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Abstract

We present an informational theory of group formation. A set of

individuals with heterogeneous, state-dependent preferences decide to

allocate themselves into groups. Members of each group commit to

taking a common action and may choose to share private information

which becomes available only after the decision to join a group is made.

Therefore, by joining a group, one gives up the freedom of deciding

her own action in return of a possible informational benefit. In equi-

librium, each group is composed blocks of individuals with preferences

close to each other. The extent of diversity within each group is deter-

mined by the following tradeoff: additional individuals bring in more

information, but too much diversity leads to incentive problems in dis-

closure. The size of each group in equilibrium is decreasing in the initial

diversity of preferences in the population, and non-monotonic in the ex-

ante probability of any individual being informed. An increase in the

ex-ante probability of an individual being informed may lead to the so-

ciety being fragmented in smaller groups, thereby lowering the overall

probability of a random individual being informed in equilibrium.
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1 Introduction

Jackdaw percheth beside jackdaw.

- Diogenianus

The pervasive fact of homophily means that cultural, behavioral, genetic or

material information that flows through networks will tend to be localized.

- McPherson, Smith-Lovin and Cook (2001)

Birds of a feather flock together. Most groups, whether social groups,

political entitities or economic organizations have a concentration of certain

characteristics that is different from the distribution of such characteristics

in the population in general. People with similar demographics tend to get

married to each other (Kalmijn 1998). Friendship networks have clusters of

indivudals with similar demographics and similar attitudes (Lazarsfeld and

Merton 1954, Benhabib, Bisin, and Jackson 2010). The phenomenon of ho-

mophily is, in the words of McPherson, Smith-Lovin, and Cook (2001), “a

basic organizing principle of groups.” Homophily is almost a matter of defini-

tion in groups that have a well-defined goal. The members of the Repulican

party are by and large conservatives and those of the Democratic party are

by and large liberals. The members of NATO are the capitalist nations (“the

western bloc”), those that were the part of the Warsaw Pact were by and

large socialist nations (“the eastern bloc”), and those engaged with the Non-

Aligned movement were developing nations that were, as the name suggests,

not aligned to either bloc.

While homophily is natural given the existence and the identity of these

groups, it is important to notice that each of these groups admits a diversity

among its own members, and the group identity itself reflects some aggregate

of the somewhat diverse identities of the individuals that form the group.

The question that interests us is the following: when a set of heterogeneous

individuals organize themselves into groups, what are the different groups

formed? What is the composition of the each group? In particular, how much

diversity is there within each group?

We suggest that there is a basic tradeoff that drives the decision of every

individual economic agent deciding whether to join a group. Being in a group

offers the possibility of sharing information that is necessary for choosing the

best course of action, and on the other hand, by signing up for a group one

gives up the independence of deciding the best course of action for oneself.

It is this tradeoff that determines the extent of diversity in a group. While

more individuals bring in more potential informational benefit, a more diverse
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group has two problems: first, the common goal may be too far away from

the optimal action of the fringe members and second, higher diversity poses

incentive problems for information sharing between members.

In order to formally capture the above intuition, suppose there are a finite

number n of individuals. Every individual’s preferred action is sensitive to

information about some state of the world, and given the same information,

each individual prefers a different action. In particular, the state of the world

θ can be either 0 or 1, and individual i prefers an action as close to ib+ θ as

possible. In our model, the only reason to join a group is to obtain information

about θ. Each individual either starts a new group or joins an existing group.

As a modelling device, we assume that individual i = 1 first announces her

group, individual i = 2 then decides either to join the group or to form her

own group, individual i = 3 then decides to join one of the existing groups

or form her own group and so on till individual i = n. A group profile is any

partition of the population, and each non-empty element of the partition is a

group.

After the groups are formed, the individuals get private signals about the

state. We assume a particularly simple information structure: with probabil-

ity p ∈ (0, 1), the state is revealed. Each individual has the option to share

his information with the rest of her group. Finally, each group takes an action

according to a prescribed rule–if the state of the world is disclosed, the group

takes an action that maximizes the total payoff of its members conditional on

the state; otherwise, the group takes an action that maximizes the total ex

ante expected payoff of them. As a result, each group derives its “identity”

from its members in the following way: the group acts like a representative

individual with a preference parameter that is the average of the preference

parameters of its members.

In equilibrium, there is a number k∗ such that each consecutive block of k∗

individuals form a distinct group, (and if n is not a multiple of k∗, there is one

smaller group composed of the remainder). Therefore, we do find homophily

as an eqilibrium phenomenon. However, groups do permit a certain extent

of diversity. The size of the group is small enough so that no individual has

an incentive to hide information: in this sense there is no incentive problem

within the groups. However, information may remain localized within groups:

some groups may be informed and some remain uninformed. In fact, the

equilibrium group size is too small compared to what would have been socially

optimal - this happens because each individual only cares about her own group

members and not about other members in the society.

To see how the tradeoff between sharing of information and control over

action determines the optimal diversity of groups, consider the incentives of
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the first member of a group (i.e. the one with the lowest index). As additional

members join the group, while there is additional informational benefit, the

group’s average action moves away from the ideal action of the first member.

At the optimal group size k∗, these two effects are exactly balanced for the

first member. In fact, the consecutive group with k∗ members maximizes the

payoff for the first member among all possible compositions of the group. By

symmetry, this is true of the last (i.e. k∗-th) member of the group. Since the

extreme members of the group are also those with the lowest expected payoff

among all group members, a group with k∗ consecutive members has the

property that it maximizes, among all possible group compositions, the payoff

of the group member who achieves the lowest payoff in the group. Hence, we

call such a group a maxmin utility group. In the same vein, a group profile

where all groups are maxmin groups (except possibly for one smaller group

containing the remainder) is called a maxmin utility group profile.

Our main result in section 2 is that when individuals are called upon to

form or join groups in the “natural” order of their preference (group formation

stage) and then each group takes its own action based on the information vol-

unteered (group decision stage), there is an SPNE where the maxmin utility

group profile is formed. However, in various applications, such an extensive

form may not be the most appropriate one. In section 3, we take an agnostic

position about the extensive form and consider whether the maxmin utility

group profile would still be a stable profile. Notice that given any group

profile induces an expected utility for every individual through the group de-

cision stage. Since the ex-ante expected utility for agent depends only on

the identities of her group members, we have what is known in the literature

on co-operative game theory as a hedonic game (Drèze and Greenberg 1980,

Banerjee, Konishi, and Sönmez 2001, Bogomolnaia and Jackson 2002). We

show that the maxmin utility group profile satisfies both of the standard no-

tions of stability used in hedonic games: Nash Stability and Core Stability.

In section 4, we study the comparative static properties of the maxmin

utility group profile. If the initial population is very homogeneous, i.e. if b is

small, each additional person will move the average away by a small amount:

thus large groups will be formed. In an extreme case, all the N individuals

will be part of a single group. On the other hand, if any two consecutive

individuals have a large conflict of preference, i.e. if b is large, then the

overall population will be fractured into many small groups. In an extreme

case, each individual will be a group unto her own. The benefit of information

sharing is large when p is moderate: if p is low, an additional individual brings

little extra information; and if p is high, since the existing set of individuals is

already informed with a high probability, there is little marginal net benefit
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from having another individual. Therefore, the groups will have low diversity

(small size) if the probability of an individual being informed is either very

high or very low. Thus, for a given p, larger groups are formed as b goes

down, i.e. the initial population becomes more homogeneous. On the other

hand, holding the preference parameter b constant, the group size is inverse

U-shaped in the ex-ante likelihood p of any individual knowing the state.

Our model suggests that there will be limited information sharing in so-

cieties: in particular, information will be locked in homophilous groups. The

probability that any individual will eventually learn the state is equal to the

probability that any member of her group will be informed: thus the extent

to which the population will be eventually informed of the state depends crit-

ically on the size of the group. In particular, excessive fragmentation (small

optimal groups) leads to reduction in the likelihood that any individual will

eventually learn the state. Our model suggests that a more homogeneous pop-

ulation (low b) is also a more informed population, given the same p. In fact,

our model has a more perverse implication: an increase in p (the exogenous

likelihood of any individual learning the state from nature) may lead to higher

fragmentation (smaller k∗), which may reduce the endogenous likelihood that

an individual in the population will eventually learn the state. When individ-

uals are more likely to be informed, they will form smaller groups, and since

information is locked locally in groups, we may end up with a less informed

population.

In order to concentrate on our tradeoff, we abstract away from many other

economic issues that affect the decision to form groups. First, in our model,

the only benefit to the formation of groups is informational. Groups (in par-

ticular, organizations) often provide huge technological benefits to economic

activity. For example, groups allow specialization of activities, and thus im-

prove productivity. If we take into account the benefits of scale and scope

by assuming that an activity when undertaken by a group is more efficient

than when it is undertaken by an individual, then we will have larger groups

in equilibrium. We have also assumed away any externalities across groups.

Sometimes, the different groups formed compete or co-operate in some broader

arena. Political parties engage in electoral competition, churches compete for

membership. While we agree that the nature of economic interaction between

groups do affect the composition of groups, such effects are very sensitive to

the kind of interaction between the groups. While we have no doubt that

such effects will modify the tradeoff we study in any particular application,

we have chosen to abstract away from these effects in order to better capture

what we think is one very important tradeoff in group formation.

The idea that choice of groups may itself be strategic is not new to eco-
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nomics. There is a literature on the theory of club formation which has

already held this idea (see Wooders, Cartwright, and Selten (2006) for exam-

ple). Baccara and Yariv (2013, 2008) study a set-up where a set of individuals

with different priorities over two issues organize themselves into groups, and

within each group, individuals acquire and share costly information about the

issues. They use a notion of stable group composition: a composition that

is optimal for all group members; and show that stable groups are formed

of sufficiently similar members (much like we do). There are two important

differences between our paper and Baccara and Yariv’s. First, our basic focus

is a tradeoff between independence and information, while theirs is on free-

riding within the group. Moreover, in their paper, collected information is

automatically shared within the group while we consider incentive problems

in communication of (costless) information.

2 Model - Extensive form game

There is a set I of agents, with a typical agent indexed by i. If I is finite, then

|I| = n. In this section, we also allow for the case where I is countably infinite.

Each agent i takes an action yi, which generates a payoff that is dependent

on an underlying state θ. Formally, the state θ is drawn from {0, 1}, each

equally likely. An agent is informed of the state with probability p ∈ (0, 1).

Each agent i ∈ I has preferences that are represented by the quadratic-loss

utility function

U(yi, θ, bi) = − (yi − (θ + bi))
2
,

where

bi = ib, for some b > 0.

The variable bi measures agent i’s “bias,” as is customarily called in the

strategic communication literature, i.e., in state θ, agent i’s most preferred

action is θ + bi. The parameter b is a measure of the heterogeneity of the

population: the larger is b, the larger is the conflict of preference between any

two given individuals.

Before the state is learnt, the agent has to decide whether or not to join a

group. Members of each group have the option to share the information, and

based on the information available in the group, members of each group take

a common action according to a pre-committed decision rule. We explain the

rules of group formation and decision-making in detail hereunder.
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2.1 Timing of the game

The game takes place in two stages: the group-formation stage and the

decision-making stage.

In stage 1, a group profile is formed, according to the following procedure.

Individuals take turns, in ascending order of their indices, to form a new

group or to propose joining an already existing group. If the proposal is

accepted by the first member (“leader”) of the said group, then the individual

is admitted to the group. The individual i = 1, by definition forms a group.

The individual i = 2 either joins i = 1 subject to her approval, or forms a new

group. Then i = 3 applies to join one of the already existing groups or forms

her own group and so on. A group is indexed by the index of its leader, i.e.

the individual who formed the group.

Before the group profile is finalized, agents do not know the state of the

world, nor do they know if they will be informed of the state. In the decision-

making stage, each agent becomes privately informed of the state (indepen-

dently) with probability p ∈ (0, 1). Observation of the state remains private

information. Each agent has the choice either to disclose the information

or not to disclose it to the members of her group. If she does not disclose

it, she simply claims to be uninformed. The sequence in which agents dis-

close information within a group does not matter. Conditional on the shared

information, each member of the group takes a common action that is pre-

determined for the group. Information is not shared between individuals in

different groups.

Each group has a preset rule of decision making: if anyone discloses the

state to the other members of the group, all the group members commit to

taking action

θ + b,

where b̄ is the average bias of the members of the group. If no one discloses

the state, the group members commit to taking action

1

2
+ b.

Notice that each group member has different preferences given the information

(private or public). Thus, the common action of the group is a result of some

bargaining protocol. The particular decision mechanism we assume satisfies

the following condition. If the state of the world is disclosed, then it maximizes

the sum of the payoffs of group members in that state; if the state of the world

is not disclosed, then it maximizes the sum of the ex ante expected payoffs

of group members. This is implied by the quadratic preferences of the group
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members. One could, of course, think of other modes of decision-making. We

offer a discussion of alternative decision rules in Section 6.

2.2 Group profiles and group formation

Now, we introduce language that defines a group profile. We index each group

by the member with the lowest index, i.e., the “leader” of the group. Then,

a group profile can be represented by a mapping Γ from I to I that satisfies

1. Γ(i) ≤ i,

2. if Γ(i) < i, then there does not exist j ∈ I such that Γ(j) = i.

Thus, Γ assigns to the individual i the index of the group leader. Note that

Γ(i) = Γ(i′) if and only if i and i′ are in the same group. We will refer to Γ as

the group assignment function. Furthermore, the collection of inverse images

of the mapping Γ give the actual partition of the individuals into groups:

{Γ−1({i})|i ∈ I,Γ−1({i}) is nonempty}.

For neatness of notation, henceforth, we will use Γ−1 {i} instead of Γ−1({i}).
Note that

1. i ∈ Γ−1 {i} if Γ−1 {i} is nonempty;

2. ∪i∈IΓ−1 {i} = I and Γ−1 {i} ∩ Γ−1 {i′} = ∅ for i, i′ ∈ I and i 6= i′.

We say that a group profile satisfies homophily if its corresponding group

assignment function Γ is nondecreasing. Intuitively, homophily refers to the

phenomenon that every group member’s two immediate neighbours are in the

same group as her, except for the two extreme members.

Thus, the group formation stage can be represented in extensive form as

follows. Agents move in ascending order of their index. Each agent can make

a choice between applying to join a group that has already been formed and

starting a new group. However, if she applies to join a group, her application

has to be approved by the “group leader.”1 If it is rejected, then she has to

1We could assume other ways of approval of an individual’s proposal to join the group.

For instance, we might require unanimous approval of the existing group members. Such

rules make a difference in a rather technical sense. Notice that given a population of n

individuals, if the equilibrium group size is k∗, then the last group may have less than k∗

members while all other groups will have the same number k∗ members. Different approval

mechanisms may lead to different kinds of strategic manipulation by the members in the

penultimate group with effects rippling up the entire population, and the homophily equi-

librium may even break down. We show such an example with the unanimity requirement

later. We conjecture that if we have a countably infinite population of agents, then such

approval mechanisms will not make a difference: in fact even if entry is free, we will get the

same equilibrium outcome.
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start a new group. The payoffs are determined by the information dsharing

stage that follows.

Formally, each player j ∈ I chooses an action aj ∈ Aj , where Aj ⊂
{1, . . . , j}. Denote the set of the first j individuals in the sequence by the set

Ij . Let us denote by Γj : Ij → Ij as the group allocation function of individuals

1 through j, with properties 1 and 2 of group assignment functions as above,

and we have Γ|I| = Γ. In addition, let us define the operation “extension of

Γj−1,” E , as follows:

E(Γj−1, a) = Γj , where Γj(i) = Γj−1(i) for i = 1, . . . , j − 1 and Γj(j) = a.

We may therefore represent the first-stage game in the following way:

1. At the beginning of the game, player 1 chooses Γ1(1) = 1, and the game

proceeds to j = 2.

2. Player j observes the group assignment Γj−1, and chooses aj ∈ Aj =

Γj−1(Ij−1) ∪ {j}.

3. The player with index aj decides to whether let agent j join the group.

If so, ΓJ = E(ΓJ−1, aj); otherwise, ΓJ = E(ΓJ−1, j).

4. The game proceeds to the next player, j + 1, and goes to step 2, unless

j = |I|, in which case the group formation stage ends.

Note that the above group formation procedure can generate all the group

profiles that are possible.

2.3 Strategies and Equilibrium

The action spaces is defined as follows. For every individual, there is a mem-

bership application action and a membership approval action in the group

formation stage, and a disclosure action in the decision-making stage, defined

as follows.

• Membership application action for individual j: Given Γj−1, choose

aj ∈ Aj = Γj−1(Ij−1) ∪ {j}.

• Approval action pij by individual j for the application of individual i > j:

when Γi−1(j) = j for some i > j and ai = j, j has to choose pj ∈
{A,D}, where A means approval of i’s application to join group j and

D means denial.
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• Given a group assignment Γ and information θ ∈ {0, 1} about the state,

each informed member i has the choice whether to disclose her infor-

mation to her group Γ−1 {Γ (i)} . Uninformed members have nothing

to disclose. If Γ−1 {Γ (i)} . is a singleton, we assume that disclosure is

automatic.

Define hi as the history of application decisions aj for j = 1, 2, ..i− 1 and

corresponding approval actions. This history is observed by individual i before

making her decisions. The strategy of each member j is therefore a choice of

three actions: (i) application aj contingent on hj , (ii) acceptance/denial pij of

a possible application by agent i (contingent on hi) for each i > j, and (iii)

the disclosure action (contingent on Γ and state θ). Our equilibrium concept

is simply subgame perfect Nash equilibrium (SPNE).

At the disclosure stage, given each group profile, a member j chooses

to disclose or not depending on the composition of the group Γ(j) and the

disclosure strategies of every other member in Γ(j). Notice that since there is

no externality across groups, disclosure strategies of members in other groups

does not affect one’s payoff. SPNE demands that for every group in each

subgame defined by some group assignment Γ, disclosure strategies of the

members in each group constitute Nash equilibrium. At the group formation

stage, when it is each agent’s turn to move, she chooses the application and

approval strategy that leads to the highest payoff, conditional on that every

other agent that follows her would also do so, and that each group formed

thus would play Nash equilibrium in disclosure strategies.

In the group formation stage, SPNE requires that when it is agent i’s turn

to move, she chooses the ai and pi that leads to the highest payoff for her,

conditional on that every other agent that follows her would also act likewise.

3 Analysis

The group formation stage induces some group assignment function Γ. Given

some Γ, every i such that Γ−i(i) 6= φ uniquely indexes a group. To solve for

the SPNE, we first look at the decision-making stage for a given group. First,

notice that in equilibrium, even if I is countably infinite, we will never have

any group that is infinitely large. To see that, suppose to the contrary there

is some such group in equilibrium, and consider the member of that group

with the lowest index. That individual’s lowest possible payoff from staying

alone is bounded below, and on the other hand, in equilibrium, since the

average bias of the group is unboundedly large, her highest possible payoff is

unboundedly low. Hence, she is strictly better off staying alone than playing
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her equilibrium strategy. Therefore, from now on we consider only groups of

finite size.

3.1 Decision-making subgame

Consider any group with k members, where their indices are given by j1
through jk in the ascending order. SPNE requires that strategies of every

individual forms a Nash equilibrium for the decision-making subgame in every

group. Formally, we call strategies that constitute a Nash equilibrium of

the decision-making subgame the optimal disclosure strategies. Denote the

average bias as b, where

b =

k∑
l=1

bjl
k

=

k∑
l=1

jlb

k
.

In the decision-making subgame, if an expert is not informed, she has nothing

to report. If she is informed of the state, her report matters only in the event

that no other expert has reported the state. In this event, she obtains an

action b+ θ on reporting and b+ 1
2 on not disclosing the state and pretending

to be uninformed. Therefore, in an SPNE, an agent i ∈ {j1, ...jk} reports

state θ if and only if

U(θ + b̄, θ, bi) ≥ U(
1

2
+ b̄, θ, bi).

Given the group decision rule, it may be better for an agent to not share

“adverse” information with the group. For instance, the rightmost agent may

not want to disclose the state 0 to the group, because her most preferred

action in state 0 may be closer to the no-information action 1/2 + b̄ than the

informed action b̄. From simple calculations, we can easily verify that the

optimal disclosure strategy of the agent i ∈ {j1, ...jk} is the following.

Lemma 1. When the state is 0, agent i reports the state if and only if bi ≤
b̄+ 1

4 , and when θ = 1, she reports the state if and only if bi ≤ b̄− 1
4 .

In other words, in SPNE, an agent i reports truthfully iff b̄− 1
4 ≤ bi ≤ b̄+

1
4 ,

reports only state 0 (and not state 1) iff bi < b̄ − 1
4 and reports only state 1

(and not state 0) iff bi > b̄+ 1
4 . Notice that b̄ depends on the group composition

and hence on the observed history.

An implication of the above characterization of optimal strategies in the

decision-making subgame is that if any member of the group discloses state 0

when she observes it, then every member to her left will disclose it as well. It

is exactly the opposite for state 1, namely, a member is more likely to disclose
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1 if she is more to the right. Formally, in a group consisting of agents j1
through jk, if agent jl is willing to disclose 1, then every agent jl′ is willing

to disclose 1, if l′ ≥ l. Similarly, if agent jl is willing to disclose 0, then every

agent jl′ is willing to disclose 0, if l′ ≤ l.

3.1.1 Consecutive groups

Next, we turn our attention to a group composition that is of special interest

to us. We call a group consecutive if the indices of its members, arranged in

an increasing order, are consecutive numbers. A consecutive group of size k

has members with indices i0 + 1, i0 + 2, ...i0 + k where i0 is any non-negative

integer. The average bias of such a groups is b̄ =
(
i0 + k+1

2

)
b.

In such a group, the optimal disclosure strategy of the jth individual, i.e.

the one with index i0 + j is to reveal the state 0 iff

(i0 + j)b ≤
(
i0 +

k + 1

2

)
b+

1

4
⇔ j ≤ (k + 1)

2b
+

1

4b
, j = 1, 2, ..k.

Similarly, the jth agent optimally reveals the state 1 iff

j ≥ (k + 1)

2
− 1

4b
, j = 1, 2, ..k.

Notice that the condition for all individuals in the group to report 0 is that

the kth individual reports state 0. By symmetry, this is also the condition for

all individuals reporting state 1. Therefore, the condition for everyone in a

consecutive group of size k to always report truthfully is

k ≤ 1

2b
+ 1,

which basically says that the group size should not be very large compared

to the preference difference paraneter b. Notice also that as the population

becomes more homogeneous in terms of preference, i.e. b goes down, the

truthtelling constraint in consecutive groups is more relaxed.

3.2 Interim expected utility

In this section, we will study the interim expected utility, i.e. the expected

utility of any individual after the group formation stage, but before the state

is revealed and with the agents anticipating that they will use the optimal

disclosure strategies. Consider an arbitrary group with agents indexed in

ascending order from j1 through jk. The expected interim payoff EUi of each
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agent i ∈ {j1, ...jk} in the group can be written as

EUi = −
∫
R

(
b̄− bi

)2
dF (θ|R)−

∫
NR

[(
1

2
+ b̄

)
− (θ + bi)

]2
dF (θ|NR),

= −P (R)
(
b̄− bi

)2 − ∫
NR

[(
1

2
− E(θ|NR) + b̄− bi

)
+ (E(θ|NR)− θ)

]2
dF (θ|NR), (1)

= −
(
b̄− bi

)2 − P (NR)

[(
1

2
− E(θ|NR)

)2

+ V ar(θ|NR)

+2

(
1

2
− E(θ|NR)

)(
b̄− bi

)]
,

where R corresponds to the event that θ is revealed and NR that θ is not.

Also, F (θ|R) and F (θ|NR) are the corresponding conditional distributions of

θ, respectively. The above equation demonstrates that each agent’s expected

payoff can be decomposed into two parts: the loss caused by the difference

between each group’s average bias from her bias and the loss caused by the

failure of the group to share information.

Notice that these distributions F (θ|R) and F (θ|NR) depend on the opti-

mal disclosure strategies of the individuals in the group and therefore, on the

group composition. For example, in a consecutive group of size k, we have

E(θ|NR) = 1
2 and V ar(θ|NR) = 1

4 . Moreover, if k ≤ 1
2b+1, everyone discloses

their information, and the probability that the state is undisclosed is simply

the probability that no one is informed, i.e. P (NR) = (1− p)k. On the other

hand, if k > 1
2b + 1, it can be easily verified that P (NR) = (1 − p) k+1

2 + 1
4b .

Therefore, in a consecutive group of size k, taking into account the optimal

strategies, (1) yields that the interim expected utility of the jth individual,

i.e., the one with index i0 + j, is

EUj =

{
−
(
k+1
2 b− jb

)2 − 1
4 (1− p)k if k ≤ 1

2b + 1

−
(
k+1
2 b− jb

)2 − 1
4 (1− p) k+1

2 + 1
4b if k > 1

2b + 1
(2)

The following Lemma identifies the group size k∗ that maximizes the

leader’s interim payoff in the class of all consecutive groups of size k. No-

tice that since the payoffs in a consecutive group is symmetric about the

average bias, the leader’s payoff is the same as the kth member’s payoff: and

therefore, this group size also maximizes the rightmost member’s payoff.

We denote by dxe and bxc respectively the smallest integer weakly greater

than and the greatest integer weakly less than x for any x ∈ R.

Lemma 2. Suppose agents play their optimal disclosure strategies. In the

class of all consecutive groups, the group size that maximizes the leftmost and
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rightmost players’ expected payoff, k∗, satisfies

EUk∗ = max{EUbk′c, EUdk′e}, (3)

where k′ is the solution to

2(k − 1)b2 + (1− p)k ln (1− p) = 0, k ∈ R++.

Furthermore, in such a group, each group member discloses all her information

to the group.

Proof. See Appendix.

The above lemma characterizes the size of the group that maximizes the

two extreme members’ payoff. It shows that an agent is welcomed into the

group consisting of her immediate preceding neighbours only if she finds it

optimal to disclose all her information to the group. The condition that

determines k∗ reflects the tradeoff between bias loss and information loss-

being the leftmost or rightmost player in a larger groups causes the group

action to be far away from her most preferred action, but it also increases the

chance of getting more information from other group members.

There are two steps in the proof of the Lemma. First, ignoring the integer

constraint on k, we find value of k′ where EUk is maximized in the class of

truthful consecutive groups, i.e. when k ≤ 1
2b + 1. Then we show that the

largest truthful group obtains a better payoff for the leader compared to any

group size larger than 1
2b+1. The optimal group size k∗ is the integer-corrected

version of k′.

The next Proposition tells us that a consecutive group with k∗ members is

also the group composition that offers the highest payoff to the group leader

among all arbitrary group compositions that would have the same individual

as the group leader.

Proposition 1. Fixing the identity of one individual, consider all possible

group compositions with that individual as the group leader. When agents play

their optimal disclosure strategies, the group composition that maximizes the

leader’s interim payoff is the consecutive group with k∗ members. Moreover,

in such a group, the leftmost and rightmost individual obtain the same interim

expected utility which depends only on the parameters b and p, and not on their

individual biases.

This proposition extends the result in Lemma 2 to the case with arbitrary

group composition in two steps. These two steps are presented as two lemmas

below.
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Lemma 3. Consider all groups of any given size k. Fixing the bias of the

group leader, if every member discloses all her information to the group, then

the group leader’s expected payoff is decreasing in the average bias of the group

members.

Proof. See Appendix.

By (1), if every member discloses information, then the information loss

is constant as long as the group size does not change. Therefore, the leader’s

expected payoff varies only due to bias loss, which increases as the average

bias of the group increases, because it moves further away from her bias. This

lemma implies that a group leader prefers to be in a consecutive group than

in an arbitrary group, provided that everyone discloses information.

Lemma 4. Suppose agents play their optimal disclosure strategies. In groups

of any given size, the group leader’s expected payoff is maximized when the

group consists of consecutive members.

Proof. See Appendix.

The proof of the above lemma is by observing the following facts. There

are three cases to consider: 1. everyone discloses information; 2. the leftmost

player does not disclose all information but the rightmost player does (this

means the bias composition of the group is skewed towards the right); 3. the

rightmost player does not disclose information (either the group is too large

or the bias composition of the group is skewed towards the left). The result

for case 1 is implied by Lemma 3. For cases 2 and 3, the result is obtained by

the observation that the information gain (if any at all) from having faraway

members is always offset by the bias loss.

Lemmas 2, 3, 4 together establish the first part of the statement of propo-

sition 1. To verify the second part, notice that in a consecutive group of size

k, we have EU1 = EUk, and from equation (2), EU1 depends only on k∗ and

b.

3.2.1 Maxmin utility group profiles

Denote by G the family of all possibe non-empty coalitions (i.e. groups) of I

agents, and denote a generic element of G by g. Thus, g is any arbitrary group.

Assuming that all agents use their optimal disclosure strategies, each group

induces a profile of interim expected utilities, one for each of its members.

Denote the minimum interim expected utility in group g by ug. Observe first

that according to (1), the agent i in the group with the largest value of |b−bi|
obtains ug. Therefore, the one with the lowest utility in the group is one of the

15



two extreme members. Moreover, in any consecutive group, both the extreme

members obtain the same interim utility. Therefore, proposition 1 tells us

that in the class of all g ∈ G, the group g that maximizes ug is any group

with k∗ consecutive members. Since any group with k∗ consecutive members

maximizes the minimum payoff obtained by a group member, we call such

groups maxmin utility groups. We denote by a maxmin utility group profile, a

group profile where all (except possibly one smaller group) groups are maxmin

utility groups. In particular, when I is countably infinite or if |I| = n and

n is a multiple of k∗, there is a unique maxmin utility group profile - it is

the profile where each consecutive block of k∗ individuals forms a separate

group. When n is not a multiple of k∗ and leaves a remainder 0 < r < k∗,

then a maxmin utility group profile is any profile with one group consisting

of r consecutive members and all others with k∗ consecutive members.

The most important feature of a maxmin utility group profile is that no

individual can be strictly better off by leaving his group in a maxmin utility

group profile and starting a new group. In the next section we show that

there is an SPNE of the group formation game where a maxmin utility group

profile is formed in equilibrium.

3.3 SPNE Characterization

We first present our main theorem and then proceed to prove it.

Theorem 1. There exists an SPNE where, for some natural number k∗, the

equilibrium group assignment function Γ∗ is given by Γ∗(i) =
⌊
i
k∗

⌋
k∗ + 1 for

all i ∈ I. Therefore, Γ∗ induces a maxmin utility group profile.

According to the theorem, if the maxmin utility profile is unique, then it

can be implemented in SPNE. If the maxmin profile is not unique, i.e. if n

is not divisible by k∗, then a particular maxmin profile is implemented: only

the last group is of size smaller than k∗. Since Γ∗(i) is a weakly increasing

function, i.e. groups are formed of adjacent members, homophily is the SPNE

outcome. Moreover, the size of each group is small enough to permit full

disclosure by informed individuals.

The proof of the theorem is constructive. We identify the strategies that

lead to this equilibrium. The intuition, however, is simple. Any member that

is not supposed to be a group leader, by deviating, can only start a new group.

In that case, she gets at most the group leader’s maximum payoff which is

strictly lower than her equilibrium payoff. Any member that is supposed to be

a group leader, by deviating, can become the k∗ + 1-th member of a previous

group, but then she gets at most the payoff of a group leader with k∗ + 1
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consecutive members: which is lower than what she gets in equilibrium. By

accepting any proposal from any member beyond the k∗ members that are

supposed to be there in the group, the group leader will have her payoff

lowered: therefore, there is no gain by deviating from the approval action

either.

Now we provide the formal proof of the theorem.

3.3.1 Proof

Consider the following strategy:

• Proposal strategy for individual j : If j = 1, propose to start a new

group. If j > 1, consider the group membership of individual j − 1. If

the group has strictly less than k∗ “adjacent members” (including just

one member), propose to join the said group. If the previous group is

non-adjacent or has k∗ or more members, propose to start a new group.

• Approval strategy of individual j for proposal by individual i : Compare

the payoff for individual j from two group compositions: one with all

existing members except i and one with the existing members and indi-

vidual i. Approve member i if including her in the group increases the

payoff to member j.

• Disclosure strategy: For any group, suppose b is the average bias. An

individual j informed that the state is 0 reveals state 0 iff bj ≤ b + 1
4 .

An individual j informed that the state is 1 reveals state 1 iff bj ≥ b− 1
4 .

An uninformed individual has nothing to reveal.

We have already shown that the above disclosure strategy constitutes the

unique equilibrium of the disclosure game in every group.

First, consider any deviation from the proposal strategy. Suppose the

previous member’s group has strictly less than k∗ members. By following

the equilibrium strategy, individual j gets weakly greater than V (k∗). By

deviating and proposing to join some other group, if she is rejected, she gets

V (k∗). If she is accepted, she becomes the last member in that group (since

the individual j+1 starts a new “chain”). From proposition 1, she gets strictly

less than V (k∗).

Now, consider subgames off the equilibrium path. If in a subgame, the

individual j − 1 belongs to a consecutive group with less than k∗ members,

equilibrium strategy requires j to propose to join the group. The proposal

will be accepted and she will get weakly greater than V (k∗). If she deviates

and proposes to join some other group, she will be the last member of the said
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group if she is accepted - then by Lemma 4, she makes strictly less than V (k∗).

If she is rejected, she makes V (k∗). If she deviates and proposes to start a

new group, she makes V (k∗). Thus, she does not have a profitable deviation.

Next, suppose that the individual j − 1 belongs to a non-consecutive group

or a group with at least k∗ members. Then equilibrium strategy requires j to

start a new group. Then she gets V (k∗) following the equilibrium strategy.

Suppose she deviates and proposes to join some group. If she is rejected,

she still makes V (k∗). If she is accepted, it must be the case that the group

she had proposed to join was a non-consecutive group. Then, since the next

member starts a new group, she will be the last member of her group which

is non-consecutive. In that case, by Lemma 4, she makes strictly less than

V (k∗). Thus, she does not have a profitable deviation in this case either.

Second, consider the approval strategy. If an individual i proposes to

join any consecutive group with less than k∗ members, she is accepted by

individual j since V (k) > V (k − 1) for k ≤ k∗. If, off the equilibrium path,

an individual i proposes to join any group when she is not supposed to do

so, conditional on her acceptance, the member i + 1 starts a new “chain”.

Therefore, it is the best response for j, the leader of the group who i has

proposed to join, to accept or reject by comparing the marginal effect of

member i alone.

4 Hedonic Game

In the previous section, we utilize a specific order in which the individuals are

called upon to act while forming a group or joining one. While the extensive

form may be appropriate in certain applications, it may not be so in others.

In this section, we take an agnostic position about the extensive form at the

group formation stage and show that the outcome we identified does not really

depend on the extensive form assumed.

In this section, we simply assume that individuals form groups according

to some mechanism, and then play the optimal disclosure strategies at the

decision-making stage in each group. Notice that for each possible group

assignment function Γ, the decision-making stage induces a profile of interim

expected utilities, one for each agent in I. Moreover, for any Γ, an individual’s

interim expected utility depends only on the identities of the members of the

group she belongs to. Formally, then we have what is known in the literature

as a hedonic game.

In a hedonic game, there is a finite population of individuals who are

partitioned into coalitions and each individual’s preferences depend only on

the identities of the other members in the coalition she belongs to. The
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objective of the game is to then find which partitions are stable, given the

individuals’ preferences. There are two standard definitions of coalitional

stability in hedonic games: Nash stability and Core stability. A group profile

is core stable if there is no possible coalition where everyone would receive at

least as much and someone strictly higher payoff than their allocation in the

initial group profile. A group profile is Nash stable if there is no individual

and no group such that the individual would profit from deviating and joining

the group, and the group would accept him.

Since the stability criteria in hedonic games are defined only over finite

populations, we only consider the case where I is finite. Our main result in

this section is that the homophily outcome identified in the previous section

is a stable profile according to both these criteria. Moreover, even when I

is countably infinite, the spirit of the argument goes through without any

alteration.

Proposition 2. Any maxmin utility group profile is both core stable and Nash

stable.

Proof. Consider any coalition of size k 6= k∗, who deviate to form a group of

their own. Then, the leftmost and rightmost members’ payoffs are lower than

V (k∗) by Lemma 4.

Now, consider any coalition of size k∗ to form a new group. Then, if

it is nonconsecutive, the leftmost and rightmost members’ payoffs are lower

than V (k∗) by Lemma 4. If it is consecutive, then in order for some coalition

member’s payoff to strictly increase, it must be that she is moving from a more

extreme position to a more intermediate one. But this means that there must

be some other coalition member moving from a more intermediate position to

a more extreme one.

So, there do not exist any blocking coalitions. Therefore, the equilibrium

group profile is core stable.

Nash stability is straightforward, since if anyone deviates to join another

group or stay alone, her payoff is going to be weakly less than V (k∗).

We must mention here that there can be other core or Nash stable group

profiles, some of which may not satisfy homophily. For example., consider the

case where |I| = 8 and b and p are such that k∗ = 4. Then, {{1, 2, 3, 5} , {4, 6, 7, 8}}
may be also be core stable.
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5 Social welfare and Comparative Statics

It is important to ask here whether groups too small or too large compared

to the size that would maximize social welfare. We show that among the

consecutive groups, the group size that mazimizes average (per person) payoff

is a group size k̂ that is weakly larger than the maxmin utility group size

k∗. This tells us that there is too little sharing in the society: information is

locked in inefficiently small groups.

Remark 2. Consider a consecutive group of arbitrary size k. The average

payoff of members in such a group is maximized for k = k̂. The number k̂

is weakly greater than k∗, the maxmin utility group size. Each member in a

consecutive group of size k̂ discloses information.

Proof. Consider a consecutive group of arbitrary size k, and denote the aver-

age loss of members in such a group by W (k). WLOG, the bias of the member

j of that group is written as jb. First suppose that k ≤ k = 1 + 1
2b , i.e. all

group members disclose information. The expected loss of the member is

(jb− b)2 + 1
4 (1− p)k. Therefore, the average payoff of the group members is

given by

W (k) =
1

k

 k∑
j=1

(
(jb− b)2 +

1

4
(1− p)k

)
=

1

k

k∑
j=1

(jb− b)2 +
1

4
(1− p)k

=
b2

12
(k2 − 1) +

1

4
(1− p)k

Next, we note that for k > k, we must have W (k) > W (k). For such a

group, in state 0,individuals 1 through k will reveal information. And in state

1, individuals k − k + 1 through k will reveal information. Therefore, the

average payoff for k > k is given by

W (k) =
1

k

 k∑
j=1

(
(jb− b)2 +

1

4
(1− p)k

)
=

b2

12
(k2 − 1) +

1

4
(1− p)k > W (k)

Therefore, the value of k that minimizes the average loss is weakly less
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than k, and is given by arg mink≤kW (k). By taking derivatives, we have

W ′(k) =
1

4
(1− p)k log(1− p) +

b2

6
k

W ′′(k) =
1

4
(1− p)k [log(1− p)]2 +

b2

6
> 0

Therefore, k̂ is given by the solution to

W ′(k) =
1

4
(1− p)k log(1− p) +

b2

6
k = 0

Now, we know that k∗ satisfies

2(k∗ − 1)b2 + (1− p)k
∗

log(1− p) = 0

Therefore,

W ′(k∗) =
1

4
(1− p)k

∗
log(1− p) +

b2

6
k∗

= −1

2
(k∗ − 1)b2 +

b2

6
k∗

=
b2

6
[k∗ − 3(k∗ − 1)] =

b2

6
[3− 2k∗] < 0 if k∗ ≥ 3

2

If W ′(k∗) < 0, we must have k∗ < k̂. Notice that the actual value of k∗ is the

“closest integer” to the solution of the above equation. So, the only exception

to W ′(k∗) < 0 can be when k∗ = 1. Then, we must have k̂ = 1.

In the previous section we have analyzed the SPNE outcome of a group

formation game given the initial heterogeneity b in the population and the ex-

ante probability p of any individual being informed of the state. We have seen

that the outcome is captured by k∗, the group size in equilibrium. A lower

k∗ would mean a more fragmented population. Notice first that the optimal

group size k∗ does not depend on the size n of the population. This is due to

the local nature of the interaction and lack of externalities between groups.

In what follows we shall assume that |I| is large enough, so that |I| > k∗. If

there is no group with size k∗, then comparative statics on k∗ have no bite.

The following proposition shows how the optimal group size depends on the

model parameters.2

Proposition 3. The equilibrium group size, k∗ is

1. decreasing in b, the difference in bias between neighbours;

2There may be other equilibria of the model. We provide comparative statics on the

equilibrium we have identified.
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2. for some p0 ∈ (0, 1− 1/e), decreasing in p for p > p0 and increasing in

p for p < p0 .

Proof. See Appendix.

Note that k∗ is the number that optimally trades off, for the group leader,

the gain in information from an additional person with the loss due to shifting

of the average group bias by the marginal entrant. As the difference in bias

between two adjacent individuals increases, the bias loss increases for every

group size: therefore, the optimal group size goes down. This tells us that

we will have large groups if neighbors are very similar in preferences. On the

other hand, with very dissimilar neighbors, we will have very small groups -

in fact, when k∗ = 1, each individual will form her own isolated group. In

this sense, preference heterogeneity breeds isolation.

On the other hand, the ex-ante likelihood p of an agent being informed

has a non-monotonic effect on group size in equilibrium. When p is very

low, the informational gain from an additional person is low. When p is very

high, again the current group has a high likelihood of being informed, so

the marginal information gain from the additional person is low. In either

case, the optimal group size should be small, while for intermediate levels of

probability of informedness, the optimal group size is bigger. Therefore, k∗ is

inverse U-shaped with respect to p. Therefore, we have severely fragmented

populations when individuals are either very likely or very unlikely to be

informed.

Next, we turn our attention to the extent of information-sharing in the

entire population. Notice that while the ex-ante likelihood of any individual

being informed is p, since information is shared, the equilibrium likelihood of

an individual except possibly in the last group eventually learning the state

is q∗ = 1− (1−p)k∗ . Fixing the parameters b and p, if we let n grow large, we

will have fewer and fewer proportion of the total population in the last group.

Thus, q∗ would accurately describe the probability of an individual learning

the state for an arbitrarily large proportion of individuals in the society by

making n arbitrarily large. Thus, the next proposition has more significance

for values of n that are large compared to k∗.

Clearly, due to sharing, we have q∗ > p. While p is a parameter of the

model, q∗ is an equilibrium quantity, and it depends on other parameters

of the model. In particular, q∗ is increasing in the size of the group k∗,

and thus decreasing in b. For any given p, as the population becomes more

homogeneous, larger groups are formed, making it less likely that no one in

the group will know the state. Notice that the non-monotonicity of k∗ in p

means that it is possible that an increase in an individual’s likelihood p of
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knowing the state may reduce group size k∗. Then, we have opposing effects

on q∗ : while each group member is more likely to be informed, there are

fewer members in the group formed in equilibrium. The following proposition

shows that an increase in p may have ambiguous effects on q∗, the equilibrium

probability of an individual getting to know the state.

Proposition 4. Fix b and p and consider n > k∗. Denote, for an individual

in any group other than that last group, the probability of learning the state

in equilibrium by q∗ = 1 − (1 − p)k
∗
. Now, consider a small change in p.

There is some b0(p) > 0 such that for b > b0(p), q∗ is increasing in p, and for

b < b0(p), q∗ is decreasing in p.

The above proposition goes to show that due to fragmentation of the

population into groups, a higher likelihood of individuals being informed may

lead to lower sharing, and in the process, a less informed society in general.

6 Discussion

In this section, we discuss the different modeling assumptions we have made.

First,.the assumption of a finite population makes no difference. All our

results hold perfectly straightforwardly if there are a countably infinite num-

ber of members in the society, with the ideal action of the j-th member in

sate θ being jb + θ. In fact, our proof technique works equally well with the

countably infinite population. In fact, our equilibrium outcome is completely

independent of the size of the population. The main reason for this indepen-

dence is our assumption of lack of externalities between groups. While some

groups like hobby groups or church groups can be thought to satisfy this

assumption, there are many other situations where this assumption is not

satisfied. For example, political parties compete in elections, interest groups

lobby for influencing policy by counteracting each other and so on. In fact,

the goals (common action in our model) and identity (average preference in

our model) of the group often take into account the nature of externalities

that groups impose on each other. However, the nature such externalities

vary from one application to another, and it would not be very difficult to

include such interactions in the current model and study their effects on the

composition of groups.

We have assumed a specific protocol for admission of a prospective member

into the group. Our assumption that the “group leader” decides on every

proposed entry may make sense in applications where we can take the term

“group leader” literally for the member who starts the group. An alternative

mode of approval could be a situation where all the existing members of
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have to be unanimous in their acceptance of a proposal for entry. If the

size of the population is infinite, the SPNE outcome identified in the main

theorem still holds with such a unanimity requirement. In fact, even if entry

is “free”, i.e. every entry proposal is accepted by default, the SPNE outcome

identified above remains unchanged. However, if the population is finite,

different entry protocols may lead to different outcomes. The reason is that

in the last group the payoffs of the members are different from that in the

other groups, and this leads to opportunities for manipulation by the members

of the penultimate group. By backward induction, the manipulations lead to

ripple effects throughout the population. We furnish an example below to

make this point. In this example, there are 5 members of the population and

k∗ = 4. If the entry of every member is to be ratified only by the group leader,

by Theorem 1, the first 4 members will form a group and the fifth one forms

a separate group. If we change the game to require that the entry proposals

need to be agreed upon unanimously by all existing members of a group, we

no longer have the homophily outcome.

Example 1. Let p = 1/2 and b =
√

6 ln 2/24 ≈ 0.085. Then, it is straight-

forward to verify that the optimal group size is k∗ = 4, which satisfies (3).

Suppose there are 5 individuals in the population. Theorem 1 suggests that in-

dividuals 1 through 4 should form a group and individual 5 stays in a separate

group of her own. Now, suppose we change the game and require that the entry

proposal of each prospective member be accepted unanimously by all existing

members of the group. Now, the group composition suggested by Theorem 1

is no longer an SPNE. Instead, in an SPNE of the modified game, 1, 2, 3 and

5 are part of one group and individual 4 stays separate. Suppose that agents

1, 2, and 3 have formed a group. Now, suppose agent 4 wants to join their

group. Then, 3 would have an incentive to reject 4’s proposal, because she

prefers that 5 joins the group, whose proposal will be accepted by both 1 and

2.

The parameter values are such that each agent will disclose all her in-

formation to her group regardless of group composition. Thus, each agent’s

payoff is thus neatly decomposed into bias loss and information loss. Let us

denote the collection of the first k individuals of the society by Ik. Then, for

j = 1, . . . , k,

E
(
Uj |Γ−1{1} = Ik

)
= −

[(
b̄Ik − jb

)2
+

1

4
(1− p)k

]
;

E
(
Uj |Γ−1{1} = Ik ∪ {k + 2}

)
= −

[(
b̄Ik+1

+
b

k + 1
− jb

)2

+
1

4
(1− p)k+1

]
,

where on the right hand side of each equation the first term corresponds to the
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bias loss, and the second the information loss. It is straightforward to see that

agent 3 prefers having 5 in the group to 4. Note that for agent 1, the change

in bias loss from admitting agent 5 to the group is(
b̄I3+1

+
b

3 + 1
− b
)2

−
(
b̄I3 − b

)2
=

33

16
b2 = ln 2/96 ≈ 0.00722,

while the change in information loss is

1

4
(1− p)3+1 − 1

4
(1− p)3 =

1

4
(1− p)3p = − 1

64
= 0.015625.

Thus, the reduction in information loss dominates the increase in bias loss.

So agent 1 will vote to approve 5’s request to join the group. For agent 5, the

decision is between joining the group I3 or {4}. It is straightforward to verify

that joining I3 is better for him.

Finally, one may consider alternative decision rules for groups. One pos-

sibility is that the median member’s optimal action is taken, and if there are

two median members, then the mean of their optimal actions is taken. How-

ever, in our current setup, the decision made in a homophily equilibrium is

indeed the same as the median member’s best action. We conjecture that

adopting this rule will not change our result.

Another possibility is to change the rule such that when no information is

revealed, instead of the 1/2+ b̄ (the “1/2 rule”), the action to be taken is θ̄+ b̄

(the “θ̄ rule”), where θ̄ is the conditional expectation of the state of the world

given that no information is revealed. A potential issue of using such a rule is

for certain group compositions, there might exist multiple information sharing

equilibria, which makes comparisons between different group compositions less

clear-cut. On the other hand, in groups consisting of consecutive members,

the disclosure strategies in an information sharing equilibrium of our model

under the 1/2 rule continues to be an equilibrium under the θ̄ rule. So, it is

still possible for our result to continue to hold. Finally, in practical terms, the

1/2 rule is arguably simpler to articulate and implement than the θ̄ rule in

an organizational and institutional setting. We will explore these variations

of the rules in our future research.

7 Appendix

Proof of Lemma 2. First note that for groups consisting of adjacent members,

E(θ|NR) = 1/2 and V ar(θ|NR) = 1/4. By (1),

EUi =
(
b̄− bi

)2
+

1

4
P (NR).
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Case 1: k ≤ 1/(2b) + 1. In this case, each group member discloses all her

information to the group. Therefore,

EUk = −

[(
k − 1

2
b

)2

+
1

4
(1− p)k

]
.

The derivative with respect to k is

dEUk
dk

= −1

4

[
2(k − 1)b2 + (1− p)k ln (1− p)

]
.

The second order derivative is

d2EUk
dk2

= −1

4

[
2b2 + (1− p)k [ln (1− p)]2

]
< 0.

Case 2: k > 1/(2b) + 1. In this case, only some group member discloses

each state, as stated above. Therefore,

EUk = −

[(
k − 1

2
b

)2

+
1

4
(1− p)

k+1
2 + 1

4b

]
.

The derivative with respect to k is

dEUk
dk

= −1

4

[
2(k − 1)b2 +

1

2
(1− p)

k+1
2 + 1

4b ln (1− p)
]
.

The second order derivative is

d2EUk
dk2

= −1

4

[
2b2 +

1

4
(1− p)

k+1
2 + 1

4b [ln (1− p)]2
]
< 0.

Let us find the k that maximizes EUk. In both cases, the second order

derivatives with respect to k is negative, so in each case, the function is strictly

concave in k. Furthermore, note that the first function is greater than the

second for k > 1/(2b) + 1. Hence, if the first function reaches a maximum at

k∗ < 1/(2b) + 1, then EUk reaches its maximum at k∗.

Note that, at k = 1/(2b) + 1,

dEUk
dk

= −1

4

[
b+ (1− p) 1

2b+1 ln (1− p)
]
≡ G(b).

As b → 0, G(b) converges to 0; as b → ∞, it converges to −∞. Now, we

show G(b) < 0 for all b. This implies that EUk reaches its maximum at

k∗ < 1/(2b) + 1.

Note that G(b) < 0 is equivalent to the following claim.

Claim. The inequality

b

(1− p) 1
2b+1

> − ln (1− p)

holds for all b.
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Proof of claim. Note that

d b

(1−p)
1
2b

+1

db
=

(1− p) 1
2b+1 − b(1− p) 1

2b+1 ln (1− p) · −12b2[
(1− p) 1

2b+1
]2 ,

=
1 + 1

2b ln (1− p)
(1− p) 1

2b+1
.

So b/(1− p) 1
2b+1 reaches a minimum at b = − 1

2 ln (1− p). Therefore,

b

(1− p) 1
2b+1

≥
− 1

2 ln (1− p)
(1− p)−

1
ln (1−p)

+1
.

Note that

ln (1− p)−
1

ln (1−p)
+1 = −1 + ln (1− p) < −1.

So,

b

(1− p) 1
2b+1

≥
− 1

2 ln (1− p)
1/e

> − ln (1− p).

The above claim completes the proof the lemma.

Proof of Lemma 3. Note that

EU1 = −
(
b̄− b1

)2 − P (NR)V ar(θ|NR).

Since information is always disclosed to the group,

P (NR) = (1− p)k;

V ar(θ|NR) =
1

4
,

which is independent of bias of the group members. Thus, the group leader’s

expected payoff decreases with b̄.

Proof of Lemma 4. Let a group of size k consist of individuals j1, j2, . . . , jk,

where j1 = 1. Note that ji − i is weakly increasing in i. Furthermore, jl > l

for all l > i if ji > i for some i.

(1) Suppose all players disclose information, by Lemma 3, player 1’s payoff

is maximized in the consecutive group Ik+1 (it is straightforward to show that

all agents disclose information in group Ik+1).

(2) Suppose jk discloses all her information to the group, but 1 does not

disclose 1. This means that

jkb ≤ b̄+
1

4
; (4)

27



b ≤ b̄− 1

4
. (5)

Now consider the payoff of player 1 in group Ik. Let b̄′ be the average bias of

the group Ik. Note that (4) implies

kb ≤ b̄′ +
1

4
,

as

b̄− b̄′ =

∑k
i=1(ji − i)

k
b ≤ (jk − k)b.

By symmetry

b ≥ b̄′ − 1

4
. (6)

This implies in group Ik, all players disclose all information to the group.

So, going from group {j1, . . . , jk} to Ik, the only possible changes in actions

are from 1 + b̄ to 1 + b̄′ in state 1, 0 + b̄ to 0 + b̄′ in state 0, and 1/2 + b̄ to

1 + b̄′ in state 1. Suppose there are l agents who switch from not disclosing

1 to disclosing it. To compute the difference in payoff for player 1, observe

agent 1’s expected payoff in group {j1, . . . , jk}

EU1 = −
[
1− 1

2
(1− p)k − 1

2
(1− p)k−l

]
(b− b̄)2

−1

2
(1− p)k

((
1

2
+ b̄

)
− (0 + b)

)2

− 1

2
(1− p)k−l

((
1

2
+ b̄

)
− (1 + b)

)2

,

and agent 1’s expected payoff in group Ik

EU ′1 = −
[
1− 1

2
(1− p)k − 1

2
(1− p)k

]
(b− b̄′)2

−1

2
(1− p)k

((
1

2
+ b̄′

)
− (0 + b)

)2

− 1

2
(1− p)k

((
1

2
+ b̄′

)
− (1 + b)

)2

.

So

EU ′1 − EU1 =

[
1− 1

2
(1− p)k − 1

2
(1− p)k−l

] [
(b− b̄)2 − (b− b̄′)2

]
+

[
1

2
(1− p)k−l − 1

2
(1− p)k

][((
1

2
+ b̄

)
− (1 + b)

)2

− (b− b̄′)2
]

+
1

2
(1− p)k

[((
1

2
+ b̄

)
− (0 + b)

)2

−
((

1

2
+ b̄′

)
− (0 + b)

)2

+

((
1

2
+ b̄

)
− (1 + b)

)2

−
((

1

2
+ b̄′

)
− (1 + b)

)2
]
,
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which simplifies into

EU ′1 − EU1 =

[
1 +

1

2
(1− p)k − 1

2
(1− p)k−l

] [
(b− b̄)2 − (b− b̄′)2

]
−
[

1

2
(1− p)k−l − 1

2
(1− p)k

][
(b− b̄′)2 −

((
1

2
+ b̄

)
− (1 + b)

)2
]
.

Note that

[
(b− b̄)2 − (b− b̄′)2

]
−

[
(b− b̄′)2 −

((
1

2
+ b̄

)
− (1 + b)

)2
]

= (b− b̄)2 +

(
b− b̄+

1

2

)2

− 2(b− b̄′)2

≥ 2 ·
(
−1

4

)2

− 2(b− b̄′)2

≥ 0,

the last step of which is implied by (6) and b < b̄′. Observe also

1 +
1

2
(1− p)k − 1

2
(1− p)k−l ≥ 1

2
(1− p)k−l − 1

2
(1− p)k.

Therefore, we conclude

EU ′1 − EU1 ≥ 0,

(3) Suppose jk does not disclose 0. This means that

jkb ≥ b̄+
1

4
. (7)

b ≥ b̄− 1

4
. (8)

Let j0i = ji, i = 1, . . . , k. Then, consider the following chain of changes to the

group members.

Step l: Let jll+1 = l+1 , jlk = jl−1k +jl−1l − (l+1), and jli = jl−1i for i = 1, . . . , k

and i 6= l or k, where l = 1, . . . , k − 2.

In the process, we keep b̄ fixed, so no player among j1, . . . , jk−1 changes her

strategy. Neither does the rightmost player, whose bias is increased. So player

1’s payoff remains unchanged in this process. But the result of the changes

is
{

1, 2, . . . , k − 1, jkk
}

, which gives player 1 a worse payoff than the group

{1, 2, . . . , k}.
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Proof of Proposition 3. Apply the implicit function theorem on (3). Suppose

k∗ > 1 is given by (3):

2(k − 1)b2 + tk ln t = 0

where t = (1− p) ∈ (0, 1).

By the implicit function theorem,

∂k∗

∂b
= − 4(k − 1)b

2b2 + tk(ln t)2
< 0.

as both the denominator and the numerator are strictly positive. To see how

k∗ depends on t, we have

∂k∗

∂t
= − t

k−1(k ln t+ 1)

2b2 + tk(ln t)2
,

which means that

k′(t) ≶ 0 according as k(t) ≶ − 1

ln t
(9)

Since t ∈ (0, 1), ln t < 0. Thus, − 1
ln t > 0. Note that this implies that

if ln t < −1, or t < 1/e, then k∗ is increasing in t. In other words, when

p > 1− 1/e, k∗ is decreasing in p.

Claim: There exists some p0 ∈ (0, 1− 1/e) such that k∗ is increasing in p

for p < p0, decreasing in p for p > p0, and has zero derivative with respect to

p at p = p0.

Proof of claim: Suppose k(t) intersects − 1
ln t for some t = t∗. We show

that it must be the case that k(t) intersects − 1
ln t from above.

Suppose not. Then, for all ε small enough, k(t) < − 1
ln t for t = t∗ − ε

and k(t) > − 1
ln t for t = t∗ + ε. Notice that − 1

ln t is increasing in t. Then, we

must have k(t∗ − ε) < k(t∗) < k(t∗ + ε). However, since, by assumption, k(t)

intersects − 1
ln t from below, k(t∗−ε) < − 1

ln(t∗−ε) , which implies that for small

enough ε, we must have from (9), k(t∗ − ε) > k(t∗), which is a contradiction.

Since k(t) must intersect − 1
ln t from above, by continuity of k(t) and − 1

ln t ,

there must be at most one intersection t0. Note when t → 1, k(t) → 1, so

k(t) < −1/ ln t, hence ∂k∗/∂t < 0. In other words, when p is relatively small,

∂k∗/∂p > 0. By continuity of ∂k∗/∂p in p, there exists p0 ∈ (0, 1− 1/e) that

satisfies the condition in the claim.

Proof of Proposition 4. Define q∗(t) = 1− tk∗(t), where t = 1− p.
Now, d

dt (1− t
k∗(t)) = −tk−1(k′t ln t+ 1), where k′ = dk∗(t)

dt .
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Therefore, dq∗

dt ≷ 0 ⇔. k′ ≷ − 1
t ln t . Using the expression for k′ from the

proof of Proposition 3, we have

dq∗

dt
≷ 0

⇔ − t
k∗−1(k∗ ln t+ 1)

2b2 + tk∗(ln t)2
≷ − 1

t ln t

⇔ tk
∗

ln t[(k∗ − 1) ln t+ 1] ≷ 2b2

From the definition of k∗ (3), we have tk
∗

ln t = −2(k∗ − 1)b2. Hence,
dq∗

dt ≷ 0

⇔ −2(k∗ − 1)b2[(k∗ − 1) ln t+ 1] ≷ 2b2

⇔ (k∗ − 1)2

k∗
≷ − 1

ln t

Notice that (k∗−1)2
k∗ is strictly increasing in k∗. This expression is less than

k∗ and hence less than n. Now, for each p ∈ (0, 1), by Proposition 3, k∗ is

strictly decreasing in b. Also, k∗ can be made arbitrarily large as b changes.

Consider b0 such that (k∗(b0)−1)2
k∗(b0)

= − 1
ln t , and the result is immediate.
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