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Abstract

A domain is dictatorial if the only strategy-proof and unanimous social choice func-

tion, defined on that domain, is dictatorial. Aswal et al. (2003) shows that if a domain

satisfies unique second condition, then it is not a dictatorial domain. In fact, single

peaked domains (Moulin (1980)) satisfy unique second condition and the existence of

non-dictatorial, strategy-proof and unanimous rules on these domains are well known.

In this paper, we restrict our attention to domains that do not satisfy unique second

condition. In particular, we introduce top inseparable domains and show that these

domains are not dictatorial. We identify a sub class of top inseparable domains as

maximal top inseparable domain. Our main result shows that maximal top insepara-

ble domains are maximal possibility domains.

Keywords. Social Choice Function, Strategy-proofness, Unanimity, Top-k inseparable do-

mains, Dictatorial Domains.

JEL codes. D71.

∗Anup Pramanik acknowledges financial assistance from JSPS KAKENHI - JP15K17021.
†ISBF, New Delhi, India. Address: 15A, Ring Road Lajpat Nagar IV, New Delhi -110 024. Email:

abhinabalahiri@gmail.com.
‡ISER, Osaka University, Japan. Address: 6-1 Mihogaoka, Ibaraki, Osaka, 567-0047. Email:

anup.isid@gmail.com.

1



1 Introduction

In strategic social choice, (Gibbard, 1973) and (Satterthwaite, 1975) have shown that under

the assumption unrestricted domain, the only strategy-proof and unanimous social choice

function is a dictatorial rule. This result critically depends on the assumption of unrestricted

domain. Whether by restricting the domain, one can design non dictatorial, strategy-proof

rules is a natural follow up question. Previous literature has shown that for some restricted

domains one can design non dictatorial strategy-proof rules (Moulin (1980), Barberà et al.

(1991)), and there are restricted domains where one cannot (Aswal et al. (2003), Pramanik

(2015), Sato (2010)). This paper also pursues a line of enquiry that challenges the assumption

of unrestricted domain.

A domain is defined to be dictatorial if the only strategy-proof and unanimous social

choice function, defined on that domain, is dictatorial. Aswal et al. (2003) shows that if a

domain satisfies unique second condition, then it is not a dictatorial domain. In fact, single

peaked domains (Moulin (1980)) and many other domains which are enlargement of single

peaked domain satisfy unique second condition (Ching and Serizawa (1998), Barberà et al.

(1999), Berga (2002)). The existence of non-dictatorial, strategy-proof and unanimous rules

on these domains are well known. In this paper, we restrict our attention to domains that

do not satisfy unique second condition. In particular, we introduce top inseparable domains

and show that these domains are not dictatorial.

For any subset B of the set of alternatives A, top-|B| inseparable domain is defined as

follows. For any ordering included in this domain for which the best ranked alternative is in

B, we have all the first |B| best alternatives according to this ordering should also be elements

of B. For example, suppose, the set of alternatives contain restaurants of several cuisine. Let

there be k Indian restaurants included in the set of alternatives. Then a top-k inseparable

domain will consists of orderings as follows. If an ordering has a Indian restaurant as top,

then all the k Indian restaurants will be the top k alternatives according to this ordering.

On the other hand if the ordering has some restaurant other than any Indian restaurants

as top, then there is no restriction on this ordering. We show that for any subset B of the

set of alternatives A, top-|B| inseparable domains are not dictatorial. Further we introduce

a notion of maximal top-|B| inseparable domains. Our main result shows that any domain

containing any maximal top-|B| inseparable domain is dictatorial.

There are many articles which study the maximal possibility domains (see Ching and

Serizawa (1998), Barberà et al. (1999), Berga (2002)). The common theme among them is

that they enlarge the well-known single-peaked domain to answer the maximal possibility

domain. The class of domains illustrated here, do not contain single peaked domain.

This paper is organised as follows. Section 2 introduces the notations and terminology.
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Section 3 contains the results. Section 4 concludes.

2 Basic notation and definitions

Let A be the finite set of alternatives/outcomes and N = {1, 2, . . . , n} be the finite set of

agents/individuals. We assume that |A| = m ≥ 3. For each i ∈ N , let Pi denote individual

i’s strict preference relation on A i.e. Pi is a linear order over A. Let P be the set of all

possible linear order over A. An admissible domain D is a subset of P i.e. D ⊆ P. A

preference profile P = (P1, . . . , Pn) ∈ Dn is an n-tuple of individual preference relations. A

preference profile P = (P1, P2, . . . , Pn) is also denoted by (Pi, P−i).

For any Pi ∈ D, let rk(Pi) denote the kth ranked alternative in Pi, where k ∈ {1, 2, . . . ,m}.
For any Pi ∈ D and any B ⊆ A, let Pi|B = (B ×B) ∩ Pi denote the preference Pi restricted

to B. As usual, let rl(Pi|B) denote the lth ranked alternative according to Pi restricted to

B, where l ∈ {1, 2, . . . , |B|}.

Definition 1. A social choice function (SCF) f is a mapping from Dn to A i.e. f : Dn −→
A.

In the following, we introduce two well-known properties of a SCF.

Definition 2. A SCF f : Dn −→ A satisfies unanimity if for any a ∈ A and any P ∈ Dn,

whenever r1(Pi) = a for all i ∈ N , we have f(P ) = a

Whenever individuals agree on their top ranked alternative, a unanimous SCF must select

that alternative.

Definition 3. A SCF f : Dn −→ A is strategy-proof if for any i ∈ N , for any P ∈ Dn and

for any P ′i ∈ D, we have f(P )Pif(P ′i , P−i) or f(P ) = f(P ′i , P−i).

A SCF is strategy-proof if no individual can obtain a preferred alternative by misrep-

resenting her preferences for any announcement of the preferences of the other individuals.

Strategy-proofness ensures that that for every agent truth-telling is a weakly dominant strat-

egy.

It is well-known that a dictatorial SCF satisfies both unanimity and strategy-proofness.

Definition 4. A SCF f : Dn −→ A satisfies dictatorship if there exists an individual i ∈ N

such that for any P ∈ Dn, we have f(P ) = r1(Pi).

A SCF f satisfies non-dictatorship if it does not satisfy dictatorship. The celebrated

Gibbard-Satterthwaite theorem tells us that we cannot design a SCF (defined on D = P),

3



which satisfies unanimity, strategy-proofness and non-dictatorship. Whether a domain re-

striction would allow us to design a unanimous, strategy-proof and non-dictatorial SCF, has

been a central question in this area of research.

Throughout this paper, we consider admissible domains that satisfy following richness

conditions.

Definition 5. An admissible domain D ⊆ P is minimally rich if for any a ∈ A, there exists

a linear order Pi ∈ D such that r1(Pi) = a.

Definition 6. An admissible domain D ⊆ P is rich if for any a ∈ A, there exist two distinct

linear order Pi, P
′
i ∈ D such that r1(Pi) = a and r2(Pi) 6= r2(P

′
i ).

Note that a domain is rich if and only if it is minimally rich and does not satisfy unique

second property (in Aswal et al. (2003)). Since dictatorial domains do not satisfy unique

second condition, therefore we can conclude that among the class of minimally rich domains,

all dictatorial domains are rich domain. However, richness does not imply dictatorship (see

examples in Pramanik (2015)). The formal definition of dictatorial domains is introduced

below.

Definition 7. Let f : Dn −→ A. If f satisfies unanimity and strategy-proofness implies f

satisfies dictatorship, then D is a dictatorial domain.

A domain is non dictatorial if it is not dictatorial. In this paper, we restrict our attention

to rich domains and our objective is to see where we can design non dictatorial strategy-proof

and unanimous rules among these domains and where we cannot. We conclude this section

by making the following remark.

Remark 1. If D is rich then it is minimally rich. However, the converse is not true. For

example, single peaked domains (Moulin (1980)), single peaked domains on a tree (Demange

(1982)), single crossing domains (Saporiti (2009)) and many other domains are minimally

rich, but not rich and the existence of non-dictatorial, strategy-proof and unanimous rules

on these domains are well known.

3 Results

In this section, among the class of rich domains, we introduce the top-k inseparable domains.

To that end, we provide the following definitions.

Definition 8. A rich domain D is top inseparable to the set of alternatives B, where ∅ 6=
B ⊆ A, if for any Pi ∈ D such that r1(Pi) ∈ B, we have {r1(Pi), r2(Pi), . . . , r|B|(Pi)} = B.
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Definition 9. A rich domain D is top-k inseparable if there exists a set of alternatives B,

where ∅ 6= B ⊆ A such that

(i). 3 ≤ |B| = k < m and

(ii). D is top inseparable to B,

Remark 2. Since we restrict our attention to rich domains, so these domains are minimally

rich by definition. Further, the justification behind the bounds on k is as follows. For cases,

where k ∈ {1,m}, every domain satisfies top-k inseparability. For the case where k = 2, no

rich domain satisfies top-k inseparability. Our objective here is to partition the class of rich

domains into dictatorial and non-dictatorial domains. So we impose the bounds on k.

Theorem 1. If a domain D is top-k inseparable, then it is not a dictatorial domain.

Proof. Let D be a top-k inseparable domain. So there exists a set of alternatives B, where

∅ 6= B ⊆ A such that 3 ≤ |B| = k < m and D is top inseparable to B. Fix two agents

i, j ∈ N . We define a SCF fB
i,j : Dn −→ A as follows.

fB
i,j(P ) =

{
r1(Pi) if r1(Pi) /∈ B

r1(Pj|B) if r1(Pi) ∈ B

Note that fB
i,j is unanimous. To see this consider any alternative a ∈ A and any profile P ∈ D

such that r1(Pm) = a for all m ∈ N . If a /∈ B, then it follows that fB
i,j(P ) = r1(Pi) = a.

Otherwise, if a ∈ B, then fB
i,j(P ) = r1(Pj|B) = r1(Pj) = a. This shows that fB

i,j satisfies

unanimity. Next, we show that fB
i,j is strategy-proof.

Proof of strategy-proofness of fB
i,j. Note that any agent other than i and j cannot affect fB

i,j.

So they cannot gain by unilaterally misreporting their preferences. Also agent j cannot affect

fB
i,j if r1(Pi) /∈ B. But when r1(Pi) ∈ B, fB

i,j(P ) is the top ranked alternative of agent j in B.

Note that agent j cannot change B. So it follows that agent j cannot gain by unilaterally

misreporting his preference. Now consider agent i. If r1(Pi) /∈ B, then fB
i,j(P )Pif

B
i,j(P

′
i , P−i)

for any P ′i ∈ D, as in this case fB
i,j(P ) = r1(Pi). Otherwise, suppose r1(Pi) ∈ B. Note that in

this case fB
i,j(P ) ∈ B. Now consider any P ′i ∈ D. If r1(P

′
i ) ∈ B, then fB

i,j(P ) = fB
i,j(P

′
i , P−i).

So suppose that r1(P
′
i ) /∈ B. This implies that fB

i,j(P
′
i , P−i) ∈ A \B. As D is top inseparable

to B and r1(Pi) ∈ B, it follows that fB
i,j(P )Pif

B
i,j(P

′
i , P−i).

This shows that fB
i,j is strategy-proof and concludes the proof of Theorem 1 as evidently

fB
i,j is not a dictatorial SCF.

Corollary 1. If a domain D is dictatorial, then it is not a top-k inseparable domain.
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Proof. Let D be a dictatorial domain. If D is a top-k inseparable domain, then we immedi-

ately contradict theorem 1. Therefore, D is not a top-k inseparable domain.

Definition 10. A domain D is maximal top-k inseparable if

(i). D is top-k inseparable and

(ii). for any Pi ∈ P \ D, D ∪ Pi is not a top-k inseparable domain.

In what follows, we provide some implications of a domain D, which is maximal top-k

inseparable.

Lemma 1. Let D be a maximal top-k inseparable domain. Also suppose that ∅ 6= B ( A be

such that D is top inseparable to B. Then for any Pi ∈ P such that r1(Pi) ∈ A \B, we have

Pi ∈ D.

Proof. Suppose for contradiction that Pi /∈ D for any Pi ∈ P such that r1(Pi) = a ∈ A \ B.

Note that as r1(Pi) ∈ A \ B, we have D ∪ {Pi} is top inseparable to B. This contradicts

the fact that D is a maximal top-k inseparable domain. This concludes the proof of Lemma

1.

Lemma 2. Let D be a maximal top-k inseparable domain. Then there exists a unique ∅ 6=
B ( A such that D is top inseparable to B.

Proof. As D is a maximal top-k inseparable domain, so there exists a ∅ 6= B ( A such that

D is top inseparable to B. Suppose for contradiction, that this B is not unique. So suppose

that there exists two non-trivial subsets B1, B2 of A such that D is top inseparable to both

B1 and B2 and B1 6= B2. Without loss of generality, assume that there exists two distinct

alternatives b1, b2 ∈ A such that b1 ∈ B1 \B2 and b2 /∈ B1. Now consider an ordering Pi ∈ P
such that r1(Pi) = b1 and r2(Pi) = b2. As r1(Pi) /∈ B2 and D is a maximal top-k inseparable

domain and D is top inseparable to B2, Lemma 1 implies that Pi ∈ D. Then the fact that

r1(Pi) ∈ B1 and r2(Pi) /∈ B1 and D is top inseparable to B1 implies that Pi /∈ D, which

contradicts the fact that Pi ∈ D and concludes the proof of Lemma 2.

Definition 11. A domain D is a possibility domain of order 1 if

(i). D is not a dictatorial domain and

(ii). for any Pi ∈ P \ D, D ∪ Pi is a dictatorial domain.

Definition 12. A domain D is a maximal possibility domain if

(i). D is not a dictatorial domain and
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(ii). for any D′ ⊆ P such that D ( D′, we have D′ is a dictatorial domain.

First we show a relation between a maximal possibility domain and a possibility domain

of order 1. in the following corollary.

Corollary 2. Restricted to minimally rich domains, any possibility domain of order 1 is

a maximal possibility domain.

Proof. Let D be a possibility domain of order 1. So for any Pi ∈ P \ D?, D? ∪ {Pi} is

dictatorial. Under our assumption, D is minimally rich. So, using Sanver (2007), it follows

that for any D′ ⊆ P such that D ( D′, we have D′ is a dictatorial. This concludes the proof

of Corollary 2.

This brings us to our main result.

Theorem 2. A maximal top-k inseparable domain is a maximal possibility domain.

In what follows, we will denote a maximal top-k inseparable domain by D?. Note that D?

is rich (minimally rich). To prove Theorem 2, we first show that for any Pi ∈ P\D?, we have

D? ∪ {Pi} is a dictatorial domain. From Theorem 1, it follows that D? is not a dictatorial

domain. Then, using Corollary 2, we can conclude that D? is a maximal possibility domain.

First, we introduce the following well known result.

Corollary 3. Let Ω ⊂ P be a minimally rich domain. Then, the following two statements

are equivalent:

a. f : Ω2 −→ A is strategy-proof and satisfies unanimity =⇒ f is dictatorial.

b. f : Ω|N | −→ A is strategy-proof and satisfies unanimity =⇒ f is dictatorial, |N | ≥ 2.

Proof. See Aswal et al. (2003).

Note that D? is minimally rich. Then in view of Corollary 3 it is sufficient to show that

for any Pi ∈ P \ D?, we have D? ∪ {Pi} is a dictatorial domain assuming |N | = 2.

Proof of Theorem 2. As D? is a maximal top-k inseparable domain, then Lemma 2 implies

that there exists a unique non-trivial subset B of A, such that D? is top inseparable to B.

Lemma 1 implies that D? is a minimally rich domain. As we restrict our attention to only

rich domains, it follows that k ≥ 3. Also it follows that for any Pi /∈ D?, we have the

following.

i. r1(Pi) := a ∈ B. Follows from Lemma 1.
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ii. r1(Pi|A\B) := x?Pia
? := rk(Pi|B). Follows from the fact that D? is a maximal top-k

inseparable domain.

We are going to show that for any Pi /∈ D?, D? ∪ {Pi} is a dictatorial domain for |N | = 2.

In other words, let f : D? ∪ {Pi}2 −→ A be a strategy-proof and unanimous SCF. Then we

are going to show that f is a dictatorial rule.To this end, we introduce the following notions.

We define an agent i ∈ N to be decisive over an alternative a ∈ A at any SCF ϕ : D2 −→ A,

if for all profile P such that r1(Pi) = a, we have ϕ(P ) = a. It follows that if an agent i is

decisive over all alternatives in A at any SCF ϕ, then ϕ is a dictatorial rule and agent i is

the dictator. In what follows, we are going to show that there exists an agent i ∈ N , who

is decisive over all alternatives in A at the SCF f . First consider a sub-domain D′ of D? as

follows.

D′ = {Pi ∈ D? : r1(Pi) ∈ B}.

Let g : D′2 −→ A be an SCF defined as g(P ) = f(P ). As f is strategy-proof and unanimous

and D′ ⊂ D?, it follows that g is strategy-proof and unanimous. Next, we show that R(g) =

{a ∈ A : there exists P ∈ D′2 with g(P ) = a} = B. Suppose for contradiction that, for

some P ∈ D′2, we have g(P ) /∈ B. Now consider another profile (P ′i , P−i) ∈ D′2 such

that r1(P
′
i ) = r1(P−i). As g satisfies unanimity, so g(P ′i , P−i) = r1(P−i) ∈ B. The last

inclusion follows from the fact that P ∈ D′2. Now Pi ∈ D′ and g(P ) /∈ B implies that

g(P ′i , P−i)Pig(P ), which is a violation of strategy-proofness of g. So it follows that R(g) = B,

i.e., |R(g)| = k ≥ 3. As g is strategy-proof and unanimous, Gibbard (1973) and Satterthwaite

(1975) implies that g is a dictatorial rule. Let agent 1 ∈ N be the dictator. Also as |N | = 2,

let the other agent be denoted by 2. In what follows, we show that agent 1 is decisive for all

alternatives a ∈ A at f . To this end, we consider the following cases.

Case 1 a ∈ B : Here we consider the following two subcases.

Sub case 1 a = a? : In this case, we define the following orderings.
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P 1
i P 1

j P ′i P ′j
r1() a? a1 a? x?

r2() a
...

...
...

...
...

...
...

...
...

...
...

...
...

rk()
... a?

...
...

rk+1()
...

... x? ...
...

...
...

...
...

...
...

...
...

...

rm()
...

...
... a?

Here a1 is any alternative in B. Note that as D? maximal top-k inseparable

domain, so it follows that P 1
i , P

1
j , P

′
i , P

′
j ∈ D?. In particular, P 1

i , P
1
j , P

′
i ∈ D′.

Now consider the profile P ∈ D? ∪ {Pi}2 such that P1 = P 1
i and P2 = P 1

j . As

P 1
i , P

1
j ∈ D′, g(P ) = a?. This follows from the fact that agent 1 is the dictator in

g. So, it follows that f(P ) = a?. Now consider another profile P ′ ∈ D? ∪ {Pi}2

such that P ′1 = P1 = P 1
i and P ′2 = Pi. Note that r1(Pi) = a. We are going to show

that f(P ′) ∈ {a?, a}. Suppose for contradiction, that f(P ′) ∈ A \ {a?, a}. Note

that aP 1
i f(P ′) for any f(P ′) ∈ A \ {a?, a}. Then we have a violation of strategy-

proofness, as a = f(Pi, Pi)P
1
i f(P ′). Here f(Pi, Pi) = a follows from unanimity of

f . So it follows that f(P ′) ∈ {a?, a}. Note that P 1
j ∈ D′ and rk(P 1

j ) = a?. So it

follows that aP 1
j a

?. Then strategy-proofness for the deviation from P to P ′ implies

that f(P ′) 6= a. Hence f(P ′) = a?. Now, consider another profile P ∈ D? ∪ {Pi}2

such that P 2 = P ′2 = Pi and P 1 = P ′i . As f(P ′) = a?, strategy-proofness for

the deviation from P ′ to P implies that f(P ) = a?. Finally consider the profile

P ? ∈ D? ∪ {Pi}2 such that P ?
1 = P 1 = P ′i and P ?

2 = P ′j . Note that a? = rk(Pi|B).

So it follows that bPia
? for all b ∈ B\{a?}. So strategy-proofness for the deviation

from P to P ? and f(P ) = a? implies that f(P ?) /∈ B \ {a?}. Next we show that

f(P ?) /∈ (A\B)\{x?}. So, suppose for contradiction that f(P ?) ∈ (A\B)\{x?}.
Note that x?P ′i b for any b ∈ (A \ B) \ {x?}. This contradicts strategy-proofness

as x? = f(P ′j , P
′
j)P

′
if(P ?), where f(P ′j , P

′
j) = x? follows from unanimity of f . So

it follows that f(P ?) /∈ (A \B) \ {x?}. Combining, we have f(P ?) ∈ {a?, x?}. As

x?Pia
? and f(P ) = a?, then strategy-proofness for the deviation from P to P ?

implies that f(P ?) = a?. Then strategy-proofness implies that f(P ) = a? for any

P ∈ D? ∪ {Pi}2 such that r1(P1) = a?. So we can conclude that agent 1 is decisive

for a? at f .
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Sub case 2 a ∈ B \ {a?} : In this case, we define the following orderings.

P 1
i P 1

j P 2
j

r1() a a2
...

r2() a?
...

...
...

...
...

...
...

...
...

...
...

...
...

...

rm−1()
... a a?

rm()
... a? a

Here a2 is any alternative in A\B. Note that as D? maximal top-k inseparable do-

main, so it follows that P 1
i , P

1
j , P

2
j ∈ D?. Now consider the profile P ∈ D? ∪ {Pi}2

such that P1 = P 1
i and P2 = P 1

j . As agent 1 is decisive for a? at f , strategy-

proofness implies that f(P ) ∈ {a, a?}. Suppose f(P ) = a?. Then there is a

violation of strategy-proofness as a = f(P 1
j , P

1
j )P 1

i f(P ). Here f(P 1
j , P

1
j ) = a fol-

lows from unanimity of f . So it follows that f(P ) = a. Next, consider the profile

P ′ ∈ D? ∪ {Pi}2 such that P ′1 = P1 = P 1
i and P ′2 = P 2

j . As f(P ) = a, strategy-

proofness for the deviation from P to P ′ implies that f(P ′) ∈ {a, a?}. Suppose

f(P ′) = a?. This contradicts strategy-proofness as f(P ′) = a?P 3
j f(P 1

i , P
3
j ) = a,

where P 3
j ∈ D? is such that r1(P

3
j ) = a?. This follows form the fact that

(P 1
i , P

3
j )D′2 and we have shown that f(P 1

i , P
3
j ) = g(P 1

i , P
3
j ) = r1(P

1
i ) = a 6= a?.

So, we have f(P ′) = a. Then strategy-proofness implies that f(P ) = a for any

P ∈ D? ∪ {Pi}2 such that r1(P1) = a. So we can conclude that agent 1 is decisive

for a at f .

From these subcases, it follows that agent 1 is decisive for all alternatives in B at f .

Case 2 a ∈ A \B : Here we consider the following two sub cases.

Sub case 1 a = x? : In this case, we define the following orderings.

P 1
i P 2

i P 1
j

r1() x? x? a

r2() a? a
...

...
...

...
...

...
...

...
...

...
...

...
...

rm()
...

... x?
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Note that as D? maximal top-k inseparable domain, so it follows that P 1
i , P

2
i , P

1
j ∈

D?. Now consider the profile P ∈ D? ∪ {Pi}2 such that P1 = P 1
i and P2 = Pi. As

agent 1 is decisive for a? at f , so strategy-proofness implies that f(P ) ∈ {x?, a?}.
Suppose f(P ) = a?. Then we have a violation of strategy-proofness as x? =

f(P 1
i , P

1
i )Pif(P ) = a?. Here f(P 1

i , P
1
i ) = x? follows from unanimity of f . So

it follows that f(P ) = x?. Now consider the profile P ′ ∈ D? ∪ {Pi}2 such that

P ′1 = P 2
i and P ′2 = P2 = Pi. As x? = r1(P

1
i ) = r1(P

2
i ), strategy-proofness and

f(P ) = x? implies that f(P ′) = x?. Finally consider the profile P ? ∈ D? ∪ {Pi}2

such that P ?
1 = P ′1 = P 2

i and P ?
2 = P 1

j . As f(P 1
j , P

1
j ) = a by unanimity of f , it

follows that f(P ?) ∈ {a, x?} by strategy-proofness. Suppose that f(P ?) = a. This

contradicts strategy-proofness as a = f(P ?)Pif(P ′) = x?. So we have f(P ?) = x?.

Then strategy-proofness implies that f(P ) = x? for any P ∈ D? ∪ {Pi}2 such that

r1(P1) = x?. So we can conclude that agent 1 is decisive for x? at f .

Sub case 2 a ∈ (A \B) \ {x?} : In this case, we define the following orderings.

P 1
i P 1

j P 2
i P 2

j

r1() a a3 a a3

r2() x? ... a3
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

rk−1()
... a

... x?

rm()
... x? ... a

Here a3 is any alternative in A. Note that as D? maximal top-k inseparable

domain, so it follows that P 1
i , P

2
i , P

1
j , P

2
j ∈ D?. Now consider the profile P ∈

D? ∪ {Pi}2 such that P1 = P 1
i and P2 = P 1

j . As agent 1 is decisive for x? at f , so

strategy-proofness implies that f(P ) ∈ {a, x?}. Suppose f(P ) = x?. This violets

strategy-proofness as a = f(P 1
i , P

1
i )P 2

j f(P ) = x?. Here f(P 1
i , P

1
i ) = a follows

from unanimity of f . So it follows that f(P ) = a. Now consider the profile

P ′ ∈ D? ∪ {Pi}2 such that P ′1 = P 2
i and P ′2 = P2 = P 1

j . As a = r1(P
1
i ) = r1(P

2
i ),

strategy-proofness and f(P ) = a implies that f(P ′) = a. Finally consider the

profile P ? ∈ D? ∪ {Pi}2 such that P ?
1 = P ′1 = P 2

i and P ?
2 = P 2

j . As f(P ′) = a,

strategy-proofness for the deviation from P ′ to P ? implies that f(P ?) ∈ {a, x?}.
Suppose f(P ?) = x?. This violets strategy-proofness as a3 = f(P 2

j , P
2
j )P 2

i f(P ?) =

x?. Here f(P 2
j , P

2
j ) = a3 follows from unanimity of f . So we have f(P ?) = a.

Then strategy-proofness implies that f(P ) = a for any P ∈ D? ∪ {Pi}2 such that
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r1(P1) = a. So we can conclude that agent 1 is decisive for a at f .

From these subcases, it follows that agent 1 is decisive for all alternatives in A \ B at

f .

Combining this cases, it follows that agent 1 is decisive for all alternatives in A at f . This

shows that if agent 1 is the dictator in g, then agent 1 is the dictator in f . Similarly we

can show that if agent 2 is the dictator in g, then agent 2 is the dictator in f . Then we can

conclude, using Corollary 3, that D?∪{Pi} is a dictatorial domain. This concludes the proof

of Theorem 2.

4 Conclusion

In this paper, we introduce the notion of a top-|B| inseparable domain for any B ⊂ A. We

show that such domains are not dictatorial. Further, we introduce the notion of maximal

top-|B| inseparable domain for any B ⊂ A. We show that any domain, which is a super set

of the maximal top-|B| inseparable domain for any B ⊂ A, is dictatorial.
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