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Abstract

We consider a rationally inattentive agent with Shannon’s relative entropy cost
function. The agent also has a choice to observe the actions of agents from earlier
generation subject to some cost, which is called the cost of social learning in the
paper. We characterize the equilibrium based on the marginal cost of relative
entropy referred to as private learning in the model. Given any non-concave cost
of social learning function we show that as the marginal cost of private learning
increases from zero, the number of agents observed from earlier generation does not
change monotonically. For very high marginal cost of private learning, no learning of
any type becomes optimal choice. To illustrate we also consider a special case where
cost of observing up to some fixed number of agents, c̄, is zero and very high for any
higher number of observations. Even under this cost structure some agents would
optimally choose strictly less than c̄ agents to observe in equilibrium. Contrary to
the herding literature, we have found that the private and social learning would
be complements for higher marginal cost of private learning. We also find that
improving social connectivity as measured by our cost of social learning may not
be welfare improving always.

1 Introduction

To rationalize a suboptimal behavior of an economic agent which is most common in real
world, economists often propose information friction as a plausible explanation, namely,
they argue that an agent is choosing a suboptimal option because the agent does not
perfectly know the payoff from all available alternatives. In the long tradition of incorpo-
rating information in choice problems many different forms of information frictions has
been considered based on the particular problem at hand. E.g, the agent does not have
a choice to learn and he only receives some information exogenously. Or the choice of
acquiring information is subject to a cost function and these costs may be psychological
or physical in nature. The physical cost is often due to the cost of buying the informa-
tion and the psychological cost may reflect some mental cost of attention, memory or
cognition required to process the information.

Similarly many different forms of acquiring information has also been considered in the
literature. Agents may do experiments or take tests which often are constrained by the
mental capacity or time available. In these experiments agents get some private signals
about their payoffs or other variables of interest and use these signals in their choice
problem. Instead of learning on their own, agents can directly observe the action of other
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players in the economy and imitate them. Also instead of actual choice some publicly
observed signals about the actions taken by other agents or the underlying state in the
economy can be a source of information. Different information acquisition structures
would give rise to different types of behavior of a rational agent and depending on the
particular case, one information structure may be more natural to assume than any other.

If we broadly classify learning into two types, private learning, where agents learn on
their own and gets a private signal and social learning, where agents learn from observing
others or a public signal observable by everyone then we want to understand how these
two types of learning interact? If a society becomes more connected it should become
easier to obtain more information via social learning. But what would be the welfare
implication of such an increased connectivity?

In this context of interaction between two models we ask the following questions.
Suppose an agent is faced with a one-time choice between finite alternatives and wants
to learn about the payoffs from different actions where learning is subject to some form
of information friction. If the agent has options to both learn on his own and observe
others’ actions then how would he optimally choose to learn? Would a social planner
choose the same amount of learning for him? Most importantly how does this individual
choice get affected by the amount of information available in society? Specifically how
would the structure of the society, namely the connectivity between agents in the society
affects the choice problem of an individual agent?

But to answer these questions we need the following ingredients: first, a mechanism
for private learning, second a mechanism for social learning and third a model of social
connectivity. The psychology literature for several decades has studied private learning
models. Economists have borrowed several ideas from this literature and has constructed
two major learning model, namely reinforcement learning where agents act according to
their experience from past choices to choose the alternatives that has paid well in past
and belief learning where agents update their beliefs based on acquired information and
act accordingly. For a survey of such learning models in economics refer [5].

Here we consider a one-time action by an agent and would use the belief learning
approach where agents would update their posterior belief about their payoff based on
some signal. Since our interest is to understand the trade-off between two types of learning
we need to impose a cost structure on private learning, otherwise the agents would fully
learn about their types and take the right choice always. The cost of private learning is
borrowed from the rational inattention literature where the cost of learning is understood
as a cognitive cost which is often the case with belief learning. The other option would
have been to impose a costly and not fully informative signal structure where agents learn
only partially. But the cost structure in the rational inattention literature helps us to
assume away any particular complicated form of costly signal structure.

The rational inattention literature considers the discrete choice problem faced by an
individual decision maker when information is costly to acquire. Following Sims (2003)
[18], the cost of information has been modeled as a function of the Shannon’s relative
entropy between the prior belief and the expected posterior belief of the individual. This
helps to abstract away from the detail modeling of the signal structure (as shown by
Matejka and McKay(2014)) . Matejka and McKay (2014) [17] also showed that using
a liner function of Shannon’s relative entropy cost (where no information has zero cost)
the optimal choice of a decision maker who is maximizing his expected utility takes
the form of multinomial logit. Several other papers in the literature, e.g., Caplin and
Dean (2015) [7], Caplin and Martin (2015) [10], Caplin ,Dean and Leahy (2016) [8] etc

2



has attempted to provide behavioral assumptions for the relative entropy cost function.
More recently paper by Caplin, Leahy and Matejka(2015) [9], tried to combine social
learning to generate a prior belief, to a model of rational inattention. In their paper
any agent in period t > 0 gets to see the market share of every other generations before
him without paying any cost. They found that observing the market share of many
commodities affects the private learning and subsequently the optimal behavior of the
agent in the model.

For the social learning mechanism we borrow from the herding literature. The herding
literature following Banerjee (1992) [2] and Bikhchandani, Hirshleifer and Welch(1992)
[3] considers an individual choice problem in an economy where agents make decisions
sequentially. Agents are exogenously and randomly given with a payoff-relevant signal
that they can use as their private information. All agents are ex-ante identical and any
individual would observe the actions taken by all previous agents. Given everyone has an
equally informative signal structure the actions of the previous agents also act as a source
of information. But since, agent’s action is not a sufficient statistic of his information,
observing just the actions of some previous agents may generate some sub-optimality in
the behavior of later agents. In equilibrium, agents might ignore their own private signal
and choose to follow others’ action blindly (the phenomenon known as “herding”) even
when it is not be optimal to do so. This generates the herd externality in the economy.
In the model, private signal and actions of others, the two sources of information act as
substitutes.

The social learning protocol used in this model is even simpler. Any agent in current
generation can observe only the actions taken by other agents in only the last generation.
So given the total number of agents are constant every period the maximum number of
people that an agent can observe remains constant over time, which simplifies the model
to a great extent. Notice that agents don’t observe any noisy signals about the choices
or information of others but observes their actual choices. Thus a later generation agent
while updating his belief takes into account the possibility of mistakes made by earlier
generation due to incomplete learning given the assumption that the agents are drawn
randomly from a large enough population.

The final part required to close this model is the social connection structure. One of
the most common way of imposing a social connection structure is to introduce an under-
lying network. But to avoid the complexity of a formal network model while retaining the
notion of importance of social connectivity we introduce a cost function associated with
social learning. Social learning in the model simply means observing the action of others
from previous generation and putting a cost structure into it would mean agents need to
incur some cost to observe actions of other agents. This is similar to the idea of social
connectivity. In a more connected society it should easier for an agent to observe others
which we represent with a lower cost of social learning. Also unlike herding literature,
whether or not an agent would observe socially and when he decides to observe then how
many agents he would observe from the previous generation is a choice of the individual
but subject to a constraint imposed by the available technology of social connectivity,
namely the cost of social learning function. Also we use the assumption that agents have
to decide how many other agents to observe ex-ante before he actually observes anyone
and after he choice is made the chosen number of agents are drawn randomly from earlier
generation. This protocol is called block learning.

The main difference between using a network and this costly social learning model is
the loss the heterogeneity across agents in this model. In our baseline model we assume
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the cost of social learning function is same for everyone, so everything else being the
same all agents would choose to observe the same number of agents. That is usually not
the case in a network as agents have different degrees and can possibly observe different
number of agents based on his degree centrality in the network. Instead of thinking the
internal structure of the connectivity, our cost function actually refers to the technological
level of connectivity available to a generation of agents and hence all agents in the same
generation face the same constraint. Also once agents optimally decide how many agents
to look at the sample is drawn randomly from the earlier generation. This gives anonymity
of the observed agents which is a major simplification over a network structures where
agents can only observe their neighbors who are not anonymous in their identity. Later we
add an extension of the model where agents have different cost of social learning function
which introduces the heterogeneity whereas keeping the anonymity of the observations.

Finally we combine these three parts to form a model and formalize the following
questions. Consider an infinite period economy where a fixed number of agents enter
every period and face a one-time choice between a finite number of actions, where the
payoff from each action is not known to the agents. The agents are rationally inattentive
and also has the option to observe the actions of agents in previous generation subject to
a cost function, namely the “cost of social learning”. In this model what would be the
optimal choice of a rational agent who wants to maximize his expected payoff? Would
herding still remain as a possible equilibrium? Would social and private learning remain
substitutes as assumed in the herding literature or would they be complements? Moreover
what would the policy implications of the model?

Surprisingly, we have found that the amount of social learning does not change mono-
tonically with an increase in the marginal cost of private learning as would be the case
if they were substitutes. For moderately high marginal cost of private learning, the two
types of learning rather act as complements, furthermore when cost of private learning is
very high, instead of choosing social learning entirely, the agents do not learn in any form
at all. This implies that the policy suggestion coming from herding literature to restrict
the learning of some agents initially to avoid herding is no more an optimal policy and
crucially depends on the relative level of private learning technology and connectivity
available in the society.

The rest of the paper is arranged as follows. Section 2 formally describes the two cost
structures and sets up the baseline model. In section 3 we solve the agent’s optimization
problem and show the nonmonotonicity result. Section 4 discusses an interesting and
instructive example where the social cost function takes the form of a capacity constraint.
In this case agents can observe upto n̄ many actions free of cost and no further observation
is possible. This is closest to the idea of network structure without the heterogeneity,
as if the degree of each agent is same in the economy. Section 5 discusses the following
important extensions. First we introduce a payoff relevant aggregate state and see how
that changes the incentive of social learning and whether the main result remains true.
Then we introduce two forms of heterogeneity, namely heterogeneous private cost of
learning and heterogeneous cost of social learning. The first reflects the difference of
ability in the economy and the second one makes it similar to a network with a varied
degree distribution. We show that in both cases the main result still holds true. Finally
we consider a variant of the social learning protocol in which instead of block learning
we use sequential learning protocol where agents chooses the number of observations
sequentially based on his available information. Section 6 defines the steady state of this
economy and discusses the herding behavior in a steady state. Section 7 concludes and
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the main proofs are given in the Appendix.

2 Model

2.1 Environment

Consider an infinite horizon economy in discrete time, i.e. t ∈ {0, 1, . . . ,∞}. At each
period t a large but finite number of agents, N , enter the economy. At any period t ≥ 0
when an agent enters the economy he chooses to learn, takes an irreversible action and
leaves the economy never to come back again.

Let A be the finite set of actions that an agent can choose from. An agents doesn’t
know his idiosyncratic payoffs from taking any action i ∈ A. Let Ω be the set of all
possible strict rankings of payoffs in A, hence Ω would be a finite state space. Let ω ∈ Ω
be a typical element in Ω which would be called the type of an agent. In the rest of
our analysis we would assume A = {a, b}. Hence, Ω = {ω1, ω2} where ω1 ≡ a � b and
ω2 ≡ b � a. Let Γ be the set of possible distributions over Ω, that is Γ ≡ ∆ (Ω).

Let ∆ (Γ) denote the set of all possible distributions over Γ. At any period t ≥ 0
agents enter with a common prior γ ∈ ∆ (Γ)1. After entering, the agent tries to learn
about his own type (idiosyncratic payoff) and then takes an irreversible one time action
from the set A. Let µ∗ denote the true distribution of types where µ∗ ∈ int (γ).

Let u : A × Ω → R be the state dependent utility function. Assume that agents are
Bayesian expected utility maximizer. Let the payoff of different types of agents be given
by

u (a, ω1) = u (b, ω2) = ū

u (a, ω2) = u (b, ω1) = u
(1)

where ū > u, so type ω1 gets a higher payoff from action a and type ω2 gets a higher
payoff from action b. Define ∆u = ū−u, the gain in payoff by matching over mismatching
the state, which is assumed to be symmetric for both types.

2.2 Costly learning

Agents have two possible choices of learning, viz, private and social learning. Both these
types of learning are costly to incur and also are different in nature as, the social learning
gives information regarding µ∗, the true distribution of types, and private learning is
targeted towards the own type, ω of the agent.

2.2.1 Private learning

The way this model sets up the private learning problem is similar to the recent literature
on rational inattention as discussed in the introduction (refer to [17], [9]). This implies
an agent can learn privately in the following way, namely if he chooses to learn privately

1We assume that γ is not biased towards an alternative, i.e. there exists a λ̃ such that ∀λ ≤ λ̃, where
λ be the marginal cost of private learning(as discussed later), and for all 0 ≤ n ≤ N if an agent observes
0 ≤ xn ≤ n many action a (or b) the belief about E

(
Pr (ω1) |γ0, n

)
(generated by Bayesian updating)

will be on both sides of µ = 1/2.
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about the idiosyncratic state, i.e their own type ω, then he needs to pay some cost to
update his posterior belief about ω, where the updating is done using Bayes rule.

The cost of private learning is given by Shannon’s relative entropy cost of information
. Let P

(
i, ω|µ

)
be the posterior probability of choosing action i ∈ A when type is ω ∈ Ω

and prior µ ∈ Γ. Define P
(
i|µ
)
≡
∑

ω∈Ω µ (ω)P
(
i, ω|µ

)
as the prior probability of

choosing action a ∈ A. The cost of private learning is given by,

C (λ, µ) = λ


∑
ω∈Ω

µ (ω)
∑
a∈A

P
(
a, ω|µ

)
lnP

(
a, ω|µ

)
︸ ︷︷ ︸

expected entropy of the posterior distributions

−
∑
a∈A

P
(
a|µ
)

lnP
(
a|µ
)

︸ ︷︷ ︸
entropy of the prior distribution


(2)

where λ ∈ [0,∞] be the marginal cost of private learning.
Instead of modeling as a choice over signal structures we assume the agents can directly

choose a distribution over posterior distribution. As mentioned in [17] this is true because
of Blackwell informativeness of different signal structures and the proposition 1 in [14].
The logic behind this equivalence is that an agent would never choose a signal structure
where two distinct signal would give the same recommendation in terms of action choice
due to Blackwell informativeness criterion which says that dropping one of the signals
from the signal structure would be welfare improving. This implies for every signal in
the chosen structure we can assign an unique payoff attached to it which helps us to use
the result from [14]. Their result tells us we can interchangeably use signal structure and
distribution of posteriors.

Given that we are using a belief learning model this formulation helps us to abstract
away particular cost and signal structure and gives us a more general setup in terms of
the choice of signal structure for private learning mechanisms.

2.2.2 Social learning

The social learning mechanism is similar to that of the herding literature with some major
innovations. Similar to the herding literature an agent can observe the action but not the
information or belief of the agents who has already decided on their choice. To fit our
model we use agents from earlier generation and restrict that the agents can only observe
the action of the agents form the preceding generation and no other generations.

Thus any agent at any period t ≥ 1 can observe the action of t− 1 generation agents
subject to a cost, which would be called the cost of social learning. This is the major
difference from the existing literature. The introduction of cost not only means that
the agent would choose how many people to observe but also given that the agents are
Bayesian expected utility maximizer the solution would be same as the constrained Pareto
problem which means if there is any herding in the model that would be optimal herding
unlike previous models in the literature.

The cost of social learning c (n), where n be the number of agents of generation t− 1
that an agent in generation t observes, has the following properties,

c (n) > 0, 0 6 n 6 N, n ∈ N and C (1) 6 u, C (N) > ū

c (n) ≤ c (n+ 1) , 0 6 n 6 N − 1, n ∈ N
c (i)− c (i+ 1) 6 c (i+ 1)− c (i) 1 6 i 6 N − 1

(3)
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An agent can either choose n sequentially, i.e, after observing each individual he would
decide whether he wants to observe one more individual and if he decides to observe then
another observation is drawn from the period t − 1 population without replacement; or
the agent can choose n in a block, where before observing any action from any agent
in period t − 1 the agent decides how many people to observe and given his decision
a sample of chosen size is drawn randomly from t − 1 population. We assume for any
learning protocol he would pay the same cost c (n) after observing n actions at the end
of the learning process. So, if he observes n many people under sequential learning he
would pay c (n) and not nc (1)2.

Once an agent in generation t observes n many agents from generation t − 1, the
distribution of actions of the n agents works as a signal about µ∗ for the agent. If he
observes that x many people out of n had chosen action a, then the distribution of
actions would be denoted by xn. Given prior γ and observed distribution of action xn,
the agent would update his posterior about Γ, by considering how the agents in the
earlier generation would behave under different distribution of types and the probability
of mismatching the state by the t − 1 period agents. The probability of mismatching
would vary with the amount of social and private learning undertaken by generation
t− 1. We will call this error probability where the error is due to mismatch and not an
error due to bounded rationality and this probability would be an important variable for
the rest of the analysis.

2.3 Time 0 agents

The t = 0 agent has only the option of learning privately, so after he enters the economy
with prior γ ∈ ∆ (Γ), he chooses a distribution of posteriors to maximize the expected
payoff. Hence, the optimization problem of a t = 0 agent is given by,

V (A, γ) = max
P(i,ω|µ)

i∈A,ω∈Ω

∑
ω∈Ω

γ (ω)P
(
i, ω|γ

)
u (i, ω)− C (λ, γ) . (4)

where γ (ω) be the expected probability of state ω under γ ∈ ∆ (Γ). Following Matejka
and McKay (2015),the solution to the agent’s optimization problem is similar to a logit
model of random utility. Hence for time t ≥ 0 agents, the posterior probability of choosing
action i would be

P
(
i, ω|γ

)
=

P
(
i|γ
)
e
u(i,ω)
λ∑

j∈A P
(
j|γ
)
e
u(j,ω)
λ

∀i ∈ A, ω ∈ Ω (5)

The Bayesian plausibility implies given their prior γ,

∑
ω∈Ω

γ (ωi)
exp

(
u (i, ω) /λ

)∑
j∈A P

(
j|γ
)

exp
(
u (j, ω) /λ

) ≤ 1 ∀ i ∈ A. (6)

The inequality holds with equality if P
(
i|γ
)
> 0.

Using equation 6 for both a, b ∈ A we get,

2The assumption would not be restrictive if learning cost is linear or in the form of a capacity
constraint.
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P
(
a|γ
)

=


γ(ω1) exp(ū/λ)−(1−γ(ω1)) exp(u/λ)

exp(ū/λ)−exp(u/λ)
if e−∆u/λ ≤ γ(ω1)

1−γ(ω1)
≤ e∆u/λ

1 if γ(ω1)
1−γ(ω1)

> e∆u/λ

0 if γ(ω1)
1−γ(ω1)

< e−∆u/λ

(7)

And the posterior probability of choosing actions in different states can be obtained
by combining equation 7 and equation 5. Two observations to be made here, first even
though there is no social learning the time t = 0 agents do not always learn perfectly about
their types and hence the observed distribution of action contains both heterogeneity of
idiosyncratic payoff and mistakes in the process of private learning.

Second, when the agent learns about his own type this would shift his belief about
the economy as well and would shift γ, but since we have assumed that N is large enough
the deviation in γ due to only one observation would be very small so we would ignore it.
Alternatively we can consider a more general state space say W = Ω× Γ, so every time
the agent observes a signal we would simultaneously update both the components of W .
The posterior and prior probability of choosing an action is based on the bigger state
space and so is the cost of private learning. The cost of social learning is not affected
though since it doesn’t depend on the state space. Since ex-ante the agent doesn’t know
what signal he is going to observe, while obtaining the prior probability he would use the
expected belief of γ rather than the actual belief at that point. By Bayesian plausibility
the expected γ would coincide with his prior (“prior” to private learning) and hence ex-
ante the expected posterior probability would be the same as well. In that model all the
subsequent analysis would still hold but for simplicity in the rest of the paper we will not
explicitly consider the change in belief over Γ due to private learning by assuming N to
be large enough.

Let us define εa0 = P
(
a, ω2|γ

)
and εb0 = P

(
b, ω1|γ

)
as the corresponding probabilities

of making mistake when choosing a and b at time t = 0 by type ω2 and type ω1 agents
respectively. Since it is common knowledge that agents are Bayesian expected utility
maximizer with same cost of private learning and hence every agent chooses the same
distribution of posteriors and hence in the next generation, any t = 1 agent knows εi0.

2.4 Time t ≥ 1 agents

2.4.1 Optimal Learning Protocol

Any t ≥ 1 period agent has two different choices for learning, namely social and private
learning. In this section we discuss the possible protocols of learning. The first issue is
about the sequencing of learning. As no restriction has been imposed on the agent as
to whether to choose one type of learning first then the other, the agent has the option
to mix the two types of learning in any possible way. For example, he may decide to
learn privately first and then observe some individuals from earlier generation, or he may
choose to alternate private and social learning starting with any one of the two upto any
number of repetitions.

Given the large number of possible sequencing between two types of learning it is of
value to look at which type of sequencing protocol would survive the optimality argument.
The following lemma shows the optimal sequencing would always be of the form: first
social learning then private learning. To prove that, it is sufficient to show for any
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sequencing protocol where some social learning is chosen after a step of private learning,
an agent would be better off by learning socially before private learning. That would
imply only one learning protocol would survive in any equilibrium, namely, first social
learning then private learning.

Lemma 1. Any agent at period t > 1 would optimally choose to learn socially first then
privately.

Prof of lemma 1 is given in the appendix A.1. Lemma 1 gives the optimal sequence of
learning, so in the agent’s optimization problem we can use the γ′xn as the interim belief
prior to private learning after observing xn many action as out of n many observations.

Next we consider the choice between block and sequential learning. We start by
defining the the two learning concepts in the context of the model. If an agent is doing
block learning then before any learning takes place he would optimally choose a value of
n∗ and then observe n∗ many agents from earlier generation who are chosen randomly.
This would generate a distribution of beliefs over Γ, and then he learn privately using the
optimality conditions based on the updated belief. If an agent chooses to do sequential
learning then he doesn’t need to choose a value of n ex ante but after each random
observation from earlier generation he can decide to stop sampling or keep on sampling
from earlier generation.

Since both types of learning are costly and c (N) > ū, the agent would never choose to
learn fully under any learning protocol. Also given the nature of private cost of learning
if an agent is confident enough then he would not learn privately at all and choose one
action for sure. This along with the weakly convex cost of social learning function implies
that there exists a level of belief (for both actions) such that if an agent has a belief above
that level about occurrence of any of the states then the marginal benefit from learning
would be less than the marginal cost of learning of any type. This implies the optimal
strategy under any protocol would be of the form of a cutoff belief for social learning
conditional on the number of agents being already observed.

Under sequential learning this means the agent would use a stopping rule for social
learning based on the belief conditional on the number of observations and the cost
associated with it. But if there is only one such cutoff belief that describes the stopping
rule and agent keeps on learning until he reaches that belief then it would not be an
optimal strategy. This is true because cost of social learning function is weakly convex
and given any cutoff belief the probability that the agent would never reach to that belief
with less than N many observations is non-zero. Since c (N) > ū he would be better of to
stop social learning before he reaches his cut-off and start learning privately. Hence the
optimal strategy of an agent would be to choose a distribution of cutoff levels of beliefs
conditional on the number of observations rather than one single cutoff belief to define
the stopping rule that would maximize the expected payoff subject to the cost of social
learning.

But the choice of distribution of beliefs under sequential learning is constrained by the
choice of n and the parameters of the model. So, to choose a distribution of belief from
the restricted set of distribution available via choice of n he would choose a distribution of
n to achieve maximum expected value under the belief subject to the social cost function.
For example, he might choose the following strategy: to stop at n = n1 if belief reaches
γ1 after observing n1 many people otherwise choose n = n1 + 1 and stop there. Since one
can calculate the probability of reaching γ1 after n1 observations this gives an implied
distribution over n.
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Since for sequential learning case, we need to consider the agents problem at each
possible belief and observation pair it would be significantly more difficult to solve. Hence
for sake of simplicity in the rest of the paper we assume the agents are doing block
learning. The sequential learning case is discussed in some detail in the extension and
the results have a similar structure to the block learning case.

Since we assumed social learning is done in a block then ex-ante before obtaining any
social and private information, the agent would decide how many agents to look at from
earlier generation ,i.e. choose n ≤ N . For every interim belief after observing n many
agents, γ′xn ∈ ∆ (Γ), how much to learn privately. Once the agent chooses n, then he
would observe n agents from earlier generation drawn randomly from the total population,
i.e. the agent can’t choose whom to look at. Thus the agent’s problem becomes,

W (A, γ) = max
n

Eγxn

[
V
(
A, γ′xn

)]
− c (n) (8)

where γ′xn would be the belief over Γ after observing xn many people taking action a
out of n many people at the time of private learning and agents are Bayesian.

To update their belief based on observation of actions by agents in earlier generation,
the agent need to know the probability of making mistake by the earlier generation. In
the next section we discuss the order of beliefs generated by social learning.

2.4.2 Social learning and order of beliefs

Suppose an agent i at time t observes n agents from generation t−1, then he will update
his belief over ∆ (Γ) via Bayes rule. Since Ω has only two elements, wlog, we can denote
any distribution µ ∈ Γ by the probability of type ω1. If the agent’s observed sample is
xn, i.e. x out of n agents chose action a then the posterior probability of any distribution
µ ∈ Γ in the support of γ ∈ ∆ (Γ) by Bayes rule would be,

P
(
µ|γ, xn

)
=

P
(
xn|µ

)
P
(
µ|γ
)∫

ν∈γ P
(
xn|ν

)
P
(
ν|γ
) (9)

and the probability of all µ /∈ supp (γ) would remain zero.
But to calculate the P

(
xn|γ, µ

)
, the agent needs to know the probability of mis-

matches by earlier generation. This probability would be different for different genera-
tions. For a time t = 1 agent the problem is simpler as he knows a t = 0 agent had done
only private learning and the prior γ and marginal cost of learning λ is same across all
generation. All later generations need to take into consideration what was the optimal
level of social learning in earlier generations (n∗t−1), what distribution of interim beliefs
over ∆ (Γ) n∗t−1 can generate, for each such distribution over ∆ (Γ) what would be the
probability of mismatch and need to take an expectation over probability of mismatches
given their prior γ.

To illustrate, let us assume that an agent i observes a total of 5 agents from earlier
generation among which all 5 agents had chosen action a. The t = 1 agents know that
this is only due to private learning so εi0 would be the probability of making mistake when
taking action i ∈ A. Now, all 5 would choose action a, if all 5 were actually type ω1 and
no one made a mistake, 4 of them were type ω1 and the ω2 type made a mistake, and so
on upto all 5 were type ω2 and all made a mistake.

First we consider case of a t = 1 agent, who knows that the earlier generation agents
only learn privately and the probability of making mistake is εa0 = P (a, ω2) and εb0 =
P (b, ω1), then the probability of observing xn, given prior µ would be
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P
(
xn|µ

)
=

n∑
k=0

k∗∗∑
j=k∗

(
n

xn − 2j + k

)
µxn−2j+k (εa0)j

(
1− εb0

)xn−j
(1− µ)n−xn−k+2j

(
εb0

)k−j
(1− εa0)n−xn−k+j

(10)

where

k∗ =

{
0 if k < min {xn, n− xn} or xn ≤ k < n− xn
k − n+ xn if k ≥ max {xn, n− xn} or n− xn ≤ k < xn

and

k∗∗ =

{
k if k ≤ min {xn, n− xn} or n− xn ≤ k < xn

xn if k > max {xn, n− xn} or xn ≤ k ≤ n− xn
which uses the probability of making mistakes and the belief that the distribution is

generated by µ ∈ Γ. Plugging the value obtained from equation 10 into equation 9 we
can calculate P

(
µ|γ, xn

)
for every µ ∈ γ, and can update the belief to γ′xn .

Agents in period t > 1 know that the earlier generation had a chance of social learning.
Since in a generation all agents are ex-ante identical, everyone in one generation would
choose the same n, but the same choice of n might lead to different beliefs. Also, the
probability of error would be different for each realization of n sample. Consider a period
t agent who knows that period t − 1 agents optimally chose to observe m people from
generation t− 2. Let Xm denote all possible sample distribution for sample size m. Let
the error probabilities3 be εaxm,t = P

(
a, ω2|γ, xm, t

)
and εbxm,t = P

(
b, ω1|γ, xm, t

)
after

observing xm ∈ Xm in period t. Using the prior γ, one can calculate the distribution over
Xm, which gives an implied distribution let faγ and f bγ over εaxm,t and εbxm,t respectively.
Let us define εat and εbt as εim,t =

∫
xm∈Xm ε

i
xm,tdf

i
γ, i.e., the expected probability of making

mistake by choosing i in period t − 1 after observing m many agents from generation
t− 2.

Since all agents are ex-ante identical in generation t − 1 and the sample is drawn
randomly, the agent in period t would use εam,t, ε

b
m,t as the probability of making mistake

and use the same rule as t = 1 agents in 10 but replacing εi0 by εim,t, for i ∈ A when he
knows the value of m for earlier generation.

Since t = 0 agents choose only private learning, n∗1 is common knowledge and iterating
the argument and using the fact that all agents are ex-ante identical, given c (n) and λ
the sequence of optimal choice of n∗t and the corresponding εin∗t for i ∈ A would also

be common knowledge to all generations. Hence, the error probabilities, εin∗t−1
for every

generation is well-defined. The following remark explains the argument.

Remark 1. Note that to obtain εin∗t−1
for i = a, b any agent in period t needs to know the

entire history of εin∗s−1
, ∀s ≤ t. But agents are ex-ante identical and chooses n∗ in a block

means that every agent in a single generation would have the same n∗s and hence the same
εin∗ would apply to all agents in generation s and the economy starts at period t = 0 with
εi0. Which means given γ, the common prior and λ, the marginal cost of private learning,
the two parameters that determine εi0 would be sufficient to generate the deterministic

3Error of mismatching and not behavioral error.
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time path of the optimal choice n∗s and hence the time path of εin∗s−1
. So given γ and λ the

error probabilities εin∗t−1
would be a function of t only. So εin∗t−1

would be same for every

agent in period t and also would be common knowledge since both γ and λ are common
knowledge.

2.4.3 Private Learning

Given lemma 1, we know agents first learn socially then with the updated belief γ′xn they
learn privately. Following equation 5 the optimal private learning of an agent in any
period t ≥ 1 would be same as a t = 0 agent, except with a different interim belief over
Γ,

P
(
i, ω|γ′xn

)
=

P
(
i|γ′xn

)
e
u(i,ω)
λ∑

j∈A P
(
j|γ′xn

)
e
u(j,ω)
λ

∀i ∈ A (11)

Note that the γ′xn doesn’t have a time dimension because the only way different
generation would be different in their behavior is through social learning and γ′xn already
captures the differences via social learning. Hence the agent with belief γ′xn chooses to

learn privately only if, e−∆u/λ ≤ γ′xn (ωi)

1−γ′xn (ωi)
≤ e∆u/λ. For any other value of γ′xn he would

choose one action for sure. Now that we have discussed the optimal learning under both
social and private separately, we can describe the optimization problem faced by the
agent.

3 Agent’s optimization

Since the agent knows the optimal amount of private learning given any γ′xn he would
choose the optimal value of n such that expected utility is maximized. For each n, the
agent would calculate all possible distribution of interim beliefs γ′xn following n observa-
tions. For each such γ′xn then he calculates his expected utility using private learning and
chooses the n that maximizes his payoff after subtracting the cost of social learning. So
the agent’s problem can be written as,

W (A, γ) = max
n

Eγ′xn
 max
P(i,ω|γ′)
i∈A,ω∈Ω

∑
ω∈Ω

γ′xn (ω)P
(
i, ω|γ′xn

)
u (a, ω)− C

(
λ, γ′xn|γ

)− c (n)


(12)

where the expectation is taken over the distribution γ′xn ∈ ∆ (Γ) that can be generated
after observing n agents when the prior belief is γ.

There will two types of cost attached to choosing optimal n, the explicit one is the cost
of observing more people, the implicit one would be, if more agents are being observed,
then the sample size would increase, for a Bayesian this implies that after observing the
same proportion of people taking action i, he would be able to shift his belief further
away from the prior in favor of action i compared to a smaller sample. But given the
cost of private learning there exists a level of prior, not a completely informative one, for
which no private learning is optimal. This means if he learns too much socially later he
would optimally choose to not learn privately at all. This would affect the probability of
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making mistake by the agent and he would internalize the cost of such a mistake. Thus
there may exist a private cost function for which even with a very low/zero cost of social
learning, agents would be reluctant to learn socially with the anticipation that it may
affect their private learning behavior and hence their expected payoff.

Result 1. If period t = 1 agents choose not to learn socially then no agent in any t > 1
generation would choose social learning.

Proof. If at t = 1, agents choose n∗ = 0, then for generation t = 2, the error probabilities
would remain εi0, which are same as that of t = 1 generation. Hence, if n∗ = 0 was
optimal for t = 1 generation, it would remain optimal for t = 2.

If for any generation s > 2, n∗ = 0 was optimal then for the next generation error
probabilities would be εi0, same as t = 1 generation, hence their optimal choice would be
n∗ = 0. Thus by induction for all t ≥ 1, n∗ = 0 would be the optimal solution.

Result 2. For every common prior γ, except the uniform prior i.e. where γ (ωi) = 1/2
for i = a, b, there exists a λ̄γ < ∞, such that ∀λ > λ̄γ there will be no learning in any
generation t ≥ 0.

Proof. We build this proof in two steps, first we show that if it is not optimal for t = 0
generation agents to learn privately then it is not optimal for any later generation to
learn either privately or socially. Then we show that under the given condition it is not
optimal for generation t = 0 to learn privately.

For the first part, suppose t = 0 generation agent don’t learn privately at all this
implies every one of them would have a log-likelihood ratio either log γ′(ω1)

1−γ′(ω1)
> ∆u/λ

or log γ′(ω1)
1−γ′(ω1)

< −∆u/λ since all agents are ex-ante identical. In the first case everyone
chooses action a, in the second everyone chooses action b. WLOG, we can consider the
case where everyone chooses a since the other case would be similar.

Now consider an agent i in generation t = 1. Given the common prior γ, P
(
a|γ
)

= 1,
if he decides to learn socially and chooses n∗ > 0, then he would only end up observing
agents with only action a. Now the error probabilities given λ and γ when t = 0 don’t
learn and choose a for sure is given by εa0 = 1 and εb0 = 0. Putting these values in equation
10 and considering that xn = n for any choice of n∗ we get

P
(
xn|µ

)
=

n∑
k=0

(
n

n− k

)
µn−k (1− µ)k = 1; ∀µ ∈ γ (13)

Using this value in equation 9 we get,

P
(
µ|γ, xn

)
=

P
(
µ|γ
)∫

ν∈γ P
(
ν|γ
) = P

(
µ|γ
)

(14)

Hence the posterior belief after social learning would be same as the prior belief. As
social learning is costly, the optimal choice would be n∗ = 0. Now using result 1 we can
argue that n∗ = 0 would be optimal for all t > 1 generation as well.

Also if it is not optimal for any agent in period t = 0 to learn privately, it will not
be beneficial for a period t = 1 agent to do so given the optimal choice be n∗ = 0. As
absent social learning an agent in period t = 1 has same optimization problem as that
of an agent in period t = 0 and for the t = 0 agent it was optimal not to do any private
learning. But any agent in later generations, t > 1 would also have same optimization
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problem as t = 0 agents as n∗ = 0 for any generation. Hence, the optimal amount of
private learning for any agent in generation t > 1 would also be zero.

Given this we just need to verify whether there exists any such λ̄γ <∞ such that for
all λ > λ̄γ, t = 0 agents don’t learn. Now the condition for no private learning is given
by

log
1− γ′ (ω1)

γ′ (ω1)
> ∆u/λ or log

1− γ′ (ω1)

γ′ (ω1)
< −∆u/λ (15)

⇒ λ > λ̄γ = max

{
∆u/ log

1− γ (ω1)

γ (ω1)
,∆u/ log

γ (ω1)

1− γ (ω1)

}
(16)

Since, γ (ωi) 6= 1/2, this implies

log
γ (ω1)

1− γ (ω1)
6= 0 and log

1− γ (ω1)

γ (ω1)
6= 0

Hence, λ̄γ <∞.

Remark 2. As γ (ω1) increases (or decreases) towards 1 (or 0), the denominator in the
first term of the max function would be negative (or positive) and also decreasing (or
increases) with increase in γ (ω1) and the denominator of the second term is positive(or
negative) and increasing (or decreases). So for a high (low) γ (ω1) the second (or first)
term becomes the maximum and it is decreasing in increase(or decrease) in γ (ω1). Hence
λ̄ (γ) decreases as the prior becomes more biased towards any one action. This is intuitive
in the sense that if agents are more or less sure about which action to take then there is
no point in wasting on learning a little bit more when marginal cost of private learning is
high enough.

Remark 3. In the proof of result 2, we showed that if no agent learns privately in period
t = 0 then no future agent would want to learn, but this statement is not necessarily true
for any other generation t > 0. This is because, no learning in t = 0 implies same action
is chosen by all agents but no private learning in any other t > 0 doesn’t guarantee that
as they have the option of learning socially. Then future generation might exploit the
heterogeneity in action choice and some agents may end with diffused enough beliefs to
learn privately.

Theorem 1. Given the social learning cost function in 3 and the prior γ, there exist
0 6 λ∗ < λj < λ∗∗ 6∞, such that

1. For all λ 6 λ∗, the optimal level of social learning at any period t > 1, n∗t (λ1) 6
n∗t (λ2), where λ1 6 λ2, i.e. optimal social learning is non-decreasing in marginal
cost of private learning or social and private learning are “substitutes”.

2. For all λ ∈
[
λ∗, λj

)
∪
(
λj, λ∗∗

]
, the optimal level of social learning at any period t >

1, n∗t (λ1) > n∗t (λ2) where λ1 6 λ2 and either λ1, λ2 ∈
[
λ∗, λj

)
or λ1, λ2 ∈

(
λj, λ∗∗

]
,

i.e optimal social learning is non-increasing in marginal cost of private learning or
the social and private learning are “complements”.

3. For any t > 1, limλj− n
∗
t (λ) < limλj+ n

∗
t (λ), i.e. the optimal n∗t takes an upward

jump at λj.

4. For all λ > λ∗∗, the optimal social learning is n∗t = 0 at any period t > 1,i.e. the
social learning becomes completely uninformative.
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The proof of the theorem is given in Appendix A.2. The intuition is as follows, the
social learning imposes two types of cost, one physical cost of observing agents another
the cost due to shifting beliefs against one’s idiosyncratic type.

The informativeness of the social learning depends on the cost of private learning, since
agents observe just the actions and not the beliefs of the agents from earlier generation.
The action taken by an agent reflects the private learning of the individual, hence, if
private learning is costly then the next generation agents can’t learn a lot by observing
the actions of the earlier generation. In the extreme case, where all agents take the same
action in the period t = 0, no learning is beneficial since learning is costly and completely
uninformative. Thus for very high λ, the physical cost of social learning becomes more
relevant and the two types of learning work as complement.

For very low λ, the situation is opposite since the incremental benefit of having a less
diffused prior is significant as agents learn a lot privately. This also means social learning
can shift interim belief a lot, hence reduce the need for subsequent private learning. Thus
the two types of cost become substitute of each other.

By assumption c (N) > ū, which implies there exists a level of n̄ < N such that agents
will never choose n∗ > n̄. This restricts the possible interim belief distribution generated
by learning socially and leads to the surprising result that the optimal social learning
takes an upward jump. This happens due to the nature of the cost of private learning
function. Since higher λ means less precise posterior, then reducing the cost of private
learning by learning a little less may matter a lot in terms of net payoff. This generates
a value function that is decreasing in interim belief over some intermediate (between 1/2
and 1) level of interim belief µ. Since agents would try to avoid the loss due to excess
social learning, there is a discrete jump in the optimal policy function.

For a high enough λ to the right of the cutoff, agents rather prefer to learn socially as
much as possible and be biased in one direction in order to attain higher ex-ante expected
payoff by lowering the cost incurred in private learning. For a λ just below the cutoff it
would be better to restrict social learning, i.e. n∗ and not end up in the decreasing part
of the value function which explains the jump in the policy function.

4 A Special Case

In this section we will consider a special case of the general model discussed in the last
section. It will be special in two ways. First, let the common prior at any t > 0 be
γ ∼ U [0, 1], which means γ (ω1) = E

(
µ|γ
)
≡ µ0 = 1/2. As we have already seen in

result 2, in this case the social learning behavior for very high λ is different from any
other prior, i.e., it encourages more learning of any form. Second, we put some structure
on the social cost function that encourages more social learning.

The rest of the problem remains the same. The state dependent utility function is as
give in 1 and the private cost of information is Shannon’s mutual entropy with a marginal
cost λ ∈ [0,∞]. But the social cost of learning takes the form of a capacity constraint.
For c̄ ∈ {1, 2, . . . N − 1} the cost of social learning is given by,

c (n) =

{
0 if n ≤ c̄

M >> ū if n > c̄.

So individuals can observe upto c̄ many people with no physical cost but to observe an
extra agent they need to incur a huge cost M which is higher than the maximum payoff
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generated by the choice problem. In terms of the notation used earlier n̄ = c̄. Since
the social cost function has a form of capacity constraint as c̄ increases the social cost of
learning essentially decreases as it becomes easier to observe more and more agents.

The motivation behind the specific type of cost function comes from the social learning
in network literature. In the learning in network literature it is often described that an
agent can only learn from his neighbors. In our setting there is no well-defined underlying
network structure and observed agents are chosen randomly from the entire economy.
But it would be analytically same problem as analyzing a network where all agents have
equal number of neighbors, c̄ and have no prior knowledge about how agents in their
neighborhood are behaving and the distribution of types is independent of the location
in the network. Then if an agent is restricted to choose only from his neighbors and
observes some n ≤ c̄ many earlier generation agents he would consider them to be drawn
randomly from the entire economy.

The interim and posterior probability of choosing an action is same as the general
case and for the social learning each period if an agent chooses n∗ ≤ c̄ then the ex-ante
expected payoff given by,

W (A, γ) = max
n≤c̄,P(i,ω|γ′xn)

i∈A,ω∈Ω

Eγ′xn

∑
ω∈Ω

γ′xn (ω)P
(
i, ω|γ′xn

)
u (i, ω)− C

(
λ, γ′xn

)
where γ′xn denote the distribution of interim beliefs after social learning. And we have

the following interesting result using theorem 1,

Theorem 2. Given the cost of social learning c̄ > 0,

1. The optimal social learning is always positive, n∗ > 0,

2. There exists 0 < λ′ < λj <∞ such that

i. If λ 6 λ′ or λ > λj then n∗ = c̄

ii. If λ ∈
(
λ′, λj

)
then n∗ < c̄

The proof of the theorem is given in Appendix A.3. The result is counter-intuitive for
the following reason, for an intermediate range of values of λ, the agents are optimally
choosing not to observe everyone they can, where observing more agents gives more
information (in a Bayesian world) at no physical cost and the alternative way of learning
is costly. The intuition behind the result is agents take into consideration the possible
biases in choice induced by social learning and restricts their amount of social learning so
as not to be overwhelmed by social learning and reduce private learning which is directed
towards their own type. In other words, the agent internalizes the “herding” externality
and chooses n optimally.

5 Extensions

5.1 Aggregate State

In this section we consider an aggregate state space along with the idiosyncratic state
space. Let S denote finite aggregate state space. Without loss of generality let S = {h, l}
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with the notion that h be the high state and l be the low state of the economy. The state
dependent utility function for s = h, l is given by

ūs = u (a, ω1, s) > u (b, ω1, s) = us
ūs = u (b, ω2, s) > u (a, ω2, s) = us

This implies the order of preference for both type of agents namely ω1 and ω2 remains the
same and symmetric as before but magnitude of the difference depends on the aggregate
state.

Let PS denote the true transition probability matrix of the aggregate state space S,
where PS is common knowledge but an agent in period t > 0 doesn’t know the realized
aggregate state in period t − 1. Every agent in period t > 0 enters with a common
belief π0 ∈ Π ≡ ∆ (S) about the last period aggregate state and for t = 0 agents, let
π0 ∈ Π be the common prior belief about aggregate state in period t = 0 where π0 is
more informative than π0 in the sense for different aggregate states in period t = 0 nature
chooses a π0 closer to the truth than π0 for any aggregate state s. Everyone knows π0

but the realized value of π0 is only observed by t = 0 agents.
Apart from the learning channel for the idiosyncratic state the agents can also choose

to learn about the aggregate state. We assume that agents don’t learn about aggregate
state via private learning, hence the only way to learn about the aggregate state is via
social learning which gives information about the aggregate state in period t − 1 and
using PS belief about period t is formed. We further assume that the aggregate state S is
independent of distribution of idiosyncratic state, which simplifies the analysis of belief
formation.

Note that the aggregate state is not a “true” static feature of the economy, rather a
dynamically changing state. This also includes the usual “true” state notion of aggregate
state if PS is an identity matrix (I2×2) and nature chooses a state at t = 0 with some
probability distribution πnature ∈ ∆ (S) at the beginning of period t = 0. The common
belief π0(or π0 for t = 0) may or may not be same as πnature and the dynamics of evolution
of belief based on social learning from earlier generation can be analyzed.

5.1.1 Belief Formation

By assumption the aggregate state is independent of the distribution of the idiosyncratic
state, so the idiosyncratic type of a person is not informative of the aggregate state hence
lemma 1 still holds true.

Since the agent doesn’t learn about aggregate state privately, the belief about the
aggregate state prior to private learning would not be updated in the process of private
learning. Let πxn ∈ Π be the belief about the aggregate state prior to private learning if
he observes xn many a’s out of n observations from t− 1 generation. Then the expected
utility from choosing action i would be given by

uπxn (i, ω) = u (i, ω, g)Pr
(
g|πxn

)
+ u (i, ω, b)Pr

(
b|πxn

)
(17)

Hence, posterior probability of choosing action i after private learning would still be
given by 5 where the u (i, ω) would be as replaced by uπxn (i, ω) as defined in equation
17. So the analysis regarding private learning won’t change.

Upon observing n agents, an agent in period t > 0 would update his belief about both
the aggregate state in period t−1 and the distribution of types in the economy. For t = 1
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the error probabilities remain the same except it would be aggregate state dependent,
namely εi,s0 , then for i = a, j = 2 and i = b, j = 1 and s = {g, b} we have,

εi,s0 = P
(
i, ωj|µ, π = Pr {s} = 1

)
(18)

For any generation t > 1 the error probabilities are again the expected error proba-
bilities given n and it also uses the same conditioning on aggregate state as in equation
18. Thus the probability of observing xn for s = h, l would be given by

P
(
xn|µ, s

)
=

n∑
k=0

k∗∗∑
j=k∗

(
n

xn − 2j + k

)
µxn−2j+k

(
εa,st
)j (

1− εb,st
)xn−j

(1− µ)n−xn−k+2j
(
εb,st

)k−j (
1− εa,st

)n−xn−k+j

(19)

where the error probabilities uses similar conditioning as in equation 18 for any t ≥ 1,
otherwise same as before. Then using independence a Bayesian agent would update his
belief as follows,

P
(
µ, s|γ, π0, xn

)
=

P
(
xn|µ, s

)
P
(
µ|γ
)
P
(
s|π0

)∫
ν∈γ
s∈S

P
(
xn|ν

)
P
(
ν|γ
)
P
(
s|π0

) , for s = h, l, µ ∈ γ (20)

Hence, the belief about the aggregate state of period t− 1 would be,

P
(
s|γ, π0, xn

)
=

∫
µ∈γ

P
(
µ, s|γ, π0, xn

)
(21)

Then using the transition probability matrix, Ps the agent would form πxn , the belief
about the aggregate state in period t. Given that the agent would learn privately and
choose an action to maximize ex-ante expected utility.

5.1.2 Agent’s Optimization

Given the belief πxn we can construct uπxn (i, ω) using equation 17, then the V (µ) remains
same as before except the state dependent utilities are expected utilities over aggregate
state. Since, V function remains the same all the analysis about the shape of V still holds
true. The only difference being, when agents choose n then, it generates a distribution
of beliefs over π, aggregate state for all possible xn and a change in π would generate a
different expected utility and hence a different level of V . So by choosing n agents not
only move along V but also V is shifted.

Thus the optimization problem becomes,

W S (A, γ) = max
n

Eγ′xn

[
Eπxn

(
V
(
A, γ′xn

))]
− c (n) (22)

which is same as 8 except the V
(
A, γ′xn

)
is replaced by the expected V

(
A, γ′xn

)
, where

the expectation is over πxn , the posterior probability distribution of aggregate states af-
ter observing xn. With this modification the qualitative results of initial non-decreasing,
followed by non-increasing along with a jump in the non-decreasing part level of social
learning for different levels of λ i.e λ∗ and λj hold true, but the cutoffs would be deter-
mined differently. For determining λj, we would use the expected value function given
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any n as in equation 22 and the rest of the argument goes through since V has similar
shape at all possible level of π. Also, the limλ→0 V

′
µ → 0, hence λ∗ ≥ 0 also exists.

The more surprising result is given in the following proposition,

Proposition 1. If γ (ωi) 6= 1/2, there exists a λ∗∗ < ∞, such that for all λ > λ∗∗, the
optimal social learning at period t ≥ 1 is zero.

Proof. The proof uses the similar idea of result 2. Let’s start by showing for any other
γ, π0, there exists λ∗∗ such that for all λ > λ∗∗, P

(
a|γ
)

= 1(or 0). Now the prior
probability of choosing action a for an agent in t = 0 is given by,

P
(
a|γ, π0

)
=


γ(ω1) exp(uπ0 (a,ω1)/λ)−(1−γ(ω1)) exp(uπ0 (b,ω1)/λ)

exp(uπ0 (a,ω1)/λ)−exp(uπ0 (b,ω1)/λ)
if e−∆π0u/λ ≤ γ(ω1)

1−γ(ω1)
≤ e∆π0u/λ

1 if γ(ω1)
1−γ(ω1)

> e∆π0u/λ

0 if γ(ω1)
1−γ(ω1)

< e−∆π0u/λ

(23)

Hence, for log γ′(ω1)
1−γ′(ω1)

> ∆π0u/λ or log γ′(ω1)
1−γ′(ω1)

< −∆π0u/λ, i.e if

λ > ∆π0u/ log
γ′ (ω1)

1− γ′ (ω1)
or λ > ∆π0u/ log

1− γ′ (ω1)

γ′ (ω1)

the optimal level of private learning by agent in period t = 0 is zero. Now define λ∗∗ =

max
{

maxπ0∈Π0
∆π0u/ log γ′(ω1)

1−γ′(ω1)
,maxπ0∈Π0

∆π0u/ log 1−γ′(ω1)
γ′(ω1)

}
4 given µ, then for all λ >

λ∗∗, agents in period t = 0 don’t learn privately. If ∆π0u is finite for all π0 ∈ Π0 then by
assuming µ 6= 1/2, we ensure λ∗∗ <∞.

Since Π0 is common knowledge, period t = 1 agent knows that for λ > λ∗∗, the t = 0
would always choose action a(or b), hence social learning is completely uninformative
about both aggregate and idiosyncratic state. So it is optimal to choose n∗ = 0 for t = 1
generation agents.

Using similar argument as in result 2, we can conclude that if it is optimal for t = 1
agents to not learn socially then it is optimal for any t > 1 agents to not learn socially
either. Hence, proved.

The result is surprising, because even after introducing a payoff relevant aggregate
state which can only be learned by social learning, there still exists a level λ such that
for any higher marginal cost of private learning an agent optimally chooses zero social
learning. The intuition behind the result is that a high level of λ makes any agent to
stick with their prior and no learning at all. Hence, any behavior becomes completely
uninformative for next generation which makes zero social learning optimal.

5.2 Heterogeneous Cost of Private learning

To the baseline model of section 2 now we add heterogeneity in the cost of private
learning. Everything else being the same let λ ∼ F (λ), instead of λ being constant for
all agents in the economy, for all t > 0, where the distribution F is common knowledge
but while observing the action of an agent in period t − 1, a t period agent can’t infer
the corresponding λ. We further assume that F in independent of type distribution.

4Since utility is bounded and γ (ωi) 6= 1/2 the maximum always exists.
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Given µ, period t = 1 agent knows that different λs in period t = 0 would choose
different levels of private learning. Let εiλ denote the error probability of a t = 0 agent
when the cost of private learning is λ, given λ ∈ supp (F ). Then define the expected
error probability after observing any agent taking action i from generation t = 0 as

εi0,F =

∫
λ∈F

εiλdF (24)

If the earlier error probabilities are replaced by εi0,F as defined in 24, the optimization
problem for the agent in t = 1 remains same as before. Hence, the optimal solution to
the problem would be same as before for any λ ∈ F .

The problem for t > 1 generation would be different since, the optimal level of n∗ is
different for different λ. The generation t = 2 agent would know the optimal n∗λ for each
λ ∈ F and hence the error probability would be different from the baseline model. Let
Xn∗λ

denote all possible sample distribution for sample size n∗λ. Let the error probabilities

be εaxn∗
λ
,λ,t = P

(
a, ω2|γ, xn∗λ , t, λ

)
and εbxn∗

λ
,λ,t = P

(
b, ω1|γ, xn∗λ , λ, t

)
after observing xn∗λ ∈

Xn∗λ
in period t by an agent with marginal cost of private learning being λ ∈ F . Using the

prior γ the distribution over Xn∗λ
can be obtained for each λ ∈ F and let γ generates an

implied distribution faγ and f bγ over εaxn∗
λ
,λ,t and εbxn∗

λ
,λ,t respectively. Using independence

between γ and F let us define εat,F and εbt,F as εit,F =
∫
λ∈F

∫
xn∗
λ
∈Xn∗

λ

εixn∗
λ
,λ,tdf

i
γdF as the

expected error probability by choosing i in period t − 1 after observing n∗λ many agents
from generation t− 2 when the marginal cost of private learning is λ ∈ F . Given εit,F at
any period t > 2 the error probabilities can be generated recursively.

The new error probabilities are the expected error probabilities over F . For each
λ ∈ F we calculate the expected error probability and then take expectation over the
expected probability wrt F , to get the new error probabilities. Now F being common
knowledge the path of n∗λ,t is also common knowledge for each λ and for each generation
t by the recursive nature of the problem. Thus for t > 2 the error probabilities are well
defined. Hence, given these new error probabilities the optimization problem for any λ is
same as before and all the results still hold true.

5.3 Heterogeneous Cost of Social Learning

If instead of having different λs, the agents have different social cost functions cα ∼ G
where cα belongs to the set of all functions satisfying the conditions given in 3. In
this case the problem would not be very different when G is common knowledge and is
also independent of distribution of types. In that case the period t = 0 agents are still
identical since they don’t learn socially. So, εi0 would not change. For agents in t > 1 the
heterogeneity would be relevant if n∗ > 0 for some cost types. Otherwise, it would be
same as the baseline model. So the only interesting case is when n∗t > 0 for some t and
some α, where the generation t agents would have different error probabilities.

Consider the case when n∗t > 0 for a positive measure set of cost types at some
period t > 0, i.e. an agent with cost function cα chooses n∗α > 0 (with strict inequality
for a positive measure αs). Let Xn∗α denote all possible sample distributions for sample
size n∗α, then the error probabilities would be given by εaxn∗α ,t

= P
(
a, ω2|γ, xn∗α , t

)
and

εbxn∗α ,t
= P

(
b, ω1|γ, xn∗α , t

)
. Using independence between γ and G let us define εat and

εbt as εit =
∫
Cα∈G

∫
xn∗α∈Xn∗α

εixn∗α ,t
df iγdG as the expected probability of making mistake by
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choosing i in period t− 1 after observing n∗α many agents from generation t− 2 when the
cost of social learning is cα ∈ G. Using this new error probabilities the problem remains
the same and hence all the results still hold true.

5.4 Sequential Learning

Throughout the paper we assumed that agents are using block learning. But in this
section we consider the case of sequential social learning. As we discussed earlier under
sequential learning agents choose a stopping strategy conditional on belief and number
of observations instead of choosing only one value of n, hence we cannot rewrite similar
statements to that of theorem 1 for the sequential learning case.

To prove a similar result as that of theorem 1 we need to consider the entire support
of the stopping strategy which gives a nonempty set of values of n. Let us define that set
of optimal values of n at period t > 0 to be Nt. Let ntmin denotes the minimum value of
n in the set Nt. Under sequential strategy we can write a similar proposition as that of
theorem 1.

Theorem 3. Under sequential social learning , there exist a set of cutoff values of λ,
namely, 0 6 λ∗s ≤ λis < λds ≤ λjs < λ∗∗ 6∞, such that

1. For all λ 6 λ∗s, the minimum level of social learning at any period t > 1 in the
optimal set Nt is such that ntmin (λ1) 6 ntmin (λ2), where λ1 6 λ2, i.e. nmin is
non-decreasing in marginal cost of private learning.

2. For all λ ∈
[
λis, λ

d
s

)
, the minimum level of optimal social learning at any period

t > 1 is such that, ntmin (λ1) > ntmin (λ2) where λ1 6 λ2 and λ1, λ2 ∈
[
λis, λ

d
s

)
,i.e.,

ntmin is non-decreasing in marginal cost of private learning.

3. For any t > 1, limλj− n
t
min (λ) < limλj+ n

t
min (λ), i.e. the minimum optimal level of

social learning ntmin takes an upward jump at λjs.

4. For all λ > λ∗∗s , the optimal social learning set is singleton, specifically Nt = {0} at
any period t > 1,i.e. the social learning becomes completely uninformative.

The proof of the theorem is given in the Appendix, A.4. Note that this theorem
though similar in spirit but is much weaker than theorem 1. Instead of analyzing the
whole set of n we are only able to discuss the nmin which is a much weaker statement. But
overall the nature of the equilibrium is similar. Initially the two types of learning works
as substitutes and eventually becomes complement. Also for middle range of values of λ
the agents restrict their choices of n and as λ starts to increase even more the number of
observations increases suddenly. Instead of thinking in terms of nmin if we think in terms
of highest belief in terms of µ (which most often coincides with the choice of minimum
n), the two theorems are more similar than they appear here.

6 Steady State and Herding

As we motivated the problem in the introduction by referring to herding behavior, in
this section we would discuss whether herding remains as an equilibrium under any social
and private cost function. In general, herding is referred to a steady state were all agents
ignore their own private information and follow the actions of the previous agents blindly.
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In the following section first we formally define the staedy state for this economy and
explore the possibility of a herding steady state.

6.1 Distribution of Actions

To analyze what happens to the economy in the long run, we need to define a steady state
in this context. A steady state in this economy would be such that that distribution of
actions would become stationary. Let M be the set of all possible shares of actions. Given
A = {a, b} and Ω = {ω1, ω2}, M is also finite. In this case M =

{
i/N |i ∈ N, 1 ≤ i ≤ N

}
denotes all possible shares of action a. Let mt denote the realized distribution of actions
at t.

Since at t = 0 agents get no social information, given µ∗ and λ, the initial distribution
of m0 is given by

Pr
{
m0 = n/N

}
=

N∑
k=0

k∗∗∑
j=k∗

(
N

n− 2j + k

)
µn−2j+k (εa0)j

(
1− εb0

)n−j
(1− µ)N−n−k+2j

(
εb0

)k−j
(1− εa0)N−n−k+j (25)

where k∗ and k∗∗ is defined as before.
For t = 1, given λ and c̄ let n∗1 be the optimal level of social learning. Then using the

similar approach we can calculate the probability distribution m1 over M . For that we use
m0 and n∗1 to obtain all possible γ′xn after social learning the the error probabilities. For
t = 2 however the problem would not be identical since εi1 is not necessarily equal to εi2,
hence n∗1 may not be equal to n∗2. Given λ and γ let us define

∑
i=a,b ε

i
max = maxn

∑
i=a,b ε

i
n

and
∑

i=a,b ε
i
min = minn

∑
i=a,b ε

i
n as the maximum and minimum possible sum of error

probabilities, given λ. For any generation t the sum of error probabilities would be in
between these two values when λ is given.

6.2 Steady State

Let n∗max and n∗min be the corresponding optimal levels of social learning for
∑

i=a,b ε
i
max

and
∑

i=a,b ε
i
min respectively given λ. Since social learning is costly and higher

∑
i=a,b ε

i

implies the smaller change in the posterior, n∗max 6 n∗min. Hence, there are two possi-
bilities, either n∗max = n∗min or n∗max < n∗min. In the first case, the optimal n∗ for any
generation t would be given by n∗max = n∗min = n∗.

In the second case however that may not be true. Since both n∗max and n∗min are
bounded by 0 and n̄, there are few possibilities to be considered. First, n∗ keeps on
increasing over time(n∗t > n∗t+1) until n∗ = n∗min and stays there forever. Second n∗ keeps
on decreasing over time(n∗t 6 n∗t+1) until n∗ = n∗max and stays there forever. Third there
exists a n ∈ (n∗max, n

∗
min) such that if n∗t = n then n∗t+1 = n. Lastly, there exists a set of

nj ∈ [n∗max, n
∗
min] such that n∗ switches from one nj to another in a deterministic way.

The steady state in this economy would be defined as the stationary distribution of the
actions m in the economy.

Except the last possibility of the second case where n∗ changes within a set, we have
a n∗ and t∗ <∞ such that ∀t > t∗, the optimal level of social learning is n∗.

Result 3. A sufficient condition for the existence of a steady state in this economy is
that there exists a t∗ ≤ ∞ such that n∗t∗ = n∗t∗+1 = n for some 0 ≤ n ≤ N .
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Proof. Assume that there exists a t∗ ≤ ∞ such that n∗t∗ = n∗t∗+1 = n for some 0 ≤ n ≤ N .
Then starting at t∗ the optimal solution of all future generation would be same, this is
true because if t∗ + 1 generation agent find it optimal to choose n when t∗ chooses n,
then t∗+ 2 generation would also find it optimal to choose n as they face the exact same
problem as of t∗ + 1 agents. Iterating the logic every future generation would choose
n. Given n, Xn denotes the set of all possible values of xn and for each such xn the
posterior probability of choosing an action would be same. Given the recursive nature of
the problem thus we can define Pij = Pr

{
Mt+1 = j|Mt = i

}
as the transition probability

matrix over states in M . This is well defined because for all possible values of i ∈ M ,
given n we can generate the distribution over Xn and thus calculate the probability of
being at different states of M in next period. Since λ and γ is common knowledge, the
sequence of n∗t is deterministic, hence we can calculate the distribution mt∗ . With mt∗

as the initial distribution and Pij as the transition probability matrix the Markov chain
over state space M would give the distribution of action at any t ≥ t∗.

Now by definition the transition probability matrix is aperiodic. So given M is finite
it is sufficient to show that Pij is irreducible for the existence (and also uniqueness)
of a steady state. For any λ ∈

[
0, λj

)
, agents would always learn privately as they

remain before the final increasing part of the value function where learning stops. Hence,
Pij ∈ (0, 1) for any i, j ∈M for any such λ, hence a steady state exists.

For λ ∈
[
λj, λ∗∗

]
, there exists a value of x∗n such that for xn > x∗n, the optimal choice

is to not learn privately, which implies there exists a state ma ≤ 1 such that for all
i > ma, PiM = 1, hence i = M is a deterministic steady state distribution of actions,
as PMM = 1. Similar argument would hold for action b as well. Finally for all λ > λ∗∗,
the optimal choice of action is determined by the prior, say a wlog, then everyone taking
action a would be the unique steady state. Also note that in this case n∗t = 0 for all
t > 0. Hence a steady state exists for all possible λ under the above mentioned condition
in the statement of the result.

In case where n∗ oscillates within a bounded set in a deterministic way, there may
not exist any steady state but the set of distribution over M given nj in the set would
generate a cycle of choice of n in the economy.

6.3 Herding

With the definition of steady state, we can now define herding as a steady state where
n∗ > 0 and there exists nh 6 N such that if n > nh many agents take action a (or b) in
some period t > 0, then all agents in all periods s > t+ 1 would only choose action a (or
b).

Proposition 2. For all λ ∈ [0,∞] \
[
λj, λ∗∗

]
there doesn’t exist any herding steady state,

almost surely.

Proof. Using theorem 1 we know for all λ > λ∗∗, the optimal social learning is zero, hence
herding is not an equilibrium for all such λs.5

For all λ < λj, the µ̄n (on either side of 1/2), is in the increasing part of the value
function V (µ), which implies for all possible values of xn the optimal level of private
learning is not zero. Since private learning is informative about idiosyncratic state, the

5 For E
(
µ|γ
)

= 1/2, λ∗∗ becomes ∞ but still the result holds true.
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probability of everyone choosing action a (or b) after private learning would be zero for
any µ∗ ∈ int (γ). Hence, there is no herding steady state with probability 1.

But for λ ∈
[
λj, λ∗∗

]
, the µ̄n goes to the final increasing section, hence the probability

of no private learning by any agent is strictly positive after observing a high (or low)
enough xn. Also the probability of everyone taking the same action in a generation is
strictly positive. Since, µ and λ are such that agents choose to learn socially, this would
imply if all agents in a generation take the same action then every agent in the next
generation would also choose the same action. Thus, herding can’t be ruled out as a
possible steady state.

6.4 A special case

Which of the four cases would occur given λ and µ would depend on the social cost
function. For our special in section 4, when µ = 1/2 and the social cost function takes
the form of capacity constraint, we have the following results:

Proposition 3. If λ 6 λ′ then there exists an unique steady state with n∗ = c̄ with no
herding.

Proof. Using theorem 2, we know for λ 6 λ′ the optimal n∗ = c̄. Since n∗ is same for all
generation t > 1 by result 3 a steady state exists.

For uniqueness we want Pij to be aperiodic and irreducible. By definition of the
problem Pij is aperiodic. So we need to check whether Pij is irreducible. Since µ = 1/2,
after observing c̄ many agents for all λ 6 λ′ the belief would be in the initial increasing
zone, hence, private learning is always positive for any possible value ofMt. So 0 < Pij < 1
for all i, j, hence there exists an unique steady state with n∗ = c̄.

Since, even with the most extreme belief of observing everyone taking action a (wlog),
agents learn privately, then herding would be an equilibrium only if there exists some t∗

such that for all t > t∗, every agent with every possible xc̄ and learning privately chooses
action a. Given λ 6 λ′ and c̄, the error probabilities εit for any t > 0 are strictly less
than one because of positive private learning and the true distribution of types being
µ∗ ∈ int (γ). Thus the probability that every agent chooses one action for all future
periods goes to zero for large enough N , as assumed here. Which implies the stationary
distribution of the Markov chain can’t be a mass point at 0 or 1. Hence, herding is not
a steady state of the economy.

Proposition 4. If λ > λj then there exists herding equilibrium where n∗ = c̄ for all t > 0
and everyone chooses action a (or b).

Proof. Using theorem 2, we know for λ > λj the optimal n∗ = c̄, hence by result 3 a
steady state exists. Since λ is high enough there exist x̄c̄ (or xc̄) such that for all xc̄ > x̄c̄
(or xc̄ 6 xc̄) the optimal choice would be action a (or b) without private learning. Hence,
everyone choosing action a (or b) after some n∗ > 0 would be an absorbing state.Thus
herding equilibrium exists.

6.5 Welfare Implication

In this model the constrained planner’s problem is same as the agent’s optimization
problem. Hence, given λ and c (n), the planner would choose the same level of social and
private learning as under the decentralized equilibrium. Thus unlike the herding literature
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a la Banerjee(1992) and BHW (1992) this model doesn’t have any herd externality. So,
restricting some agents in earlier generation to only learn privately would not be welfare
improving and might actually decrease the welfare. The reason for the loss being the cost
of private learning which is absent in the herding literature.

Also in the model herding can be a possible equilibrium but it would be nonetheless
Pareto optimal. Since herding can occur at a sufficiently high level of λ, the cost of private
information is significantly high, hence it might be optimal to not investigate privately
incurring large cost and to follow the earlier generations blindly.

7 Conclusion

To summarize, this paper constructs and solves a model of individual stochastic choice
where agents are rationally inattentive and face a costly social learning function. We
showed that for such an agent the optimal choice of social learning is not monotonic in
the marginal cost of private learning and it can be welfare improving for such an agent to
observe the action of other agents in the economy even under the fear of herding based
on the relative cost of private and social learning.

We consider that the agents are rational Bayesian expected utility maximizer. Thus
when updating following the observation from the society they take into account the
possibility of errors in the choices made by other agents in the previous generation and
thus internalize the herd externality. This way we solve the constrained Pareto optimal
for the social planner and thus if there is herding in equilibrium then it would be optimal
in our model.

Since the solution of the model is first best in terms of constrained Pareto efficiency
the only policy implication would be to reduce the cost of learning. For example a welfare
improving policy would be to reduce λ, as reducing λ would unambiguously increase the
ex-ante expected value of the agent. On the other hand restricting or encouraging the
social learning by changing the cost of social learningi.e., changing the technology of
connectivity would have different effect depending on the level of λ and the cost of social
learning. This brings us back to our initial question of whether improved connectivity in
a society necessarily better in terms of welfare? This model says as a society becomes
more and more connected unless the technology of private learning is also improving it
would rather become worse possibly for the agents in the economy in terms of welfare.

One of the surprising result from our example is that even when the marginal cost of
observing agents from earlier generation is zero and the distribution of actions of earlier
generation contains relevant information in the form that upon observing the distribution
of actions an agent can update his belief, he may optimally choose not to observe everyone
possible since later that would affect his incentive to learn privately. Thus the apparent
“time inconsistency”, i.e. not using a cheaper learning method in stage 1 since it would
affect the stage 2 behavior is optimal in this case and the reason behind this counter-
intuitive result is that the role of the two types of learning are different in the model.

The social learning is done mainly to reduce the next stage cost of private learning
since it does not directly give information about the agent’s idiosyncratic type and rather
affects it indirectly by changing the belief about the society. Whereas private learning is
more important for an agent in order to reveal his own type and he would rather choose a
lower level of social learning to not harm his incentives for private learning. This clearly
highlights the asymmetry in the private information vs observing others’ action, which
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is at best a noise signal about their types. Unlike herding literature in this model agents
choose optimal level of both types of learning taking this asymmetry into consideration.

The major motivation behind the social cost function was that the agents are born
in a network and can only observe their neighbors which restricts their choice of social
learning differently based on their degree. But if in a network the place an agent is born
has a correlation with who he can observe, then the lemma 1 breaks down and we can’t
use the analysis discussed in this paper.

But consider an exogenously given network such that at any time t ≥ 0 agents are
born randomly on the nodes and each node has equal probability of being of any type.
At any time t > 1 a node would have one agent who can observe all the earlier generation
agents in his neighborhood and he puts equal weight on every node (he does not observe
his own node). Also assume that the distribution of degrees in the network are common
knowledge but agents can’t observe the actual degrees of his neighbors. In that framework
this model would give same result. Then it would be the case of heterogeneous social
cost function (as discussed in the extensions) as different agents would have different level
of c̄, depending on how many neighbors they have. Though the choice problem of the
individual would be the same, the dynamics of that economy would be different and how
the characteristics of the network would affect the steady state would be worth exploring.

Another motivating question for this paper was how do the two types of learning
interact, more specifically whether private and social learning are substitutes or com-
plements, i.e., when cost of private learning goes up would there be more or less social
learning? Given the characterization of learning behavior in the model we showed that
with any weakly convex social cost function when private learning is relatively cheap, the
two types of learning are substitutes and for moderately higher cost of private learning
they would become complements. Hence, the notion of “blind following blind” doesn’t
work. This is because when agents know that they themselves won’t learn privately a lot,
they would also know that other agents’ action would be equally uninformative about
their idiosyncratic state but they get to save some by not observing others. Hence they
would use that argument to choose optimally in a costly learning framework. In the
extreme case when the cost of learning becomes too high no one would learn anything
and take an action as dictated by their prior.

In all the extensions the main assumption is that the agents have common knowledge
about how the aggregate state evolves or the type of heterogeneity of the population and
this is common knowledge. In case when there is a difference in belief in the economy
regarding the aggregate process or the heterogeneity of the population, this results need
not hold true. As upon observing an agent’s action, to calculate the error probabilities
the correlation structure has to be considered and it would be a much more difficult
problem to solve.

References

[1] Venkatesh Bala and Sanjeev Goyal. Conformism and diversity under social learning.
Economic theory, 17(1):101–120, 2001.

[2] Abhijit V Banerjee. A simple model of herd behavior. The Quarterly Journal of
Economics, pages 797–817, 1992.

26



[3] Sushil Bikhchandani, David Hirshleifer, and Ivo Welch. A theory of fads, fashion,
custom, and cultural change as informational cascades. Journal of political Economy,
pages 992–1026, 1992.

[4] David Blackwell et al. Equivalent comparisons of experiments. The annals of math-
ematical statistics, 24(2):265–272, 1953.

[5] Thomas Brenner. Agent learning representation: advice on modelling economic
learning. Handbook of computational economics, 2:895–947, 2006.

[6] Steven Callander and Johannes Hörner. The wisdom of the minority. Journal of
Economic theory, 144(4):1421–1439, 2009.

[7] Andrew Caplin and Mark Dean. Revealed preference, rational inattention, and costly
information acquisition. The American Economic Review, 105(7):2183–2203, 2015.

[8] Andrew Caplin, Mark Dean, and John Leahy. Rational inattention, optimal consid-
eration sets, and stochastic choice. Technical report, NYU working paper, 2016.

[9] Andrew Caplin, John Leahy, and Filip Matějka. Social learning and selective atten-
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A Appendix

A.1 Proof of Lemma 1

Proof. Suppose not. Suppose an agent i in period t ≥ 1 observes n many agents from
generation t − 1 but instead of following the first social then private rule he decides
to observe n − n1 many agents first and update his belief over Γ for some n1, where
0 < n1 ≤ n. Then he chooses optimal level of private learning given the updated belief
over Γ and the marginal cost of private learning λ. After the private learning is done
then again he observes n1 many agents, where n > n1 and n1 > 0. Note that this is
more general than a sequencing protocol with just first private then social learning but
for n = n1 this protocol coincides with the protocol to learn privately first then socially.

Let before the private learning his belief over Γ was γ1 and given γ1 his belief over
his own Ω was µ1. Private learning would change his belief from µ1 to µ2. Now, once he
observes the rest n1 many agents his belief about ∆ (Γ) changes from γ1 to γ2. Given his
private learning information structure this changes his belief over Ω from µ2 to µ3. The
cost of private learning is a sunk cost but in the light of the new information the agent
now has a different posterior probability of choosing action i ∈ A. Since the amount
of private learning is based on γ1 and not γ2 this means the marginal benefit of private
learning coming from a changed belief µ2 may be different from marginal cost of private
learning which is based on µ1. In the case when marginal cost is greater than the marginal
benefit this protocol would not be an optimal protocol.

In the rest of the proof we discuss the cases when the marginal cost of private learning
is higher than the marginal benefit and show that these cases would happen with positive
probability. On the other hand if the marginal benefit is higher the agent would optimally
choose further private learning to update µ2. In that case he is indifferent between this
protocol and the protocol where he observes all n agents first and then learn privately
since in both cases the final amount of private learning is determined by γ2 and hence
the same.

Let us define xn−n1 as the number of agents from period t− 1 who had taken action a
out of the first n−n1 observations and xn1 denotes the same for the rest n1 many agents.
Combining the two we can define xn as the number of agents choosing action a in the
entire sample of size n, which means xn = xn−n1 + xn1 . In the case where i would have
chosen to do more private learning after xn1 compared to xn, he incurs a loss due to the
sunk cost related to excess private learning. We want to show that the probability of the
event where i learns more following xn−n1 than following xn, i.e., excess private learning,
would be non-zero which would imply that the expected benefit from switching to the
first social then private protocol is strictly positive. We would prove this by contradiction
supposing the probability to be zero.

Observe that the agent would learn more following xn only if after observing n agents
his belief moves towards uniform distribution over Γ. WLOG, assume xn−n1 induced that
ω1 is more likely, Pr (ω1) > 1/2, then in the bigger sample n the proportion of people
taking action a in earlier generation, xn has to be such that xn/n < xn−n1/n−n1 always
for the probability to be zero, as agents are Bayesian and observing the same proportion
of people taking action a in a larger sample gives more evidence towards ω1.

For the probability to be zero, after every possible xn the agent would have to chose
more private learning. Define xn (xn−n1) to be the highest number of agents choosing
action a out of n, such that after observing xn (xn−n1) the belief about γ (ω1) would
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be weakly less than as the belief after observing xn−n1 out of n − n1, which implies
xn (xn−n1) /n < xn−n1/n − n1. The inequality holds true because otherwise given the
prior that ω1 is a more likely state, the agent would update to a belief more biased
towards a. So to learn more after observing all n actions, the agent has to observe xn1

such that xn−n1 ≤ xn ≤ xn (xn−n1). If xn (xn−n1) < xn−n1 , then the probability of learning
more after xn−n1 compared to xn, i.e., excess private learning becomes one.

Let us then consider the case, where xn (xn−n1) > xn−n1 . The probability that xn lies
in this region is given by,

P
(
xn−n1 ≤ xn ≤ xn (xn−n1)

)
=

xn−xn−n1∑
j=0

(
n

j

)(
Pt−1 (a)

)xn−n1+j (
1− Pt−1 (a)

)n−xn−n1−j

where Pt−1 (a) be the expected probability of choosing action a by t − 1 generation
agents. The probability on the LHS would always be less that one if Pt−1 (a) > 0. But
if, Pt−1 (a) = 0, then xn = xn−n1 = 0 always for any n, n1 ≥ 0. Hence the agent would
always get more and more evidence towards choosing action b and the updated belief
can never go towards uniform belief. The Bayesian agent would never learn more after
getting even stronger evidence towards the same action from n observations as after n−n1

observations. Hence the LHS probability is strictly less than one, i.e., sometimes agent i
would have done excess private learning after xn−n1 .

As mentioned earlier, in the case where he has had learned more he incurs some loss
which can be avoided if he had observed all n agents before doing any private learning.
In the case where he needs to do more private learning the sequence is irrelevant. Hence,
he would be better off by doing social learning first and then private learning.

A.2 Proof of Theorem 1

Proof. To prove this theorem we first consider the optimal choice of an agent at any time
t ≥ 1.Since the optimization problem is identical for every generation t > 1, except for
the εit, for i = a, b; we suppress the time subscript and solve the problem for any t ≥ 16.
The level of n∗. i.e. the optimal choice of n would depend on εi but the qualitative results
will not be affected.

Given lemma 1, we can solve the optimization problem in two stages. The agent’s
objective is to maximize ex-ante expected payoff given prior γ and the two cost functions,
equation 2 and equation 3. In the first stage he would optimally choose n∗, which would
generate a distribution γ′n∗ ∈ ∆ (Γ) of intermediate beliefs over Γ. Given any intermediate
belief µ ∈ supp (γ′n∗) the agent would then optimally choose the level of private learning
that would generate a distribution of posteriors for each µ. We would solve this problem
backward, namely first we would find out the optimal level private learning given µ and
then we would analyze how the interim expected value changes with µ. Given how the
value function changes with µ, we would choose n∗ to maximize ex-ante expected value
function.

Step 1: The solution to the stage 2 problem is already discussed in section 2.2.1,i.e.,
given an interim belief µ ∈ γ′n∗ what is the posterior probability of choosing an action
i ∈ A.

6Note that we already have the solution for t = 0 period, as given in section 2.3
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Step 2: Given the solution to the stage 2 problem now we consider how the interim
expected value changes with interim belief, µ ∈ γ′n∗ . Let µ = Pr (ω1) denote the interim
belief of an agent before private learning and pa be the probability of choosing action
a given µ prior to any private learning. Then using the optimal choices as described
in equation 5 and the parameters of the model, ū, u, λ, we can write the interim value
function given belief µ to be,

V (µ) = ū

[
µ

paλ̄

paλ̄+ (1− pa)λ
+ (1− µ)

(1− pa) λ̄
(1− pa) λ̄+ paλ

]

+ u

[
(1− µ)

paλ

(1− pa) λ̄+ paλ
+ µ

(1− pa)λ
paλ̄+ (1− pa)λ

]

− λ

µ{ paλ̄

paλ̄+ (1− pa)λ
log

paλ̄

paλ̄+ (1− pa)λ
+

(1− pa)λ
paλ̄+ (1− pa)λ

log
(1− pa)λ

paλ̄+ (1− pa)λ

}

(1− µ)

{
paλ

(1− pa) λ̄+ paλ
log

paλ

(1− pa) λ̄+ paλ
+

(1− pa) λ̄
(1− pa) λ̄+ paλ

log
(1− pa) λ̄

(1− pa) λ̄+ paλ

}
−pa log pa − (1− pa) log (1− pa)

]
(26)

where, λ̄ = exp
(
ū/λ

)
and λ = exp

(
u/λ

)
and pa is the shorthand for P

(
a|µ
)
, i.e., the

prior(interim) to private learning probability of choosing action a.
Given λ the interim value function V (.) is continuous in µ for µ ∈ [0, 1] and contin-

uously differentiable wrt µ in the open set (0, 1) ∩
{

λ
λ+λ̄

, λ̄
λ+λ̄

}C
. Since for µ > λ̄

λ+λ̄
the

agents don’t learn privately any more and takes the action a for sure the derivative of

the value function for µ ∈
(

λ̄
λ+λ̄

, 1
)

is given by

V ′µ = ū− u > 0.

Similarly, for µ < λ
λ+λ̄

an agent chooses action b for sure, hence the derivative of the value

function for µ ∈
(

0, λ
λ̄+λ

)
is given by

V ′µ = − (ū− u) < 0

Note that the derivative of the value function at extreme interim beliefs are constant,
since agents stop private learning and choose the prior favorable action. Also the cutoffs
are differentiable wrt to λ,

d λ̄
λ̄+λ

dλ
= −

d λ
λ̄+λ

dλ
= −(ū− u)

λ2

λ̄λ(
λ̄+ λ

)2 < 0

hence, λ̄
λ+λ̄

( λ
λ+λ̄

) is decreasing(increasing) in λ. In the limit when λ → ∞ the value

function V (µ) becomes piecewise linear in [0, 1] with a kink at 1/2.

In the region,
(

λ
λ+λ̄

λ̄
λ+λ̄

)
as the agent is learning privately the derivative of the value

function is given by,

30



V ′µ =

paλ̄

paλ̄+ (1− pa)λ

[
ū− λ log

paλ̄

paλ̄+ (1− pa)λ

]
︸ ︷︷ ︸

(1)

− (1− pa) λ̄
(1− pa) λ̄+ paλ

[
ū− λ log

(1− pa) λ̄
(1− pa) λ̄+ paλ

]
︸ ︷︷ ︸

(2)

− paλ

(1− pa) λ̄+ paλ

[
u− λ log

paλ

(1− pa) λ̄+ paλ

]
︸ ︷︷ ︸

(3)

+
(1− pa)λ

paλ̄+ (1− pa)λ

[
u− λ log

(1− pa)λ
paλ̄+ (1− pa)λ

]
︸ ︷︷ ︸

(4)

+ µ
λ̄λ(

paλ̄+ (1− pa)λ
)2

λ̄+ λ

λ̄− λ

[
ū− u− λ log

paλ̄

(1− pa)λ

]
︸ ︷︷ ︸

(5)

− (1− µ)
λ̄λ(

paλ+ (1− pa) λ̄
)2

λ̄+ λ

λ̄− λ

[
ū− u− λ log

(1− pa) λ̄
paλ

]
︸ ︷︷ ︸

(6)

−λλ̄+ λ

λ̄− λ
log

1− pa
pa︸ ︷︷ ︸

(7)

(27)

To obtain the optimal interim probability distribution we first want to analyze the
sign of the derivative of the value function. For that, it would suffice to look at µ > 1/2
since the value function is symmetric in µ around µ = 1/2. Now rearranging terms,

(5)− (6)− (7) = λ
λ̄+ λ

λ̄− λ
log

pa
1− pa︸ ︷︷ ︸

≥0 if µ≥1/2
≤0 if µ≤1/2

1− µλ̄λ(
paλ̄+ (1− pa)λ

)2 −
(1− µ) λ̄λ(

paλ+ (1− pa) λ̄
)2



The first term is strictly positive for µ ∈
(

1/2, λ̄
λ+λ̄

)
, and simplifying the second term

inside the bracket and plugging the value of pa (refer equation 7) we get,

1− µλ̄λ(
paλ̄+ (1− pa)λ

)2 −
(1− µ) λ̄λ(

paλ+ (1− pa) λ̄
)2

 = 1− λ̄λ(
λ̄+ λ

)2

(
1

µ
+

1

1− µ

)
︸ ︷︷ ︸

≥0 if 1/26µ<λ̄/λ̄+λ
≤0 if λ/λ̄+λ<µ>1/2

which is also strictly positive for µ ∈
(

1/2, λ̄
λ+λ̄

)
, and hence (5)− (6)− (7) is strictly

positive in the relevant range.
Now we simplify the first block in the expression of derivative of the value function

(V ′µ) and rewrite it as,
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(
(1) + (4)

)
−
(
(2) + (3)

)
=

λ̄λ (2pa − 1) (ū− u)(
paλ̄+ (1− pa)λ

) (
paλ+ (1− pa) λ̄

)︸ ︷︷ ︸
(1′)

+ 2λ︸︷︷︸
>0

+(ū− u)
λ̄
(
p2
a + (1− pa)2

)
+ 2pa (1− pa)λ(

paλ̄+ (1− pa)λ
) (
paλ+ (1− pa) λ̄

)︸ ︷︷ ︸
(2′)

− λ̄λ (2pa − 1)(
paλ̄+ (1− pa)λ

) (
paλ+ (1− pa) λ̄

) log
pa

1− pa︸ ︷︷ ︸
(3′)

Since (2′) is always positive we combine (1′) and (3′) to obtain,

(
1′
)
−
(
3′
)

=
λ̄λ (2pa − 1)(

paλ̄+ (1− pa)λ
) (
paλ+ (1− pa) λ̄

)︸ ︷︷ ︸
>0 for µ>1/2

(
ū− u− λ log

pa
1− pa

)

where the second term inside the bracket can be rewritten as

ū− u− λ log
pa

1− pa
= λ log

λ̄
λ

(
µ λ̄
λ
− (1− µ)

)
(1− µ) λ̄

λ
− µ

hence, combining the two terms we get when µ > 1/2,

(
1′
)
−
(
3′
)

=

≤ 0 if λ̄
λ
∈
[
µ−
√

2µ−1
1−µ , µ+

√
2µ−1

1−µ

]
> 0 otherwise

Since λ̄ > λ, (1′) − (3′) > 0 at µ = 1/2 + ε (µ ↓ 1/2), (1′) − (3′) < 0 at µ = λ̄
λ̄+λ
− ε

(µ ↑ λ̄
λ̄+λ

) where ε→ 0, and (1′)− (3′) = 0 at µ = λ̄2+λ2

(λ̄+λ)
2 <

λ̄
¯λ+λ

. This implies (1′)− (3′)

starts as a positive term when µ ↓ 1/2 and eventually becomes negative before µ reaches
λ̄
¯λ+λ

. That means the expression
(
(1) + (4)

)
−
(
(2) + (3)

)
starts as positive for µ ↓ 1/2

but to determine the sign of the expression near λ̄
¯λ+λ

we need to look at the sign of the

derivative V ′µ near λ̄
¯λ+λ

(to the left of it). But V is not differentiable at µ = λ̄
λ̄+λ

and

becomes linear for µ > λ̄
¯λ+λ

, hence we only look at the left derivative of the value function

at λ̄
¯λ+λ

and get,

lim
ε→0

V ′

(
µ =

λ̄

λ̄+ λ
− ε

)
= (ū− u)

1 +
λ̄+ λ

λ̄− λ
lim
ε→0

(
µ
λ

λ̄
− (1− µ)

λ̄

λ

)
︸ ︷︷ ︸

(∗)

− λλ̄+ λ

λ̄− λ
lim
ε→0

[
µ
λ

λ̄
log

paλ̄

(1− pa)λ
− (1− µ)

λ

λ̄
log

(1− pa) λ̄
paλ

+ log
1− pa
pa

]
︸ ︷︷ ︸

(∗∗)
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where

(∗) = − lim
ε→0

ε
ū− u

λ̄λ
(
λ̄− λ

) (λ̄2 + λ2
) (
λ̄+ λ

)
= 0

as the term multiplying ε doesn’t depend on ε. For the other term (∗∗) since

lim
ε→0

µ
λ

λ̄
+ (1− µ)

λ̄

λ
= 1

we can rewrite (∗∗) as,

(∗∗) = λ
λ̄+ λ

λ̄− λ
lim
ε→0

(µλ
λ̄

+ (1− µ)
λ̄

λ

)
log

λ̄

λ
−

(
µ
λ

λ̄
+ (1− µ)

λ̄

λ
− 1

)
log

1− pa
pa


= λ

λ̄+ λ

λ̄− λ
log

λ̄

λ
> 0

using the convention 0 log 0 = 0.
Hence, (∗) − (∗∗) < 0 so the value function V (.) is decreasing to the left of the

cutoff. Also V ′µ
(
µ = 1/2

)
= 0 and V ′µ|µ=1/2+ε > 0. This implies the value function

attains minimum at µ = 1/2 and there exists a µmax ∈
(

λ̄2+λ2

(λ̄+λ)
2 ,

λ̄
λ̄+λ

)
such that the

value function attains an interior maximum at µmax given λ and the value function is
decreasing near the cutoff λ̄

¯λ+λ
. Although the value function is not differentiable and has

a kink at λ̄
λ̄+λ

, but we have shown it attains a local minimum at this point, since the left

derivative is negative and the right derivative is positive. But also,

V
(
µ = 1/2

)
=

ūλ̄

λ̄+ λ
+

uλ

λ̄+ λ
− λ

[
λ̄

λ̄+ λ
log

λ̄

λ̄+ λ
+

λ

λ̄+ λ
log

λ

λ̄+ λ
+ log 2

]

<
λ̄

λ̄+ λ
(ū+ u) = V

(
µ =

λ̄

λ̄+ λ

)

which implies V attains global minima at µ = 1/27.
As λ increases, since

d λ̄2+λ2

(λ̄+λ)
2

dλ
=
ū− u
λ2

(
λ̄

λ
+ 1

)
λ̄

λ

(
1− λ̄

λ

)
< 0

and
d λ̄

¯λ+λ

dλ
< 0 then the maximizer µmax would also decrease with λ since the interval in

which µmax lies shifts to the left towards 1/2.
Let an agent chooses n in the first step which generates a distribution of intermediate

beliefs {µni }
n
i=0 = Pr (ω1) where µni denotes the expected probability of being type ω1

7Since V is symmetric in µ around 1/2.
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after observing i many action as out of total n observations, i.e. µni = E
[
pr (ω1) |γxn

]
.

Then the agents ex-ante expected value is given by

Wn (A, γ) =
n∑
i=0

V (µni )Pr
(
µni |γ

)
− c (n) (28)

Step 3: Apart from the constraint on the final posterior distribution of beliefs that
the marginal cost of private learning λ poses on the amount of private learning by re-
stricting positive private learning only upto a cutoff value of interim belief µ < 1, λ also
affects the error probabilities

{
εi
}
i∈A. Given the Bayesian updating rule and prior γ, if

an agent observes n many agents from earlier generation then the error probabilities pose
a limit on how much the posterior can deviate from the prior belief. Let us consider the
extreme case, where an agent observes n many agents and out of this n many observations
everyone had chosen action a, then by equation 10, we have

P
(
xn = n|µ ∈ γ

)
=

n∑
k=0

(
n

n− k

)
µn−k (εa)k (1− µ)k

(
1− εb

)n−k
=

(
εa + µ

(
1− εa − εb

))n
(29)

whereas if every n agents had taken action b, then

P
(
xn = 0|µ ∈ γ

)
=

n∑
k=0

(
n

k

)
µk (εa)n−k (1− µ)n−k

(
1− εb

)k
=

(
εb + (1− µ)

(
1− εa − εb

))n
(30)

and the expected probability of being type ω1 under new belief γ′n generated by Bayes
rule would be

E
(
µ|xn, γ

)
=

∫
µ∈γ µ

(
εa + µ

(
1− εa − εb

))n
dγ∫

µ∈γ

(
εa + µ

(
1− εa − εb

))n
dγ

If εa + εb = 1, then E
(
µ|xn, γ

)
= E

(
µ|γ
)
, i.e. the prior is same as the posterior.

Now, εa + εb can be used as measure of mismatch error and the highest value it can take
is 1. Also

d
(
εa + εb

)
dλ

= 2pa (1− pa)
λ̄λ

λ
log

λ̄

λ
> 0 ∀pa, λ̄, λ. (31)

That means as λ goes up, the maximum value of the posterior given n observations is
closer to the prior. Thus λ gives another bound on γ′xn via social learning channel.

Step 4: Now we would consider the interaction between the bound posed by social
learning and the shape of the value function wrt µ. Given a common prior γ let us define
µ̄n as the furthest Bayesian posterior (interim in the model) belief about Γ from prior
γ after observing n many agents from earlier generation. Since the furthest from prior
belief is generated by the extreme cases where everyone is the sample had chosen a or
everyone had chosen b, µ̄ = max {µnn, µn0}. Let us assume that µ̄ = µnn

8.

8Here it is assumed that E
(
µ|γ
)
> 1/2. Later in note 2 we would show that this is without loss of

generality.

34



Fix λ and γ, then given the shape of the interim value function wrt µ and µ̄n there
are three possibilities,

1. 0 6 µ̄n 6 µmax, i.e the highest µ an agent can have after observing everyone taking
action a is in the initial increasing part of V (µ) function,

2. µmax < µ̄n 6 λ̄
λ̄+λ

, i.e the highest µ an agent can have after observing everyone

taking action a is in the decreasing part of V (µ) function,

3. µ̄n > λ̄
λ̄+λ

, the highest µ an agent can have after observing everyone taking action

a is in the final linear increasing part of V (µ) function.

Next we would argue that no agent would choose an n such that, µ̄n lies in the
decreasing part of V (µ). Here we only consider one side of the value function namely
µ ≥ 1/2 but the other part would be symmetric. Now, since agents are Bayesian, a bigger
sample, (say n2) with all a action would move their interim belief µ further towards 1
compared to a smaller n, (say n1) where n1 < n2. Also, n2 spreads the distribution of µnx
more than n1. Since we consider only µ ≥ 1/2 case then the agent has to observe at least
more than half of the observations are choosing a. And upon observing

⌈
n1

2

⌉
6 xn2 6 n1

i.e., more than half of n1 but less than n1 many people taking action a, the belief generated
by n2 µ

n2
xn2

would be lower than µn1
xn2

.
This means if the optimal n, say n2 is such that µ̄n2 is in the decreasing zone of the

value function, then there exists n1 < n2, such that reducing the optimal observation to n1

would bring µ̄n1 back to increasing part of V (µ) and µn1 is closest to µmax for all possible
choice of n1 ≤ n2. Now to generate a belief higher than µ̄n1 the agent needs to observe xn2

which is atleast greater than n1, which implies the Pr
(
µxn2

> µ̄n1

)
≤ Pr

(
µxn1

= µ̄n1

)
and all such events generate a lower payoff than µ̄n1 . For all other

⌈
n1

2

⌉
6 xn2 6 n1, the

resulting µx will be higher under n1. This means for all such xn2 , choosing n1 instead of
n2 would generate a higher payoff. 9 This implies the expected benefit from observing
n1 many agents is weakly higher than that of n2.

Since c (n2) > c (n1) but
∑n2

i=0 V
(
µn2
i

)
Pr
(
µn2
i |γ

)
6
∑n1

i=0 V
(
µn2
i

)
Pr
(
µn1
i |γ

)
, the

agent would be better off by choosing n1 < n2. Hence no agent would choose n∗ such
that µ̄n

∗
falls in the decreasing section of V (µ). So an agent would either choose an n

that restricts him to the initial increasing part of V (µ) or a high enough n that would
take him to the final linear increasing part.

For the agent who would choose an n that takes him to the final increasing part of
V (µ) the choice of n would have to be high enough such that not only µ̄n < λ̄

λ̄+λ
but also

V (µ̄n) > V (µmax), i.e. the maximum possible value is atleast greater that the interior
maximum, otherwise deceasing n to remain in the initial increasing part would make him
better off, by saving the cost of observing the extra agents. Let λjn denote the minimum
level of marginal cost of private learning given n, such that the expected value of choosing
an n that restricts the interim belief to the initial increasing zone is weakly smaller than
that of going to the final increasing zone.

9Similar argument holds for other values of xn, since V (µ) is symmetric and n1 spreads the interim
distribution of beliefs lesser than n2. If max in both side of µ = 1/2 falls in decreasing section then
choose n1 to bring the maximum of the two (µ̄n) in the increasing section, which will automatically bring
the other (minimum of the two) to the increasing section.
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Then for λ < λjn and µ̄n (λ) > λ̄
λ̄+λ

there exists nλ1 such that µ̄n
λ
1 < µmax (λ) and ∀n

with µ̄n (λ) > λ̄
λ̄+λ

, we have

nλ1 +1∑
i=1

V
(
µ
nλ1
i

)
Pr
(
µ
nλ1
i |γ

)
− c

(
n1
λ

)
≥

n+1∑
i=1

V (µni )Pr
(
µni |γ

)
− c (n)

and for λ > λjn, ∃n s.t. µ̄n (λ) > λ̄
λ̄+λ

and ∀nλ1 with µ̄n
λ
1 < µmax (λ), we have

nλ1 +1∑
i=1

V
(
µ
nλ1
i

)
Pr
(
µ
nλ1
i |γ

)
− c

(
n1
λ

)
<

n+1∑
i=1

V (µni )Pr
(
µni |γ

)
− c (n)

Hence, for λ < λjn, it would be optimal to reduce n and stay in the initial increasing zone
and for λ > λjn, choosing n to go to the final increasing part of the value function would
be optimal.

Note 1: Note that since lower λ has a higher µmax, given n and γ, the continuity
of the V function with respect to λ and Bayesian updating in stage 1, we can find two
thresholds on λs, namely λ1

n,γ and λ2
n,γ such that for λ 6 λ1

n,γ, µ̄
n would be in the initial

increasing part, for λ1
n,γ < λ 6 λ2

n,γ, µ̄
n would be in the decreasing part and all λ > λ2

n,γ,
µ̄n would be in the final increasing part of the value function.

Note 2: For step 4 we assumed E
(
µ|γ
)
> 1/2. In the other case, µ̄n would be the

belief generated by observing n many agents taking action b, since by definition µ̄n =
max {µ̄nn, µ̄n0}. Step 4 would be WLOG since if the maximum of the two is bounded by
choice of n in the initial increasing part of V (µ) then the minimum would automatically
be bounded in the initial increasing part of the value function as higher n spreads the
belief away from E

(
µ|γ
)

10. So considering the case of E
(
µ|γ
)
> 1/2 is indeed without

loss of generality for step 4. Since step 5 would use result from step 4, we would continue
with our assumption without loss of generality.

Step 5 By definition of the social cost function as given in equation 3, there exists
n̄ 6 N such that c (n̄− 1) 6 ū 6 c (n̄), which means agents will never observe more than
n̄ many people. Let us assume (for now) that n̄ is such that the set of λs in all three
regions using µ̄n̄ as discussed in step 4 is non-empty. We will discuss all other possibilities
later.

Now consider λ < λjn̄ such that µ̄n̄ > µmax (λ). For all these λ, the optimal n < n̄ and
µ̄n ≤ µmax (λ), since reducing n to the initial increasing part of V (µ) is better for the
agent. And for all λ > λjn̄ it would be better to increase n such that µ̄n lies in the final
increasing section. Define, λ′ as

λ′n̄ = max
{
λ > 0|µ̄n̄ (λ) 6 µmax (λ)

}
(32)

Hence there are three different intervals,

10For λ > λjn we have already considered the expected value of the ex-ante value function so the
assumption E

(
µ|γ
)
> 1/2 doesn’t have a bite and no λ would choose n such that µ̄n is in the decreasing

part of V (µ), hence we have covered all possible cases.
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1. 0 6 λ 6 λ′n̄ have µ̄n̄ in the initial increasing zone

2. λ′n̄ < λ < λjn̄ have µ̄n̄ > µmax and would choose n < n̄ to restrict to the initial
increasing zone

3. λ > λjn̄, would choose as high n as possible subject to the social cost function to be
in the final linear increasing zone.

Step 6: Let the optimal n for λ = λ′n̄ be n∗1, then the optimality condition would
give

n∗1∑
i=0

V
(
µ
n∗1
i

)
Pr
(
µ
n∗1
i |γ

)
−

n∗1−1∑
i=0

V
(
µ
n∗1−1
i

)
Pr
(
µ
n∗1−1
i |γ

)
> c (n∗1)− c (n∗1 − 1)

Note that c (.) is same for all λs, but for λ→ 0,

lim
λ→0+

n∗1∑
i=0

V
(
µ
n∗1
i

)
Pr
(
µ
n∗1
i |γ

)
−

n∗1−1∑
i=0

V
(
µ
n∗1−1
i

)
Pr
(
µ
n∗1−1
i |γ

)
= 0 6 c (n∗1)− c (n∗1 − 1)

So for λ → 0 the optimal n would not be higher than n∗1. Also for all λ 6 λ′n̄, the
optimal n would lead to an interim belief µ such that V ′ (µ) > 0. Now we make the
following observations:

1. For a given µ < µ̄n
∗

(λ), limλ→0 V
′
µλ ↓ 0, which implies there exists λ′′n̄ such that Vµ

becomes flatter with decrease in λ for all such µ and for all λ 6 λ′′n̄ by continuity of
V ′µ wrt λ. Since the social cost function c (n) is same for all λ but a flatter Vµ means
smaller change in the benefit from an increase in µ, n∗ would be non-decreasing λ
in this region of values of λ.

2. Since, for lower λ µmax is higher, limλ→λ′n̄− V
′
µλ 6 0 for µ ∈ Nε

(
µ̄n
∗

(λ′n̄)
)
, then the

optimal n for a λ which is smaller but close to λ′n̄ would be not lower than n∗1, i.e
n∗ would be non-increasing in λ in left neighborhood of λ′n.

Combining these two observations and the fact that V ′µ is continuous in λ we get that
there exists a λ∗ ∈ [λ′′, λ′]11 such that n∗ is non-decreasing for λ 6 λ∗ and non-increasing
for λ > λ∗. This proves the part (i) of the theorem12.

Step 7: For λ′ < λ < λj, the optimal strategy is to choose n∗ such that µ̄n
∗

remains
in the increasing part of V (µ). For lower λ, µmax is higher (by note 1) and a higher
n increases µ̄n, thus the optimal n∗ would be non-increasing in λ for λ ∈

(
λ′, λj

)
13.

Combining this with Step 6 we get n∗ is non-increasing for λ ∈
[
λ∗, λj

)
.

For λ > λjn̄, if λ is such that social learning is also informative, i.e., λ 6 λ∗∗ (See
result 2) then the optimal strategy is to choose the maximum possible n given the cost

11Since given a social cost function, n̄ is fixed, we drop the n̄ subscript.
12If the social cost function is such that c (n̄)− c (n̄− 1) = 0, then λ∗ = λ′′ = 0
13This is because given n when a lower λ remains in the increasing part a higher λ might do to the

decreasing part. So a higher λ would then decrease n further.
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of social learning. Since εa + εb is increasing in λ, i.e. µ̄n is decreasing in λ given n. But
the cost function is same for all λ implies for λ1 < λ2, given n

n∑
i=0

Vλ1 (µni )Pr
(
µni |γ

)
− c (n) >

n∑
i=0

Vλ2 (µni )Pr
(
µni |γ

)
− c (n)

This implies in this range of λ, i.e., λ ∈
(
λj, λ∗∗

]
also n∗ is non-increasing in λ. This

concludes the proof of part (ii) of the theorem.

Step 8: For λ < λj, the optimal choice was to reduce n such that µ̄n lies in the
increasing part, whereas for λ > λj the optimal choice of n is such that µ̄n in in the
final linear increasing part of the V (µ). Since µmax (λ) < λ̄

λ̄+λ
, and agents use Bayesian

updating rule, n∗
(
λj − δ

)
< n∗

(
λj + δ

)
, for δ → 0. This proves the part (iii) of the

theorem.
Using result 2, there exists λ∗∗ ≤ ∞ such that for λ > λ∗∗, the social learning is

completely uninformative, hence, n∗ = 0. This proves part (iv) of the theorem14.

Step 9: Given a social cost function c (n) and a common prior γ there are few other
possibilities (refer step 5) that we haven’t discussed yet. For this step also we will assume
E
(
µ|γ
)
> 1/2 without loss of generality since all results would go through if we use the

definition of µ̄n̄ as the maximum of the two possibilities (as discussed in Note 2 earlier).
First, suppose n̄ is small enough such that µ̄n̄ lies in the initial increasing section of

V (µ) for every λ. But this is not possible unless E
(
µ|γ
)

= 1/2 and n̄ = 0. This is
true because for any other γ such that E

(
µ|γ
)
> 1/2, the prior is atleast ε away from

1/2 and as λ → ∞ the initial increasing section shrinks to the point 1/2, which implies
even with n = 0, µ̄n = E

(
µ|γ
)

would be in the final increasing part of V (µ). And for
E
(
µ|γ
)

= 1/2, if λ is large but finite (λ < ∞ and λ → ∞) then any n > 0 would shift
the belief to final increasing section for such a high λ (λ → ∞) by similar logic. But
n̄ > 1 by definition, so this can’t happen. Hence, the set of λs in the final increasing
section is not null.

Second, suppose n̄ is large enough such that µ̄n̄ lies in the final increasing section
for all λ. But this implies for λ → 0, the belief after observing n̄ many people taking
action a (or b) has to go to 1 (or 0). For any finite N , with n̄ ≤ N , this is not possible
unless E

(
µ|γ
)

= 1(or 0). Since the true distribution µ∗ ∈ int (γ) by assumption, this
isn’t possible (almost surely). Hence, the set of λ in the initial increasing section is never
empty. By continuity of the value function V in λ and step 4 the only possibility thus left
is where all three sets of λs, i.e. µ̄n̄ is in initial increasing, decreasing and final increasing
sections of V (µ) are nonempty. This completes the proof of the theorem.

A.3 Proof of Theorem 2

Proof. The proof of the theorem uses the results from theorem 1. In this particular case,
since E

(
µ|γ
)

= 1/2, P
(
a|γ
)

= 1/2 for generation t = 0. This means all agents in
generation t = 0 learns privately for all λ < ∞, hence social learning is informative for
any t = 1.

14For E
(
µ|γ
)

= 1/2, the case not discussed in result 2, we would have λ∗∗ =∞.
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Since P
(
a|γ
)

= 1/2, some learning is always optimal for all λ <∞. Combining this
with the fact that some social learning is informative and optimal for t = 1, it would be
informative and optimal for any t > 1 as well. This is true because social learning can
possibly shift the belief towards one action since there is heterogeneity in the behavior
of the agents. Any shift away from µ = 1/2 is better for an agent as the interim value
function attains global minima at µ = 1/2. This means λ∗∗ =∞, which proves the first
part of the theorem.

For the second part, at λ′, V ′|c̄ 6 0 since C (n) − C (n− 1) = 0 and agents are
optimizing. This implies for all λ < λ′, the slope would be higher for n = c̄, since
µ̄n̄ < µmax for all these λ. Then using theorem 1 we have λ∗ = 0, hence all λ 6 λ′ would
choose n∗ = c̄, since the slope of the expected value function would be positive even in
the extreme case of observing all c̄ many agents choosing a (or b) but the cost function
is constant at 0.

For λ > λj also the incremental cost of observing one additional action is zero for
any n 6 c̄, but the change in the expected value is positive however small the shift in
belief be, since the slope of the value function is positive. This implies for all λ > λj, the
optimal n∗ = c̄.

Finally for λ ∈
(
λ′, λj

)
, we have µ̄c̄ in the decreasing part of the value function. Hence

by step 4 of theorem 1 the optimal choice for all such λ would be an n∗ such that n∗ < n̄,
also n∗ would be non-increasing in this part. This is because a a higher λ attains interior
maximum at a belief closer to 1/2, so a strictly higher n for a higher λ might lead to
µ̄c̄ > µmax, which is worse for the agent. This completes the proof of part 2.

A.4 Proof of Theorem 3

Proof. As we have already discussed, under sequential learning agents choose a set of n
conditional on belief in equilibrium. First we discuss the position of the nmin in terms
of beliefs in an equilibrium for different values of λ. Then we use ideas from proof of
theorem 1 to complete this proof. For the rest of the proof we would only consider the
value function V (µ) for µ ≥ 1/2 as the other case would be symmetric. So a higher
belief, i.e., higher value of µ would mean a belief further away from uniform belief which
is a more informative belief as well.

Step 1: In this step we discuss the position of nmin for different values of λ.For
notational simplicity we drop the time superscript. We know the value function V (µ) is
C2 in the domain

(
λ/λ̄+ λ, λ̄/λ̄+ λ

)
and attains an interior minimum at µ = 1/2 and an

interior local maximum at µmax. This implies the function is locally concave near µmax
and locally convex near 1/2. If nmin is at some level of belief µ1, which means an agent
would optimally choose to top learning socially after observing n many actions when his
belief is µ1, then at µ1 the marginal gain from observing one more action would be least
among all choices of n. This is true because the cost function is weakly convex implies a
higher n generates a higher increase in marginal cost. Since an agent would only choose
to stop learn if marginal gain is less than marginal loss, where the loss is due to extra
cost, then nmin has to be associated with lowest marginal gain. This gives us a natural
candidate for nmin which is closest to the µmax as the function attains local maxima at
that point and hence would be flattest there.

But as we noted earlier in the proof of theorem 1 the cost of social learning function
puts a restriction on how much an agent can learn by imposing a maximum value of
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n, namely n̄.Let us consider only those λs for which the maximum possible belief at n̄
remains below µmax. For a small enough λ in that range the n̄ restricts the belief away
from µmax to a lower value. This means nmin may not be associated with the belief closest
to µmax. For any such λ, the marginal gain is thus lowest for a choice of n that keeps the
belief closest to 1/2 due to the locally convex nature of the value function near µ = 1/2.

But for a high enough λ when n̄ is such that there is a choice of n where the belief
is very close to the µmax then that n would generate lowest marginal gain and become
the nmin. For intermediate value of λ the smallest µ would generate nmin if the marginal
gain is lower at the smallest µ compared to the µ closest to µmax.

Now consider the case where λ is such that the maximum possible belief lies in(
µmax, λ̄/λ̄+ λ

)
. This implies that for all such λ as agent can have a belief in the

decreasing part of the value function V (µ). But unlike the case of block learning an
agent might choose an n such that he optimally ends up with a belief in the decreasing
part. The reason behind this is as follows: under sequential learning an agent decides
whether to observe another action standing at some belief and n combination so if the
agent has a belief not very close to µmax but such that observing one action would lead
him to the decreasing part where the expected marginal gain is higher than the marginal
loss then he would choose to observe one more n and would probably end at a belief in
the decreasing part.

But again there is a cutoff belief lower than the maximum possible belief µ̄ under n̄
in the decreasing part of the value function such that an agent would never choose to
observe any more actions standing at that belief. The logic is similar to the one used
in the proof of theorem 1. We know an agent would only observe an extra action if the
expected marginal gain is higher. And also we know a higher n spreads the distribution
of beliefs. Given n̄, for all these λs the µ̄ would remain in the decreasing part and hence
the marginal gain would become negative for a high enough µ ≤ µ̄ due to spreading of
the distribution of belief. Since the cost function is weakly convex this implies the agents
would only learn until the marginal gain is higher than the cost and that restricts the
choice of n. Since a value further sway from µmax in the decreasing section would more
likely generate an even lower value on V (µ) because of an increased probability the cutoff
must remain close enough to µmax.

For all these λ the nmin would remain closest to µmax because the of two reasons.
First the value function is flattest near µmax due to local concavity and second a higher
belief in the decreasing section is restricted by a cutoff belief close to µmax. The first
condition implies no belief to the left of µmax and further away from it would generate
the nmin and both first and second part combined make sure that a belief further away
in the decreasing section would not generate nmin due to local concavity of the value
function and that fact that the cutoff would not be further away from µmax which implies
the local concavity argument still holds true.

For all the λs such that the µ̄ falls in the final increasing section the agent would only
choose to learn upto a belief higher than λ̄/λ̄+ λ only if the marginal gain is higher. As
λ increases the µ̄ is further away from λ̄/λ̄+ λ which implies the marginal gain becomes
higher. This implies there exists a minimum value of λ, say λjs such that an agent would
start to choose to learn upto a belief that is higher than λ̄/λ̄+λ, i.e. in the final increasing
section.

For all λ < λjs, the nmin remains the one corresponding to the belief closest to the
µmax but for λ ≥ λjs that would not be the case. For these set of higher λs the nmin would
be in the final increasing part. First of all the earlier candidate for nmin namely the one
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closest to µmax would not remain so because of the following reason: if a belief closer to
µmax has a lower n than that of the one in the final decreasing part, then the marginal
gain from choosing another observation would be lower for the former compared to the
latter since the marginal increase in cost is lower for the former. But we know for these
λs the marginal gain to move into the final increasing section is higher than the marginal
loss and they try to learn as much as possible which implies for the lowest n if it is near
µmax the marginal gain can’t be lower than marginal loss as it would imply the agent
would never learn upto the final increasing section. Also for all other belief the marginal
gain is higher than that of the one closest to µmax which increases the incentive to learn
and hence the nmin would be in the final increasing section.

Step 2: Now that we have the position of nmin for different values of λ, we can prove
the theorem. Let us start with very high values of λ. When λ is very high and above
some threshold λ∗∗, as proved in the result 2, the social learning becomes completely
uninformative because any agent in period 1 would know that period 0 agents have not
done any private learning and would do no learning of any kind which would imply no
later generation would learn as well. This proves the part 4 of the theorem.

Define λ1 as the maximum value of λ such that nmin remains closest to 1/2. Using
step 6 of theorem 1 when λ < λ1 and close to 0, as λ increases the value function becomes
steeper which implies the marginal gain from social learning at weakly higher for a higher
λ near 1/2. This implies there exists a maximum value of λ say λ∗s ≤ λ1 where nmin is
non-decreasing. This proves part 1 of the theorem.

For any λ higher than λ1 the nmin is closest to µmax. Let λ2 denote the maximum
value of λ such that µ̄ ≤ µmax. Again using step 6 of the proof of theorem 1 which shows
that for a choice of n that is close enough to µmax optimally n would be non-increasing
in λ. So there exists a minimum value of λ say λis ≥ λ1 such that for all λ ∈

[
λis, λ2

]
the

nmin would be non-increasing.
For λ ∈

(
λ2, λ

j
s

)
the nmin still remains the one closest to µmax and for low enough λ

since µ̄ is smaller there exists a maximum value of λ say λds such that the nmin remains
to the left of µmax,since the marginal gain from choosing to go the decreasing section is
limited by n̄. Thus for all such λ ≤ λds the nmin would be non-increasing using the step
6 of theorem 1. This completes the proof of the part 2 of the theorem.

Finally at λjs the nmin shifts from near µmax to the final increasing section, which
implies nmin makes a upward jump at λjs as a strictly higher belief corresponding to nmin
can only be obtained by a strictly higher choice of nmin for sufficiently close λs in the
neighborhood of λjs (remember the derivative of the value function is continuous in λ).
This proves the part 3 of the theorem and completes the proof of the theorem.
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