans and Storcken (1999) as monotone rules between the left-most and right-most alter-

natives. Saporiti (2009) characterizes the strategy-proof, unanimous and anonymous DSCFs on

single-crossing domains as peak rules. Peak rules are median rules where phantom peaks are cho-

sen from the top-set of the domain. Top-set of a domain consists of the alternatives that appear

as a top in some preference in the domain.

The study of social choice theory is enriched with the notion of random social choice function

(RSCF). A RSCF, instead of selecting a particular alternative, assigns a probability distribution

over the alternatives. Thus, RSCFs are generalization of DSCFs. Importance of RSCFs over

DSCFs is well-established in literature (see, for example, Ehlers et al. (2002), Peters et al. (2014)).

The study of RSCFs goes back to Gibbard (1977) where he characterizes all strategy-proof

and unanimous RSCFs on the unrestricted domains as the random dictatorial rules. Random

dictatorial rules are convex combination of dictatorial rules. A domain, where every strategy-

proof and unanimous RSCF is a convex combination of DSCFs satisfying those properties, is

called a deterministic extreme point (DEP) domain. The study of such domains is useful as it entails

a connection between the DSCFs and the RSCFs satisfying strategy-proofness and unanimity

on those domains. Such a connection is helpful in finding optimum RSCFs for a society, i.e.,

RSCFs that maximize the total expected utility of a society. Gershkov et al. (2013) characterizes

the optimum DSCFs on single-crossing domains. Evidently, if one wants to find the optimum

RSCFs on those domains, then such a connection between the DSCFs and RSCFs, if exists, will

be useful.

Ehlers et al. (2002) characterizes the strategy-proof and unanimous random rules on single-

peaked domains, and Peters et al. (2014) shows that these rules are convex combination of the

strategy-proof and unanimous DSCFs on that domain. In a recent work, Peters et al. (2016)

characterizes the strategy-proof and unanimous RSCFs on single-dipped domains, and shows

that they are convex combination of DSCFs satisfying those properties. However, to the best of

our knowledge, the strategy-proof and unanimous RSCFs on single-crossing domains are not

characterized yet. We obtain this characterization as an application of our result in this paper.
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It is observed that the well-known restricted domains, such as single-peaked, single-dipped,

single-crossing, are all based on some prior ordering over the alternatives. In tune with this, the

strategy-proof and unanimous DSCFs on these domains respect this prior ordering by satisfying

a property known as uncompromisingness. Uncompromisingness ensures that a DSCF is com-

pletely determined by its outcomes at boundary profiles. A boundary profile is one where each

individual’s most preferred alternative is either the maximal or the minimal alternative (w.r.t.

the prior ordering).

This makes it important to understand the extent to which these properties hold. In view of

this, we intend to explore what happens when a domain violates single-peakedness in a minimal

way. In fact, expecting all the preferences single-peaked with respect to a particular ordering is,

we think, a strong requirement. Thus, we allow for situations where some preferences need not

be single-peaked with respect to the given prior ordering, or there are multiple prior orderings

with respect to which the domain is single-peaked. In this paper, we intend to characterize all

strategy-proof and unanimous random social choice rules on mixed single-peaked domains.

In tradition with this literature, stochastic dominance is used to extend preferences over alter-

natives to preferences over probability distributions. We show that, whenever single-peakedness

is violated for a subset of alternatives forming an interval with respect to the prior ordering,

every strategy-proof and unanimous random rule behaves like a random dictatorship on that

interval and like a random min-max rule outside that interval.

Let D̂ be a single-peaked domain with respect to some prior ordering. Then, a superset D̃ of

D is called mixed single-peaked if, there is an interval [aj, aj+1] such that D̃ restricted to [a1, aj]∪

[aj+1, am] is single-peaked and D̃ restricted to [aj, aj+1] is not single-peaked.

The rest of the paper is organized as follows. We introduce our basic definitions in Section 2.

Our main results are presented in Section 3. We conclude the paper in Section 4.

2 Preliminaries

Let A = {a1, a2, . . . , am} be a finite set of alternatives with a prior ordering a1 ≺ a2 ≺ . . . ≺ am,

and N = {1, . . . , n} be a finite set of agents. Whenever we write minimum or maximum of a

subset of A, we mean it w.r.t. the ordering ≺ over A. By a � b we mean a = b or a ≺ b. For

a, b ∈ A define [a, b] = {c | either a � c � b or b � c � a}. A complete, antisymmetric and

transitive binary relation over A (also called a linear order) is called a preference. We denote by
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L(A) the set of all preferences over A. For a preference P ∈ L(A), by rk(P) we mean the kth

ranked alternative in P, i.e., rk(P) = a if and only if |{b ∈ A | bPa}| = k− 1. By Pk we denote a

preference such that r1(Pk) = ak, and by Pr,s we denote a preference such that r1(Pr,s) = ar and

r2(Pa,b) = as. We denote by D a set of admissible preferences for an(y) agent i ∈ N. As it is clear

form the notation, we assume same set of admissible preferences for all the agents. For a ∈ A,

let Da = {P ∈ D | r1(P) = a}. For any P ∈ D and a ∈ A, the upper contour set of a at P, denoted

by U(a, P), is defined as the set of alternatives that are weakly preferred to a in P, more formally,

U(a, P) = {b ∈ A | bPa or b = a}. A preference profile, denoted by PN = (P1, P2, . . . , Pn), is an

element of Dn = D ×D × . . .×D. For PN ∈ Dn, let S(ak, PN) = {i ∈ N | ak � r1(Pi)}.

A preference Pi ∈ L(A) is called single-peaked if Pi has a unique maximal element τ(Pi), the

peak of Pi, such that for all a, b ∈ A, [τ(Pi) � a ≺ b or b ≺ a � τ(Pi)] ⇒ aPib. A domain is

called single-peaked if each preference in the domain is single-peaked and is called maximal if

it contains all single-peaked preferences.

For Pi ∈ L(A), and B ⊆ A, Pi|B ∈ L(B) is defined as follows: for all a, b ∈ B (a, b) ∈ Pi|B if

and only if (a, b) ∈ Pi. For D ⊆ L(A), PN ∈ Dn, and B ⊆ A, define D|B = {Pi|B | Pi ∈ D}, and

PN|B = (P1|B, . . . , Pn|B).

For notational convenience, whenever it is clear from the context, we do not use braces for

singleton sets, i.e., we denote sets {i} by i. By4A we denote the set of probability distributions

on A.

A Random Social Choice Function (RSCF) is a function Φ : Dn → 4A. For S ⊆ A and PN ∈ Dn,

we denote by ΦS(PN) = ∑a∈S Φa(PN), where Φa(PN) is the probability of a at Φ(PN).

Definition 2.1. A RSCF Φ on Dn is unanimous if for all PN ∈ Dn

Φ∩n
i=1r1(Pi)

(PN) = 1 whenever ∩n
i=1 r1(Pi) 6= ∅.

Definition 2.2. A RSCF Φ on Dn is strategy-proof if for all i ∈ N, all PN ∈ Dn, all P′i ∈ D, and all

x ∈ A,

∑
y∈U(x,Pi)

Φy(Pi, P−i) ≥ ∑
y∈U(x,Pi)

Φy(P′i , P−i).

REMARK 2.1. A RSCF is called a DSCF if it selects a degenerate probability distribution at every

preference profile. More formally, A RSCF Φ on Dn is called a DSCF if, Φa(PN) ∈ {0, 1} for all

a ∈ A and all PN ∈ Dn. The notions of strategy-proofness and unanimity for DSCFs are special
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cases of the corresponding definitions for RSCFs.

REMARK 2.2. Note that, for L, L′ ∈ 4A and P ∈ L(A) if, LU(x,P) ≥ L′U(x,P) and L′U(x,P) ≥ LU(x,P)

for all x ∈ A, then L = L′.

Definition 2.3. Two profiles PN, P′N ∈ Dn are tops-equivalent if r1(Pi) = r1(P′i ) for all i ∈ N.

Definition 2.4. A RSCF Φ on Dn is tops-only if Φ(PN) = Φ(P′N) for all tops-equivalent PN, P′N ∈

Dn.

Definition 2.5. A RSCF Φ on Dn is uncompromising if ΦB(PN) = ΦB(P′i , P−i) for all i ∈ N, all

PN ∈ Dn, all P′i ∈ D and all B ⊆ A such that B ∩ [r1(Pi), r1(P′i )] = ∅.

REMARK 2.3. Note that, an uncompromising RSCF is tops-only by definition.

Definition 2.6. A RSCF Φ is called RANDOM PDGMVS if for all S ⊆ N, there exists βS ∈ 4A

with the property that

1. βN = δam , β∅ = δa1 ,

2. βS([ai, am]) ≤ βS∪T([ai, am]) for all S, T ⊆ N and all ai ∈ A,

3. βS((aj, aj+l)) = 0 for all S ⊆ N,

4. for all i ∈ N, there exists αi ≥ 0 with ∑n
1 αi = 1 such that βS([aj+l, am]) = ∑n

i αi

such that

Φai(PN) = βS(ai,PN)([ai, am])− βS(ai+1,PN)([ai+1, am])

Definition 2.7. Let D̂ be a left-right single-peaked domain. Then a domain D̃ ⊇ D̂ is called a

mixed single-peaked domain if there exist aj, aj+l ∈ A such that

1. D̃|[a1,aj]∪[aj+l ,am] is single peaked,

2. there exist Q, Q′ ∈ D̃ such that r1(Q) = aj, r2(Q) = ap and r1(Q′) = aj+l, r2(Q) = aq for

some ap, aq with the property that either aj+1 ≺ ap ≺ aj and aj ≺ ap ≺ aj+l−1, or ap = aj+l

and aq = aj.
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3 Results

In this section we present all strategy-proof and unanimous RSCFs on mixed single-peaked do-

mains. We begin with a technical lemma that we use in our proof repeatedly.

Lemma 3.1. Let Φ be a strategy-proof set on a domain Dn. Let P1, P2 ∈ D and B ⊆ A. Suppose

Φa(P1, P1, P−{1,2}) = Φa(P2, P2, P−{1,2}) for all a /∈ B. Then Φb(P1, P1, P−{1,2}) = Φb(P1, P2, P−{1,2})

for all b /∈ U(W(B, P1), P1) ∩U(W(B, P2), P2).

Proof. We show Φb(P1, P1, P−{1,2}) = Φb(P1, P2, P−{1,2}) for all b /∈ U(W(B, P1), P1). The proof for

the same when a /∈ U(W(B, P1), P1) follows from the symmetric argument. Take b /∈ U(W(B, P1), P1).

Note that, by strategy-proofness

ΦU(b,P1)
(P1, P1, P−{1,2}) ≥ ΦU(b,P1)

(P1, P2, P−{1,2}) ≥ ΦU(b,P1)
(P2, P2, P−{1,2}). (1)

Because b /∈ U(W(B, P1), P1), B ⊆ U(b, P1). This means Φc(P1, P1, P−{1,2}) = Φc(P2, P2, P−{1,2})

for all c /∈ U(b, P1). Hence, ΦU(b,P1)
(P1, P1, P−{1,2}) = 1 − ∑c/∈U(b,P1)

Φc(P1, P1, P−{1,2}) = 1 −

∑c/∈U(b,P1)
Φc(P2, P2, P−{1,2}) = ΦU(b.P1)

(P2, P2, 1−∑c/∈U(b,P1)
Φc(P1, P1, P−{1,2})). By (1), this means

ΦU(b,P1)
(P1, P1, P−{1,2}) = ΦU(b,P1)

(P2, P2, P−{1,2}). (2)

Let c be the alternative that appears just above b in P1. Then, using the fact that B ⊆ U(c, P1), it

follows from similar argument that

ΦU(b,P1)
(P1, P1, P−{1,2}) = ΦU(b,P1)

(P2, P2, P−{1,2}). (3)

Subtracting (3) from (2), we have Φb(P1, P1, P−{1,2}) = Φb(P1, P2, P−{1,2}). �

The following theorem is the main theorem of this paper. It says that, a RSCF is strategy-proof

and unanimous on mixed single-peaked domain if and only if it is a Random PDGMVS.

Theorem 3.1. Let D̃ be a mixed single-peaked domain. Then, Φ is a strategy-proof and unanimous RSCF

on Dn if and only if Φ is a Random PDGMVS.

Proof. Let Φ be a strategy-proof and unanimous RSCF on D̃n. If n = 1 then by unanimity

Φa(PN) = 1 where r1(P1) = a for all PN ∈ D̃n and hence, Φ is Random PDGMVS. We prove the
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theorem by induction on the number of agents. Assume that the theorem holds for all sets with

k < n agents.

Let |N| = n and N∗ = N \ {1}. Define the RSCF g : D̃n−1 → 4A for the set of voters N∗ as

follows: for all PN∗ = (P2, P3, . . . , Pn) ∈ D̃n−1,

g(P2, P3, . . . , Pn) = Φ(P2, P2, P3, P4, . . . , Pn).

Evidently, g is a well defined RSCF, satisfying strategy-proofness and unanimity (See Lemma

3 in Sen (2011) for a detailed argument). Hence, by induction hypothesis g is a Random PDG-

MVS.

Lemma 3.2. Let PN, P′ND̃n be tops-equivalent with r1(P1) = r1(P2). Then Φ(PN) = Φ(P′N).

Proof. First we show that

Φ(P1, P1, P−{1,2}) = Φ(P1, P2, P−{1,2}). (4)

By the definition of g, Φ(P1, P1, P−{1,2}) = g(P1, P−{1,2}). Since r1(P1) = r1(P2), g(P1, P−{1,2}) =

g(P2, P−{1,2}) = Φ(P2, P2, P−{1,2}). Using lemma 3.1 with B = ∅, Φ(P1, P1, P−{1,2}) = Φ(P1, P2, P−{1,2}).

This shows (4). USing similar argument, we have

Φ(P′1, P′1, P′−{1,2}) = Φ(P′1, P′2, P′−{1,2}). (5)

Moreover, by our IH Φ(P1, P1, P−{1,2}) = g(P1, P−{1,2}) = g(P′1, P′−{1,2}) = Φ(P′1, P′1, P′−{1,2}).

Hence, it comes from (4) and (5) that Φ(PN) = Φ(P′N). This completes the proof of the lemma.

�

Lemma 3.3. Let P1, P2 ∈ D̂ and Pi ∈ D̃ for all i ≥ 3. Then Φa(P1, P1, P−{1,2}) = Φa(P1, P2, P−{1,2})

for all a /∈ [r1(P1), r1(P2)]

Proof. The proof of this lemma follows from the application of Lemma 3.1 with B = [r1(P1), r1(P2)]

using the fact that P1 and P2 are single-peaked. �

Lemma 3.4. Let PN, P′N ∈ D̃n be such that P1, P2, P′1, P′2 ∈ D̂, r1(Pi), r1(P′i ) ∈ [aj, aj+l] for i ∈ {1, 2},

r1(Pi), r1(P′i ) /∈ (aj, aj+l) for i ≥ 3, and r1(Pi) ≤ aj if and only if r1(P′i ) ≤ aj for all i ≥ 3. Then
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Φa(PN) = 0 = Φb(P′N) for all a ∈ (aj, aj+l) \ {r1(P1), r1(P2)} and all b ∈ (aj, aj+l) \ {r1(P′1), r1(P′2)},

and Φr1(Pi)
(PN) = Φr1(P′i )

(P′N) for all i ∈ {1, 2} if r1(Pi), r1(P′i ) ∈ (aj, aj+l).

Proof. Note that by the IH, there exists α ≥ 0 such that Φr1(P1)
(P1, P1, P−{1,2}) = α for all PN ∈ D̃n

with r1(P1) ∈ (aj, aj+l) and r1(Pi) /∈ (aj, aj+l) for all i ≥ 3. For k = j, . . . , j + l − 1 let

α1(k) = Φak(Pk, Pk+1, P−{1,2})−Φak(Pk+1, Pk+1, P−{1,2}),

and

α2(k) = Φak(Pk+1, Pk, P−{1,2})−Φak(Pk+1, Pk+1, P−{1,2})

Claim. αi(k) ≤ αi(k + 1) for all i ∈ 1, 2 and all k = j, . . . , j + l − 2.

We prove this claim for i = 1, the proof for i = 2 follows from symmetric argument. First

we show α1(j) ≤ α1(j + 1). By Lemma 3.3 Φaj+2(Pj, Pj+1, P−{1,2}) = Φaj+2(Pj, Pj, P−{1,2}) and

Φ{aj+1,aj+2}(Pj, Pj+1, P−{1,2}) = Φ{aj+1,aj+2}(Pj, Pj+2, P−{1,2}). This means Φaj+1(Pj, Pj+1, P−{1,2}) ≥

Φaj+2(Pj, Pj+2, P−{1,2}). Now using strategy-proofness we get, α + Φaj(Pj+1, Pj+1, P−{1,2}) =

Φ{aj,aj+1}(Pj, Pj+1, P−{1,2}) = Φaj(Pj, Pj+1, P−{1,2}) + Φaj+1(Pj, Pj+1, P−{1,2}). Therefore, α1(j) =

α−Φaj+1(Pj, Pj+1, P−{1,2}). Similarly, we can show α1(j + 1) = α−Φaj+2(Pj+1, Pj+2, P−{1,2}) =

α−Φaj+2(Pj, Pj+2, P−{1,2}). Since Φaj+1(Pj, Pj+1, P−{1,2}) ≥ Φaj+2(Pj, Pj+2, P−{1,2}), α1(j) ≥ α1(j+

1). Now we show α1(k) ≥ α1(k + 1) for all k = j + 1, . . . , j + l− 2. Take k ∈ {j + 1, . . . , j + l− 2}.

Since Φak(Pk+1, Pk+1, P−{1,2}) = Φak+1(Pk+2, Pk+2, P−{1,2}) = 0, α1(k) = Φak(Pk, Pk+1, P−{1,2})

and α1(k + 1) = Φak+1(Pk+1, Pk+2, P−{1,2}). By Lemma 3.3, Φak(Pk+1, Pk+2, P−{1,2}) = 0 and

Φ{ak,ak+1}(Pk+1, Pk+2, P−{1,2}) = Φ{ak,ak+1}(Pk, Pk+2, P−{1,2}). Hence it follows that, α1(k + 1) =

Φ{ak,ak+1}(Pk+1, Pk+2, P−{1,2}) = Φ{ak,ak+1}(Pk, Pk+2, P−{1,2}) = α1(k) + Φak+1(Pk, Pk+2, P−{1,2}).

This means α1(k + 1) ≥ α1(k). This completes the proof of the claim.

Now, we complete the proof of the lemma. Strategy-proof implies Φaj(Pj, Pj+1,j, P−{1,2}) =

Φaj(Q, Pj+1,j, P−{1,2}). By Lemma 3.3, Φaj(Pj, Pj, P−{1,2}) = Φaj(Pj, Pj+1,j, P−{1,2}) for all a /∈

{aj, aj+1}. Moreover, by Lemma 3.1 Φa(Q, Q, P−{1,2}) = Φa(Q, Pj+1,j, P−{1,2}) for all a /∈ {aj, aj+1}.

By the IH, Φ(Pj, Pj, P−{1,2}) = Φ(Q, Q, P−{1,2}). Hence, Φa(Pj, Pj+1,j, P−{1,2}) = Φa(Q, Pj+1,j, P−{1,2})

for all a /∈ {aj, aj+1}. Since Φaj(Pj, Pj+1,j, P−{1,2}) = Φaj(Q, Pj+1,j, P−{1,2}), Φaj+1(Pj, Pj+1,j, P−{1,2}) =

Φaj+1(Q, Pj+1,j, P−{1,2}). Thus we have

Φ(Pj, Pj+1,j, P−{1,2}) = Φ(Q, Pj+1,j, P−{1,2}). (6)
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By strategy-proofness, Φ{aj,ap}(Q, Pj+1,j, P−{1,2}) ≥ Φ{aj,ap}(Pp, Pj+1,j, P−{1,2}). Using (6), we

have

Φ{aj,ap}(Pj, Pj+1,j, P−{1,2}) ≥ Φ{aj,ap}(Pp, Pj+1,j, P−{1,2}). (7)

By Lemma 3.3 and IH, Φap(Pj, Pj+1,j, P−{1,2}) = 0. Recall that, α1(j) = Φaj(Pj, Pj+1, P−{1,2})−

Φaj(Pj, Pj, P−{1,2}). Therefore, Φ{aj,ap}(Pj, Pj+1,j, P−{1,2}) = Φaj(Pj, Pj+1,j, P−{1,2}) = α1(j) +

Φaj(Pj+1, Pj+1, P−{1,2}). Moreover, by Lemma 3.3 it follows that, Φ{aj,ap}(Pp, Pj+1,j, P−{1,2}) =

Φaj(Pp, Pj+1,j, P−{1,2})+Φap(Pp, Pj+1,j, P−{1,2}) = Φaj(Pj+1, Pj+1,j, P−{1,2})+Φap(Pp, Pp−1, P−{1,2})

and α = Φap(Pp, Pp−1, P−{1,2}) + Φap−1(Pp, Pp−1, P−{1,2}). By the IH, Φap−1(Pp, Pp, P−{1,2}) = 0.

Hence, α2(p− 1) = Φap−1(Pp, Pp−1, P−{1,2}). Thus, Φap(Pp, Pp−1, P−{1,2}) = α−Φap−1(Pp, Pp−1, P−{1,2}) =

α− α2(p− 1). Plugging these values in (7), we have

α1(j) + Φaj(Pj+1, Pj+1, P−{1,2}) ≥ Φaj(Pj+1, Pj+1,j, P−{1,2}) + α− α2(p− 1).

This means

α1(j) + α2(p− 1) ≥ α. (8)

By changing the roles of agent 1 and 2

α1(p− 1) + α2(j) ≥ α. (9)

Using similar logic as in the derivation of (6),

Φ(Pj+l, Pj+l−1,j+l, P−{1,2}) = Φ(Q, Pj+l−1,j+l, P−{1,2}). (10)

By strategy-proofness, Φ{aj+l ,aq}(Q
′, Pj+l−1,j+1, P−{1,2}) ≥ Φ{aj+l ,aq}(Pq, Pj+l−1,j+l, P−{1,2}). Using

(10) we have

Φ{aj+l ,aq}(Pj+l, Pj+l−1,j+1, P−{1,2}) ≥ Φ{aj+l ,aq}(Pq, Pj+l−1,j+l, P−{1,2}). (11)

Now using argument similar to the derivation of (8), we have

α1(q) + α2(j + l − 1) ≤ α. (12)
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Again, by changing the role of agent 1 and 2, we have

α1(j + l − 1) + α2(q) ≤ α. (13)

Now we prove the lemma by considering different cases with respect to the values of p and q.

CASE 1. Suppose p ≤ q.

Since j ≤ j + l − 1 and p− 1 ≤ q, α1(j + l − 1) ≥ α1(j) and α2(q) ≥ α2(p− 1). By (8) and (13),

this means α1(j) = α1(j + l − 1) and α2(p− 1) = α(q). Using similar logic, (9) and (12) imply

α1(p− 1) = α1(q) and α2(j) = α( j + l − 1). Since α1(j) = α1(j + l − 1) and α2(j) = α2(j + l − 1),

αi(k) = αi(k + 1) for all i ∈ {1, 2} and all k = j, . . . , j + l− 1. Let α1(j) = α1 and α2(j) = α2. Then

(8) implies α1 + α2 = α.

CASE 2. Suppose p > q and p 6= j + l, q 6= j.

Since α1(j) ≤ α1(q) and α2(p− 1) ≤ α2(j + l − 1), (8) and (12) together imply

α1(j) = α1(j + 1) = . . . = α1(q)

and

α2(p− 1) = α2(p) = . . . = α1(j + l − 1).

Moreover, since α1(p− 1) ≤ α1(j + l − 1) and α2(j) ≤ α2(q), (9) and (13) together imply

α1(p− 1) = α1(p) = . . . = α1(j + l − 1)

and

α2(j) = α2(j + 1) = . . . = α2(q).

Recall that α1(j) = Φaj(Pj, Pj+1, P−{1,2})−Φaj(Pj+1, Pj+1, P−{1,2}). By Lemma 3.3 it follows that

Φaj(Pj, Pj+1, P−{1,2}) = Φaj(Pj, Pj+l, P−{1,2}). Hence,

Φaj(Pj, Pj+1, P−{1,2}) = α1(j) + Φaj(Pj+1, Pj+1, P−{1,2}). (14)

Recall that α1(j+ l− 1) = Φaj+l−1(Pj+l−1, Pj+l, P−{1,2}). Since α = Φaj+l−1(Pj+l−1, Pj+l−1, P−{1,2}),

α− α1(j + l− 1) = Φaj+l−1(Pj+l−1, Pj+l−1, P−{1,2})−Φaj+l−1(Pj+l−1, Pj+l, P−{1,2}). By Lemma 3.3,

Φ{aj+l−1,aj+l}(Pj+l−1, Pj+l, P−{1,2}) = Φ{aj+l−1,aj+l}(Pj+l−1, Pj+l−1, P−{1,2}). Therefore it follows
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that, Φaj+l(Pj+l−1, Pj+l, P−{1,2}) = Φaj+l(Pj+l−1, Pj+l−1, P−{1,2})+Φaj+l−1(Pj+l−1, Pj+l−1, P−{1,2})−

Φaj+l(Pj+l−1, Pj+l, P−{1,2}). This implies Φaj+l(Pj+l−1, Pj+l, P−{1,2}) = Φaj+l(Pj+l−1, Pj+l−1, P−{1,2})+

α− α1(j + l − 1). By Lemma 3.3, Φaj+l(Pj+l−1, Pj+l, P−{1,2}) = Φaj+l(Pj, Pj+l, P−{1,2}). Hence,

Φaj+l(Pj, Pj+l, P−{1,2}) = Φaj+l(Pj+l−1, Pj+l−1, P−{1,2}) + α− α1(j + l − 1). (15)

Now take k ∈ {j+ 1, . . . , j+ l− 1}. By Lemma 3.3, Φak(Pj, Pj+l, P−{1,2}) = Φak(Pk−1, Pk+1, P−{1,2})

and Φak−1(Pk−1, Pk+l, P−{1,2}) = Φak−1(Pk−1, Pk, P−{1,2}). Moreover, by IH and Lemma 3.3, it fol-

lows that Φak−1(Pk, Pk+1, P−{1,2}) = 0. Hence, Φak(Pk, Pk+l, P−{1,2}) = Φak(Pk−1, Pk+1, P−{1,2}) +

Φak−1(Pk−1, Pk+l, P−{1,2}). Thus it follows that Φak(Pk, Pk+l, P−{1,2})−Φak−1(Pk−1, Pk, P−{1,2}) =

Φak(Pk−1, Pk+1, P−{1,2}). By the definition of α1(k) and α1(k− 1), this means

α1(k)− α1(k− 1) = Φak(Pk−1, Pk+1, P−{1,2}) = Φak(Pj, Pj+1, P−{1,2}). (16)

Since α1(j) = . . . = α1(q) and α1(p− 1) = . . . = α1(j + l − 1), we have

Φak(Pj, Pj+1, P−{1,2}) = 0∀k ∈ {j + 1, . . . , q} ∪ {p, . . . , j + l − 1}. (17)

Since r1(Pj) = r1(Q) = aj, by strategy-proofness

Φaj(Pj, Pj+1, P−{1,2}) = Φaj(Q, Pj+1, P−{1,2}). (18)

By (14) this means

Φaj(Pj, Pj+1, P−{1,2}) = α1(j) + Φaj(Pj+1, Pj+1, P−{1,2}). (19)

By Lemma 3.3,

Φaj(Pp, Pj+l, P−{1,2}) = Φaj(Pj+1, Pj+1, P−{1,2}) (20)

and

Φap(Pp, Pj+l, P−{1,2}) = Φap(Pp, Pp+1, P−{1,2}) = α1(p). (21)

Since r1(Q) = aj and r2(Q) = ap, by using strategy-proofness we get Φ{aj,ap}(Q, Pj+l, P−{1,2}) ≥

Φ{aj,ap}(Pp, Pj+l, P−{1,2}). By means of (18), (19) and (20) and the fact that α1(p) = α1(p− 1), this
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means

Φap(Q, Pj+l, P−{1,2}) ≥ α1(p− 1)− α1(q). (22)

By Lemma 3.3, Φa(Pj, Pj+l, P−{1,2}) = Φa(Pj, Pj, P−{1,2}) for all a /∈ [aj, aj+l]. By the IH Φa(Q, Q, P−{1,2}) =

Φa(Pj+l, Pj+l, P−{1,2}) for all a /∈ [aj, aj+l]. Using Lemma 3.1 and the fact that U(aj, Pj+l) ∩

U(aj+l, Q) = [aj, aj+l], it follows that Φa(Q, Pj+l, P−{1,2}) = Φa(Q, Q, P−{1,2}) for all a /∈ [aj, aj+l].

By the IH and Lemma 3.2, Φ(Q, Q, P−{1,2}) = Φa(Pj, Pj, P−{1,2}). Combining all these,

Φa(Pj, Pj+l, P−{1,2}) = Φa(Q, Pj+l, P−{1,2})∀a /∈ [aj, aj+l]. (23)

By strategy-proofness ΦU(aj+l−1,Pj)(Pj, Pj+l, P−{1,2}) ≥ ΦU(aj+l−1,Pj)(Q, Pj+l, P−{1,2}). By (23) this

means

Φaj(Pj, Pj+l, P−{1,2}) + . . . + Φaj+l−1(Pj, Pj+l, P−{1,2})

≥ Φaj(Q, Pj+l, P−{1,2}) + . . . + Φaj+l−1(Q, Pj+l, P−{1,2}).

By (17) and (18) this gives

Φaq(Pj, Pj+l, P−{1,2}) + . . . + Φap−1(Pj, Pj+l, P−{1,2})

≥ Φaj+1(Q, Pj+l, P−{1,2}) + . . . + Φaj+l−1(Q, Pj+l, P−{1,2}).

By means of (17), this implies

α1(p− 1)− α1(q) ≥ Φaj+1(Q, Pj+l, P−{1,2}) + . . . + Φaj+l−1(Q, Pj+l, P−{1,2}). (24)

Thus it follows from (22) that,

Φap(Q, Pj+l, P−{1,2}) ≥ α1(p− 1)− α1(q) and Φak(Q, Pj+l, P−{1,2}) = 0∀ak ∈ [aj+1, ap−1]∪ [ap+1, aj+l−1]

(25)

Since α1(j) = . . . = α1(q) and α1(p− 1) = . . . = α1(j + l − 1), by (14), (16), (17)

j+l−1

∑
j

Φak(Pj, Pj+l, P−{1,2}) = Φaj(Pj+1, Pj+l, P−{1,2}) + α1(p− 1). (26)
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and by (19) and(25)

j+l−1

∑
j

Φak(Q, Pj+l, P−{1,2}) = Φaj(Pj+1, Pj+l, P−{1,2}) + α1(p− 1). (27)

This means
j+l−1

∑
j

Φak(Pj, Pj+l, P−{1,2}) =
j+l−1

∑
j

Φak(Q, Pj+l, P−{1,2}). (28)

By (23)
j+l

∑
j

Φak(Pj, Pj+l, P−{1,2}) =
j+l

∑
j

Φak(Q, Pj+l, P−{1,2}). (29)

Subtracting (22) from (29) we have

Φaj+l(Pj, Pj+l, P−{1,2}) = Φaj+l(Q, Pj+l, P−{1,2}). (30)

By (15), Φaj+l(Pj+l−1, Pj+l−1, P−{1,2}) + α− α1(j + l − 1) = Φaj+l(Q, Pj+l, P−{1,2}). Thus we have

by (18), (23), (25) and (30)

Φak(Pj, Pj+l, P−{1,2}) = Φak(Q, Pj+l, P−{1,2})∀ak /∈ (aj, aj+l),

Φap(Q, Pj+l, P−{1,2}) = α1(p− 1)− α1(q),

and Φap(Q, Pj+l, P−{1,2}) = 0 ∀ak ∈ (aj, aj+l) \ p. (31)

Using similar logic as in the derivation of (23), we have Φ(Pj, Q′, P−{1,2}) = Φ(Q, Q′, P−{1,2}) =

Φ(Pj, Pj+l, P−{1,2}) for all a /∈ [aj, aj+l]. Again using logic similar to the derivation of (31),

Φak(Pj, Pj+l, P−{1,2}) = Φak(Pj, Q′, P−{1,2})∀ak /∈ (aj, aj+l),

Φaq(Pj, Q′, P−{1,2}) = α1(p− 1)− α1(q),

and Φaq(Pj, Q′, P−{1,2}) = 0 ∀ak ∈ (aj, aj+l) \ q. (32)

This completes the proof of the lemma. �

Now the proof of the theorem follows from Lemmas 3.1-3.4. �
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4 Conclusion

We have shown in this paper that, every strategy-proof and unanimous RSCF on a partially

single-peaked domain is a Random PDGMVS. We further show that, such a RSCF can be written

as a convex combination min-max DSCFs with some restriction on that domain. Many domains

satisfy the condition of mixed single-peaked domain, including well-known domains like mul-

tiple single-peaked domain, multidimensional single peaked domain. Thus, our results provide

a characterization of strategy-proof and unanimous RSCFs on those domains.
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