
Frequency Based Analysis of Voting Rules

Swarnendu Chatterjee† Hans Peters† Ton Storcken∗

September 12, 2016

Abstract

The issue here is on anonymous collective decision making in large populations. Based on the
structure on linear orderings induced by the Kemeny distance we study frequency distribution, i.e.
(frequency) distributions. In case of a so called unimodal frequency distribution it appears that
many if not all reasonable and well-known decision rules yield the same outcome. We also show
some robustness conditions for Pairwise rule, Borda rule and Plurality rule.

1 Introduction

Real life voting problems deal with large electorates. There we can not consider individual preferences.
Hence putting technical conditions on the set of preferences seems unnatural. More realistic would
be to consider the frequency distribution of the preferences and impose conditions on the frequency
distributions as a whole. The cultural aspects of an electorate leading to coherency or disharmony among
the preferences of its voters are perhaps more easy to describe in terms of frequency distributions and
can empirically be tested in this way. We first restrict the frequency distribution in the unimodal class.
A set of conditions for (abstract) collective decision rules are found which is sufficient to guarantee that
the outcome is the modus at unimodal frequency distributions, where many well-known rules satisfy all
the conditions of this set, Then we try to broaden the class of frequency distribution. There we show that
Pairwise rule and Borda rule are still selecting one pivotal preference as their outcome. In multimodal
frequency distributions the problem of collective decision making is present: different reasonable collective
decision rules may lead to different outcomes.

2 Unimodal frequency distributions

Collective decision making is studied within the classical framework where a non-empty and finite set of
agents, say N = {1, 2, 3, ..., n}, collectively orders the alternatives of a non-empty and finite set A from
best to worst. Let A consist of m alternatives. Although N is finite its cardinality n is assumed to be
large. The collective decision is assumed to be based on the individual preferences, which are formalized
here by linear orderings, i.e. complete antisymmetric and transitive relations on A. The set of these
linear orderings on A is denoted by L. A profile p (of individual preferences) assigns to every agent i
such a linear ordering p(i) in L. It therewith reflects a possible combination of individual preferences
at which such a collective decision is taken. Let LN denote the set of all these profile that is the set of
all the combinations of individual preferences. To exclude discussions on resolving ties in the collective
orderings we allow the collective outcomes to be weak orderings, i.e. complete and transitive orderings
on A. The set of all these orderings is denoted by W. Linear orderings or more general relations on A
will also be denoted by the letter R. Let x and y be alternatives, as usual (x, y) ∈ R means that at
preference (relation) R alternative x is weakly preferred to alternative y. Note that for linear orderings
R and different alternatives x and y because of antisymmetry (x, y) ∈ R implies that (y, x) /∈ R. In
that case we say that x is strictly preferred to y.If R is a complete relation the notion that x is strictly
preferred to y can also be expressed by (y, x) /∈ R. For alternatives x and y let Lxy denote the set of
linear orderings R at which x is strictly preferred to y, that is (y, x) /∈ R. The collective decision is
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formalized by a preference rule1 F a function that assigns to every profile p in LN a collective preference
F (p) in W.

A frequency distribution is formalized by a type of frequency distribution over the set of preferences.
Given a profile p of individual preferences of the agents and a preference R in L, then f(R, p) denotes
the number of agents with preference p(i) at profile p, that is

f(R, p) = |{i ∈ N | p(i) = R}| ,

where |S| denotes the cardinality of an arbitrary set S. The description of profiles by means of frequency
distributions and therewith essentially describing a type of frequency distribution, is based on a metric
space on L induced by the Kemeny distance function δ. This distance function δ is defined for two
preferences R1 and R2 in L as follows2

δ(R1, R2) =
1

2

∣∣(R1△ R2)
∣∣ ,

where △ denotes the symmetric difference between sets, i.e. R1△ R2 = (R1 −R2)∪ (R2 −R1). Kemeny
distance function calculates the number of discordant pairs or number of inversions 3 between two linear
orders.

A profile p is called unimodal if there exists a preference R∗, the modus, such that for every two
preferences R1 and R2 in L

f(R1, p) > f(R2, p) if and only if δ(R∗, R1) < δ(R∗, R2).

So, a profile p is unimodal if there is a preference R∗ in L with highest frequency such that frequencies
for all other preferences in L strictly decrease in their distance to this modus R∗.

Preference rules will be discussed with respect to the following conditions.
Anonymity means that the preference rule is symmetric in its arguments. Anonymity guarantees

that agents’ preferences are equal important in determining the outcome. The outcome is based on how
many times a preference is announced at a certain profile instead of who announced that preference. Let
σ on N be a permutation on N the set of agents. Let p be a profile in LN . Then profile4 q = p ◦ σ is
defined for all agents i by

q(i) = p(σ(i)).

Preference rule F is anonymous if for all profiles p and all permutations σ

F (p) = F (p ◦ σ).

Neutrality means that the preference rule treats alternative in equal situations equally. Let x and y
be alternatives. Let τxy be the permutation on A such that τxy(x) = y, τxy(y) = x and τxy(z) = z for
all alternatives z not equal to x and y. So, considering permutations on A as renames, τxy swaps the
names of x and y and leaves all other names unchanged. For a relation R on A let

τxyR = {(τxy(a), τxy(b)) : (a, b) ∈ R}.

So, in τxyR the positions of x and y in R are swapped where all the positions of all the other alternatives
are left unchanged. Similarly for a profile p, τxyp denotes the profile at which for each agent i the
positions of x and y in p(i) are swapped: τxyp = (τxyp(1), τxyp(2), . . . , τxyp(i), . . . , τxyp(n)). Preference
rule F is neutral5 if for all alternatives x and y, all profiles p and all permutations τxy on A

F (τxyp) = τxyF (p).

Monotonicity means that if in comparison of profiles p and q the preference “x is preferred to y”
among the agents increases when going from p to q, then this preference at the outcomes should not

1Preference rules are usually known as Welfare Functions. As the model discussed here also applies to non-welfare issues
such as voting we rather use the term preference rule.

2Here we actually take half the Kemeny distance because between two linear orderings it is a multiple of two.
3Let x1, x2, . . . , xm be a permutation of 1, 2, . . . ,m. Then xi, xj is called a discordant pair if, i < j but xi > xj .
4Note that we consider a profile to be a function from N to L.
5The neutrality notion defined here is equivalent to the usual one, because every permutation can be decomposed into

permutations where only two elements are swapped.
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decrease. Preference rule F is monotone if for all alternatives x and y , all non-empty subsets S of N
and all profiles p and q,

if (y, x) /∈ F (p),

p(j) = q(j) for all j ∈ N − S,

(y, x) ∈ p(i) for all i ∈ S and

q(i) = τxyp(i) for all i ∈ S,

then (y, x) /∈ F (q).

Discrimination means that at a profile p where for two alternatives x and y every linear ordering R at
which x is strictly preferred to y strictly outnumber linear ordering τxyR at which y is strictly preferred
to x the preference rule cannot be indifferent between x and y. Preference rule F discriminates if for all
profiles p and all different alternatives x and y

if f(R, p) > f(τxyR, p) for all R ∈ Lxy ,

then (x, y) /∈ F (p) or (y, x) /∈ F (p).

It is natural to go one step further and to impose that in those situations x should be strictly preferred
to y. This condition is referred to as positive discrimination.

3 Decisions in Unimodal frequency distributions

The following examples show that many well-known collective decision rules yield the modus at unimodal
profiles. A sufficient condition for this is positive discrimination as will be shown below in Theorem 1.
Let p̂ be a unimodal profile with modus R̂.

Lemma 1. Let x and y be two different preferences and R1and R2 be two linear orderings, such that
(x, y) ∈ R1and (y, x) ∈ R2. Then δ(R1, τxyR

2) < δ(R1, R2).

Proof. We can calculate number of discordant pairs (the distance) between R2 and τxyR
2. Notice that

between R2 and τxyR
2 changes are due to only changing positions of x and y. Also the alternatives in

the set M = {a ∈ A : (x, a), (a, y) ∈ τxyR
2} gets affected by their relative positions with respect to x and

y. Suppose M̂ = {a ∈ A : (x, a), (a, y) ∈ R1}. Then number of discordant pairs between R2 and τxyR
2 is

1 + 2
∣∣∣M̂ ∩M

∣∣∣

Hence, δ(R1, R2) = δ(R1, τxyR
2) + 1 + 2

∣∣∣M̂ ∩M
∣∣∣ > δ(R1, τxyR

2). �

Lemma 2. Let x, y ∈ A, with (y, x) /∈ R̂ and let R ∈ Lxy. Then f(R, p̂) > f(τxyR, p̂).

Proof. By Lemma 1 it follows that δ(R̂, R) < δ(R̂, τxyR) which easily yields the desired inequality by
the unimodality of p̂. �

Example 1. Pairwise Preference Rules
Pairwise preference rule depends on the pairwise majority comparisons. In general these comparisons

may yield cycles and rules therefore may differ in these situations: different pairwise rules break up cycles
in different ways.

If , however, at a certain profile pairwise majority comparison yields a complete strict and transitive
ordering from overall winner (the Condorcet winner) to overall looser (the Condorcet looser) then this is
the outcome of all these rules at that profile. We argue that at profile p̂ pairwise majority comparisons
yield the modus R̂. Herewith we showed that all pairwise preference rules assign the modus at a unimodal
profile. Let (x, y) ∈ R̂, with x 6= y. It is sufficient to show that

|{i ∈ N : (x, y) ∈ p̂(i)}| > |{i ∈ N : (y, x) ∈ p̂(i)}| .

Lemma 2 yields that for all R ∈ Lxy

f(R, p̂) > f(τxyR, p̂).
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Because

|{i ∈ N : (x, y) ∈ p̂(i)}| =
∑

R∈Lxy

f(R, p̂) and

|{i ∈ N : (y, x) ∈ p̂(i)}| =
∑

R∈Lxy

f(τxyR, p̂)

the desired inequality follows.

Example 2. Score Preference Rules
At score preference rules agents assign scores s1, s2, . . . , sm to the alternative and these are then

ordered according to their total scores. It is assumed that sm ≥ sm−1 ≥ . . . ≥ s1 and that sm > s1. At
a preference p(i) agent i would hand out score sm to his best alternative, sm−1 to his second best and
so on. So, his worst alternative receives score s1. Let r(x, p(i)) = |{y ∈ A : (x, y) ∈ p(i)}| be the rank of
alternative x at profile p(i). Then of course the rank of the best alternative is equal to m the number of
alternatives and that of the worst alternative is equal to one. Agent i divides the scores as follows

s(x, p(i)) = sr(x,p(i))

and total score for alternative x at profile p is now

s(x, p) =
∑

i∈N

s(x, p(i)).

Define the score preference rule Fscore for alternatives x and y and an arbitrary profile p as follows

(x, y) ∈ Fscore(p) if and only if s(x, p) ≥ s(y, p)

In order to show that Fscore(p̂) = R̂ let (x, y) ∈ R̂, with x 6= y. It is sufficient to show that s(x, p̂) >
s(y, p̂). For numbers k and l let Lkl

xy = {R ∈ Lxy : s(x,R) = k and s(y,R) = l}. Then

s(x, p̂) =

k=m∑

k=2

l=k−1∑

l=1


 ∑

R∈Lkl
xy

sk · f(R, p̂) +
∑

R∈Llk
yx

sl · f(R, p̂)




=
k=m∑

k=2

l=k−1∑

l=1


 ∑

R∈Lkl
xy

sk · f(R, p̂) + sl · f(τxyR, p̂)




Similarly

s(y, p̂) =

k=m∑

k=2

l=k−1∑

l=1


 ∑

R∈Lkl
xy

sk · f(τxyR, p̂) + sl · f(R, p̂)




Therefore it is sufficient to show that for all numbers k and l, with k > l, and all R ∈ Lkl
xy

sk · f(R, p̂) + sl · f(τxyR, p̂) ≥ sk · f(τxyR, p̂) + sl · f(R, p̂),

and that at least one of these inequalities is strict. The latter equality is equivalent to

(sk − sl) · (f(R, p̂)− f(τxyR, p̂)) ≥ 0

Because k > l we have that sk ≥ sl, where by definition sm > s1. Lemma 2 yields that f(R, p̂) −
f(τxyR, p̂) > 0. So, the weak inequality follows readily and the strict in case x is ordered best at R and
y is ordered worst.

Example 3. Coombs Preference Rule
At the Coombs preference rule alternatives are successively eliminated and then ordered reverse to

their elimination order. The elimination is based on the number of agents which consider the alternative
at hand worst. Let x be an alternative and p be a profile. Further, let B be a subset of A. Then
ws(x,B, p) = |{i ∈ N : (b, x) ∈ p(i) for all b ∈ B}| equals the number of agents which order x worst
among B at profile p. Let

C0(p) = {a ∈ A : ws(a,A, p) ≥ ws(x,A, p) for all x ∈ A}
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and A1 = A− C0(p)

Next for all k > 0 recursively define

Ck(p) = {a ∈ Ak : ws(a,Ak, p) ≥ ws(x,Ak, p) for all x ∈ Ak}

and Ak+1 = Ak − Ck(p)

Note that there exists a number kp such that Ak is empty for all k larger than kp and Ak is non-empty
for k smaller than or equal to kp. The Coombs preference rule FCoombs is now defined for alternatives x
and y and profile p as follows

(x, y) ∈ FCoombs(p) if and only if y ∈ Ak implies x ∈ Ak for all k.

In order to show that FCoombs(p̂) = R̂ let (x, y) ∈ R̂, with x 6= y. It is sufficient to show that x /∈ Ck(p)
and y ∈ Ck(p) for some k. For every subset B of A such that x and y are in B and every preference
R ∈ L we have

if (b, x) ∈ R for all b ∈ B,

then R ∈ Lyx and (b, y) ∈ τxyR for all b ∈ B.

In view of Lemma 2 this yields that

ws(x,B, p̂) < ws(y,B, p̂).

Obviously this yields for all k that

y ∈ Ak implies x ∈ Ak and

if y ∈ Ak and y /∈ Ak+1, then x ∈ Ak+1.

But then x /∈ Ck(p) and y ∈ Ck(p) for some k.

Example 4. Kemeny Like Preference Rule
The Kemeny rule determines its outcome on those linear orderings which are in total closest to all

the preferences in the profile. We will show that R̂ is the only solution of the following minimization
problem

min
R∈L

∑

i∈N

δ(R, p̂(i)).

Then consequently we have that the Kemeny preference rule assigns R̂ to profile p̂. Here we will prove
a slightly stronger result that R̂ is the only solution of

min
R∈L

∑

i∈N

δh(R, p̂(i)),

where δh(R
1, R2) = h(δ(R1, R2)) for R1, R2 ∈ L and a strictly increasing function h. Let (x, y) ∈ R̂,

with x 6= y, and R1 and R2 be two preferences such that R1△ R2 = {(x, y), (y, x)}, (x, y) ∈ R1 and

(y, x) ∈ R2. Note that for all R ∈ Lxy δ(R,R1) < δ(R,R2) and therewith δh(R̂, R1) < δh(R̂, R2).

Therefore in order to prove that R̂ is the only solution of the above minimization problem it is sufficient
to prove that ∑

i∈N

δh(R
1, p̂(i)) <

∑

i∈N

δh(R
2, p̂(i)).

For k ∈ {1, 2}

∑

i∈N

δh(R
k, p̂(i)) =

∑

R∈Lxy

δh(R
k, R) · f(R, p̂) +

∑

R∈Lyx

δh(R
k, R) · f(R, p̂)

=
∑

R∈Lxy

δh(R
k, R) · f(R, p̂) + δh(R

k, τxyR) · f(τxyR, p̂).

So,

∑

i∈N

δh(R
1, p(i))−

∑

i∈N

δh(R
2, p(i)) equals
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∑

R∈Lxy

(δh(R
1, R)− δh(R

2, R))f(R, p̂) + (δh(R
1, τxyR)− δh(R

2, τxyR))f(τxyR, p̂).

Note that for R ∈ Lxy

δ(R1, R) = δ(τxyR
1, τxyR) = δ(R2, τxyR)

δ(R2, R) = δ(τxyR
2, τxyR) = δ(R1, τxyR).

This implies that R ∈ Lxy

δh(R
1, R)− δh(R

2, R) = δh(R
2, τxyR)− δh(R

1, τxyR).

Therefore

∑

i∈N

δh(R
1, p(i))−

∑

i∈N

δh(R
2, p(i))

=
∑

R∈Lxy

(δh(R
1, R)− δh(R

2, R))(f(R, p̂)− f(τxyR, p̂)).

which yields by Lemma’s 2 and 1 that

∑

i∈N

δh(R
1, p(i))−

∑

i∈N

δh(R
2, p(i)) < 0

and ∑

i∈N

δh(R
1, p(i)) <

∑

i∈N

δh(R
2, p(i)).

4 Character of Choosing the Modus

Theorem 1. Let p be a unimodal profile with modus R∗. Then F (p) = R∗ for a preference rule F from
LN to W in each of the following two cases:

1. F is positively discriminating;

2. F is anonymous, neutral, monotone and discriminating.

Proof. In order to prove the first alternative let F be positively discriminating and let (x, y) ∈ R∗ for
some different alternatives x and y. It is sufficient to prove that (x, y) ∈ F (p) and (y, x) /∈ F (p). Let
R ∈ Lxy. As Lemma 1 implies that δ(R∗, τxyR) > δ(R∗, R), because p is unimodal it follows for all
R ∈ Lxy that f(R, p) > f(τxyR, p). But then (x, y) ∈ F (p) and (y, x) /∈ F (p) because F is positively
discriminating.

In order to prove the second alternative let F be anonymous, neutral, monotone and discriminating.
Let (x, y) ∈ R∗ for some different alternatives x and y. It is sufficient to prove that (x, y) ∈ F (p) and
(y, x) /∈ F (p). Unimdularity implies for all R ∈ Lxy that f(R, p) > f(τxyR, p). By discrimination of F
we have that (x, y) /∈ F (p) or (y, x) /∈ F (p). Suppose that (x, y) /∈ F (p). It is sufficient to prove that
this assumption yields a contradiction. So, as F (p) is a weak ordering, (y, x) ∈ F (p) and (x, y) /∈ F (p).
Furthermore, neutrality implies (y, x) /∈ F (τxyp) and (x, y) ∈ F (τxyp). Now for all R ∈ Lxy

f(τxyR, τxyp) = f(R, p) > f(τxyR, p) = f(R, τxyp).

This means that at profile τxyp every R ∈ Lxy is outnumbered by τxyR which is in Lyx. Therefore we
can take a non-empty subset S of N such that for all R ∈ Lxy f(R, (τxyp)|N−S) = f(τxyR, (τxyp)|N−S)
and for all i ∈ S we have (x, y) /∈ τxyp(i). Consider profile q such that q(j) = τxyp(j) for all j ∈ N−S and
q(i) = τxy(τxyp(i)) = p(i) for all i ∈ S. Monotonicity implies that (y, x) /∈ F (q). Hence (x, y) ∈ F (q).
Now for all R ∈ Lxy

f(R, q) = f(R, q|S) + f(R, q|N−S)

= f(R, p|S) + f(R, (τxyp)|N−S)

= f(R, p|S) + f(τxyR, (τxyp)|N−S)
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= f(R, p|S) + f(R, p|N−S)

= f(R, p).

As every R ∈ Lxy outnumbers τxyR in p it follows for all R ∈ L that f(R, q) = f(R, p). But then by
anonymity we have F (q) = F (p), which cannot be because (x, y) ∈ F (q) and (x, y) /∈ F (p). �

The following example shows that the necessary conditions spelled out in Theorem 1 case 2 are
logically independent.

Example 5. Let the dictatorial preference rule Fdict,i with dictator i be defined for a profile p as follows

Fdict,i(p) = p(i).

So, this preference rule assigns the preference of agent i independent of the preferences of all other agents.
Note that Fdict,i is neutral, monotone and discriminating but of course not anonymous.

For a weak ordering R on A let the constant preference rule Fconst,R be defined for a profile p as
follows

Fconst,R(p) = R.

So, this preference rule assigns relation R independent of the preferences of the agents. Note that if R ∈
L, then Fconst,R is anonymous, monotone and discriminating, where if R = A × A, then Fconst,A×A is
anonymous neutral and monotone.

Let the reverse transitive closure of pairwise majority preference rule Fodd be defined for a profile p
and a pair of alternatives x and y as follows (x, y) ∈ Fodd(p) if and only if there are y = z0, z1, . . . , zk = x
such that for all 0 < j 6 k

|{i ∈ N : (zj , zj−1) ∈ p(i)}| ≥ |{i ∈ N : (zj−1, zj) ∈ p(i)}| .

It is straightforward to prove that Fodd is neutral, anonymous and discriminating. It is clearly not
monotone.

5 Multimodal frequency distributions

It is clear that in large electorates relatively small distortions of the frequency requirements for unimodal
frequency distribution will have almost no effect on the outcomes as derived above. This will especially
hold if these perturbations in these frequencies involve preferences remote from the modus. Considerable
distortions, as we will see, defect these finding. Such distortions are modelled here with a special type
of multimodal frequency distribution: the superposition of different unimodal frequency distributions.

Let N1 and N2 be two disjoint sets of agents. Let p1 ∈ LN1 and p2 ∈ LN2 such that pk is a unimodal
profile on Nk with modus Rk for k ∈ {1, 2}. Let N = N1 ∪ N2 and p ∈ LN defined by p(i) = pk(i) if
i ∈ Nk for k ∈ {1, 2}. In that case p is said to be a superposition of unimodal profiles p1 and p2. It is
straight forward to see that on such superposed profiles different rules may yield different outcomes. On
the other hand the following theorem shows that positively discriminating preference rules agree on the
intersection of these two modi.

Theorem 2. Let N1 and N2 be two disjoint non-empty sets of agents, such that N = N1 ∪ N2. For
k ∈ {1, 2} and let pk be a unimodal profile on Nk with modus Rk. Let p be the superposition of these two
unimodal profiles. Let F be a positively discriminating preference rule from LN to W.

Then (x, y) ∈ F (p) and (y, x) /∈ F (p) for all (x, y) ∈ R1 ∩R2, such that x 6= y.

Proof. Let (x, y) ∈ R1 ∩ R2, with x 6= y. It is sufficient to prove that (x, y) ∈ F (p) and (y, x) /∈ F (p).
Because R1and R2 are linear orderings it follows that (y, x) /∈ R1 and (y, x) /∈ R2 . Lemma 2 implies for
all R ∈ Lxy that

f(R, p1) > f(τxyR, p1) and f(R, p2) > f(τxyR, p2),

Therefore

f(R, p) = f(R, p1) + f(R, p2)

> f(τxyR, p1) + f(τxyR, p2)

= f(τxyR, p).

Positive discrimination implies that (x, y) ∈ F (p) and (y, x) /∈ F (p). �
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Note that this result generalizes to any arbitrary number of superposed unimodal profiles.
Although it is not difficult to find superposed unimodal profiles at which the standard problems of

Social Choice appear, such as for instance Condorcet cycles, investigating these further might be fruitful.
The following Theorem shows that at a superposition of two unimodal profiles intransitivity of pairwise
majority can only occur on pairs which are not in the intersection of the modi. An alternative x is said
to weakly beat an alternative y at a profile p if

|{i ∈ N : (x, y) ∈ p(i)}| ≥ |{i ∈ N : (y, x) ∈ p(i)}| .

Theorem 3. Let N1 and N2 be two disjoint non-empty sets of agents, such that N = N1 ∪ N2. For
k ∈ {1, 2} and let pk be a unimodal profile at Nk with modus Rk. Let p be the superposition of these
two unimodal profiles. Let x, y be two different alternatives with (x, y) ∈ R1 ∩ R2. Then there is no
alternative z such that z weakly beats x and y weakly beats z at p.

Proof. To the contrary assume that some alternative z weakly beats x and y weakly beats z. We will
deduce a contraction and are done. For different alternatives a, b and c let Labc = Lab∩Lbc(∩Lac). Hence,
Labc consists of all linear orderings which order a strictly above b and b strictly above c. Consequently
in those orderings a is strictly ordered above c . Furthermore, for k ∈ {1, 2} let

nk
abc =

∑

R∈Labc

f(R, pk).

Note that for k ∈ {1, 2} ∣∣{i ∈ N : (x, y) ∈ pk(i)}
∣∣ = nk

xyz + nk
xzy + nk

zxy.

Therefore the assumption z weakly beats x yields

n1
zxy + n1

zyx + n1
yzx + n2

zxy + n2
zyx + n2

yzx ≥ n1
xzy + n1

xyz + n1
yxz + n2

xzy + n2
xyz + n2

yxz and

the assumption y weakly beats z yields

n1
yzx + n1

yxz + n1
xyz + n2

yzx + n2
yxz + n2

xyz ≥ n1
zyx + n1

zxy + n1
xzy + n2

zyx + n2
zxy + n2

xzy .

Adding and simplifying these latter two inequalities yields

n1
yzx + n2

yzx ≥ n1
xzy + n2

xzy.

But as (x, y) ∈ R1 ∩R2 Lemma 2 implies for k ∈ {1, 2}

nk
xzy =

∑

R∈Lxzy

f(R, pk) >
∑

R∈Lxzy

f(τxyR, pk) =
∑

R∈Lyzx

f(R, pk) = nk
yzx.

This however yields the contradiction

n1
yzx + n2

yzx < n1
xzy + n2

xzy,

which ends the proof. �

6 Relaxation of the Unimodal Assumption

In this section we assume that the frequency distribution has equal frequency at equal distances from
a particular linear order, say R̂ ∈ L. We also assume that linear orders that are close to R̂ have higher
frequencies than the frequencies of the linear orders that are close to −R̂, where −R denotes the inverse
linear order of R . Essentially we assume that, f(k) > f(

(
m
2

)
− k) for all k < 1

2

(
m
2

)
. So the frequency

of a linear order depends only on the distance from R̂. We show that under this assumption, Pairwise
majority rule and Borda rule choose R̂ as the outcome.

We assume that R̂ = 1, 2, 3, . . . ,m and −R̂ = m,m− 1, . . . , 1.

• L(m) is the set of all permutations of R̂.

• Lk(m) = {R ∈ L(m)|δ(R, R̂) = k}.
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• Li,j(m) = {R ∈ L(m)|i < j ∈ R}.

• L
i,j
k (m) = {R ∈ L(m)|i < j ∈ R and δ(R, R̂) = k}.

• d(m, k) = |Lk(m)|.

• L′
k(m) = {R ∈ L(m)|δ(R,−R̂) = k}

• d′(m, k) = |L′
k(m)|.

• L
i,j
k (m) = {R ∈ Lk(m)|(i, j) ∈ R}, i.e. i is on the left of j in R.

• di,j(m, k) = |Li,j
k (m)|

Before analysing different rules under relaxed assumptions we first present some required combina-
torial results.

6.1 Useful combinatorial results

In this subsection we prove all the required lemma.

Lemma 3.

d(m, k) =

{
d(m− 1, k) + d(m, k − 1) if k ≤ m− 1
d(m− 1, k) + d(m− 1, k − 1) + . . .+ d(m− 1, k −m+ 1) if k ≥ m

Proof. Let (x1x2 . . . xm) ∈ Lk(m) be such a permutation. Now possible choices of x1 are 1, 2, . . . , k +
1.(when k ≤ m − 1) For x1 = 1, (x2, . . . , xm) has k discordant pairs with (2, . . . ,m). For x1 = 2,
(x2, . . . , xm) has k − 1 discordant pairs with (1, 3, 4, . . . ,m). Finally for x1 = k + 1, (x2, . . . , xm) has 0
discordant pairs with (1, 2, . . . , k, k + 2, . . . ,m). Hence,

d(m, k) = d(m− 1, k) + d(m− 1, k − 1) + . . .+ d(m− 1, 1) + d(m− 1, 0) = d(m− 1, k) + d(m, k − 1).

Now for k ≥ m, possible choices for x1 are 1, 2, . . . ,m. Hence the recursive relation becomes,

d(m, k) = d(m− 1, k) + d(m− 1, k − 1) + . . .+ d(m− 1, k −m+ 2) + d(m− 1, k −m+ 1).

Thus we get the following formula

d(m, k) =

{
d(m− 1, k) + d(m, k − 1) if k ≤ m− 1
d(m− 1, k) + d(m− 1, k − 1) + . . .+ d(m− 1, k −m+ 1) if k ≥ m

�

Corollary 1. d(m, k − 1) ≤ d(m, k) for all k ≤ 1
2

(
m
2

)
.

Lemma 4.

d′(m, k) =

{
d′(m− 1, k) + d′(m, k − 1) if k ≤ m− 1
d′(m− 1, k) + d′(m− 1, k − 1) + . . .+ d′(m− 1, k −m+ 1) if k ≥ m

Proof. For this proof we start with a permutation (x1x2 . . . xm) ∈ L′
k(m). A similar reasoning as the

previous proof leads to the result. �

Hence we get the same recursive relations. Now the initial values are also the same, viz.

d(1, 0) = 1 = d′(1, 0) for all m.

d(1, 1) = 0 = d′(1, 1) for all k > 0.

d(m, k) = 0 = d′(m, k) for any k < 0 or k >
(
m
2

)
.

So, d(m, k) = d′(m, k) for all m and for all k.

Corollary 2. Having k concordant pairs is the same as having
(
m
2

)
−k discordant pairs. Hence, d(m, k) =

d(m,
(
m
2

)
− k).
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Remark 1. Note that from Lemma 3 and Lemma 4 it is clear that d(m, k) ≥ d(m, k − 1) for all
k < 1

2

(
m
2

)
and d′(m, k) ≥ d′(m, k + 1) for all k > 1

2

(
m
2

)
. We also have that d(m, 1

2

(
m
2

)
) ≥ d(m, k) for all

k ∈ {1, 2, . . . ,
(
m
2

)
}.

Lemma 5. di,j(m, k) = dj,i(m,
(
m
2

)
− k)

Proof. For every preference R at distance k from R̂ there is a preference −R at distance k from −R̂.
Hence −R is at distance

(
m
2

)
− k from R̂. So, di,j(m, k) = d′

j,i
(m, k). As d′

j,i
(m, k) = d′

j,i
(m,

(
m
2

)
− k),

the result follows. �

Lemma 6. Di,j(m, k) = di,j(m, k)− dj,i(m, k) > 0 for all i < j, k < 1
2

(
m
2

)
.

Proof. We prove this by induction on m.

Step 1:(Base case)

For m = 2. Clearly Di,j(m, k) = 1 for k = 0.

Step 2: (Inductive step)

Now we assume that

Di,j(n, k) > 0 for some n ∈ N. (1)

We have to show that Di,j(n+ 1, k) > 0. We break the proof in different cases.

Case 1. j < n+ 1.

Consider a permutation x1, x2, . . . , xn+1 ∈ L
i,j
k (n+1). Suppose xn+1−l = n+1. In this permutation

n+1 contributes in l discordant pairs. So if we remove n+1 from the permutation we are left with
n numbers with k − l discordant pairs. l can take values 1, 2, . . . , n+ 1. Thus we get the following
recursive relation:

di,j(n+ 1, k) = di,j(n, k) + di,j(n, k − 1) + . . .+ di,j(n, k − n).

With the same line of argument we have

dj,i(n+ 1, k) = dj,i(n, k) + dj,i(n, k − 1) + . . .+ dj,i(n, k − n).

Hence,
Di,j(n+ 1, k) = Di,j(n, k) +Di,j(n, k − 1) + . . .+Di,j(n, k − n). (2)

In case k < 1
2

(
n
2

)
, applying equation 1 we directly have Di,j(n+ 1, k) > 0.

Now consider, 1
2

(
n
2

)
< k < 1

2

(
n+1
2

)
. Since, 1

2

(
n+1
2

)
− 1

2

(
n
2

)
= n

2 . In RHS of equation 2 out of

n + 1 terms, we can have at most n
2 terms with a k-argument more than 1

2

(
n
2

)
. But those terms

get cancelled out because of Di,j(n,
(
n
2

)
− k) = −Di,j(n, k) by Lemma 5. We are still left with

Di,j(n, k′) for at least one k′ < 1
2

(
n
2

)
and thus RHS > 0.

Case 2. j = n+ 1 and i > 1.

This case can be proved by similar arguments if we consider removing 1 from the permutations
instead of n+ 1.

Case 3. i = 1, j = n+ 1.

Now we need to show that D1,n+1(n + 1, k) > 0. Let y1, y2, . . . , yn+1 ∈ L
i,j
k (n + 1) be such a

permutation. Suppose yl1 = 1 and yln+1
= n+ 1. So, 1 contributes in l1 − 1 discordant pairs and

n + 1 contributes in n + 1 − ln+1. So, if we remove 1 and n + 1 from y1, y2, . . . , yn+1 we are left
with k− (l1 − 1)− (n+1− ln+1) = k− n+ ln+1 − l1. Hence as long as ln+1 − l1 remains the same
they will have the same effect after removing. Now possible choices for l1 and ln+1 are anything
but maintaining l1 < ln+1. Clearly 1 ≤ ln+1 − l1 ≤ n. For ln+1 − l1 = t, possible values for l1 are
1, . . . , n+1− t. So there are n+1− t cases with ln+1− l1 = t. Thus we have the following recursion
relation
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di,j(n+ 1, k) = d(n− 1, k) + 2d(n− 1, k − 1) + . . .+ nd(n− 1, k − n+ 1) (3)

Similar reasoning as above yields the following recursion relation

dj,i(n+ 1, k) = d(n− 1, k + 1− 2n) + 2d(n− 1, k + 2− 2n) + . . .+ nd(n− 1, k − n) (4)

Subtracting Equation 4 from Equation 3 we have

Di,j(n+ 1, k)

= [d(n− 1, k)− d(n− 1, k + 1− 2n)] + 2[d(n− 1, k − 1)− d(n− 1, k + 2− 2n)]

+ . . .+ n[d(n− 1, k − n+ 1)− d(n− 1, k − n)]

Now by Remark 1 we have Di,j(n + 1, k) > 0 as long as k < 1
2

(
n−1
2

)
. Now if k ≥ 1

2

(
m
2

)
we

consider the extreme case with k = ⌈ 1
2

(
n+1
2

)
⌉ − 1. Even then we have to check only the first

1
2

(
n+1
2

)
− 1

2

(
n−1
2

)
= n − 1

2 terms in the RHS of the above equation because rest of them are

positive directly by Remark 1. Now consider the extreme case when k = 1
2

(
n+1
2

)
. Notice that

d(n−1, k) = d(n−1, 1
2

(
n+1
2

)
) = d(n−1, 1

2

(
n
2

)
+n− 1

2 ) and d(n−1, k−(2n−1)) = d(n−1, 12
(
n+1
2

)
−

(2n− 1)) = d(n − 1, 12
(
n−1
2

)
+ n− 1

2 − (2n− 1)) = d(n − 1, 12
(
n−1
2

)
− (n− 1

2 )). From Remark 1 it
can be easily seen that d(n − 1, k) and d(n − 1, k − (2n − 1)) get cancelled out. Similarly all the
other terms with k > 1

2

(
n−1
2

)
get cancelled out. Again by remark 1 we are left with some positive

terms. This completes the proof.

�

Corollary 3. Di,j(m, k) = di,j(m, k)− dj,i(m, k) < 0 for all i < j, k > 1
2

(
m
2

)
.

Lemma 7. Let i, j, i′, j′ be such that i− j = i′ − j′. Then di,j(m, k) = di
′,j′(m, k) for all m and for all

k ∈ {0, 1, 2, . . . ,
(
m
2

)
}.

Proof. We prove this by induction on m.

Step 1:(Base case)

For m = 3. We have to show that d1,2(3, k) = d2,3(3, k) for all k = 0, 1, 2, 3.

k=0 d1,2(3, k) = 1 = d2,3(3, k)

k=1 d1,2(3, k) = 1 = d2,3(3, k)

k=2 d1,2(3, k) = 1 = d2,3(3, k)

k=3 d1,2(3, k) = 0 = d2,3(3, k)

Step 2: (Inductive step) Here we assume that

di,j(n, k) = di
′,j′(n, k) (5)

for some n and we have to show that di,j(n+1, k) = di
′,j′(n+1, k). We break the proof in different

cases.

Case 4. j < n+ 1.

Consider a permutation x1, x2, . . . , xn+1 ∈ L
i,j
k (n+1). Suppose xn+1−l = n+1. In this permutation

n+1 contributes in l discordant pairs. So if we remove n+1 from the permutation we are left with
n numbers with k − l discordant pairs. l can take values 1, 2, . . . , n+ 1. Thus we get the following
recursive relation:

di,j(n+ 1, k) = di,j(n, k) + di,j(n, k − 1) + . . .+ di,j(n, k − n).

Now for all j′ < n+ 1 from Equation 5 we have

di,j(n+ 1, k) = di
′,j′(n, k) + di

′,j′(n, k − 1) + . . .+ di
′,j′(n, k − n).
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So for j′ < n+ 1 we have di,j(n+ 1, k) = di
′,j′ (n+ 1, k).

Now for j′ = n + 1, i′ > 1(since, j < n + 1). By similar arguments as above we can derive the
formula for di

′,n+1 as follows, (if we consider removing 1 from the permutations instead of n+ 1.)

di
′,n+1(n+ 1, k) = di

′,n+1(n, k) + di
′,n+1(n, k − 1) + . . .+ di

′,n+1(n, k − n).

Thus in this case also we have di,j(n+1, k) = di
′,n+1(n+1, k), where i′ is such that i−j = i′−(n+1).

Case 5. i > 1.

This case is similar to the previous case the only difference being we start with removing 1 instead
of n+ 1.

Case 6. i = 1, j = n+ 1.

In this case we do not have any i′ 6= i and j′ 6= j satisfying i− j = i′ − j′.

Hence in all the above cases di,j(n+ 1, k) = di
′,j′(n+ 1, k).

This completes the proof. �

Lemma 8. Let i, j, i′, j′ be such that j − i < j′ − i′. Then di,j(m, k) ≤ di
′,j′(m, k) for all m and for all

k < 1
2

(
m
2

)
.

Proof. We prove this by induction on m.

Step 1:(Base case)

For m = 3. We have to show that d1,2(3, k) ≤ d1,3(3, k) and d2,3(3, k) ≤ d1,3(3, k), for all k = 0, 1.

k=0 d1,2(3, k) = 1 = d2,3(3, k) and d1,3(3, k) = 1.

k=1 d1,2(3, k) = 1 = d2,3(3, k) and d1,3(3, k) = 2.

Step 2: (Inductive step) Here we assume that

di,j(n, k) ≤ di
′,j′(n, k) (6)

for some n and we have to show that di,j(n+1, k) = di
′,j′(n+1, k). We break the proof in different

cases.

Case 7. j < n+ 1.

Consider a permutation x1, x2, . . . , xn+1 ∈ L
i,j
k (n+1). Suppose xn+1−l = n+1. In this permutation

n+1 contributes in l discordant pairs. So if we remove n+1 from the permutation we are left with
n numbers with k − l discordant pairs. l can take values 1, 2, . . . , n+ 1. Thus we get the following
recursive relation:

di,j(n+ 1, k) = di,j(n, k) + di,j(n, k − 1) + . . .+ di,j(n, k − n).

Now for all j′ < n+ 1 from Equation 6 we have

di,j(n+ 1, k) ≤ di
′,j′(n, k) + di

′,j′(n, k − 1) + . . .+ di
′,j′(n, k − n).

So for j′ < n+ 1 we have di,j(n+ 1, k) ≤ di
′,j′ (n+ 1, k).

Now for j′ = n + 1, i′ > 1(since, j < n + 1). By similar arguments as above we can derive the
formula for di

′,n+1 as follows, (if we consider removing 1 from the permutations instead of n+ 1.)

di
′,n+1(n+ 1, k) = di

′,n+1(n, k) + di
′,n+1(n, k − 1) + . . .+ di

′,n+1(n, k − n).

Thus in this case also we have di,j(n+1, k) ≤ di
′,n+1(n+1, k), where i′ is such that i−j = i′−(n+1).

Case 8. i > 1.

This case is similar to the previous case the only difference being we start with removing 1 instead
of n+ 1.
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Case 9. i = 1, j = n+ 1.

In this case we do not have any i′ 6= i and j′ 6= j satisfying i− j < i′ − j′.

Hence in all the above cases di,j(n+ 1, k) = di
′,j′(n+ 1, k).

This completes the proof. �

Corollary 4.

1. Let i, j, i′, j′ be such that j−i < j′−i′. Then dj,i(m, k) ≥ dj
′,i′(m, k) for all m and for all k < 1

2

(
m
2

)
.

2. Let i, j, i′, j′ be such that j−i < j′−i′. Then di,j(m, k) ≥ di
′,j′(m, k) for all m and for all k > 1

2

(
m
2

)
.

3. Let i, j, i′, j′ be such that j−i < j′−i′. Then dj,i(m, k) ≤ dj
′,i′(m, k) for all m and for all k > 1

2

(
m
2

)
.

Let dij(m, k) denote the number of permutations with exactly k discordant pairs and with i at the

jth position.

Lemma 9.
m∑

r=1

r(djr(m, k)− dir(m, k)) > 0

for all i < j and for all k < 1
2

(
m
2

)
.

Proof. It is easy to see that
∑m

r=1(m− r)dir(m, k) =
∑

l 6=i d
i,l(m, k). Now

m∑

r=1

(m− r)dir(m, k)−
m∑

r=1

(m− r)djr(m, k)

=
∑

l 6=i

di,l(m, k)−
∑

l 6=j

dj,l(m, k)

=
∑

l<i

(di,l(m, k)− dj,l(m, k)) +
∑

i<l<j

(di,l(m, k)− dj,l(m, k)) +
∑

l>j

(di,l(m, k)− dj,l(m, k))

Now we show that, Lemma 6,7,8 and Corollaries 3,4 implies above three sums are all negative. By
Corollary 4 we have di,l(m, k)−dj,l(m, k) > 0 for all l < i. By Lemma 8 we have di,l(m, k)−dj,l(m, k) > 0
for all l > j.

Suppose all the numbers between i and j are like following i < l1 < l2 < . . . < lt < j. By Lemma 7
di,l1(m, k) = dlt,j(m, k). By Lemma 6 dlt,j(m, k) > dj,lt(m, k). Hence di,l1(m, k) > dj,lt(m, k). Similarly
di,lu(m, k) > dj,lt+1−u(m, k). It is clear to see

∑
i<l<j(d

i,l(m, k) − dj,l(m, k)) > 0. This completes the
proof. �

Corollary 5. In case
(
m
2

)
is even, from Lemma 5 we have for k = 1

2 ,

∑

l<i

(di,l(m, k)− dj,l(m, k)) +
∑

i<l<j

(di,l(m, k)− dj,l(m, k)) +
∑

l>j

(di,l(m, k)− dj,l(m, k))

=
∑

l<i

(dl,i(m, k)− dl,j(m, k)) +
∑

i<l<j

(di,l(m, k)− dl,j(m, k)) +
∑

l>j

(di,l(m, k)− dj,l(m, k))

=
∑

l<i

dl,i(m, k) +
∑

i<l<j

di,l(m, k) +
∑

l>j

di,l(m, k)−
∑

l<i

dl,j(m, k)−
∑

i<l<j

dl,j(m, k)−
∑

l>j

dj,l(m, k)

= d(m, k)− d(m, k)

Hence,
∑m

r=1 r(d
j
r(m, k)− dir(m, k)) = 0.

Lemma 10.

dij(m, k) =





d(m− 1, k − j + 1) if i = 1
d(m− 1, k − i + 1) if j = 1∑i−1

l=1 d
i−1
j−1(m− 1, k − l+ 1)+∑min (k+1,m)

l=i+1 dij−1(m− 1, k − l + 1) if i 6= 1 and j 6= 1
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Proof. Let (x1x2 . . . xm) be such a permutation with k discordant pairs and with xj = i. Now possible
choices of x1 are 1, 2, . . . , i−1, i+1, . . . , k+1.(when k ≤ m−1) For x1 = 1, (x2, . . . , xm) has k discordant
pairs with (2, . . . ,m). But for this (x2, . . . , xm) permutation xj is playing the role of xj−1 if we consider
(x1, . . . , xm−1), and also i plays the role of i− 1 if we consider (1, . . . ,m− 1) instead of (2, . . . ,m). For
x1 = 2, (x2, . . . , xm) has k−1 discordant pairs with (1, 3, 4, . . . ,m). Similarly xj plays the role of xj−1 in
(x1, . . . , xm−1) and also i plays the role of i− 1 in (1, 3, 4, . . . ,m). The same thing goes on till x1 = i− 1.
After that when x1 = i+1, we again have xj playing the role of xj−1 in (x2, . . . , xm). But now i plays the
role of i itself in (1, 2, . . . , i, i+2, . . . ,m). This goes on till x1 = k+1. Finally for x1 = k+1, (x2, . . . , xm)
has 0 discordant pairs with (1, 2, . . . , k, k+2, . . . ,m), where xj plays the role of xj−1 and i plays the role
of i. Hence,

dij(m, k)

= di−1
j−1(m− 1, k) + di−1

j−1(m− 1, k − 1) + . . .+ di−1
j−1(m− 1, k − (i − 1) + 1)

+dij−1(m− 1, k − (i+ 1) + 1) + . . .+ dij−1(m− 1, 0)

Now for k ≥ m, possible choices for x1 are 1, 2, . . . , i − 1, i + 1, . . . ,m. Hence the recursive relation
becomes,

dij(m, k)

= di−1
j−1(m− 1, k) + di−1

j−1(m− 1, k − 1) + . . .+ di−1
j−1(m− 1, k − (i − 1) + 1)

+dij−1(m− 1, k − (i+ 1) + 1) + . . .+ dij−1(m− 1, k −m+ 1)

For i = 1, number 1 being at position j contributes to j−1 discordant pairs. So, (x1, . . . , xj−1, xj+1, . . . , xm)
has k − j + 1 discordant pairs with (2, . . . ,m). Hence,

d1j (m, k) = d(m− 1, k − j + 1).

For j = 1, number i contributes to i − 1 discordant pairs. So,(x2, . . . , xm) has k − i + 1 discordant
pairs with (1, . . . , i− 1, i+ 1, . . . ,m). Hence,

di1(m, k) = d(m− 1, k − i+ 1).

Thus we get the following formula

dij(m, k) =





d(m− 1, k − j + 1) if i = 1
d(m− 1, k − i+ 1) if j = 1∑i−1

l=1 d
i−1
j−1(m− 1, k − l + 1)+∑min (k+1,m)

l=i+1 dij−1(m− 1, k − l + 1) if i 6= 1 and j 6= 1

�

Lemma 11. d(m− 1, k− i+ 1)− d(m− 1, k− j + 1) ≥ 0 for all k ≤ kmax
i,j for all 1 ≤ i < j ≤ m, where

kmax
i,j = ⌈

(m−1

2 )+(i+j)−1

2 ⌉ − 1.

Proof. For all k, i such that k − i+ 1 ≤
(m−1

2 )
2 it trivially holds because of Remark 1. Also

kmax
i,j − i+ 1 =

(
m− 1

2

)
− (kmax

i,j − j + 1).

i < j implies kmax
i,j − i+ 1 > kmax

i,j − j + 1, therefore kmax
i,j − i+ 1 >

(m−1

2 )
2 > kmax

i,j − j + 1. Hence for all
(m2 )
2 ≤ k ≤ kmax

i,j , d(k − i+ 1) > d(k − j + 1). This completes the proof. �

Since these combinatorial results are based on permutations of a set with m numbers, m acts like a
parameter in these notations. Sometimes we drop the parameter m without creating confusion. Here
i < j ∈ R meaning that i is more preferred than j in preference R is the same as (i, j) ∈ R, which
essentially means i comes before j in permutation R.

Now we analyse behaviour of different rules under relaxed assumptions.
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6.2 Condorcet-like Rules

Pairwise preference rule depends on the pairwise majority comparisons. In general these comparisons
may yield cycles and rules therefore may differ in these situations: different pairwise rules break up
cycles in different ways. If , however, at a certain profile pairwise majority comparison yields a complete
strict and transitive ordering from overall winner (the Condorcet winner) to overall looser (the Condorcet
looser) then this is the outcome of all these rules at that profile.

For the next result we do not assume that frequencies at a particular distance from R̂ are the same.
Rather we want to see what happens to the previous result if we assume that f(R) > f(R′) where

δ(R̂, R) = k and δ(R̂, R′) =
(
m
2

)
− k. Then,

Theorem 4. Suppose there is a preference R̂ such that for all R and R′ with δ(R̂, R) = k and δ(R̂, R′) =(
m
2

)
− k we have f(R) > f(R′) for all k < 1

2

(
m
2

)
. And the distribution satisfies the following assumption

min
R:R∈Li,j(m,k)

f(R) + min
R:R∈Li,j(m,(m2 )−k)

f(R) ≥ max
R:R∈Lj,i(m,(m2 )−k)

f(R) + max
R:R∈Lj,i(m,k)

f(R)

for all x, y ∈ A and for all k < 1
2

(
m
2

)
. Then Pairwise majority rule selects R̂ as the outcome.

Proof. Let i < j ∈ R̂. The proof is similar to the last proof. So, we present the case when
(
m
2

)
is odd. 6

∑

R∈Li,j

f(R)− f(τi,jR)

=

(m2 )∑

k=0

{
∑

R:R∈Li,j(k)

f(R)−
∑

R:R∈Lj,i(k)

f(R)}

=

⌈ 1
2 (

m

2 )⌉−1∑

k=0

{
∑

R:R∈Li,j(k)

f(R)−
∑

R:R∈Lj,i(k)

f(R)}+

(m2 )∑

k=⌈ 1
2 (

m

2 )⌉

{
∑

R:R∈Li,j(k)

f(R)−
∑

R:R∈Lj,i(k)

f(R)}

=

⌈ 1
2 (

m

2 )⌉−1∑

k=0

∑

R:R∈Li,j(k)

f(R)−

(m2 )∑

k=⌈ 1
2 (

m

2 )⌉

∑

R:R∈Lj,i(k)

f(R)}

+

(m2 )∑

k=⌈ 1
2 (

m

2 )⌉

∑

R:R∈Li,j(k)

f(R)−

⌈ 1
2 (

m

2 )⌉−1∑

k=0

∑

R:R∈Lj,i(k)

f(R)

=

⌈ 1
2 (

m

2 )⌉−1∑

k=0

{
∑

R:R∈Li,j(k)

f(R)−
∑

R:R∈Li,j((m2 )−k)

f(R)}+

⌈ 1
2 (

m

2 )⌉−1∑

k=0

{
∑

R:R∈Li,j((m2 )−k)

f(R)−
∑

R:R∈Lj,i(k)

f(R)}

≥

⌈ 1
2 (

m

2 )⌉−1∑

k=0

{
∑

R:R∈Li,j(k)

min f(R)−
∑

R:R∈Lj,i((m2 )−k)

max f(R)}

+

⌈ 1
2 (

m

2 )⌉−1∑

k=0

{
∑

R:R∈Li,j((m2 )−k)

min f(R)−
∑

R:R∈Lj,i(k)

max f(R)}

=

⌈ 1
2 (

m

2 )⌉−1∑

k=0

{di,j(m, k) min
R:R∈Li,j(k)

f(R)− dj,i(m,

(
m

2

)
− k) max

R:R∈Lj,i((m2 )−k)
f(R)}

+

⌈ 1
2 (

m

2 )⌉−1∑

k=0

{di,j(m,

(
m

2

)
− k) min

R:R∈Li,j((m2 )−k)
f(R)− dj,i(m, k) max

R:R∈Lj,i(k)
f(R)}

6In case
(

m

2

)

is even for k = 1
2

(

m

2

)

, min
R:R∈Li,j(m, 1

2

(
m
2

)
)
f(R) + min

R:R∈Li,j(m, 1
2

(
m
2

)
)
f(R) ≥

max
R:R∈Lj,i(m, 1

2

(
m
2

)
)
f(R) + max

R:R∈Lj,i(m, 1
2

(
m
2

)
)
f(R). This implies f(R) is constant if δ(R̂,R) = 1

2

(

m

2

)

.
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=

⌈ 1
2 (

m

2 )⌉−1∑

k=0

{di,j(m, k) min
R:R∈Li,j(k)

f(R)− di,j(m, k) max
R:R∈Lj,i((m2 )−k)

f(R)}

+

⌈ 1
2 (

m

2 )⌉−1∑

k=0

{dj,i(m, k) min
R:R∈Li,j((m2 )−k)

f(R)− dyx
R̂
(k) max

R:R∈Lj,i(k)
f(R)}

=

⌈ 1
2 (

m

2 )⌉−1∑

k=0

{di,j(m, k)( min
R:R∈Li,j(k)

f(R)− max
R:R∈Lj,i((m2 )−k)

f(R))}

+

⌈ 1
2 (

m

2 )⌉−1∑

k=0

{dj,i(m, k)( min
R:R∈Li,j((m2 )−k)

f(R)− max
R:R∈Lj,i(k)

f(R))}

We know that di,j(m, k) > dj,i(m, k) for all k < 1
2

(
m
2

)
and di,j(m, k) = dj,i(m,

(
m
2

)
−k). By assumption

we have f(R) > f(R′) whenever δ(R̂, R) = k and δ(R̂, R′) =
(
m
2

)
− k. Hence the above expression is

positive and thus (x, y) ∈ F. Since the result holds for any i < j ∈ R̂, we can conclude that F (p) = R̂. �

The condition in the above theorem means that the minimum support in favor of i < j at distance
k plus distance

(
m
2

)
− k must be more than the maximum support in favor of j < i at distance k plus

distance
(
m
2

)
− k.

Corollary 6. Suppose we have a preference profile p̂, such that there is a preference R̂ such that f(k) >

f(
(
m
2

)
− k) for all distances k < 1

2

(
m
2

)
from R̂. Then pairwise majority rule chooses R̂ as the output.

Corollary 7. In general any distribution with min
k< 1

2 (
m

2 )
f(k) > max

k> 1
2 (

m

2 )
f(k)(where k is the distance

from R̂) will select R̂ as the output of pairwise majority rule. As a special case, any distribution which has
unimodal frequencies till 1

2

(
m
2

)
distance from the mode and after that all the frequencies have maximum

value at most the minimum frequency from the unimodal part of the distribution, pairwise rule will choose
the mode.

Corollary 8. Pairwise rule applied on a preference profile gives a particular output. So if there is a
preference R̂ such that f(k) > f(

(
m
2

)
− k) for all distances k < 1

2

(
m
2

)
from R̂, then that R̂ is unique.

Thus the distribution can be arranged in the above mentioned way in only one way.

6.3 Borda Rule

Now we are back at the case with constant frequencies at fixed distances. Let dir(m, k) be the number

of preferences at distance k from R̂ and with alternative i at rank r.

Lemma 12.

dir(m, k) = dim+1−r(m,

(
m

2

)
− k).

Proof. Any preference at distance k from R̂ has the same but opposite ordered preference counterpart
at distance k from −R̂. So a preference at distance k from R̂ which has alternative i at rank r, has a
counter preference in just the opposite order at distance k from −R̂. So, in that preference alternative
i has rank m + 1 − r. Hence, dir(m, k) = d′

i
m+1−r(m, k). Now we use the fact that d′

i
m+1−r(m, k) =

dim+1−r(m,
(
m
2

)
− k), which concludes the proof. �

Remark 2. From Lemma 9 we have

m∑

r=1

r(djr(m, k)− dir(m, k)) > 0

for all i < j and for all k < 1
2

(
m
2

)
. As,

∑m
r=1 d

i
r(m, k) = d(m, k) =

∑m
r=1 d

j
r(m, k), we have

m∑

r=1

(m− r)dir(m, k) >

m∑

r=1

(m− r)djr(m, k))

for all i < j and for all k < 1
2

(
m
2

)
. Thus Borda rule on Lk selects R̂ as the outcome for all k < 1

2

(
m
2

)
.
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Theorem 5. Suppose there is a preference R̂ such that f(k) > f(
(
m
2

)
− k) for all distances k < 1

2

(
m
2

)

from R̂. Then Borda rule picks R̂ as the outcome.

Proof. The proof is similar to the proof for Pairwise rule. So, we present the case when
(
m
2

)
is odd. Let

us denote the Borda score of an alternative i by BS(i). Then by definition

BS(i) =

(m2 )∑

k=0

(

m∑

r=1

(m− r)dir(m, k))f(k)

= m

(m2 )∑

k=0

(

m∑

r=1

dir(m, k))f(k)−

(m2 )∑

k=0

(

m∑

r=1

rdir(m, k))f(k)

= m

(m2 )∑

k=0

d(m, k)f(k)−

(m2 )∑

k=0

(

m∑

r=1

rdir(m, k))f(k)

Similarly we have

BS(j) = m

(m2 )∑

k=0

d(m, k)f(k)−

(m2 )∑

k=0

(

m∑

r=1

rdjr(m, k))f(k)

Hence,

BS(i)−BS(j)

=

(m2 )∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
f(k)

From Corollary 5 we have,
∑m

r=1 r(d
j
r(m, k)− dir(m, k)) = 0 for k = 1

2

(
m
2

)
if
(
m
2

)
is even 7, we have

BS(i)−BS(j)

=

1
2 (

m

2 )−1∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
f(k) +

(m2 )∑

k= 1
2 (

m

2 )+1

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
f(k)

From Lemma 12 we have that,

dir(m, k) = dim+1−r(m,

(
m

2

)
− k).

Thus, 8

BS(i)−BS(j)

=

1
2 (

m

2 )−1∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
f(k)

+

(m2 )∑

k= 1
2 (

m

2 )+1

{
m∑

r=1

r(djm+1−r(m,

(
m

2

)
− k)− dim+1−r(m,

(
m

2

)
− k))

}
f(k)

=

1
2 (

m

2 )−1∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
f(k) +

7In case
(

m

2

)

is an odd number we can split the sums as 0 ≤ k ≤ ⌈ 1
2

(

m

2

)

⌉ − 1 and ⌈ 1
2

(

m

2

)

⌉ ≤ k ≤
(

m

2

)

.
8Changing indexes in the summation term: k′ =

(

m

2

)

− k and r′ = m+ 1− r. But we replace the notations by k and r.
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1
2 (

m

2 )∑

k=0

{
m∑

r=1

(m+ 1− r)(djr(m, k)− dir(m, k))

}
f(

(
m

2

)
− k)

=

1
2 (

m

2 )−1∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
{f(k)− f(

(
m

2

)
− k)}

+(m+ 1)

1
2 (

m

2 )∑

k=0

{
m∑

r=1

(djr(m, k)− dir(m, k))

}
f(

(
m

2

)
− k)

=

1
2 (

m

2 )−1∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
{f(k)− f(

(
m

2

)
− k)}

+(m+ 1)

1
2 (

m

2 )∑

k=0

(d(m, k)− d(m, k))f(

(
m

2

)
− k)

=

1
2 (

m

2 )−1∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
{f(k)− f(

(
m

2

)
− k)}

applying Lemma 9, we have BS(i)−BS(j) > 0. Since the result holds for any i < j ∈ R̂, we can conclude

that F (p) = R̂. �

Now we will check whether Borda rule provides a result similar to pairwise rule with non-constant
frequencies at fixed distance.

The proof is similar to the proof for Pairwise rule. So, we present the case when
(
m
2

)
is odd. Let us

denote the Borda score of an alternative i by BS(i). Then by definition

BS(i) =

(m2 )∑

k=0

∑

R∈

f(k)

= m

(m2 )∑

k=0

(

m∑

r=1

dir(m, k))f(k)−

(m2 )∑

k=0

(

m∑

r=1

rdir(m, k))f(k)

= m

(m2 )∑

k=0

d(m, k)f(k)−

(m2 )∑

k=0

(

m∑

r=1

rdir(m, k))f(k)

Similarly we have

BS(j) = m

(m2 )∑

k=0

d(m, k)f(k)−

(m2 )∑

k=0

(

m∑

r=1

rdjr(m, k))f(k)

Hence,

BS(i)−BS(j)

=

(m2 )∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
f(k)

From Corollary 5 we have,
∑m

r=1 r(d
j
r(m, k)− dir(m, k)) = 0 for k = 1

2

(
m
2

)
if
(
m
2

)
is even 9, we have

BS(i)−BS(j)

9In case
(

m

2

)

is an odd number we can split the sums as 0 ≤ k ≤ ⌈ 1
2

(

m

2

)

⌉ − 1 and ⌈ 1
2

(

m

2

)

⌉ ≤ k ≤
(

m

2

)

.
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=

1
2 (

m

2 )−1∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
f(k) +

(m2 )∑

k= 1
2 (

m

2 )+1

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
f(k)

From Lemma 12 we have that,

dir(m, k) = dim+1−r(m,

(
m

2

)
− k).

Thus, 10

BS(i)−BS(j)

=

1
2 (

m

2 )−1∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
f(k)

+

(m2 )∑

k= 1
2 (

m

2 )+1

{
m∑

r=1

r(djm+1−r(m,

(
m

2

)
− k)− dim+1−r(m,

(
m

2

)
− k))

}
f(k)

=

1
2 (

m

2 )−1∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
f(k) +

1
2 (

m

2 )∑

k=0

{
m∑

r=1

(m+ 1− r)(djr(m, k)− dir(m, k))

}
f(

(
m

2

)
− k)

=

1
2 (

m

2 )−1∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
{f(k)− f(

(
m

2

)
− k)}

+(m+ 1)

1
2 (

m

2 )∑

k=0

{
m∑

r=1

(djr(m, k)− dir(m, k))

}
f(

(
m

2

)
− k)

=

1
2 (

m

2 )−1∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
{f(k)− f(

(
m

2

)
− k)}

+(m+ 1)

1
2 (

m

2 )∑

k=0

(d(m, k)− d(m, k))f(

(
m

2

)
− k)

=

1
2 (

m

2 )−1∑

k=0

{
m∑

r=1

r(djr(m, k)− dir(m, k))

}
{f(k)− f(

(
m

2

)
− k)}

applying Lemma 9 we have BS(i)−BS(j) > 0. Since the result holds for any i < j ∈ R̂, we can conclude

that F (p) = R̂.

6.4 Plurality Rule

Plurality rule counts(plurality score) the number of times an alternative comes at the top of agent’s
preferences and ranks the alternatives in the decreasing order of their plurality scores. Let pl(i) denote
the plurality score for alternative i. So,

pl(i) =

(m2 )∑

k=0

di1(m, k)f(k).

10Changing indexes in the summation term: k′ =
(

m

2

)

− k and r′ = m+ 1− r. But we replace the notations by k and r.
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Theorem 6. Suppose there is a preference R̂ such that f(k) > f(k + 1) for all k < kmax and f(k) <

f(kmax) for all k > kmax, where k is the distance from R̂ from R̂ and kmax = ⌈12
(
m−1
2

)
⌉+m− 2. Then

Plurality rule picks R̂ as the outcome.

Proof. Let i < j. We need to show that pl(i) > pl(j). Now,

pl(i)− pl(j) =

(m2 )∑

k=0

{
di1(m, k)− dj1(m, k)

}
f(k).

By lemma 10 we have

pl(i)− pl(j) =

(m2 )∑

k=0

{d(m− 1, k − i+ 1)− d(m− 1, k − j + 1)} f(k).

Let 0 ≤ ki,j ≤ k′i,j be two integers such that the following holds

ki,j − i+ 1 =

(
m− 1

2

)
− (k′i,j − j + 1)

For any such (ki,j , k
′
i,j) pair we have

ki,j + k′i,j =

(
m− 1

2

)
+ (i + j)− 2 (7)

Let kmax
i,j be the highest integer value of ki,j satisfying equation (7). Then kmax

i,j = ⌈
(m−1

2 )+(i+j)−2−1

2 ⌉ =

⌈
(m−1

2 )+(i+j)−1

2 ⌉ − 1. It is easy to see that kmax
i,j = kmax

j,i .

Since 3 ≤ i + j ≤ 2m− 1, the minimum value of kmax
i,j , i.e. min

i,j
kmax
i,j = kmin = ⌈

(
m−1
2

)
+ 2

2
⌉ − 1 =

⌈
1

2

(
m− 1

2

)
⌉. Similarly, max

i,j
kmax
i,j = kmax = ⌈

(
m−1
2

)
+ 2m− 2

2
⌉ − 1 = ⌈

1

2

(
m− 1

2

)
⌉+m− 2.

Suppose f(k) > f(k + 1) for all k < kmax and f(k) < f(kmax) for all k > kmax. Then for all i < j
we can break the sum as follows

pl(i)− pl(j)

=

(m2 )∑

k=0

{d(m− 1, k − i+ 1)− d(m− 1, k − j + 1)} f(k)

=

kmax
i,j∑

k=0

{d(m− 1, k − i+ 1)− d(m− 1, k − j + 1)} f(k) +

(m2 )∑

k=kmax
i,j

+1

{d(m− 1, k − i+ 1)− d(m− 1, k − j + 1)} f(k)

=

kmax
i,j∑

k=0

{d(m− 1, k − i+ 1)− d(m− 1, k − j + 1)} f(k) +

(m2 )∑

k=kmax
i,j +1

{
d(m− 1,

(
m− 1

2

)
− (k − i+ 1))− d(m− 1,

(
m− 1

2

)
− (k − j + 1))

}
f(k)

Case 1. If
(
m−1
2

)
+ (i+ j)− 2 is even

=

kmax
i,j∑

k=0

{d(m− 1, k − i+ 1)− d(m− 1, k − j + 1)} f(k) +

20



(m2 )∑

k=kmax
i,j

+1

{
d(m− 1, 2kmax

i,j − k − j + 1)− d(m− 1, 2kmax
i,j − k − i+ 1)

}
f(k)

=

kmax
i,j∑

k=0

{d(m− 1, k − i+ 1)− d(m− 1, k − j + 1)} f(k) +

kmax
i,j∑

k=0

{d(m− 1, k − j + 1)− d(m− 1, k − i+ 1)} f(2kmax
i,j − k)

=

kmax
i,j∑

k=0

{d(m− 1, k − i+ 1)− d(m− 1, k − j + 1)}
{
f(k)− f(2kmax

i,j − k)
}

> 0

Because by assumptions f(k) > f(k+1) for all k < kmax and f(k) < f(kmax) for all k > kmax and from
Lemma 11 we have d(m− 1, k − i+ 1)− d(m− 1, k − j + 1) ≥ 0 for all k ≤ kmax

i,j .

Case 2. If
(
m−1
2

)
+ (i+ j)− 2 is odd

=

kmax
i,j∑

k=0

{d(m− 1, k − i+ 1)− d(m− 1, k − j + 1)} f(k) +

(m2 )∑

k=kmax
i,j

+1

{
d(m− 1, 2kmax

i,j − k − j + 1)− d(m− 1, 2kmax
i,j − k − i+ 1)

}
f(k)

=

kmax
i,j∑

k=0

{d(m− 1, k − i+ 1)− d(m− 1, k − j + 1)} f(k) +

kmax
i,j −1∑

k=0

{d(m− 1, k − j + 1)− d(m− 1, k − i+ 1)} f(2kmax
i,j − k)

=

kmax
i,j −1∑

k=0

{d(m− 1, k − i+ 1)− d(m− 1, k − j + 1)}
{
f(k)− f(2kmax

i,j − k)
}
+

{
d(m− 1, kmax

i,j − i+ 1)− d(m− 1, kmax
i,j − j + 1)

}{
f(kmax

i,j )− f(2kmax
i,j − kmax

i,j )
}

> 0

Because by assumptions f(k) > f(k+1) for all k < kmax and f(k) < f(kmax) for all k > kmax and from
Lemma 11 we have that d(m− 1, k − i+ 1)− d(m− 1, k − j + 1) ≥ 0 for all k ≤ kmax

i,j .

Hence we have shown that pl(i) > pl(j). �
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6.5 Examples

In this subsection we show that conditions in Theorems 4,5,6 are not necessary. We consider a voting
scenario with three alternatives a, b and c. The preference distribution is given in the table below:

Preferences abc acb cab cba bca bac
Frequencies f(0) f(1) f(2) f(3) f(2) f(1)

Table 1: Frequency distribution with three alternatives

Thus we have the following table showing Pairwise comparisons.

Alternative
Alternative

a b c

a − f(0) + f(1) + f(2) f(0) + 2f(1)
b f(1) + f(2) + f(3) − f(0) + f(1) + f(2)
c 2f(2) + f(3) f(1) + f(2) + f(3) −

Table 2: Pairwise comparison

Example 6. Suppose that the following conditions are satisfied

1. f(0) > f(3),

2. f(2) > f(1),

3. f(0)− f(3) > 2(f(2)− f(1)).

Condition 3 does not comply with the conditions in Theorems 4,5. But, from Table 2 it is clear that
Condorcet-like rules and Borda rule ranks the alternatives as a ≻ b ≻ c as it was in the pivotal preference
abc.

Example 7. Suppose that the frequencies satisfy the following conditions:

1. f(0) > f(2),

2. f(1) > f(3),

3. f(1) < f(2).

Condition 3 does not comply with the conditions in Theorems 6. But plurality rule ranks the alternatives
as a ≻ b ≻ c as it was in the pivotal preference abc.

7 Conclusion

8 References

• The Strategy of Social Choice-By H. Moulin.

22


