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1 Introduction

This paper studies the interaction between dynamic traffic congestion and urban spa-

tial equilibrium, formulating a model that is a straight unification of the Vickrey (1969)

bottleneck model and the Alonso (1964) monocentric city model. It leads to conclusions

that contradict the conclusions based on monocentric city models with static congestion,

showing that it is indeed important to take congestion dynamics into account.

Our model is an extension of both the Vickrey and the Alonso models. The Vickrey

(1969) bottleneck model, later formalized by Arnott, de Palma, Lindsey (1990, 1993),

has become a workhorse for the economic analysis of traffic congestion. We extend

this standard bottleneck model by incorporating spatial heterogeneity of commuters and

endogenous urban equilibrium. At the same time, our model is an extension of the

monocentric city model, developed by Alonso (1964), Muth (1967), and Mills (1972).

We extend it by incorporating the consumer’s commute scheduling problem and dynamic

traffic congestion.

The timing of traffic plays no role in static congestion models, but takes the centre

stage in dynamic congestion models. They take into account that real traffic congestion

is dynamic in the sense that traffic flows at some point in time affects later flows through

the persistence of queues. To capture the dynamic nature of traffic congestion, Vickrey

(1969) considered a bottleneck with a fixed capacity that commuters must pass to arrive

at the destination. Commuters with identical scheduling preferences choose their optimal

departure time from home. Then congestion arises in equilibrium since it is impossible

for all commuters to pass the bottleneck at the same time. The queue can, however, be

eliminated by the imposition of an appropriate time-varying toll.

The Vickrey bottleneck, however, model misses an important aspect of urban traffic

congestion, namely space. In particular, the Vickrey formulation of scheduling preferences

is additively separable in trip duration and arrival time and linear in trip duration. So,

distance to the bottleneck does not matter for the Vickrey analysis of how travelers choose

their arrival times at the bottleneck. In reality, however, trip distance may matter for

a commuter’s timing of trips. For example, a commuter located farther from the center
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may have to depart earlier from home to arrive at the destination at his preferred time

than commuters at nearby locations, who travel shorter distances. Congestion dynamics

at the bottleneck will then be influenced by the spatial distribution of commuters in the

city.

It is only recently that research has recognized the importance of spatial heterogeneity

of commuters in the congestion dynamics. Fosgerau and de Palma (2012) incorporate

spatial heterogeneity of commuters in the bottleneck model and show how congestion

dynamics at the bottleneck are influenced by the spatial distribution of population in the

city. Arnott and DePalma (2011) consider a traffic corridor with dynamic flow conges-

tion, that connects a continuum of residential locations to the central business district.

Tsekeris and Geroliminis (2013) incorporate an empirical relationship between traffic

flow and traffic density, which includes hypercongestion, to analyze how a city’s road

network and spatial structure influence congestion dynamics. Nevertheless, these models

are incomplete because they take the population density to be exogenous.

We use the monocentric city framework developed by Alonso (1964), Muth (1969),

and Mills (1972) to incorporate spatial heterogeneity of commuters into the bottleneck

model. Specifically, we consider a monocentric city, where the entrance to the central

business district is a bottleneck, which is the same spatial structure as in Fosgerau and de

Palma (2012). Unlike in Fosgerau and de Palma (2012), however, the spatial distribution

of commuters is endogenous in our model. To endogenize the urban spatial equilibrium,

the consumer is assumed to not only choose the timing of commute trips but also to

choose housing consumption and residential location. With the resulting endogeneity of

population density, we obtain a firmer microeconomic foundation for commute schedul-

ing equilibrium. From the monocentric model framework, we obtain the link between

transport costs and commuters’ location and housing consumptions choices, which is the

key component generating the regularities of the urban spatial structure in the standard

urban models. This framework also allows us to investigate how the city at laissez-faire

equilibrium diverges from the socially optimal city, where congestion externalities are

corrected by imposition of an appropriate congestion toll.
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The urban economics literature has long been concerned with how the urban land mar-

ket interacts with traffic congestion, with a particular aim of comparing laissez-faire and

optimal land-use patterns (Solow and Vickrey, 1971; Riley, 1974; Arnott, 1979; Wheaton,

1998) or evaluating the efficacy of the first-best and alternative second-best anti-sprawl

policies (Anas and Rhee, 2006; Brueckner, 2007). These classical congested-city models

mostly adopt a static congestion framework, where congestion at a location depends just

on the number of commuters passing, regardless of the timing. The interactions between

traffic congestion and the spatial distribution of population in the city are incorporated,

but these models nevertheless do not capture the dynamic nature of urban traffic con-

gestion. Moreover, the commuter’s scheduling problem is ignored in these models, which

implies that the optimal congestion tolls are effectively imposed on residential location,

not on the timing of commute trips. In contrast, the toll is based on the timing of trips in

our model, which allows us to investigate the effect of the optimal time-varying congestion

toll on the urban spatial structure.

There have been a few attempts similar to ours. Ross and Yinger (2000) were proba-

bly the first to incorporate the consumer’s scheduling problem in the monocentric model

framework. Unlike in our model, however, they consider flow congestion that depends

both on population density at each location and departure times of residents. Unfor-

tunately, their model is not very tractable and fails to generate a realistic equilibrium

solution.1 Gubins and Verhoef (2014) obtain a more realistic equilibrium solution by

adopting the bottleneck model framework in the same spatial structure as ours. Like us,

Gubins and Verhoef (2014) specify consumer preferences requiring that scheduling pref-

erences are not separable from housing consumption preferences. But, unlike us, their

specification of scheduling preferences is separable in trip duration and the time of arrival

at work. To achieve non-separability between scheduling and housing preferences, they

add a new term in utility that lets the marginal utility from housing consumption in-

crease with time spent at home. In our model, we avoid such ad hoc elements, employing

simply scheduling preferences that are not separable in trip duration and arrival time.

1The only solvable equilibrium in their model is a never-ending rush hour.
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Our model is thus more parsimonious. Moreover, Gubins and Verhoef (2014) rely on

simulation to obtain results, while our general framework allows us to obtain a range of

analytical results.

The present analysis first characterizes urban spatial structure and commute schedul-

ing outcomes in laissez-faire equilibrium. We find that the spatial variation in housing

prices and population density is qualitatively the same as in the standard monocentric

model. We then find that travelers arrive at the bottleneck in sequence sorted according

to trip distance, so that residents located farther away arrive at the bottleneck later than

those located closer to the center. This sorting property links the congestion dynamics

at the bottleneck to the spatial distribution of population in the city.

After analyzing laissez-faire, we investigate the social optimum, achieved by the im-

position of an appropriate congestion toll on commuters. Toll revenues are not returned

to commuters. The analysis shows that residents tend to arrive at the destination earlier

in social optimum than under laissez-faire. As a result of the shift in arrival schedules,

residents located at some distant locations attain a lower commuting cost in social opti-

mum than under laissez-faire while the central residents incur a higher commuting cost

under tolling. By changing the commuting cost at different locations in this way, the

socially optimal toll pushes the central residents to the suburbs, generating a city that

is less dense in the center and more dense further out compared to a city in laissez-faire

equilibrium.

The effect of optimal tolling on urban spatial structure in our model differs from

the effect found in two groups of previous studies. First, our result differs from that in

the standard bottleneck setup considered in Arnott (1998), where tolling has no effect on

location incentives due to the fact that it does not alter anyone’s commuting cost. Second,

our result is in stark contrast to that in the traditional congested-city models adopting

the static congestion assumption (e.g., Wheaton (1998), Brueckner (2007)). Since the

external congestion cost increases with commute distance in these models, the optimal

toll tends to make the city more dense and compact.

The paper is organized as follows. In Section 2, we set up the model and investigate
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the urban spatial equilibrium. In Section 3, we investigate the trip scheduling equilibrium

under the laissez-faire policy of no tolls. In Section 4, we consider the socially optimal

toll and investigate the equilibrium under this policy. In Section 5, we illustrate the equi-

librium numerically, with and without optimal tolling, and carry out some comparative

static analyses using numerical illustration. Finally, Section 6 concludes. Proofs of the

analytical results are given in the appendix.

2 The model

We begin by presenting the setup of the bottleneck model with spatial heterogeneity

of commuters, which is the framework suggested by Fosgerau and de Palma (2012).

We then incorporate the commuter’s scheduling problem into the monocetric model and

derive some basic results regarding the urban spatial equilibrium.

2.1 A bottleneck model with spatially heterogeneous com-

muters

The city is linear with a width of unity and contains a central business district (CBD)

at its left end where all employment takes place. The city is open and its length is infinite,

so there is no spatial boundary. The CBD has no physical extension. Commuters are

city residents and live outside the CBD. The distance from a residence to the CBD is

denoted x and is measured in time units. Travel speed is constant outside the CBD and

hence x is also a measure of the spatial distance between the residence and the CBD.

The number of residents within distance x is denoted F (x) and the derivative f(x) =

F ′ (x) is the density of residents at distance x. The minimum distance of residents is

x0. Unlike in Fosgerau and de Palma (2012), the distribution of residents on distance is

endogenous in our model.

The entrance to the CBD is a bottleneck, which also has no physical extension. Every

commuter must pass the bottleneck in order to enter the CBD. A commute schedule is

described as follows. The commuter departs from home at time d and arrives first at the
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Figure 1: Commute schedule
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bottleneck at time a. There, he may experience some bottleneck delay before he arrives

at his destination in the CBD at some later time t. A commuter located at distance x and

departing at time d will arrive at the bottleneck at time a = d + x. The total commute

time from home to the destination is the sum of travel time from home to the bottleneck,

x, and the delay in the bottleneck, t− a. Figure 1 depicts the commute schedule.2

The bottleneck has a capacity of ψ persons per time unit. Congestion arises at the

bottleneck when the rate at which travelers arrive at the bottleneck exceeds its capacity.

To describe the congestion technology, denote by a0 the time of the first arrival at the

bottleneck and assume that arrivals take place at the time-varying rate ρ(·). The number

of travelers who have arrived at the bottleneck location by time a is then given by

R(a) ≡
∫ a
a0
ρ(s)ds. Denoting by aq0 the most recent time before time a when there was

no queue, an individual who arrives at the bottleneck at time a arrives at the destination

at time t(a), where t(a) = aq0 +
R(a)−R(aq0)

ψ
, since it takes

R(a)−R(aq0)
ψ

time units for the

preceding R(a)−R (aq0) travelers to pass the bottleneck.

Commuters have identical preferences regarding the timing of their commute, ex-

pressed by a cost function c (d, t). Following Fosgerau and de Palma (2012), we only

2The commute schedule in this model is different from that in the standard bottleneck model, where
x is set to zero for all commuters, so that d = a, implying that the commuter arrives at the bottleneck
immediately after the departure.
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impose weak assumptions on c(d, t). We assume that c(d, t) is twice continuously dif-

ferentiable with c1 < 0 and c2 > 0, meaning that commuters prefer to depart later and

arrive earlier, ceteris paribus. Note that c(d, t) includes a travel-time-cost component,

although we frequently refer it simply as “scheduling cost”. We also assume that c(d, t)

is strictly convex and satisfies the following conditions regarding the second derivatives:

Condition 1 ∀ d ≤ t, c11(d, t)− c1(d,t)
c2(d,t)

c12(d, t) > 0

Condition 2 ∀ d ≤ t, c12(d, t)− c1(d,t)
c2(d,t)

c22(d, t) > 0

Condition 3 ∀ d ≤ t, c11(d, t) + c12(d, t) > 0

Condition 4 ∀ d ≤ t, c12(d, t) + c22(d, t) > 0

Condition 1 ensures that the substitution rate −c1(d, t)/c2(d, t) decreases with d. Note

that under (Vickrey, 1969; Small, 1982) α − β − γ preferences, −c1(d, t)/c2(d, t) would

take only two values, with a higher value for earlier departures and a lower value for later

departures. In the present case, −c1(d, t)/c2(d, t) varies continuously. Under Condition

2, −c1(d, t)/c2(d, t) decreases also with arrival time (t).3 Conditions 3 and 4 together

ensure that c(a− x, a) is convex as a function of a, so their combination is stronger than

convexity; we assume that c(a − x, a) attains minimum for any x and these minima are

unique by convexity.

In essence, our cost function c(d, t) generalizes the conventional α− β − γ scheduling

cost used in Vickrey (1969) and Small (1982).4 It is, however, not a strict generalization

since α− β − γ preferences are piecewise linear whereas c(d, t) is strictly convex.

It is now convenient to write the scheduling cost in terms of the arrival time at the

bottleneck (a). First, write the arrival time at the destination t as a function of the arrival

time at the bottleneck a, so that t = t(a). We have t′(a) ≥ 0, since the queuing system

obeys the first-in-first-out (FIFO) rule. In particular, when there is queue from time a0

3Although Condition 2 is not directly used anywhere in our paper, we maintain this condition for
consistency with Fosgerau and de Palma (2012), where Condition 2 was used to prove the existence of
the equilibrium.

4The α − β − γ scheduling cost is given by α(t − d) + βmax(0, t∗ − t) + γmax(0, t − t∗), where t∗

is the preferred arrival time at the destination, α is the unit cost of travel time, β is the unit cost of
arriving earlier than t∗, and γ is the unit cost of arriving later than t∗.
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to a, t(a) = a0 + R(a)
ψ

and t′(a) = ρ(a)
ψ
≥ 0, as explained above. When there is no queue

at time a, then t (a) = a. Since d = a− x, the departure time of the consumer living at

distance x is also completely determined by the choice of arrival time at the bottleneck

a. It is then possible to rewrite the scheduling cost in terms of a and x as c (a− x, t (a)).

2.2 Incorporating commute scheduling into the monocentric

model

We now incorporate the consumer’s commute scheduling problem into the monocentric

model. Each resident in the city commutes to the CBD to earn income y. Consumer

utility depends on housing consumption (equivalently land consumption) denoted by q,

and on the consumption of a composite non-housing good denoted by e. Housing (land)

rents are paid to absentee landlords, and the rental price per unit of land is p. With the

price of the non-housing composite good normalized to unity, the budget constraint is

then given by e+ pq = y.

We treat the scheduling cost, c = c (a− x, t (a)), as money metric and let utility

depend on the difference e− c. Consumers have strictly concave and three times contin-

uously differentiable utility function with negative definite hessian matrix. Elimination

of e using the budget constraint allows utility to be written as U (y − c− pq, q). The

formulation that we use embodies an assumption of separability between e and c(d, t)

when q is given. This is a convenient simplification, but it is not strictly required: we

could alternatively specify utility as depending on e, q, and c separately and impose some

appropriate restrictions on the second-order derivatives of utility.5

A consumer at location x chooses housing consumption q and arrival time a to max-

imize utility. The first-order condition for the choice of q is

− pU1 [y − c (a− x, t(a))− pq, q] + U2 [y − c (a− x, t(a))− pq, q] = 0. (1)

5We just want to avoid the additional complexity that would be involved with this utility formulation.
The standard bottleneck models also treat scheduling cost as money metric (e.g., Vickrey, 1969; Arnott,
de Palma, and Lindsey, 1990, 1993; Fosgerau and de Palma, 2012).
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The first-order condition for the choice of a is

c1 (a− x, t(a)) + c2 (a− x, t(a)) t′(a) = 0, (2)

which requires that the benefit from staying at home by an extra unit of time equals

the cost from arriving later at the destination. As (2) shows, the separability between

non-housing consumption (e) and scheduling cost that we built into utility implies that,

conditional on location x, the consumer’s choice of departure time does not depend on

his consumption. But, we see from (1) that the consumer choice of housing consumption

does depend on the scheduling cost.

Consumers are identical, so equilibrium also requires that consumers attain the same

utility level

U [y − c (a− x, t(a))− pq, q] = Ū , (3)

such that no individual has incentive to change his residential location. The equilibrium

utility, Ū , is taken as an exogenous parameter since we are assuming an open city.6

We discuss the existence of equilibrium below, when we have established more prop-

erties of equilibrium. Granted existence, equations (1), (2), and (3) determine the equi-

librium values for the key endogenous variables p, q, and a as functions of location (x).

In particular, p(x) is the bid-rent function for housing and q(x) characterizes the spatial

distribution of population (population densities) in the city. We compute the derivatives

of these functions in this section. Spatial variations in a are a focus of the next section.

To derive the slope of the bid-rent function, differentiate (3) with respect to x using

(1) and (2) to find that

p′(x) =
c1 (a− x, t(a))

q
< 0. (4)

Thus, an increase in x leads to a utility-equalizing decline in p. Letting c(x) denote the

minimized scheduling cost, c′(x) = −c1 > 0 holds by the envelope theorem. This implies

that the increasing scheduling cost associated with living further away from the CBD

6We rely on the open-city assumption and the assumption that the city has no spatial boundary for
analytical convenience. Our concern is on locations where residents experience congestion while we do
not care much about what happens at the city boundary.
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is compensated in equilibrium by a lower price of housing, the same principle as in the

standard model.7

Since utility is fixed, the increase in q with respect to x should exactly be the substi-

tution effect of the decrease in p. This point is shown analytically by differentiating (1)

with respect to x using (2) and (4), which yields

q′(x) = ηp′(x) > 0, (5)

where η ≡ U1/ (p2U11 − 2pU12 + U22). Substituting p = U2/U1 from (1) into η shows that

η = ∂MRS/∂q|−1
U=Ū

, where MRS ≡ U2/U1. The convexity of indifference curves implies

η < 0.

Housing production is suppressed in our model, and therefore the population density

at x is simply the city width divided by housing consumption per resident f(x) = 1/q(x).

Note that q′(x) > 0 implies f ′(x) < 0, i.e., that density decreases with increasing distance

from the CBD.

Convexity of the indifference curves also implies that an increase in scheduling cost c

for a resident at some location x increases his housing consumption in equilibrium.

These observations are summarized in the following proposition:

Proposition 1 In equilibrium, the bid-rent curve slopes downward, i.e., p′(x) < 0, while

individual housing consumption is increasing in x, i.e., q′(x) > 0, and population density

falls with x, i.e., f ′(x) < 0.

3 Commute scheduling and congestion in laissez-

faire equilibrium

In this section, we investigate commuters’ scheduling behavior and congestion dynam-

ics under the laissez-faire policy of no tolls. In equilibrium, the commuter’s scheduling

7The bid-rent slope in the standard model is given by p′(x) = −T/q < 0, where T is a constant
marginal commuting cost (see Brueckner (1987)).
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cost is minimized given her other choices (see (2)), and the equal-utility condition (3) is

also satisfied.

To begin with, it is useful to discuss the case where the capacity constraint at the

bottleneck is not binding at any time during the day. In this case, there is no queue and

every commuter arrives at the destination as soon as she arrives at the bottleneck, so

that t(a) = a. The commuter located at distance x would then minimize c(a − x, a) by

choice of a. Let a∗(x) ≡ argmina c(a− x, a) be the arrival time that would be chosen by

a resident at x if there were no queue, expressed as a function of x. It is straightforward

to show that Conditions 3 and 4 imply8 that

0 < a′∗(x) < 1. (6)

This means that commuters sort by distance to the CBD such that more distant com-

muters arrive later at the bottleneck. They also depart earlier since the derivative of the

departure time d(x) (= a(x)− x) with respect to x is a′∗(x)− 1 < 0.

For the sake of analytical convenience, we want to rule out that a(x) may have an

upper bound. We simply assume that a∗(x)→∞ as x→∞.

We now consider the general case where congestion may arise. The consumer located

at distance x chooses arrival time at the bottleneck with the first-order condition (2)

and the corresponding second-order condition written SOCa ≥ 0. Differentiating the

first-order condition with respect to x shows (omitting some function arguments) that

SOCa · a′ (x) = c11 −
c1

c2

c12, (7)

where a (x) is the arrival time at the bottleneck of commuters located at x. But then

a′ (x) > 0 (8)

by Condition 1.

8The first-order condition for choice of a is c1(a − x, a) + c2(a − x, a) = 0. Differentiation of this
equation with respect to x shows that a′∗ = (c11 + c12)/(c11 + 2c12 + c22).
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This argument relies only on the shape of scheduling cost and applies regardless of

whether there is queue or not. So, no matter what the equilibrium looks like, more

distant commuters arrive later at the bottleneck. We call this property as sorting in the

sense that commuters sort in arrival time at the bottleneck. They do not similarly sort

in departure time from home, since the sign of d′(x) (= a′(x) − 1) is ambiguous in this

general case where congestion may arise.

It is generally possible that equilibrium population densities are so low that queuing

does not emerge at all. To avoid such a situation, we impose the condition on equilib-

rium that the maximum density in the city exceeds the bottleneck capacity. We have

already established that the density decreases with distance from the bottleneck, so the

assumption amounts to f(x0) > ψ. Proposition 2 below shows that this is sufficient to

guarantee that there will be queuing at the bottleneck and that queuing begins at the

time the commuter located at x0 arrives at the bottleneck.

Proposition 2 In equilibrium, the first commuter arrives at the bottleneck earlier than

she would prefer in the absence of queue, i.e., a0 ≤ a∗(x0). In addition, when f(x0) > ψ,

queuing begins immediately after the first commuter arrives at the bottleneck.

Sorting and the observation that f ′ < 0 implies that there can be just a single queueing

interval. We denote the queuing interval by [a0, a1]. Due to sorting, the commuter located

at x0 is the one to arrive at the bottleneck at time a0 and we denote by x1 the location

of the commuter who arrives at the bottleneck at the time a1 when the queue ends.

We look for results regarding the spatial variation in a during the queuing interval

[a0, a1]. Fosgerau and de Palma (2012) impose conditions on their exogenous spatial

distribution of the city population to ensure that all commuters queue in equilibrium.

Their results regarding the spatial variation in a, conditioned on the spatial distribution

of population, carry over to the present setting during the interval where the queue

persists. These results are presented in the following proposition, which is stated without

proof. The proposition also comprises a statement regarding the more distant residents,

who do not queue.
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Proposition 3 For x ∈ [x0, x1], a(x) satisfies the differential equation

a′(x) = −c2 (a(x)− x, t(x))

c1 (a(x)− x, t(x))

f(x)

ψ
> 0, (9)

where

t(x) = a0 +
F (x)

ψ
(10)

is the arrival time at the destination for residents located at x. The equilibrium scheduling

cost is thus given by

c(x) = c

(
a(x)− x, a0 +

F (x)

ψ

)
. (11)

For x > x1, we have a (x) = a∗ (x) and t (x) = a (x), since these residents do not queue.

The arrival time function a(x) is continuous.

Note again that arrivals at the bottleneck are sorted by distance, i.e., a′(x) > 0. Due

to this sorting property, cumulative arrivals at time a(x) equals cumulative residents at

x, so that R(a(x)) = F (x). This allows us to write the arrival time at the destination as

a function of cumulative residents at x as seen in (10).9

By definition, the queue is exactly gone at time a1 and this is the time when the

resident at x1 arrives at the bottleneck and at the destination. It follows that

a1 = a0 +
F (x1)

ψ
= a∗ (x1) . (12)

The following proposition states some additional features of this point.

Proposition 4 At the location x1 where queueing ends,

a′(x1) = t′(x1)

and, for x < x1 near x1,

t (x) > a∗ (x) .

9Since the capacity is fully utilized from time a0 to a(x), it takes F (x)
ψ = R(a(x))

ψ time units for the
precedent commuters to pass the bottleneck. So, the commuter at x arrives at the destination at time

a0 + F (x)
ψ .

14



Thus, the curves describing the arrival time at the bottleneck and the arrival time at

the destination are tangent for the last resident to queue and residents closer to the CBD

arrive later than they would have in the absence of queuing. A final piece of information

regarding the shape of the queue comes from Fosgerau and de Palma (2012), whose result

that the bottleneck delay, a0 + F (x)
ψ
−a(x), is unimodal as a function of distance x carries

directly over to the current setting.

We are now ready to discuss the existence of equilibrium in general. We have used the

condition that f(x0) > ψ to ensure that there is queueing in equilibrium. The existence

of equilibrium is trivial without queueing, so we proceed with the case where there is

queueing.

Consider a candidate a0 for the arrival time at the bottleneck of the resident at x0.

By Proposition 2, we must have a0 ≤ a∗(x0). We also require the existence of initial

values p0, q0 that solve (1) and (3) at x0 with t(a0) = a0.

With these initial values, the evolution of (q, p, a, t) as functions of x is uniquely

determined by (5), (4), (9), and (10) with substitution of f = 1
q
. This is an application

of the Lindelof-Picard Theorem. The differentiability requirements we made for U and c

ensure that the conditions for using this theorem are fulfilled.

Let x1 be the first x > x0 that solves a(x) = t(x) and note that x1 depends on a0. It is

now sufficient for an a0 to lead to equilibrium that a(x1) = a∗(x1). This is the case since

all residents choose housing consumption and arrival time at the bottleneck according to

their first-order conditions. The conditions that a0 ≤ a∗(x0) and a(x1) = t(x1) = a∗(x1)

ensure that no resident wants to arrive at the bottleneck outside the interval [a0, a(x1)].

Then equilibrium exists if such an a0 exists and equilibrium is unique if there is just

one such a0. We do not have a proof that this is the case in general, and we therefore need

to assume that it is the case. The assumption is true in our example below in Section

5.2.
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4 Tolling and social optimum

In this section, we investigate the equilibrium under a time-varying toll charged at

the entrance to the bottleneck. The toll revenue is not returned to commuters.

Commuters take the toll into account when choosing their commute schedule. We are

treating scheduling cost as money metric and it enters utility together with non-housing

consumption. The toll enters the budget constraint and then it becomes simply additive

to the scheduling cost. We denote the toll at time a by τ(a) and we use subscripts τ to

indicate functions and variables specific to the equilibrium with tolling.

Since the city is assumed to be open, the utility of residents is fixed at some level,

which implies that tolling makes no difference for the utility of residents. We therefore

use the following measure of city welfare excluding the utility:

W ≡
∫ ∞
x0

pτ (x)dx+ ψ

∫ aτ1

aτ0

τ(a)da. (13)

The city has width unity so the first term here is the total land rent, which is paid to

absentee landlords. The toll is paid by ψ commuters per time unit during the interval

[aτ0, aτ1] so the second term in (13) is the total toll revenue. We assume that the total

expenditure on the non-housing good equals its production cost, such that we may ignore

consumption of the non-housing composite good in the welfare consideration. Then W is

the total revenue that is extracted from the city and we seek a toll that maximizes this.

Note that under the open-city assumption, while the utility is exogenous, the entire

population size is endogenous and thus changes in response to imposition of tolling.

Then, setting a large toll will induce people to leave the city and reduce W . So, it makes

intuitive sense that there exists a maximum of W in a reasonable set of tolls, as we will

continue to establish and discuss.

Now, let Θ be the set of tolls that removes queue on the finite interval [aτ0, aτ1] and

that lead to equilibrium with the entry rate at the bottleneck at capacity when tolling is

active and below capacity otherwise. We conjecture that the socially optimal toll belongs

to this set, since there cannot be queueing in social optimum under bottleneck congestion.
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As in the laizzes-faire case, we cannot prove in general that Θ is non-empty. It is however

non-empty in the example that we provide in Section 5.2.

Proposition 5 lists a number of properties of the equilibrium under any toll in the set

Θ:

Proposition 5 Any toll τ ∈ Θ has the following properties:

1. The evolution of the toll is given by

τ ′ (aτ (x)) = −c1 (aτ (x)− x, aτ (x))− c2 (aτ (x)− x, aτ (x)) . (14)

2. Residents sort with a′τ (x) > 0.

3. The residential density is decreasing with distance: f ′τ (x) < 0.

4. Tolling begins with the first traveler’s arrival, i.e., aτ0 = aτ (x0), and there exists

xτ1 with aτ1 = aτ (xτ1).

5. For x ≤ xτ1, we have aτ (x) = aτ0 + Fτ (x)
ψ

.

6. The last tolled commuter arrives at his preferred time: aτ1 = a∗(xτ1).

7. The last commuter in the tolling interval pays zero toll: τ (aτ1) = 0.

8. The first commuter in the tolling interval pays zero toll: τ (aτ0) = 0.

9. The toll is increasing (decreasing) at arrival times for commuters who arrive before

(after) their preferred time:

τ ′ (aτ (x)) R 0⇔ aτ (x) Q a∗ (x) . (15)

Now consider some toll τ ∈ Θ. We ask whether the toll is uniquely determined from

aτ1. Say that we know aτ1. Then xτ1 = a−1
∗ (aτ1) is known, and given τ (aτ1) = 0,

f(xτ1) and q(xτ1) are known. We know τ ′ from (14) and also a′τ (x) = fτ (x) /ψ for

x ≤ xτ1. From (4), we know p′τ (x). Hence, we can back out the evolution of all quantities
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in the model and work backwards until we have determined aτ0. Thus, from every aτ1

corresponding to tolls in Θ, there is a unique toll in Θ and hence a unique value of aτ0.

Thus, we may consider aτ0 as a function of aτ1.

This function may however not be injective, in which case it will not have an in-

verse. We shall therefore require the following regularity condition to ensure that aτ1 is

increasing as a function of aτ0 and vice versa. The condition is satisfied in our simulation

example below.

Condition 5 aτ1, considered as a function of aτ0, satisfies ∂aτ1/∂aτ0 > 0.

The following proposition establishes then that welfare W is constant on Θ. This is

trivially true if Θ consists of just one toll and we conjecture that this is the case.

Proposition 6 Under condition 5, the welfare function W is constant on Θ.

We are now ready to provide some results that compare social optimum to laissez-faire.

Proposition 7 Assume Condition 5 and that c12 = 0.

1. The first traveler’s arrival time is earlier in social optimum than under laissez-faire,

i.e., aτ0 ≤ a0.

2. The scheduling cost is higher in social optimum than under laissez-faire for those

located at x0, i.e., c(aτ0 − x0, aτ0) ≥ c(a0 − x0, a0).

It is important to discuss the first result that aτ0 ≤ a0. Note that since the first arrival

is earlier in social optimum than under laissez-faire, any commuter following the first

commuter will also arrive earlier under social optimum than under laissez-faire (although

this result is ultimately ambiguous due to our endogenous population density). This

suggests that arrival times are overall too (inefficiently) late under laissez-faire.

To have intuition on this result, recall first that the central residents (either in opti-

mum or in laissez-faire) arrive earlier than they would prefer in the absence of queue (see

Proposition 2). But, since the central residents occupy the most advantageous location

in terms of choosing the commute timing, they would want to delay departures as much
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as they could to get a time closer to a∗(x0). In contrast, the suburban residents who

already arrive later than a∗(x) tend to arrive too late under laissez-faire due to queuing.

The optimal toll coordinates this asymmetry and induces earlier arrivals overall for the

city residents.

In the standard bottleneck analysis, the optimal toll has no effect on the utility of

commuters. The optimal toll simply replaces the cost of queueing with the cost of the

toll. Then commuters are as well off as before, but the cost of congestion has been

converted into toll revenue. As the next proposition shows, this is no longer the case when

commuters are heterogeneous with respect to commute distance. We find that central

residents lose from optimal tolling, which causes the residential density to decrease at

central locations. Conversely, there are locations further out where the population density

increases, reflecting that the residents there are made better off by the optimal toll.

Proposition 8 The population density is lower under optimal tolling than under laissez-

faire at locations near the bottleneck, i.e., fτ (x) ≤ f(x) for x near x0. Conversely, there

are locations between x0 and x1 where fτ (x) ≥ f(x).

Since the scheduling cost (including the toll) is higher under tolling than under laissez-

faire at locations near x0 and since consumer utility is fixed at Ū , the housing price as a

compensating differential must be lower under tolling than under laissez-faire for residents

at these locations. Since the price effect is comprised solely of a substitution effect (see

(5)), the lower housing price in the center corresponds to a larger individual dwelling size

and hence a lower population density, so that fτ (x) ≤ f(x) for x near x0.

This density effect of tolling is reversed at some non-central locations because residents

there attain a lower scheduling cost (including the toll) in social optimum. As an example,

it is useful to consider some suburban location between xτ1 and x1. Granted that xτ1 < x1,

residents at these locations under tolling arrive according to the schedule a∗(x) without

queuing or charge of toll (see Proposition 5). Tolling therefore clearly gives a benefit to

these suburban residents. This benefit in terms of scheduling cost is compensated by a

higher housing price, which results in a higher population density.

The density effect of tolling in our model is in stark contrasted to that in the congested-
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city models with the static congestion, where imposition of congestion tolling raises den-

sities at all locations in the city, making the city more compact (e.g., Wheaton (1998),

Brueckner (2007)). Their result is a consequence of the external congestion cost that

is monotonically increasing with the commute distance. In the model of endogenous

scheduling choices as ours, however, the suburban commuters traveling a longer distance

do not necessarily generate a higher congestion externality.

Meanwhile, our result is similar to that in Gubins and Verhoef (2014), where dynamic

congestion is considered in a spatial framework like ours. In the simulation in Gubins

and Verhoef, however, tolling induces choices of larger housing and thus reduces densities

from the CBD and out to some distance because tolling allows residents to spend more

time at home by eliminating the queue, which gives a stronger incentive for residents to

have a larger house. This result therefore crucially relies on their ad hoc assumption that

the marginal utility of spending time at home depends on the size of the house.

In our model, the city center is too dense because people are trying to locate near

the bottleneck in order to improve their place in the (unpriced) queue. We can say

that residents’ preferences over location are distorted such that central locations are too

favored over suburban locations. Importantly, this distortion is not simply assumed but

is an implication of the general scheduling preferences used in our model.

5 Numerical examples

In this section, we illustrate the theoretical model by a numerical example. We also

carry out a numerical comparative static analysis to see how the equilibrium configura-

tion changes in response to a change in parameters. After investigating the laissez-faire

equilibrium, we then find the social optimum, i.e., the equilibrium under the policy of

optimal tolling, and investigate how the laissez-faire equilibrium diverges from the social

optimum.
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5.1 Outline of simulation

Consumer utility is given a Cobb-Douglas form, U(e− kc, q) = ln [(e− kc)qγ], where

k is the unit cost of c. Utility is maximized subject to the budget constraint, e = y− pq.

The first-order condition for choice of q is derived and manipulated into p = γ
1+γ

y−kc(x)
q

,

where c(x) is the minimized value for scheduling cost for a given x (see (19) below).

Substitution of this equation into the utility function (into which the budget constraint

is substituted), equating the result to an exogenous utility Ū , and solving for q yields

q(x) = exp

(
Ū

γ

)
(1 + γ)

1
γ [y − kc(x)]−

1
γ . (16)

The functional form of scheduling cost is

c(d, t) = ln [1 + exp(−d)] + ln [1 + exp(t)] . (17)

The consumer minimizes this expression by choice of a, which gives a as a function of x.

Using the analytical results (9) and (10), the differential equation for a(x) is written

a′(x) =
1 + exp [a(x)− x]

1 + exp
[
−
(
a0 + F (x)

ψ

)] f(x)

ψ
. (18)

The equilibrium scheduling cost is given by

c(x) = ln [1 + exp (−a(x) + x)] + ln

[
1 + exp

(
a0 +

F (x)

ψ

)]
. (19)

This equation together with (16) characterizes the interdependency between the equilib-

rium scheduling cost and the distribution of population in the city.

To find an equilibrium, we first arbitrarily set a value for a0. Once a0 is set, since

F (x0) equals zero, the value for c(x0) is determined from (19), with q(x0) then determined

from (16). Once these initial values are determined, the functions a(x), F (x), c(x),

and q(x) can be computed sequentially using the differential equation in (18) for a(x)

and F ′(x) = f(x) = 1/q(x). Among the set of arbitrary a0 values, we search for the
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equilibrium value for a0, such that the corresponding x1 satisfies the condition (12).

With the functional form assumed in (17), we find that a∗(x) = x/2.

The simulation relies on several exogenous parameter values, given as follows. The

parametric utility (Ū) is set at 0.78. The housing exponent in the Cobb-Douglas utility

(γ) is set at 0.5. Income per household (y) are set at 3, and the unit cost of scheduling

cost (k) is set at 0.2. The bottleneck capacity (ψ) is set at 0.4. The minimum commuting

distance is set at x0 = 0.

5.2 Numerical results

5.2.1 Illustration of equilibrium

Figure 2 shows the equilibrium profiles for a(x), t(x) (= a0 + F (x)
ψ

), and a∗(x). The

point x1 is the residential location where the three profiles meet. The numerical result

indicates that the equilibrium value for x1 is about 14.6. The a(x) and t(x) profiles are

tangent at the point x1 while the a∗(x) profile crosses the other two curves from below,

which is consistent with the theoretical result. The figure also shows that a(x0) < a∗(x0),

meaning that the central resident arrives earlier than the time he would choose if there

were no queue. Residents in the middle part of the city arrive later than a∗(x). The

residents located beyond x1 arrive according to the schedule a∗(x). In the figure, the

vertical gap between the t(x) and the a(x) curves at x indicates the waiting time for the

resident at x. The queue begins immediately after the first arrival, and it persists until the

person located at x1 arrives at the bottleneck. The queue length initially increases with

x, but it decreases and eventually vanishes at higher x values, which is also consistent

with the theoretical prediction.

5.2.2 Numerical comparative static analyses

This section uses the simulation model to carry out a series of comparative static

analyses. We compute the waiting-time profiles, which plot the waiting time at the

bottleneck for residents at each location, and see how this profile shifts in response to

a change in a parameter value. As another measure of congestion, we use the total
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Figure 2: Commute schedule variables as a function of location
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bottleneck delay for all residents in the city, which is given by

∫ a1

a0

(
a0 +

R(s)

ψ
− s
)
ρ(s)ds =

∫ x1

x0

(
a0 +

F (x)

ψ
− a(x)

)
f(x)dx. (20)

The comparative static analysis also concerns the urban spatial structure.10 In par-

ticular, we investigate how the population-density profile, which plots f(x) (= 1/q(x))

against x, shifts in response to the changes in parameter values. Recall that the pop-

ulation density decreases with x. Since utility is fixed, q and p move in the opposite

directions in response to a parameter change. So the downward-sloping bid-rent curve

(p(x) curve) shifts in the same direction as the density profile (f(x) curve).

The exogenous parameters include income (y) and the bottleneck capacity (ψ). We

also analyze the effect of changing the speed outside the bottleneck. The speed is incor-

porated by modifying the parameter x (time from residence to the bottleneck) into x/ω,

where ω is a speed parameter. Specifically, travel takes x/ω time units from residence to

10The analytic comparative static signs on p and q and density are in general ambiguous. Unlike in
the standard monocentric model, where the marginal commuting cost is exogenous, the scheduling cost
as a function of location in our model depends on the distribution of population across other parts of
the city (see (11)). So we cannot in general determine the sign of the impact of a parameter on the
scheduling cost (c), and the impacts of a parameter on p and q are therefore ambiguous.
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the bottleneck, yielding the relationship a = d + x/ω.11 The ω parameter has been set

at unity in the analytical section, but we now vary ω values to see its effect.

Effects of an income increase Figure 3 depicts the density profile at different income

levels. Population densities increase throughout the city as income increases. To have

an intuition about this result, although utility (Ū) is ultimately fixed by the open-city

assumption, it is useful to decompose the impact of y into an initial rise in utility and an

increase in housing prices that would follow to offset the initial rise in utility. The rise in

p is due to the rising demand for housing, which is spurred by the inflow of migration.

p will increase until the original level of utility is restored, with an upward adjustment

of the city population. With the higher p, individual dwelling sizes will decrease, leading

to a higher population density, the same mechanism as in the standard open-city urban

model (see Brueckner (1987)).

In the current model, where congestion is incorporated in the open-city urban model,

not only housing prices but also the congestion level increases to offset the initial impact

of y on utility. The higher population density leads to higher traffic flows and more delay

at the bottleneck. Consistently with this intuition, Figure 4 indicates that the waiting

time for all residents increases as income increases. With the larger population and

the longer waiting time for each individual, the total bottleneck delay increases as well.

The numerical example indicates that the total bottleneck delay increases by 62% when

y increases from 3 to 3.2, which corresponds approximately to a point elasticity of 9.3.

Thus, the higher-income city will be denser, more expensive to live in, and more congested

than a city with lower incomes, which is consistent with real-world observations.

11With this modification, (18) and (19) become instead

a′(x) =
1 + exp

[
a(x)− x

ω

]
1 + exp

[
−
(
a0 + F (x)

ψ

)] f(x)

ψ
.

and

c(x) = ln
[
1 + exp

(
−a(x) +

x

ω

)]
+ ln

[
1 + exp

(
a0 +

F (x)

ψ

)]
.

The arrival rate in the absence of queue is modified into a′∗(x) = x/2ω.
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Figure 3: Density profiles at different incomes
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Figure 4: Waiting-time profiles at different incomes
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Effects of an increase in the bottleneck capacity Figure 5 shows that population

densities increase as the bottleneck capacity increases. The impact of ψ on densities is

parallel with that of y because it would also cause an initial rise in utility (Ū) by reducing

the individual’s waiting time for a given distribution of population and thus lowering

scheduling cost. In response to the initial increase in utility, people from other cities

will migrate into the city until the original utility level is restored. During the restoring

process, p will increase, leading to smaller dwelling sizes and higher population densities,

qualitatively the same impact as that of an increase in y. However, the bottleneck capacity

has no influence on densities at distant locations (beyond x1), since the waiting time is

unaffected by ψ for the residents at these locations.

The direct impact of a higher capacity on the waiting time is negative. However, due

to the indirect effect operating through the increased population, its ultimate effect is

analytically ambiguous. According to the numerical computation, despite the increased

population, higher capacity leads to reductions in the waiting times (see Figure 6). Also,

the total bottleneck delay falls by 35% when ψ increases by 25% (from 0.4 to 0.5), which

is equivalent to a point elasticity of -1.4. Thus, we conclude that the city with a higher

bottleneck capacity is more expensive to live in and more dense but less congested than

in a city with a lower bottleneck capacity.

Effects of an increase in the speed outside of the bottleneck As illustrated in

Figure 7, population densities tend to increase as the speed outside of the bottleneck

(ω) increases, and this effect is stronger as x is higher. Similarly to the effect of ψ,

the increased speed is associated with a lower scheduling cost for a given distribution

of population. To offset the resulting positive effect on utility (Ū), housing prices and

population densities have to increase. This effect is higher as x is higher because the

benefit of a higher ω is greater for residents at more distant locations.

With the higher population densities and the resulting increased traffic, each individ-

ual’s waiting time will be longer for a given bottleneck capacity, and Figure 8 confirms

this prediction. Because the population size also increases, the total bottleneck delay

must unambiguously increase. The numerical result indicates that total bottleneck delay
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Figure 5: Density profiles with varying bottleneck capacity
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Figure 6: Waiting-time profiles with varying bottleneck capacity
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Figure 7: Density profiles with varying speed
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increases by 28% when ψ increases by 10% (from 1 to 1.1). Thus, as the speed out-

side of the bottleneck increases, the city becomes more expensive, more dense, and more

congested.

5.2.3 Tolling and social optimum

Finding the social optimum The procedure for finding the social optimum is as

follows. The first step is to arbitrarily select xτ1, such that tolls are imposed for all

residents located inside xτ1 but not for those located beyond xτ1.

Using the boundary condition, aτ1 = a∗(xτ1), and given a∗(x) = x/2, we can then

determine the value of aτ1 and also c(xτ1) using (19). Given τ(aτ1) set at zero, q(xτ1)

(and thus f(xτ1)) is also determined from (16) (where τ(aτ ) is subtracted from the dis-

posable income). Once these boundary values are determined, we then use the differential

equation a′τ (x) = fτ (x)
ψ

to determine the values for aτ (x) for x < xτ1 until the point x0.

At the same time, we determine τ(aτ (x)) for x < xτ1 by the differential equation (14),

that works backward in time from the point xτ1.12 The corresponding values for q(x) and

12Under the maintained functional forms, the first-order condition for aτ corresponding to (14) is
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Figure 8: Waiting-time profiles with varying speed
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f(x) are also computed using (16). Note that the arbitrary chosen xτ1 is not necessarily

the value corresponding to the social optimum. So, to find the social optimum, we find

sets of equilibrium values with varying xτ1 values and compute the corresponding values

for W (see (13)). We then pick the xτ1 value that gives the maximum of W .13 As shown

in Propositions 5 and 6, this xτ1 is also the value that leads to τ(aτ0) = 0 at location x0.

Comparison between social optimum and laissez-faire The thin solid (red) line

in Figure 2 plots the arrival time at the bottleneck (and at the destination) in social

optimum at each x. The numerical result confirms that the central resident arrives earlier

in social optimum than under laissez-faire, i.e., aτ (x0) < a(x0). We can also see that all

residents located inside x1 arrive at the destination earlier in social optimum than under

laissez-faire.

given by

τ ′(aτ ) = k

(
exp (−aτ + x)

1 + exp (−aτ + x)
− exp (aτ )

1 + exp (aτ )

)
.

13We compute land rents until the point x = 5.4 since land rents beyond xq are not affected by tolling.
The boundary value of 5.4 would correspond to an exogenous agricultural rent of 0.0004. Equivalently
(and more simply), we could search for xτq until the equilibrium satisfies τ(aτ (x0)) = 0.

29



Figure 9 plots the optimal toll that is imposed on each resident at x. The toll at each

end point is zero, i.e., τ(aτ (x0)) = τ(aτ1) = 0, which confirms the results of Proposition

5. We can also see that residents meeting a longer queue are charged a higher congestion

toll, which is consistent with the standard externality-based logic for congestion tolling.

Figure 10 depicts scheduling costs as a function of location both at the laissez-faire

equilibrium and in social optimum. The solid line plots the scheduling cost of an indi-

vidual located at each x under laissez-faire. The dotted line plots cτ (x) + τ(aτ (x)), i.e.,

scheduling costs in social optimum, which includes the scheduling cost itself and the toll.

The numerical result confirms that the scheduling cost at x0 is higher in social optimum

than under laissez-faire, i.e., c(aτ0 − x0, aτ0) > c(a0 − x0, a0). We can also see that the

inequality, cτ (x) + τ(aτ (x)) > c(x), continues to hold near x0. However, this pattern is

reversed at some non-central locations, so that cτ (x) + τ(aτ (x)) < c(x) holds for x in a

certain interval. For larger x, there is no change since residents there do not queue under

laissez-faire.

Tolling influences population densities through its effect on the scheduling cost. Figure

11 depicts density profiles under laissez-faire and in social optimum. The figure confirms

that the population densities are lower in social optimum than under laissez-faire at

the central locations. As explained in the analytic section, this is a consequence of a

higher scheduling cost for these central residents under tolling. Since the scheduling

costs (including the toll) are lower under tolling than under laissez-faire for residents

located farther away, the densities are higher at these locations, as illustrated in Figure

11.

6 Conclusion

This paper has presented a unification of the bottleneck model of congestion dynamics

and the monocentric city model. The model generates a number of new insights regarding

the interaction between congestion dynamics and urban spatial equilibrium. Most of all,

unlike in the traditional congested-city models adopting the static congestion assumption,
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Figure 9: Optimal toll as a function of location
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Figure 10: Scheduling-cost profiles with and without tolling

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14

S
ch

ed
u

li
n
g

 c
o
st

Distance from bottleneck

Laissez-faire

Toll

31



Figure 11: Density profiles with and without tolling
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our model generates an optimal city that is less dense in the center and denser in the

suburb than the city at the laissez-faire equilibrium. This result is derived analytically

under fairly general conditions. It is qualitatively similar to the simulation results in

Gubins and Verhoef (2014). Unlike in their model, the density effect of tolling in our

model is solely a result of adjustments to commute scheduling and scheduling costs for

residents at different locations, we do not require any ad hoc additions to the specification

of commuter preferences to link commute scheduling to space.

Our model generates a number of other implications, such as the relationship between

commute scheduling and residential location and population density, the queuing time

varying with location, and comparative static results with respect to model parameters.

Our theoretical model can potentially be extended in several ways. Perhaps the

most interesting extension would be to incorporate the consumer choice between public

transportation and car travel by adding public transportation to the current model. Also,

since the present model allows congestion only to occur at the entrance to the CBD, a

future work may allow suburban congestion in some form. A way would have to be found

to avoid the issues encountered by Ross and Yinger (2000). Going further, it would be
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relevant to consider urban equilibrium in a model that allows for hypercongestion such

as the bathtub model of Fosgerau (2015).
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A Appendix

Proof of Proposition 2. Commuters arrive at the bottleneck in increasing sequence

according to x. There is no queue prior to time a0 and this implies that a0 ≤ a∗(x0) for

all x since otherwise the commuter at x0 could gain by arriving at the bottleneck at time

a∗ (x0).

Suppose that queuing does not begin at time a0. Then a (x) = a∗ (x) in a neighbor-

hood of x0. Due to sorting, R(a(x)) = F (x) and hence ρ(a0) = f(x0)/a′∗(x0). Moreover,

a′∗(x0) < 1 by (6) and hence ρ(a0) > ψ, which implies that queuing begins at time a0,

which is a contradiction. Hence, queuing begins at time a0.

Proof of Proposition 4. Evaluation of (9) at x1 using a(x1) = a∗(x1) and c1(a∗(x)−

x, a∗(x)) + c2(a∗(x)− x, a∗(x)) = 0 yields

a′(x1) = −c2 (a(x1)− x1, a(x1))

c1 (a(x1)− x1, a(x1))

f(x1)

ψ

= −c2 (a∗(x1)− x1, a∗(x1))

c1 (a∗(x1)− x1, a∗(x1))

f(x1)

ψ

=
f(x1)

ψ
= t′(x1). (21)

To show that t (x) > a∗ (x) for x < x1 near x1, assume on the contrary that t (x) ≤ a∗ (x)

and recall that a (x) < t (x). Define the function ∆ (x) = c
(
a (x)− x, a0 + F (x)

ψ

)
−

c (a∗ (x)− x, a∗ (x)) and note that ∆ (x1) = 0 and ∆′ (x1) = 0. For x < x1 near x1, we

have ∆ (x) > 0 due to the queue and hence ∆′ (x) < 0. By enveloping, the derivative of

∆ is ∆′ (x) = c1 (a∗ (x)− x, a∗ (x))− c1 (a (x)− x, t (x)) and hence

c1 (a∗ (x)− x, a∗ (x)) < c1 (a (x)− x, t (x))

< c1 (t (x)− x, t (x))

= c1 (a∗(x)− x, a∗(x)) + (t− a∗(x)) (c11 + c12)

≤ c1 (a∗(x)− x, a∗(x)) ,

using that a(x) < t(x), and t(x) ≤ a∗(x), the mean value theorem for the equality
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and Condition 3 for the last inequality. This is a contradiction and we conclude that

t(x) > a∗(x) as desired.

Proof of Proposition 5.

1. There is no queue, which implies that tτ (a) = a always. Trip timing is optimally

chosen, so we have the first-order condition with respect to a as

τ ′ (a) = −c1 (a− x, a)− c2 (a− x, a) , (22)

which holds for a = aτ (x).

2. Denoting the second-order condition SOC ≥ 0, differentiation of the first-order

condition (22) with respect to x shows that 0 = c11 + c12 + SOC · a′τ . Condition 3

then implies that a′τ > 0.

3. The sum of scheduling cost and toll increases with distance from the CBD,

∂

∂x
[c (aτ (x)− x, aτ (x)) + τ (aτ (x))] = −c1 > 0,

which implies that the residential density is decreasing with x (see (4) and (5)).

4. Note that R (aτ (x)) = Fτ (x). Suppose tolling does not start at time aτ (x0) . Then

departures for residents near x0 are not constrained by queueing and therefore

they arrive at the bottleneck at time a∗ (x). This means that ρ · a′∗ = fτ . Also,

differentiation of the first-order condition, c1 + c2 = 0, with respect to x gives

0 < a′∗ =
c11 + c12

c11 + 2c12 + c22

< 1,

which holds near x0 under Conditions 3 and 4. Then,

ψ > fτ
c11 + 2c12 + c22

c11 + c12

> fτ .

But fτ is decreasing. Then ρ is also decreasing at points with aτ = a∗, since
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ρ · a′∗ = fτ . Then commuters can arrive according to a∗ throughout the day, which

means the toll never becomes active. This is a contradiction. Thus, we conclude

that aτ0 = aτ (x0). Furthermore, there must be some xτ1 with aτ1 = aτ (xτ1), since

otherwise the whole city would have arrived at the bottleneck before time aτ1, which

is not possible in equilibrium, since residents far from the CBD would have a∗ later

than aτ1 and so could delay departure and gain.

5. This follows since, by assumption, the bottleneck is fully utilized during [aτ0, aτ1].

6. If aτ1 < a∗(xτ1), then the last tolled resident could postpone departure slightly and

gain. If the converse inequality holds, then the resident at xτ1 would not be the

last to be tolled, which is a contradiction.

7. If τ(aτ1) > 0, then residents just before x1 could delay departure slightly to avoid

the toll and gain a jump in utility. This is a contradiction with equilibrium and we

conclude that τ(aτ1) = 0.

8. Assume on contrary that τ(aτ0) > 0. Then resident at x0 could gain by arriving

at the bottleneck slightly before aτ0. This is a contradiction, and we conclude that

τ(aτ0) = 0

9. This follows from the first-order condition (22) and the first-order condition for a∗

by Conditions 3 and 4.

Lemma 1 Assume Condition 5. Let Θ be parametrized in terms of aτ0. Then ∂pτ (x)
∂aτ0

=

−∂τ(a)
∂aτ0
|a=aτ (x) · fτ (x).

Proof. Utility remains constant for every toll in Θ, i.e.,

U(y − c(aτ (x)− x, aτ (x))− τ(aτ (x))− pτ (x)qτ (x), qτ (x)) = Ū . (23)

From Condition 5, we know that each toll function τ is uniquely determined from

aτ1, and aτ1 uniquely detemines aτ0. Therefore each toll function is uniquely determined
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from aτ0. Taking derivative of (23) with respect to aτ0 (suppressing some notation), and

using enveloping ((1) and (14)), we get

qτ (x)
∂pτ (x)

∂aτ0

= −∂τ(a)

∂aτ0

|a=aτ (x).

Then use qτ = 1/fτ to obtain the conclusion.

Proof of Proposition 6. Θ is the set of tolls that removes queue on the finite interval

[aτ0, aτ1] and that lead to equilibrium with the entry rate at the bottleneck at capacity

when tolling is active and below capacity otherwise. Taking derivative of the welfare

function (13) with respect to aτ0, we get

∂W

∂aτ0

=

∫ ∞
x0

∂pτ (x)

∂aτ0

dx+ ψ
∂

∂aτ0

∫ aτ1

aτ0

τ(a)da. (24)

Using Lemma 1, and substituting q(x) = 1/f(x), we get

∂W

∂aτ0

= −
∫ ∞
x0

∂τ(a)

∂aτ0

|a=aτ (x) · fτ (x)dx+ ψ
∂

∂aτ0

∫ aτ1

aτ0

τ(a)da.

= −ψ
∫ aτ1

aτ0

∂τ (a)

∂aτ0

da+ ψ

[
τ(aτ1)

∂aτ1

∂aτ0

− τ(aτ0) + ψ

∫ aτ1

aτ0

∂aτ
∂aτ0

da

]
= ψ

[
τ(aτ1)

∂aτ1

∂aτ0

− τ(aτ0)

]
.

(25)

But Proposition 5 shows that τ(aτ1) = τ(aτ0) = 0. Therefore the welfare function is

constant on Θ.

Proof of Proposition 7.

1. Define the function

h(x) ≡ c (aτ (x)− x, aτ (x)) + τ(aτ (x))− c (a(x)− x, t (x)) . (26)

By enveloping, we have

h′ (x) = c1 (a(x)− x, t (x))− c1 (aτ (x)− x, aτ (x)) . (27)
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Note that when h (x) > 0, fτ (x) < f (x) holds. Also note that a (x) = a∗ (x)

and aτ (x) 6= a∗ (x) implies h (x) > 0. For x ≥ x1, we have a (x) = a∗ (x) and

capacity is not utilized in this regime, which implies that a′∗ (x) > f (x) /ψ (seen by

differentiation of R(a(x)) = F (x) using ψ > ρ).

(a) Consider the first case where xτ1 > x1, and let us seek a contradiction with

a0 < aτ0. There must be an interval during ]x1, xτ1[ where aτ (x) 6= a∗ (x)

and thus fτ (x) < f (x). This implies that a′τ (x) = fτ (x) /ψ < f (x) /ψ <

a′∗ (x). Hence if aτ (x) < a∗ (x) at some point, aτ will remain below a∗. Since

this is contradictory to aτ1 = a∗(xτ1), we conclude that aτ (x) ≥ a∗ (x) for all

x ∈ ]x1, xτ1[.

For any x in this interval with aτ (x) > a∗ (x), we have h (x) > 0, h′ (x) < 0

by c11 + c12 > 0 (Condition 3), and a′τ (x) < a′∗ (x) as shown just above.

We are assuming a0 < aτ0 to establish its contradiction. Recall that t (a0) = a0.

Note that h (x0) < 0 and that a (x) < aτ (x) implies h′ (x) < 0 from (27) with

c11 > 0 and c22 > 0 under c12 = 0. Then, h < 0 for some interval.

During this interval, fτ (x) > f (x) and hence fτ (x)
ψ

= a′τ (x) > t′ (a (x)) a′ (x) =

f(x)
ψ

. This implies that aτ (x) > t (a (x)) ≥ a (x) and hence that h′ < 0 at the

end of the interval. This argument applies until x = x1.

In the interval [x1, xτ1], we also have h′ (x) < 0, which is a contradiction with

h (xτ1) = 0. This establishes that aτ0 ≤ a0.

(b) Consider the other case where xτ1 < x1. We want to show a contradiction of

a0 < aτ0. Note first that aτ (x) = a∗(x) for an interval during ]xτ1, x1[ and

therefore h(x) < 0 and fτ (x) > f(x) hold during the same interval. Also, the

capacity is not fully utilized under the toll regime for x ≥ xτ1, which implies

a′∗(x) > fτ (x)/ψ.

Therefore, a′∗(x) > fτ (x)/ψ > f(x)/ψ = t′(a(x))a′(x) holds during ]xτ1, x1[.

Hence, if aτ (x) > t(x) at xτ1, a∗(x) = aτ (x) > t(x) ≥ a(x) holds for any x in

]xτ1, x1[. Therefore, during this interval, h′(x) < 0.
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As shown above, h(x) < 0 and h′(x) < 0 until xτ1. Also, we’ve just showed

h′(x) < 0 during ]xτ1, x1[. Therefore, h(x1) = 0 is impossible, which is contra-

dictory.

The remaining issue is whether aτ (x) ≤ t(x) is possible at xτ1. But, this is

impossible, because as shown above h < 0 until xτ1, which implies fτ (x) >

f(x). So, aτ (x) = aτ0 + Fτ (x)
ψ

> a0 + F (x)
ψ

= t(x) holds until xτ1.

Therefore, we conclude that a0 < aτ0 is contradictory, regardless of the relative

sizes of xτ1 and x1, establishing that aτ0 ≤ a0.

2. This just follows from a0 ≥ aτ0 and Condition 3.

Proof of Proposition 8.

1. The first result just follows from aτ0 ≤ a0, under which h(x0) ≥ 0 and fτ (x0) ≤

f(x0). By continuity, fτ (x) ≤ f(x) for x near x0.

2. (a) To prove that there exist locations with fτ (x) > f(x), consider first the case

where xτ1 < x1. Note that aτ (x) = a∗(x) during the interval ]xτ1, x1[. Then

there must be an interval during ]xτ1, x1[ where a(x) 6= a∗(x) and thus h(x) < 0

and fτ (x) > f(x).

(b) Consider instead the case where x1 < xτ1. Note that a(x) = a∗(x) during

the interval ]x1, xτ1[. Since the residents at these locations do pay tolls under

optimal tolling, h(x) > 0 and fτ (x) < f(x) hold in this interval.

Also note that residents located at ]x1, xτ1[ do not fully utilize capacity under

laissez-faire, while capacity is fully utilized under tolling for those at ]x1, xτ1[.

Hence,

F (xτ1)− F (x1)

a (xτ1)− a (x1)
< ψ =

Fτ (xτ1)− Fτ (x1)

aτ (xτ1)− aτ (x1)
<

F (xτ1)− F (x1)

aτ (xτ1)− aτ (x1)
,

which leads to

aτ (xτ1)− aτ (x1) < a (xτ1)− a (x1) .
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Then

a∗ (xτ1)− aτ (x1) < a∗ (xτ1)− a∗ (x1) ,

which implies that a∗(x1) < aτ (x1), or equivalently,

a∗(x1) = a0 +
F (x1)

ψ
< aτ0 +

Fτ (x1)

ψ
= aτ (x1). (28)

As shown above, fτ (x) < f(x) for x near x0. Given aτ0 ≤ a0, for (28) to hold,

there must be some locations where fτ (x) > f(x) between x0 and x1.

(c) Consider finally the case where x1 = xτ1. We have

ψ =
F (x1)

a∗(x1)− a(x0)
=

Fτ (xτ1)

a∗(xτ1)− aτ (x0)
,

aτ (x0) ≤ a(x0), and a∗(x1) ≤ a∗(xτ1), which implies that Fτ (x1) ≥ F (x1). As

fτ (x) < f(x) for x near x0, we must have fτ (x) > f(x) for x elsewhere in the

interval ]x0, x1[.
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