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Abstract

For a variety of reasons, agricultural insurance programs use losses against an

index (rainfall, area yield) rather than losses against individual yields to make pay-

outs. While this facilitates the supply of insurance, the resulting basis risk reduces

the value of insurance and therefore reduces demand for it. Using district crop

yields and rainfall data for India, we find that the association between crop yields

and rainfall index is characterized by the statistical property of ‘tail-dependence’.

This implies that the associations between yield losses and index losses are stronger

for large deviations than for small deviations. Or, basis risk is least for large de-

viations of the index. Using simulation we show that value to a risk averse farmer

of index-based insurance relative to actuarial cost is highest for insurance against

extreme or catastrophic losses (of the index) than for insurance against all losses.
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1 Introduction

Agriculture and agriculture-based livelihoods in developing countries are highly prone to

weather shocks. Although there exist various informal mechanisms 1 in rural communi-

ties that allow farmers to pool their idiosyncratic risks, these provide limited insurance to

individual households when risks are correlated and widespread. Extreme climate events

such as droughts, floods and heat waves which affect farming communities in a region

simultaneously, significantly limit the degree of insurance provided by the informal risk

sharing mechanisms. There is substantial evidence that these correlated shocks adversely

affect crop yields and agricultural production, cause depletion of productive assets, exac-

erbate rural poverty, force outmigration, and reduce demand for non-agricultural goods

(Rosenzweig and Binswanger 1993; Carter and Barrett 2006; Dercon and Christiaensen

2011).

In recent years, there has been a lot of interest in index based crop insurance as an

instrument to manage agricultural risks of farmers in developing countries. Unlike the

farm insurance contracts, index based insurance payouts are tied to the observed value

of the index rather than individual farm crop losses. The index based insurance products

specify a threshold establishing a range of values over which indemnity payments are to be

made. All farmers covered under the contract are indemnified if the index falls below the

pre-determined strike point and individual farmers have little or no influence on payouts.

Therefore, the index-based insurance products are less likely to fail due to asymmetry

in information between the insurer and the insured. Index insurance based on average

yield, cumulative rainfall, and other such variables are claimed to be cost-effective risk

management tool in highly fragmented rural communities in developing countries.

The evidence, however, shows unexpectedly poor uptake of the index based insurance

products, despite considerable efforts to promote it (for example see Cole et al. 2010).

An important feature of the index insurance is that the probability of non-performance

of contract is positive. Payouts are based on the index, and as long as there is less than

perfect correlation between individual loss and the index, it is possible for a policyholder

1For examples of informal risk sharing mechanism in rural communities see Rzosenzweig and Stark

(1987); Townsend (1994); Fafchamps and Lund (2003) and DeWeerdt and Dercon (2006).
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to experience loss and yet receive no indemnity or vice versa. This is termed as basis

risk of the index insurance. Hence, for a policyholder the index based insurance is more

of a lottery than insurance. The benefits of index insurance essentially depend on the

strength of association between individual loss and index or alternatively the underlying

basis risk. It is well-known that if basis risk is large then insurance does not benefit much

to the farmers, leading to lower willingness to purchase insurance products. Clarke (2016)

theoretically shows that a positive probability of contract non-performance inherent in

an index insurance contract substantially suppresses its demand. Using the distance of a

farm from the nearest weather station as a proxy for basis risk, Mobarak and Rosenzweig

(2013) find higher basis risk adversely affecting the demand for insurance products by

Indian farmers. Gine, Townsend and Vickery (2008) while studying rainfall insurance

for India find that the farmers who traditionally allocate a high proportion of their land

to crops for which index insurance contracts were designed, have a higher probability of

purchasing these products.

Besides basis risk, a number of behavioral factors have been found to dampen the

demand for index insurance. Lack of trust, poor understating of the product and liquidity

constraint (Cole et al. 2013), risk aversion and perception of index insurance as compound

lottery (Elabed and Carter 2015) are identified as important factors limiting the demand

for index based insurance products. Karlan et al. (2015) from their study in Ghana find

that farmers are more likely to purchase insurance if they or other farmers in their social

network had received payouts previously. Similar findings have been reported from India

(Hill, Robles, and Ceballos 2016; Cole et al. 2014 and Mobarak and Rosenzweig 2013).

The success of an index insurance contract critically hinges on the nature of associ-

ation between the index and farmers’ yields. Traditionally, basis risk has been linked

to linear correlation between yields and index. However, stochastic dependence between

variables goes beyond linear correlation, and there is no particular reason to assume a

linear relationship between farm yields and index. Global weather phenomenon like El

Nino can simultaneously affect local weather at multiple locations and generate spatial

correlation between them. Literature from hydrology has provided evidence of non-linear

association between rainfall at different locations (Kuhn et al. 2007; Liu and Miranda

2010 and Aghakouchak et al. 2010). The particular pattern of association is as follows.
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Consider two locations A and B, the evidence indicates that for small deviations there

is a weak association between the rainfall deviations at A and B. But, the association is

stronger if the deviations are large at both the locations. This pattern of association is

called tail-dependence in the joint distribution of rainfalls, i.e. if there is a large deviation

at A, then it likely that the deviation in rainfall at B will be also be large.

Suppose crop yield at a farm at location A or B is a function of rainfall at that farm and

some other idiosyncratic factors, then tail-dependence in the joint distribution of rainfall

implies tail-dependence in the joint distribution of farm yield at location A and B. this

implies that average yield of farms at A and B is unlikely to change much if there are

small rainfall deviations. But it will change if deviations are large and spatially correlated.

Goodwin (2001) has shown that spatial correlation of crop yields is significantly stronger

during the years of extreme deviations than during normal years. A second hypothesis

is that the association between individual farm yield and average yield will also exhibit

tail-dependence. Further, the association between average rainfall and average yield will

also exhibit tail-dependence.

We begin the analysis by testing for presence of tail-dependence between rainfalls

at two locations in India. This is a primitive requirement for the joint distribution of

farm yields and the joint distribution of average yield and average rainfall to exhibit

tail-dependence. Then, we examine the tail-dependence between average yields of major

crops and average seasonal rainfall. Finally, we analyze implications of these results on

farmers willingness to pay, design of contract and viability of the index insurance as an

instrument to manage farm risk.

A preview of the findings is as follows. We find that station level rainfall in India

do exhibit tail-dependence and the joint distribution of district level crop yields for nine

major crops and rainfall index also exhibit tail-dependence. This implies that the asso-

ciations between yield losses and index losses are stronger for large deviations than for

small deviations. Or, basis risk is least for large deviations of the index. Using simulation

we show that value to a risk averse farmer of index-based insurance relative to actuarial

cost is highest for insurance against extreme or catastrophic losses (of the index) than

for insurance against all losses.
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The paper is organized as follows. The next section discusses theoretically a typical

index insurance contract and the willingness to pay by risk averse farmers. Section 3

describes the data and the empirical methodology used to assess the association between

yields and rainfall index. Section 4 presents the results on nature of the joint association

between crop yields and rainfall index. In section 5 we simulate the impact of tail-

dependence in the joint distribution of yields and rainfall index on the willingness to pay

for index insurance and discuss its implication for the design and viability of the index

insurance contracts. Conclusions are presented in the last section.

2 Conceptual Framework

A typical index based insurance contract triggers payouts based on an index according

to following schedule.

I(R|R∗) = Ȳ ×Max

{
(R∗ −R)

R∗
, 0

}
(1)

Where Y and R are yield and rainfall index respectively, and Ȳ is the maximum

payout. The contract pays out when R falls below the specified trigger R∗, in proportion

to the difference between the R and R∗. We set up a simple framework to illustrate how

the nature of dependence between yield and rainfall influences a farmer’s demand for

insurance. We assume that the expected utility of representative farmer is characterized

by a constant relative risk aversion (CRRA) utility function.

U(π) =
π(1−γ)

(1− γ)
(2)

Where π denotes income and γ is the measure of relative risk aversion. For brevity

we assume that the farmer cultivates only one crop and the indemnity is paid in terms

of crop output. This will not influence indemnity and premiums. The actuarially-fair

premium of the contract is the expected value of the indemnity.

PAF (R|R∗) = E[I(R|R∗)] =

∫
I(R|R∗)h(R)dR (3)

Where h(R) is the density function of the rainfall index. Given this as the contract

offered by the insurer, we wish to know farmer’s willingness to pay for insurance. Willing-
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ness to pay W is the amount which a farmer is willing to pay for insurance such that the

expected utility of net income with insurance is least equal to income without insurance.

E[U(Y )] ≤ E[U(Y + I(R;R∗)−W )] (4)

Where U(.) is the utility function of the farmer with U
′
(.) > 0 and U

′′
(.) < 0 and

g(Y ) is the probability density function of yield. Willingness to pay can also be expressed

as the difference between the certainty equivalent with the index insurance contract, CII ,

and the certainty equivalent without insurance, CIU .

WTP = CII − CIU = U−1(E[U(Y + I(R;R∗))])− U−1(E[U(Y )]) (5)

To see how dependence between yield and index influences the demand for insurance

we write the above expression as

WTP =

(∫ (∫
(Y + I(R;R∗)

)(1−γ)

f(Y |R)dY

)
h(R)dR

)1/(1−γ)

−
∫ (

Y (1−γ)g(Y )dY

)1/(1−γ) (6)

Where f(Y |R) is the probability of yield conditional on rainfall. The above expres-

sion shows that besides other factors, willingness to pay is also a function of the joint

distribution of yield and rainfall index. Hence, the degree of association between yield

and rainfall will directly affect the willingness to pay for insurance.

3 Data and empirical methodology

3.1 Data

To test the hypothesis that rainfall at two locations is tail-dependent we use rainfall data

from 137 weather stations of the Indian Meteorological Department. The complete data

series is available from 1966 to 2007. Rainfall is highly seasonal, and bulk of it is received

during June to October. To make rainfall series comparable across stations and months,

we standardize rainfall by months.
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To test the hypothesis that average district yield and district rainfall shows tail-

dependence we utilize data on crop yield from the International Crops Research Institute

for the Semi-Arid Tropics ICRISAT (http://vdsa.icrisat.ac.in/vdsa-database.htm)

compiled from various official sources. The database covers 15 major crops across 311

districts in 19 states from the year 1966-67 to 2011-12. To maintain consistency and

comparability of time series across districts, data of the bifurcated districts is returned to

the parent district based on the district boundaries in 1966. To generate district level av-

erage rainfall we use high resolution gridded rainfall data from the Indian Meteorological

Department.

The crops chosen for the analysis are Maize, Cotton, Sorghum, Finger millet, Pigeon

pea, Soybean, Pearl millet, Groundnut and Rice. These crops are cultivated in the

kharif season (June to October). This is one of the main agricultural season in India

and receives around 85% of the annual rainfall. Crop yields typically exhibit significant

upward trends overtime due to technological changes. Yield deviations are estimated by

fitting a linear trend to log yields of each crop of each district. Similarly district specific

cumulative monthly rainfall are transformed to standardized deviations from their long

term normals.

3.2 Empirical methods

Our interest in this paper is to examine the nature of association between rainfall and crop

yields. We use statistical tools that are flexible enough to allow for complex nonlinear

dependence between these variables. Traditionally, the crop insurance literature has used

linear correlation to assess basis risk. Using linear correlation is restrictive as it captures

only linear dependence with the underlying assumption that the variables are jointly

normally distributed. This is a rigid assumption, especially when both rainfall and yield

are known to have highly skewed marginal distributions.

Index insurance indemnifies insurers only when there are extreme deviations in the

index. Thus, from the point of view of index insurance the nature of dependence at ends

or tails of the joint distribution is more important. A statistical concept that measures

the joint dependence between two variables at tails of their joint distribution is the
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coefficient of tail-dependence. The coefficient of tail-dependence measures the strength

of dependence at the lower or upper tail of the joint distribution (Joe 2015; Nelsen 2006).

Let X and Y be the continuous random variables with distribution functions F and G,

respectively. Then, the lower tail-dependence coefficient, λL, is the probability that one

variable takes an extremely low value, given that the other variable also takes an extremely

low value. Similarly, the upper tail-dependence coefficient, λU , is the probability that

one variable takes an extremely high value, given that the other variable also takes an

extremely high value. Mathematically, these can be expressed as:

λL = lim
q→0

P (G(Y ) ≤ q|F (X) ≤ q) (7)

λU = lim
q→0

P (G(Y ) > q|F (X) > q) (8)

Where both λL, λU ∈ (0, 1]. For a set of random variables to be tail-dependent

the limits of the conditional probabilities in equation (7) and (8) should be non zero.

Tail-dependence coefficients are better measures than linear correlation as they provide

more detailed information on the joint dependence structure of random variables (Pat-

ton, 2013). Since a bivariate normal distribution does not exhibit tail-dependence, the

presence of tail-dependence in data goes against the assumption of joint normality. We

use nonparametric estimator of tail-dependence as suggested by Frahm, et al. (2005)

and Patton (2013) to estimate the tail-dependence in weather station level rainfall. The

estimator is given as:

λ̂L =
2− log (1− 2(1− q) + T−1

∑T
t=1 1{G(Y ) ≤ 1− q, F (X) ≤ 1− q})

log (1− q)
(9)

λ̂U =
2− log (T−1

∑T
t=1 1{G(Y ) ≤ 1− q, F (X) ≤ 1− q})

log (1− q)
(10)

The tail-dependence statistic looks at a specific portion of tail in the joint distribution.

Therefore, a threshold q needs to be specified for estimation. This choice of q involves

trade off in terms of bias in the estimate and its variance. For small (large) values of q

the variance is large (small) and the bias is small (large). Note that the smaller the value

of threshold q the more extreme deviations the tail dependence statistic will capture.

A crude test for the presence of tail-dependence in a pair of variables is to examine

the scatter plot of these variables (after transforming to uniform scores based on the
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empirical distribution) for clustering at the extremes (Joe 2015). For different values of

q we can also compute conditional quantile dependence probabilities for the lower (pL)

and higher (pU) extremes of the transformed variables as:

pL =
1

Tq

N∑
i=1

1{UY t ≤ q|UXt ≤ q} (11)

pU =
1

T (1− q)

N∑
i=1

1{UY t > q|UXt > q} (12)

Where UY t and UXt are the scores of Y and X based on their empirical distribution.

We use copula function approach to estimate the joint distribution of yield and rainfall.

The copula function provides a flexible way to bind the univariate marginal distributions

of random variables to form a multivariate distribution and can accommodate different

marginal distributions of the variables (Nelsen 2006; Trivedi and Zimmer 2007). A two-

dimensional copula can be defined as a function C(u, v) : [0, 1]2 → [0, 1] such that

F (Y,X) = P [G(Y ) ≤ G(y), F (X) ≤ F (x)] (13)

F (Y,X) = C(G(Y ), F (X); θ) (14)

Where θ represents the strength of dependence. The joint probability density function

can be expressed as:

c(G(Y ), F (X); θ) =
∂C(G(Y ), F (X); θ)

∂G(Y )∂F (X)
= C(G(Y ), F (X); θ)g(Y )f(X) (15)

Skalar (1959) has shown that for a continuous multivariate distribution, the copula

representation holds for a unique copula C. This construction allows us to estimate

separately the marginal distributions and the joint dependence of the random variables.

There are several parametric families of copula available in the literature. The frequently

used ones are the elliptical copulas and the Archimedean copulas. Note that the nature

of dependence among the random variables will depend on the copula function chosen for

estimation. The statistical properties of the copulas that we use in this paper are given

in appendix.

We use two-step maximum likelihood procedure to estimate the copula function

wherein the marginals are estimated in the first step, and the dependence in the second
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step by substituting the estimated marginal distributions in the selected copula function

(Trivedi and Zimmer 2007). A non parametric estimator is used to estimate the univari-

ate marginal distribution for crop yield deviations and rainfall deviations. This makes the

model semi parametric. Estimation of copula using non parametric distribution does not

affect the asymptotic distribution of the estimated copula dependence parameter (Chen

and Fan 2006).

A simple maximum likelihood estimator can be used to choose the best fitting copula

and estimate the dependence parameter (Patton, 2013). Selection of the copula model

can be made based on the Akaike or (Schwarz) Bayesian information criterion. If all

the copulas have equal number of parameters, then the choice of model based on these

criteria is equivalent to choosing copula with highest log likelihood (Trivedi and Zimmer

2007). The log likelihood function of the copula can be written as:

L(θ) =
N∑
i=1

logC(ÛXi, ÛY i; θ) (16)

Where ÛXi = Ĝ(Yi) and ÛY i = F̂ (Ri) are the estimated marginal distributions. Cop-

ula parameter can be estimated by maximizing the likelihood function using numerical

methods. This procedure gives the Inference Functions for Margins (IFM) estimator as

θ is conditional on the model that is used to transform the raw data (Joe, 2015; Patton,

2013).

4 Results

4.1 Tail-dependence between station level rainfalls

In this section we investigate the joint association between rainfalls at two stations. Figure

1a shows scatter plot of pair wise linear and rank correlations between all the possible

combinations of rainfall stations as a function of the distance between them. The right

panel of the figure shows the best fit curve to the rainfall station pair correlations. These

clearly show that the joint association between rainfalls at two stations is inversely related

to the distance between them. Interestingly the curve for rank correlation is above the
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curve for linear correlation when two stations are close to each other. But, the difference

between the two narrows down as the distance between the stations increases. This is an

indication of tail-dependence in rainfall as rank correlation is better suited at capturing

nonlinear relationships between the variables.

Correlation is a global measure of association whereas we are interested in the associa-

tion between random variables when they are at their extremes. To study the behavior of

joint distribution of rainfalls at extremes we create a dataset of all possible combinations

of rainfall station pairs. Using this, for each station pair, we generate a new dataset of

lower and upper tail dependence coefficients for different values of the threshold q. Fig-

ure 1b shows the best fitted curves for the lower and upper tail-dependence statistic for

pair-wise rainfalls as a function of the distance between the stations. The tail-dependence

declines with distance, but rate of decline is less at the lower values of q. We model this

behavior econometrically in the following way.

λij = β1 log(Distance)ij + β2q + β3 log(Distance)ij × q + αi + αj + εij (17)

Where λij the estimated tail dependence coefficient between rainfalls measured at two

stations i and j, log(Distance)ij is the distance in kilometers between the two station pair

and q is the threshold chosen for the tail dependence statistic. The interaction coefficient

captures the interplay between distance and extreme events. Table 1 shows the estimated

coefficients from the regressions. The coefficient of the interaction term is negative and

statistically significant. Since lower values of q correspond to more extreme deviations

in rainfall the analysis reveals that extreme deviations in rainfall are more widespread as

compared to the moderate deviations. Hence, extreme rainfall shocks will survive spatial

aggregation in comparison to moderate shocks. If yield across farms are dependent on

local rainfall then it will also inherit the tail-dependence property. The implication of this

finding is that an extreme rainfall anomaly will lead to spatially correlated crop losses.

As a robustness check, we test for tail-dependence between the station-level rainfall

by fitting different copula models on station-pairs with distance less than or equal 2000

kilometers. Students t copula appears best fit for almost half of the station-pairs, followed

by Plackett and rotated Clayton copula (table 2a). The Students t copula exhibits both

upper and lower tail-dependence. This indicates that rainfall in general exhibits a stronger
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association in case of both extremely low and extremely high deviations from the normal.

The mean values of the tail-dependence coefficients based on the copula parameter for all

the station-pairs are presented in table 2b and show a declining strength of association

when the distance between two stations increases. This is similar to the pattern observed

in the non parametric tail-dependence coefficients.

4.2 Tail-dependence in district crop yield and rainfall

Table 3 presents coefficients of linear and rank correlation between yield and rainfall de-

viations. As expected, both measures show a statistically significant positive association

between yield and rainfall deviations, despite some difference in their magnitude.

Figure 2a shows the scatter plots of yield and rainfall deviations along with the linear

fit. In figure 2b and 2c we present the scatter and bivariate kernel density plots of the

rank-based empirical marginal distribution of yield and rainfall deviation. We observe

clustering of rank scores (for yield and rainfall deviations) in the lower-left corner of

scatter plots for most crops. Such a clustering corresponds to extreme shortfalls in yield

and rainfall, and implies greater probability of simultaneous occurrence of these events.

The scatter plots of rank-based empirical distributions gives us strong indication that

association between yield and rainfall index is not linear. Therefore, we test for the

presence of tail-dependence in their joint distribution using the conditional quantile de-

pendence probabilities. Figure 3 shows estimated lower tail (figure 3a) and upper tail

(figure 3b) quantile dependence plots; and the difference between the two (figure 3c). For

comparison we also present the quantile dependence from the moments matched bivariate

normal distribution as dashed line in this figure. For all crops the quantile dependence

probability at the lower tail of the joint distribution is greater than the same exhibited

by normal distribution. This again is evidence of lower tail-dependence in crop yield

and rainfall deviations. The quantile dependence plots for the upper tail don’t show any

evidence of tail-dependence in the joint distribution of yield and rainfall distribution. We

also find strong evidence that the joint distribution of crop yield and rainfall deviations

exhibit asymmetric tail-dependence. The difference between the upper and lower quantile

dependence is statistically significant and is greater at lower quantiles (figure 3c). These
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results clearly reveal that the bivariate normal distribution is unsuitable to model the

joint distribution of yields and rainfalls.

We use copula functions to capture the asymmetric dependence between yield and

rainfall deviations by fitting copulas to rank-based empirical marginal distributions of

yield and rainfall deviations. Based on the log likelihood values, the Clayton copula is

the best model to describe the dependence between yield and rainfall deviations (Table

4). This is not surprising as Clayton copula exhibits only lower tail-dependence and no

upper tail-dependence. The worst performing copula models are one with zero lower

tail-dependence and allow only upper tail-dependence like Gumbel and rotated Clayton.

Table 5 presents the parameters of the Clayton copula with bootstrapped standard errors

and lower tail-dependence based on the fitted copula parameter.

The estimated copula density for different crops is presented in Figure 4. As expected,

all crops show significantly higher density at the lower tail. This further confirms that

the association between yield and rainfall deviations is stronger at the lower tail. This

means when rainfall is abnormally low, yield losses are widespread. Therefore, the basis

risk is low for extreme shortfall in rainfall.

As a robustness check, we fit all the selected eight copula models to each district

that has at least 40 data observations. Based on the log likelihood values, we choose the

one that best describes the dependence. Table 6 summarizes the results. For example,

in the case of rice Clayton copula gives best fit for 41 percent of the 274 rice growing

districts. Students t copula is the next best. Clayton and Students t copula models best

describe the joint dependence between yield and rainfall deviations. These findings clearly

indicate nonlinearity in association between weather and yield risk and has implications

for designing of the insurance products and demand thereof.

5 Implications for Index based crop insurance

For a variety of reasons, agricultural insurance programs use losses against an index (rain-

fall, area yield) rather than losses against individual yields to make payouts. While this

facilitates the supply of insurance, the resulting basis risk reduces the value of insurance
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and therefore reduces demand for it. The ideal index should be as close as possible to

farm-specific yields but it should not be amenable to manipulation by the actions of the

insured. Because of heterogeneity in farm-specific yields, it is clear that an index that

applies to a group of farmers need not necessarily be an ideal index. In other words,

the basis risk is inevitable. Our findings show that the joint density of yield and rainfall

exhibit lower tail-dependence, i.e. a stronger association between yield and rainfall when

rainfall is abnormally low. This implies that the basis risk varies across the joint distri-

bution of yield and index. This opens up the possibility of designing insurance such that

it covers the losses with the least basis risk. Here, we analyze the implications of these

findings for the demand and design of index insurance.

5.1 Simulation

To see how tail-dependence influences willingness to pay for index insurance we undertake

a simple simulation exercise. We generate 10 million observations of yield and rainfall

from Clayton copula and from bivariate normal distribution. For both the marginal

distribution of yield and rainfall are assumed to be normal with an assumed mean of

2000 and standard deviation of 300. The copula parameter is set at 0.39, same as that

estimated for rice yield and rainfall. The linear correlation between the simulated yield

and rainfall from Clayton copula and bivariate normal distribution is assumed to be the

same. The only difference is that yield and rainfall index simulated from Clayton copula

exhibit lower tail-dependence, while the other does not. To calculate willingness to pay,

the coefficient of risk aversion is assumed to be 0.9.

Figure 5 plots the simulated insurance contract schedules for different triggers (Equa-

tion 1) superimposed over marginal density of rainfall. As the contract provides indemnity

in proportion to shortfall in the index from trigger, the contract schedule is steeper at

lower triggers of rainfall. The simulation results are shown in figure 6. In panel (a) of the

figure 6 we present willingness to pay for insurance from Clayton copula and bivariate

normal distribution normalized by the willingness to pay without basis risk. The willing-

ness to pay for insurance with tail dependent risk is much higher than the willingness to

pay from normal distribution. The difference between the two is greater at lower rainfall
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triggers, which reflects lower basis risk at the tails of Clayton copula.

Figure 6 panel (b) plots the ratio of willingness to pay in relation to actuarially fair

premium at different triggers for lower tail of the rainfall distribution. In general, the

willingness to pay relative to the actuarially fair premium declines at higher trigger levels.

With tail-dependent risk, a risk-averse farmer is willing to pay much higher for insurance

that triggers payout at extremely low rainfall. This is again due to lower basis risk at

the lower tail of Clayton copula. In comparison to willingness to pay with basis risk the

willingness to pay in absence of basis risk remains higher at all trigger levels.

Figure 7 plots certainty equivalent when an agent pays actuarially fair premium rate.

In comparison to the certainty equivalent under bivariate normal distribution, the cer-

tainty equivalent for Clayton copula reaches its maximum at a higher trigger level. This

indicates that the choice of trigger is contingent upon the underlying dependency between

yields and index. In figure 8 we show how the joint dependence between yield and rain-

fall will influence the demand for insurance with increasing risk-aversion. In general, the

demand for insurance with tail dependent risk relative to bivariate normal dependence

increases with increase in risk aversion, but the rate of increase is higher at extremely

low rainfall trigger. This implies that highly risk-averse farmers will gain the most from

insurance against extreme shortfall in rainfall. The gains are even more in case of tail

dependent risk.

The main finding from the simulation exercise is that the value (to farmers) of index-

based insurance relative to actuarial cost is highest for insurance against extreme or

catastrophic losses (of the index) than for insurance against all losses.

5.2 Implications

The importance of crop insurance programs stems from the fact that farm incomes are

volatile and the farmers are not capable to cope with extremely high risk. This is the eq-

uity objective of crop insurance. The efficiency objective of insurance is that by creating

a market for output risk, the producer behavior and decisions should move closer to so-

cially optimal levels. The experience from the implementation of crop insurance schemes
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in different countries shows that the crop insurance programs are safety nets primarily

meant to support the farmers and farm sector. Having assessed the costs and benefits of

US federal crop insurance program, Goodwin (2015) observes that for each dollar paid

as premium, the program on average pays back $1.88 as indemnity payments.

India has a long history in crop insurance schemes. In the Comprehensive Crop In-

surance Scheme which was operational over the 1985-1998 period, the average claims to

premium ratio for was 5.75 and the same for National Agricultural Insurance Scheme

which was under operation form 1999-2012 was 3.31. These schemes were primarily

meant to provide economic support to the agricultural sector as no private insurance

programs can profitably operate under such conditions. The recently launched Pradhan

Mantri Fasal Bima Yojana (PMFBY) is the Indian government’s recent attempt to ex-

pand insurance coverage to majority of Indian farmers by heavily subsidizing insurance

premiums.

The idea behind heavily subsidizing insurance premium is that subsidies are essential

for widespread uptake of insurance products. If so, the question is: What is the best way

to provide subsidy? Our analysis shows that crop losses are widespread during extreme

climatic events such as droughts. This implies that a considerable proportion of farmers

would benefit from a program that covers their risks during an extreme weather event. In

other words, any form of insurance that protects from extreme losses is likely to be favored

by a majority of the farmers. The actuarial cost of such an insurance scheme will be lower

compared to a normal insurance; hence less burden on government exchequer. Indeed, a

policy that completely subsidizes extreme loss insurance could possibly be revenue neutral

relative to an insurance program that covers crop losses based on rainfall-deficit.

Extreme loss insurance programs are likely to be more useful to local aggregators

of risk such as banks, producer companies, cooperatives, agri-business firms and local

governments. There is a very established protocol for drought relief expenditures by

the government. However, its timeliness is often questioned because of many layers of

permissions required for such expenditures. On the other hand, an extreme loss insurance

program offers the benefits of drought relief but in a timely manner.

We note that farmers may not purchase insurance for other reasons as well including
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poor understanding of the product, credit constraints, low trust of the insurance seller,

and optimism about yields. If these are binding constraints, then again a reduction in

basis risk may not impact the demand for insurance.

6 Conclusions

Although cost effective and free from moral hazard and adverse selection, the index based

crop insurance products have seen poor uptake because of imperfect association between

index and crop loss that reduces the value of insurance and therefore its demand.

We find the association between crop yield and rainfall index characterized by the

statistical property of tail-dependence. This implies that the associations between yield

losses and index are stronger for large deviations than for small deviations. The most

important implication of our findings is that for farmers the utility of index-based in-

surance relative to actuarial cost is more during extreme or catastrophic losses than for

insurance against all losses. This opens up the issue of evaluating the cost effectiveness

of an insurance product that limits itself to compensation against extreme events. Our

findings also generates a need to systematically evaluate the basis risk and uptake for

index insurance products that differ with respect to the contract threshold.

Finally, we wish to point out that tail-dependence is unlikely to be India specific since

it flows from the nature of spatial associations of weather. Therefore, although our results

are based on Indian data, the general lessons are available for other countries too.
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Figure 2: Joint distribution of yield and rainfall deviations
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Tables

Table 1: Extreme events, tail dependence and distance

(a) Weather station data (b) Gridded data

Upper λ̂L Lower λ̂U Upper λ̂L Lower λ̂U

log(Distance) -0.06*** -0.06*** -0.10*** -0.09***

(0.004) (0.003) (0.003) (0.002)

q 2.49*** 2.32*** 3.96*** 3.89***

(0.240) (0.205) (0.094) (0.062)

log(Distance)× q -0.31*** -0.29*** -0.50*** -0.49***

(0.035) (0.030) (0.013) (0.008)

Constant 0.53*** 0.50*** 0.81*** 0.65***

(0.027) (0.021) (0.023) (0.016)

Observations 55896 55896 381276 381276

Adjusted R2 0.48 0.47 0.67 0.68

Note: The dependent variable are the estimated nonparametric tail dependence

coefficients. The tail dependence statistic varies between 0 and 1. The regressions

include station (grid point) fixed effects. Figure in parenthesis are standard errors

clustered at rainfall station level. Panel (a) shows results from the data on actual

rainfalls measured at 137 weather stations spread all over India. Panel (b) shows

results from the Indian meteorology department’s high resolution gridded rainfall

data based on rainfall records from 6995 rain gauge stations in India. ***, ** and

* indicate statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 2: Dependence in pairwise station rainfalls

(a) Copula fitted to pairwise rainfalls

Copula model Station pairs Percent

Gaussian 354 4.43

Clayton 437 5.46

Rotated Clayton 950 11.88

Plackett 1204 15.05

Frank 318 3.98

Gumbel 188 2.35

Rotated Gumbel 698 8.73

Student’s t 3849 48.12

Total 7998 100

(b) Estimated tail-dependence based on fitted copula and distance

Distance between pair of stations in kilometers

Copula 2-479 498-776 777-1033 1033-1287 1287-1572 1573-1999

Clayton 0.183 0.019 0.01 0.009 0.006 0.003

(0.236) (0.039) (0.02) (0.025) (0.019) (0.013)

Rotated Gumbel 0.284 0.209 0.163 0.146 0.133 0.129

Lower (0.09) (0.06) (0.043) (0.032) (0.02) (0.019)

Student’s t 0.573 0.523 0.503 0.493 0.49 0.482

(0.051) (0.034) (0.031) (0.026) (0.026) (0.024)

Total 0.353 0.336 0.292 0.237 0.194 0.172

(0.274) (0.238) (0.238) (0.236) (0.231) (0.226)

Rotated Clayton 0.126 0.064 0.026 0.017 0.006 0.003

(0.094) (0.058) (0.04) (0.031) (0.014) (0.008)

Gumbel 0.294 0.185 0.149 0.149 0.133 0.122

Upper (0.091) (0.054) (0.032) (0.037) (0.014) -

Student’s t 0.573 0.523 0.503 0.493 0.49 0.482

(0.051) (0.034) (0.031) (0.026) (0.026) (0.024)

Total 0.348 0.324 0.28 0.228 0.185 0.165

(0.276) (0.247) (0.247) (0.241) (0.235) (0.229)

Note: Standard deviation in parenthesis.
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Table 3: Linear and rank correlation between yield and rainfall deviations

Crops Pearson linear correlation Spearman rank correlation

Rice 0.255(0.008) 0.272(0.008)

Groundnut 0.184(0.009) 0.184(0.009)

Pearl millet 0.169(0.011) 0.177(0.010)

Pigeon pea 0.135(0.009) 0.156(0.009)

Soybean 0.119(0.019) 0.171(0.016)

Sorghum 0.107(0.011) 0.108(0.010)

Finger millet 0.089(0.015) 0.110(0.014)

Cotton 0.082(0.017) 0.067(0.012)

Maize 0.020(0.011) 0.034(0.009)

Note: Bootstrapped (200 replications) standard errors in parenthesis.

Table 4: Log likelihood from different copula models

Crops Gaussian Clayton Rotated

Clayton

Plackett Frank Gumbel Rotated

Gumbel

Student’s t

Cotton 20.4 30.8 9.5 16.4 16.1 -11.7 10.2 23.5

Finger millet 30.4 51.2 4.6 33.5 32.8 -6.6 44.5 31.9

Groundnut 201.6 266.4 66.2 189.0 185.8 103.3 247.9 210.1

Maize 8.5 31.4 0.1 7.5 7.4 -121.0 -29.4 13.7

Pearl millet 154.2 204.9 50.7 145.1 142.4 76.3 194.4 161.4

Pigeon pea 139.5 172.0 41.0 142.7 141.8 57.2 154.8 139.9

Rice 518.5 615.5 200.1 519.9 512.6 318.3 602.1 529.2

Sorghum 73.9 127.8 13.3 61.6 60.3 -2.4 109.8 79.6

Soybean 42.3 61.0 8.9 49.6 49.0 14.1 56.5 43.9

Note: Negative of log likelihood values.
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Table 5: Clayton copula model parameter estimates

Crops Parameter

Estimates

Standard

errors

Tail

dependence

Cotton 0.102 0.014 0.0011

Finger millet 0.158 0.018 0.0124

Groundnut 0.267 0.013 0.0747

Maize 0.075 0.011 0.0001

Pearl millet 0.257 0.014 0.0676

Pigeon pea 0.204 0.013 0.0333

Rice 0.391 0.013 0.1702

Sorghum 0.178 0.012 0.0205

Soybean 0.233 0.025 0.0512

Table 6: Percent districts with best fit copula

Crops Gaussian Clayton Rotated

Clayton

Plackett Frank Gumbel Rotated

Gumbel

Student’s t Total

Cotton 10 28 9 7 7 2 5 33 100

(12) (34) (11) (8) (8) (3) (6) (40) (122)

Finger millet 4 44 6 1 7 0 3 35 100

(3) (31) (4) (1) (5) (0) (2) (25) (71)

Groundnut 4 45 4 6 6 3 6 26 100

(8) (84) (8) (12) (12) (5) (11) (48) (188)

Maize 7 28 5 9 4 2 3 43 100

(17) (70) (12) (22) (10) (4) (7) (108) (250)

Pearl millet 2 50 3 6 5 1 3 31 100

(3) (78) (4) (10) (8) (1) (5) (48) (157)

Pigeon pea 4 42 8 5 7 3 3 28 100

(9) (91) (18) (10) (16) (7) (7) (60) (218)

Rice 5 40 3 7 10 2 9 26 100

(14) (109) (7) (18) (27) (5) (24) (70) (274)

Sorghum 4 41 4 7 4 1 5 35 100

(7) (81) (7) (14) (8) (2) (10) (69) (198)

Total 5 39 5 6 6 2 5 32 100

(73) (578) (71) (95) (94) (27) (72) (468) (1478)

Note: Number of districts in parenthesis.
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Appendix

There are a variety of copula models available in the literature. Table 1 which is taken

from Patton (2012) shows the properties of some of the popular copula models which we

use to find the best fitting model for our data.

 

Figure 1: Estimated copula density by crops

The copula model which best fits our data and we extensively use in our analysis is

the Clayton copula. The functional form of the Clayton copula function is given as.

C(u, v) = (u−θ + v−θ − 1)
− 1

θ (18)

Where u = G(Y ) and v = H(R). This copula shows strong lower tail-dependence but no

upper tail-dependence. The probability density function of the Clayton copula is given

by the following expression.

c(u, v) =
∂C(u, v)

∂u∂v
(19)

c(u, v) = (θ + 1)uv−(θ+1)(u−θ + v−θ − 1)
−2− 1

θ (20)

Figure 2 gives the scatter plot of data simulated from Clayton copula and bivariate

Normal distribution where the linear correlation between the two simulated datasets is

kept the same.
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