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1 Introduction

Despite increased political and academic interest in the economics of inequality,

still little is known about inequality in access to public goods and services. The

theoretical concept of “public goods” is näıve in assuming that they benefit everyone

equally. The twin assumptions of non-rivalry and non-excludability evacuates the

question of public good accessibility. However the question matters because most

public goods are local in nature. Take electricity or sanitation provision for instance:

given capacity constraints in poor countries, providing access to the largest possible

population may require to first focus supply on high population density areas.

The purpose of this paper is to study the provision of local public goods and the

impact of the political system on its allocation.

There is a large existing empirical and theoretical literature on how and which

national institutions gear policy either towards general public good provision or

particularistic “pork barrel” targeted A recurrent theme in the literature (Persson

and Tabellini (1999, 2000); Persson (2002); Lizzeri and Persico (2001, 2005); Milesi-

Ferretti, Perotti, and Rostagno (2002), and Myerson (1993)) is that politicians have

incentives to target a smaller fraction of the population under majoritarian systems

than under proportional representation and that therefore there are fewer public

goods and more inequality under majoritarian systems. Most empirical analyses

at the international level must make strong assumptions about which items in the

government budget can reasonably be thought to represent public goods as opposed

to transfers (see Section ?? in Bouton, Castanheira, and Genicot (2016)). Moreover,

these distinctions rest on the assumption that there exists something like a “universal

public good”. Instead, with some exceptions such as nuclear deterrence, one is

bound to admit that “public goods” are typically geographically targetable. The

key question is then to identify when governments exploit their margins of action to

target them in practice or not. Large-sample cross-country or panel analyses (see
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e.g. Persson and Tabellini (2003), Iversen and Soskice (2006), or Blume et al. (2009))

have typically avoided this problem. Only a few recent analyses have instead looked

at a much more granular level to measure how public goods are supplied locally

–e.g. between municipalities of a similar region (see e.g. Azzimonti (2015); Blakeslee

(2015); ?); Gagliarducci, Nannicini, and Naticchioni (2011); Min (2015); Strömberg

(2008), and Golden and Min (2013) for a survey).

This paper revisits the question of the economic impact of political institutions as-

suming that politicians decide on the allocation of geographically targetable public

goods. We introduce a model of political competition where politicians promise local

public goods in order to gain votes and contract majoritarian and proportional rep-

resentation. We show that proportional systems give strong incentive to politicians

to allocate more public good to densely populated areas. This is so because PR does

not impose any constraint on where these votes should be coming from. The parties

are thus allowed to concentrate resources in areas with higher population density.

In contrast, in majoritarian systems, the winning party needs to win districts. This

provides incentives to politician to 1. target relatively populated areas within a

district (but not necerssarily the most populated areas in the country) ; 2. give up

on localities in non swingable districts. We show that under reasonable implications

this implies a tilt in the relationship between public good levels and population,

with a steeper slope for proportional representation systems.

Empirically, we use pixel-level satellite measures of luminosity at night to assess the

location of public light provision in a country. Combining these data with population

data from the LandScan project, we have, for all countries, information at the local

level both about the population and the public light provision.

In essence, this produces about 28 million observations that allow us to precisely

track how night lights are geographically targeted across virtually all population

groups on Earth. This allows us to construct new indicators of the inequality in

public light supply across the population groups at the country and at the subre-
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gional levels.

Pursuing the analysis further, we then exploit pixel level data in developing demo-

cratic countries to analyze how night lights are distributed across each population

density levels . We observe that, in comparison with majoritarian elections, propor-

tional representation are more responsive to population: they provide more light to

densely populated cities, while the opposite is true in rural areas.

In addition to this, we test empirically the predictions from the theoretical section.

We provide evidence that population in the districts matters more in majoritarian

elections, while national population affects the relative importance of pixel popula-

tion more in countries with proportional representation. We show that these con-

clusions remain valid in several robustness checks such as different functional forms,

different years, different controls, and different definitions of electoral systems.

Section 2 presents a model of allocation of public provision under political com-

petitions and compare majoritarian and proportional representation systems and 3

derives theoretical predictions regarding the relationship between public good provi-

sion and population. Next, 4 tests the predicted patterns using the nightlights data.

Section 5 discusses the welfare consequences of our finding and the question of how

to measure inequality in public good provision. Finally Section ?? concludes.

2 A model of political competition

2.1 Setup

Consider one country with a total population of size 1. The population is partitioned

into localities l ∈ {1, 2....L} of size nl. Localities belong to districts d ∈ {1, 2....D}.

The size of the population in district d is md =
∑

l∈d nl. Naturally
∑

l nl = 1 and∑
dmd = 1.
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There is a continuum of voters in each locality. Two parties A and B compete by

promising the provision of locality-specific public goods: ql. The cost is assumed to

be weakly increasing in the population size in the group and strictly increasing in

the quantity provided:

kl (ql) = k(nl)ql.

with 1 ≥ k′(nl) ≥ 0.

Two cases of particular interest:

• k′(nl) = 0: the cost is then kl(ql) = kql which is independent of the population

size. It is an interesting case because it captures the case of a targeted public

good.

• k′(nl) = 1: the cost is then kl(ql) = qlnl, which captures the case of pure

transfers (or: publicly provided private goods in the words of P&T).

We assume that parties maximize the expected number of seats in the parliament.

Under proportional representation (PR), districts are irrelevant. Parties maximize

the expected vote share (each vote corresponds to a pre-specified fraction of a seat

and we assume that seats are continuously divisible).

Under a majoritarian system (MAJ), seats are allocated on a first-past-the-post

basis at the district level. Each district has one seat.

The two parties simultaneously choose their policy platforms: qA and qB while

respecting the budget constraint:

∑
l

kl(ql) = τ.

Individuals of locality l have preferences Wl (q) for the public good, with Wl (q)
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strictly increasing and strictly concave in ql and independent of ql′ when l′ 6= l.

Wl (q) = 0 if ql = 0.

In addition individuals have non-policy preferences. νi,l is an individual-specific

parameter which measures the individual ideological bias toward party B of voter i

in locality l. We assume that νi,l ∼ U [βl− 1
2φl
, βl+

1
2φl

] where βl is the non-stochastic

part of locality l’s bias toward B.

We denote by δ the average (relative) popularity of party B in the population as a

whole. We assume that parties do not know the realization of δ but they know that

δ ∼ U [− 1
2γ
, 1

2γ
].

Therefore, voter i in locality l prefers A to B iff

∆Wl (q)− νi,l − δ ≥ 0,

where q = (qA,qB) and ∆Wl(q) = Wl

(
qA
)
−Wl

(
qB
)
.

2.2 Preliminaries

Let us identify the “swing voter” in locality l as:

ν̃l(q, δ) = ∆Wl (q)− δ.

All voters i in locality l with νi,l < ṽl(q, δ) vote A. If interior (i.e. ṽl(q, δ) ∈

[βl − 1
2φl
, βl + 1

2φl
]), the fraction of individuals i in locality l with νi,l < ṽl(q, δ) is

πAl (q; δ) =
νl(q, δ)− (− 1

2φl
− ψl)

1
2φl
− ψl − (− 1

2φl
− ψl)

= φl(ṽj(q, δ) +
1

2φl
− βl).

or

πAl (q; δ) = 1
2

+ φl [∆Wl (q)− δ − βl]
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In a proportional representation system, politicians maximize the expected vote

share. Taking the expectation over δ and aggregating over the localities, the ex-

pected fraction of voters in the country voting for A is given by:

πA (q) = Eδ
∑
l

nlπ
A
l (q; δ)

or

πA (q) =
∑
l

nl
(

1
2

+ φl (∆Wl (q)− βl)
)

(1)

In a majoritarian system, politicians maximize expected seats (or districts). Given

δ, A wins district d if
∑

l∈d nlπ
A
l (q; δ) ≥ md

2
. If interior,

∑
l∈d

nl
md

(
1
2

+ φl (∆Wl (q)− δ − βl)
)
≥ 1

2

δ
∑
l∈d

nl
md

φl ≤
∑
l∈d

nl
md

φl (∆Wl (q)− βl) .

Hence the probability that district d votes for A (more than 1/2 of the votes in that

region go to A):

Pr

(
δ ≤ δ̄d(q) ≡

∑
l∈d

ωl (∆Wl (q)− βl)

)

where ωl = φlnl∑
k∈d s.t.d3l φknk

. Note that
∑

l∈d ωl = 1 and that if φl is constant across

all l, ωl = nl
md

when d 3 l.

Hence, A wins district/region r with probability Fδ
[
δ̄r(q)

]
where Fδ is the cumula-

tive distribution of the common preference shock δ. When interior, this is:

pAd (q) =
1

2
+ γ

∑
l

ωl (∆Wl (q)− βl) (2)
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2.3 PR System

Under PR, there is one national district composed of all regions and party A maxi-

mize his expected vote share:

max
qA

πA (q) s.t.
∑
l

kl(ql) = τ.

Using (1), the maximization becomes:

max
qA

∑
l

nl
(

1
2

+ φl (∆Wl (q)− βl)
)

s.t.
∑
l

kl(ql) = τ.

The first order conditions are (λpr is the Lagrange multiplier associated with the

budget constraint):

nlφl
∂Wl

(
qA
)

∂qAl
= λprk′l(ql), ∀l (3)

If k(nl) = knl then parties do not take the size of the localities into account, but if

k(nl) is less than proportional to nl then parties give more to large localities (i.e. nl

large).

Note that qA = qB in equilibrium (see LW and PT for formal proofs).

2.4 Majoritarian

As shown in appendix, the problem of party A is:

max
qA

∑
d

pAd (q) s.t.
∑
l

kl(ql) = τ.
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Plugging in (2) , the problem is as follows:

max
qA

∑
d

(
1

2
+ γ

∑
l∈d

ωl (∆Wl (q)− βl)

)
s.t.

∑
l

kl(ql) = τ.

First order conditions are (λm is the Lagrange multiplier associated with the budget

constraint):

ωlγ
∂Wl

(
qA
)

∂qAl
= λmk′l(ql), ∀l, (4)

3 Localities and Government Intervention

3.1 Importance of the district characteristics

Let’s consider the provision of public good so that k(nl)
nl

is decreasing in nl, that is

the cost in the locality increases less than proportionally with the population (some

element of public good).

First, we show that the relative population in the district is important under a

majoritarian system.

Assume that φl = φ ∀l (to eliminate any influence of the swingness of the different

localities). Under PR, the first order conditions (3) become

nl
∂Wl

(
qA
)

∂qAl
=
λpr

φ
k′l(ql), ∀l. (5)

while under MAJ, the first order conditions (4) become

nl
md(l)

∂Wl

(
qA
)

∂qAl
=
λm

γ
k′l(ql), ∀l (6)

where d(l) is the district in which locality l is situated.
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It is easy to see that PR and MAJ do not produce the same outcome when there is

malaportionment. Since k(nl)
nl

decreases in nl, politicians under PR privilege popu-

lated localities: the larger nl the higher ql. Under a majoritarian regime we see that

the average relative size within districts, nl
md(l)

, matters. If k′l(ql) increases in nl then

parties give more to localities with a large average relative size within districts ( nl
md

large) but will privilege smaller localities for the same relative size. In the case of a

pure (local) public good the absolute size of the district does not matter, only the

relative size.

This is summarized in the following proposition.

Proposition 1 Under PR, the provision of public good in municipalities monoton-

ically increases in their population. In contrast in MAJ, the provision of public good

in municipalities monotonically increases in their relative population within the dis-

trict.

Example: Assume a pure local public good with a marginal cost k and Wj(q) =

V ln(1 + q) In this case, we get

PR: qAj,r = nj[τ/k + L]− 1

MAJ: qAl =
nl

D md(l)

[τ/k + L]− 1

Note that the average size of a district is 1/D.

Notice that this effect disappears if there is no malapportionment. Indeed, if all

districts have the same population, md = m for all d, then the ranking of localities

within the country in terms of relative and absolute population coincide.

However, remark that the point that the characteristics of other localities in the

district will matter in MAJ but not in PR is more general. For instance, assume

that all localities have the same population but differ in terms of swingness φl. Then
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(3) tells us that the provision of local public good is increasing in the swingness of

the location. In contrast, (4) become

∂Wl

(
qA
)

∂qAl

φl∑
k φk

=
λm

γ
k′l(ql), ∀l. (7)

The same point could be done with the access to information of localities (a la

Strömberg (2004)) or taste for local public goods.

What does Proposition 1 implies for the relationship between the provision of the

local public good in a locality and its size?

If districts are clones of each other with a population that is either scaled up or

down then we can show that the relationship between ql and nlunder MAJ is flatter

than under PR.

Indeed, let n1, ...nL1 be the populations of the L1 locations in district 1. Assume

that for any other district d, the distribution of population into localities is given

by χdn1, χdn2...χdnL1 for some χd. Without loss of generality assume that χD ≥

χD−1 ≥ χ1 = 1.

In the first order conditions for a majoritarian system (6), we see directly that any

scaling factor χd cancels so that the distribution of public good provision q1, ...qL1

will be identical in each district irrespective of the χs. As we increase χd
χd−1

for all

d and make districts more heterogenous the relationship between ql and nl over the

entire set of localities flattens. In contrast, in the conditions (5) for proportional

representation, we see that increasing χd
χd−1

for all d and make districts more het-

erogenous increases the provision of public goods in the most populated districts

and therefore decrease it in the less populated states. Once χd
χd−1

>
nL1

n1
then any

locality l in district d > d′ gets more public good than l′ in d′.

Now consider any initial distribution of the population. Start from the first order

conditions (5) and (6) in MAJ and PR, for kl(q) ≡ q, and Wl(q
A) = W (ql) and take
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the logarithms. Differentiating these FOCs around the equilibrium tells us how a

change in population size in one locality should affect public good allocation across

all districts:

ρ (ql) dq
pr
l =

dnl
nl
− dλpr

λpr
, ∀l, where ρ (ql) ≡ −W ′′(ql)

W ′(ql)
. (8)

ρ (ql) dq
m
l =

dnl
nl
− dmd

md

− dλm

λm
, ∀l. (9)

Thus, in a country with a large number of localities and district, such that dλs

λs
' 0,

we expect to observe a positive but smaller slope in majoritarian systems if and only

if md tends to increase in nl – which is what we would predict if we were to assign

localities to districts randomly.

This intuition can be formalized exactly in the case of the CRRA utility function

q1−ρ/ (1− ρ): then, in MAJ,

log ql = ρ (log nl − logml (nl)− log λ) , with ml (nl) =
∑
i∈dl

ni.

Thus, for a given population and district distribution, the expected observed elas-

ticity of ql with respect to nl is:

ρ

(
1− E

(
dml

dnl

))
.

Given that the partial derivative ∂ml (nl) /∂nl = 1, we expect this elasticity to be

smaller than ρ in MAJ, instead of exactly ρ in PR.

3.2 Competitive and non competitive districts

As shown by Persson and Tabellini (1999) and Galasso and Nannicini (2011), an-

other difference between PR and MAJ arises when some districts (the so-called

non-competitive districts) are always supporting the same party, but the extent of
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the support for that party depends on the parties platforms. In such situations,

under MAJ, parties abandon non-swing districts and devote all resources to the

competitive districts (that may end up supporting one or the other party). The

same is not true under PR: given that there are still voters to persuade in non-swing

districts, parties allocate resources to all districts: both swing and non-swing. In

this section, we formally explore how this difference affects the relation between

population density and the provision of local public goods under PR and MAJ.

There are now two types of districts: the competitive and the non-competitive

ones. We denote by C the set of competitive districts, and by NC the set of non-

competitive districts. Importantly, it is not because a district is non-competitive

that no voter in that region can be swung. Actually, the interesting case requires

that there are swing voters in non-competitive districts. As we clarify in the ap-

pendix, the assumption that there are non-competitive districts with swing voters

can be microfounded. It requires that (i) voters in the district are sufficiently biased

towards one of the two parties (i.e. |βl| large enough ∀l ∈ d), and that locality-level

popularity shock is more important than the national-level popularity shock (i.e.

∀l ∈ d, φl is sufficiently smaller than γ).

Given that pAd (q) ∈ {0, 1} ∀d ∈ NC, we have that the problem of party P under

MAJ is:

max
qP

∑
d∈C

pPd (q) s.t.
∑
l

kl(ql) = τ.

Plugging in (2) , the problem is as follows:

max
qA

∑
d∈C

(
1

2
+ γ

∑
l∈d

ωl (∆Wl (q)− βl)

)
s.t.

∑
l

kl(ql) = τ.

Lemma 1 follows directly:

Lemma 1 . Under MAJ, all resources go to localities in competitive districts: qPl =

0 ∀l ∈ d ∈ NC. Resources are allocated to localities in competitive districts according
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to the following conditions:

ωlγ
∂Wl

(
qP
)

∂qPl
= λmk′l(ql),∀l ∈ d ∈ C.

Given that there are swing voters in all districts, the problem of party P under PR

remains the same as in the previous section. Resources are allocated to localities

according to the following conditions:

nlφl
∂Wl

(
qA
)

∂qAl
= λprk′l(ql), ∀l.

This means that parties privilege populated localities: the larger nl the higher ql.

In Section 3.1, we proved that, when all districts are competitive, MAJ and PR

produce the exact same outcome if (i) all district have the same population, md =

m ∀d. and (ii) all localities have the same swingness, φl = φ ∀l. This is not true

anymore when some districts are non-competitive:

Proposition 2 If md = m ∀d and φl = φ ∀l :

(i) ∀l ∈ d ∈ NC, qP,MAJ
l = 0 < qP,PRl ;

(ii) ∀l ∈ d ∈ C, qP,MAJ
l > qP,PRl > 0.

Proof: From Lemma 1, we have that qP,MAJ
l = 0 ∀l ∈ d ∈ NC.

Under PR, the first order conditions determining the allocation of local public goods

among all districts are:
nl

k′l(ql)

∂Wl

(
qP
)

∂qPl
=
λPR

φγ
, ∀l. (10)

Given the concavity of Wl, we have qP,PRl > 0 ∀l.

Under MAJ, the first order conditions determining the allocation of local public
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goods among competitive districts are:

nl
k′l(ql)

∂Wl

(
qP
)

∂qPl
= m

λMAJ

γ
,∀l ∈ d ∈ C. (11)

We can now prove, by contradiction, that qP,MAJ
l > qP,PRl ∀l ∈ d ∈ C. Suppose

that ∃l ∈ d ∈ C such that qP,MAJ
l < qP,PRl . By (10) and (11) , we have that this

requires λPR

φγ
< mλMAJ

γ
. But, then, it must be that qP,MAJ

l < qP,PRl ∀l ∈ d ∈ C.

Given that qP,MAJ
l = 0 ∀l ∈ d ∈ NC, we have that the budget constraint cannot

be binding under both PR and MAJ, a contradiction. Therefore, it must be that

qP,MAJ
l > qP,PRl ∀l ∈ d ∈ C.

Proposition 3 Under MAJ, population size has a positive and monotonic effect on

the provision of public goods in competitive-district localities, but no effect in non-

competitive district localities. Under PR, population size has a positive and mono-

tonic effect on the provision of public goods in all districts.

The proof follows directly from Lemma 1 and the first order conditions (10) and

(11).

If there is no correlation between the population size of localities in a district and

its competitiveness, we can show that the relationship between ql and nl is flatter

under MAJ than under PR. The flattening comes through two channels. First,

qP,MAJ
l = 0 ∀l ∈ d ∈ NC and qP,PRl > 0 ∀l. Second, given the concavity of Wl (q)

∀l, the extra budget allocated to competitive districts under MAJ will flow more

than proportionally to localities with smaller population.

What does Proposition 3 implies for the relationship between the provision of the

local public good in a locality and its size?

First, note that given that qP,MAJ
l = 0 ∀l ∈ d ∈ NC and qP,PRl > 0 ∀l, the budget

allocated to localities in competitive districts is higher under MAJ than under PR.
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If this extra budget is divided equally among all localities in competitive districts,

i.e. qP,MAJ
l = qP,PRl +

∑
l∈d∈NC

qP,PRl

#l∈d∈C ∀l ∈ d ∈ C, the relationship between ql and nl is

necessarily flatter under MAJ than under PR. Indeed, in that case, the difference

between MAJ and PR stems entirely from the localities in non-competitive districts.

For those localities, the relationship between ql and nl is completely flat under MAJ,

i.e. they receive no public good, but not under PR (monotonic and positive relation-

ship). However, the extra budget will generally not be divided equally among all

localities in competitive districts. Whether it flows towards small or large localities

depends on the form of the utility function Wl (q) . In particular, it flows dispropor-

tionally towards small localities in competitive districts if and only if the absolute

risk aversion does not decrease in q. (See Appendix for the proof).

If the extra budget flows disproportionally towards small localities in competitive

districts, then the flattening effect of MAJ is reinforced. Indeed, on top of a com-

pletely flat relationship between ql and nl for localities non-competitive districts,

the same relationship is flatter under MAJ than PR for localities in competitive

districts: ∀l ∈ d ∈ C, qP,MAJ
l − qP,PRl (> 0) is increasing in nl. If the extra budget

flows disproportionally towards large localities in competitive districts, then the two

effects go in opposite directions: the localities in non-competitive districts make the

relationship between ql and nl flatter, but the way the localities in competitive dis-

tricts make the relationship steeper. In that case, the overall effect is indeterminate.

4 Empirical

4.1 Data

In this section, we have focused on democratic countries1. Moreover, since the

variation in night lights in developed countries is limited and may be due to other

1Appendix A.1.3 discusses how we have classified democratic and non-democratic countries.
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factors unrelated to economic development (e.g. environmental and light pollution

concerns), we have restricted the analysis to developing countries. Finally, we have

not considered countries very small in term of size and/or population. The resulting

number of countries is 71.

The local public good considered is nigh light. Indeed, as discussed in Appendix

A.1.2, several researchers have convincingly argued that satellite data on luminosity

at night are a good proxy for the geographic distribution of public spending. These

data have been obtained from satellite images and have been combined with altitude

and population data at the pixel level. Each pixel is a square with width equals to

30 arc seconds. The length of an arc second depends on the latitude and longitude

of the pixel. At the equator, an arc second is around 30 meters, thus each pixel

is around 1km2. Detail information on these pixel-level data sources is available in

Appendix A.1.2.

Our main results concern the comparison of PR versus MAJ countries, as defined

by the Database of Political Institutions (DPI2012). Our sample includes 41 PR

countries and 30 MAJ countries, for a total of around 7.4 million pixels in MAJ

countries and 5.6 million in PR countries. We have also checked the consistency of

our results using district magnitude. Appendix A.1.3 lists all the country-level data

sources, while Appendix A.1.4 list all countries considered for each continent.

Although we have also checked whether our results hold at more aggregate levels,

our main level of observation is the pixel level. Cross-country regressions cannot

exploit to the full the wealth of data we have. Each country, independently of its

size and of its urbanization rate, count as one observation. Pixel-level regressions

operate differently. Beyond providing us with a much larger number of observations,

one of the advantages of changing the level of the analysis to the pixel level is

to take account of these differences. For instance, India is a large country with

comparatively more sparsely spread population and lower levels of light than, say,

Brazil, which has higher levels of lighting on average. Pixel-level regressions can
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thus extract more information from the Indian pixels for lowly lit areas, and from

the Brazilian pixels for the highly lit areas.

4.2 Descriptive Statistics

The box-and-whisker plots in Figure 1 provide the first descriptive statistics for the

main relation of interest in this section, i.e. the link between light and population

in PR and MAJ countries2. We have divided the population above the median

(computed considering all PR and MAJ countries) in 10 different groups. Then,

within each group and for each electoral system, we have plotted the median light

(the white bar), the interquartile range (the gray rectangle), and the upper and lower

adjacent lines. The advantage of this graph compare to a linear fit is that it allows us

to verify whether a positive trend is due to few outliers in highly populated pixels,

or it rather reflects a general positive relationship between light and population.

Moreover, it highlights in which groups the differences between PR and MAJ are

more pronounced. The median is zero for the first four groups in MAJ countries,

while the same is true for the first five groups in PR countries. On the other hand,

highly populated pixels receive more light under PR than under MAJ.

The positive trend and the difference between PR and MAJ are amplified when we

plot the same graphs for the pixels in the top quartile of the population distribution

(Figures A5). However, if we exclude India, MAJ countries have lower median light

in all groups (Figure A4-A6). The conclusions are also less clear-cut when looking

at district magnitude instead of PR: high densely populated pixels do receive more

light in countries with higher district magnitude, but the relation is less well-defined

when focusing on the first groups, i.e. on the pixels between the median and the

75th percentile of the population distribution (Figures A7-A8).

2Appendix A.2.1 provides additional descriptive statistics on the distribution of population in
PR and MAJ countries.
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A more general overview of the correlation between light and population can be

obtained by regressing light on a quadratic polynomial of population. Such quadratic

fit is shown in Figure A9, while Figure A10 focuses only on low-medium densely

populated pixels. Based on this raw correlations, we can see a positive relation

between light and population: the curve is almost linear for MAJ countries, and

exponential for PR countries. Moreover, the PR curve is always above the MAJ

one, implying that pixels receive more light in PR than in MAJ at all population

levels, even if the gap is larger among densely populated pixels.

However, these differences may be spurious and due to other factors such as GDP

or geographical features. We have addressed these concerns in the next section, but

a first graphical step is to regress light on a set of control variables, compute the

residuals, and plot the relation between such light residuals and pixel population.

The control variables are altitude (squared), latitude (in absolute value), lagged

GDP per capita (squared), whether the country is an oil producer or in war, coun-

try size, macro-regions, as well as ethnic, religious and linguistic fractionalization.

Therefore, Figure 3 shows how population is linked with the portion of light which

is not explained by these controls. While densely populated pixels still have higher

(residual) light under PR than under MAJ, the opposite is true for low-populated

pixels.

4.3 Multivariate analysis

One clear conclusion from the descriptive statistics in the previous section is that

the slope of the light-population curve is steeper under PR than under MAJ. The

aim of this section is to analyze this relation in more depth.
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4.3.1 Econometric Framework and OLS results

A good starting point is to regress light (lightpdc) on pixel population (lpoppdc),

electoral system (PRc), and the interaction between these two regressors. The

estimated equation is the following:

lightpdc = β0+β1lpoppdc+β2PRc+β3PRc∗lpoppdc+α1lpopdc+δ1lpopc+γ1xpdc+γ2xc+εpdc

(12)

Where the subscript p indicates the pixel, d the administrative district (region),

and c the country. The main coefficient of interest is β3. As for Figure 3, we have

controlled for pixel-level variables (xpdc): altitude (squared), latitude (in absolute

value). We have also included several country-level variables (xc): lagged GDP

per capita (squared), whether the country is an oil producer or in war, country

size, macro-regions, as well as ethnic, religious and linguistic fractionalization. In

addition to these, we have also included regional (popdc) and national population

(popc)
3.

The OLS estimates are shown in the first two columns of Table 1. Since data on

fractionalization are not available for all countries, we have reported the estimates

with (Column 2) and without (Column 1) such controls to test whether our results

are robust to the change in the sample size. Moreover, in Column 2 we have also

added as controls in xpdc the average light, population and altitude around the pixel.

These variables have been obtained by computing the average light, population and

altitude in the 11x11 pixel square around each observation. As in all the empirical

section, only pixels with population of at least 10 have been considered. To avoid

simultaneity issues, the pixel itself has been excluded from the average. We have

included this variable in order to control for the spatial correlation in light that can

arise due to at least three factors:

3The Appendix A.1.5 includes a detailed description of these variables.
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1. Blurring: if pixels nearby are brightly lit, blurring in the satellite camera may

increase the measured luminosity in the pixel.

2. Fixed cost and economies of scale: the cost of providing light in a pixel de-

creases with the light provision in neighboring cells. Moreover, the cost may

be affect by nearby geographical obstacles, such as mountains.

3. Budget allocation: increasing light in the pixels nearby leaves fewer resources

to increase light in the pixel itself.

Notice that this last effect goes in the opposite direction of the first two.

Before presenting out results, it is important to briefly discuss how we have con-

structed the standard errors. Using heteroscedasticity-robust standard errors is not

enough in this case since observations are geographically linked, so the error terms

are not independently distributed. We have taken this correlation into account by

adding the average light, population and altitude around the pixel, but this may

not be enough. For instance, all the pixels in an administrative district may be

correlated because of geographical or political reason. Therefore, following Angrist

and Pischke (2009), we have clustered the standard errors at the country level. The

number of countries/clusters is in our case sufficiently high, greater than the number

of clusters typically used in US studies (50).

Nevertheless, in our case we do not have a sample of observation: we do have data

on the whole population of interest. As a consequence, as also stressed in (Abadie

et al., 2017), if we were to compare the mean light between PR and MAJ countries,

such difference is known with certainty, so the standard error should be zero. The

common procedure in this case is to assume that there exists a data generating

process a superpopulation - from which the actual population has been drawn.

As discussed in (Manski and Pepper, 2017), the issue here is that it is difficult to

imagine what sampling process may be reasonable in this case. In other words,

it is difficult to assume that there exists a random process which has generated
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the current division of the world into countries with its distribution of light and

population from a set of possible (IID) alternative universes. Therefore, whether

and how to actually compute standard errors in these cases is still an open question

in the econometric literature. In conclusion, while we have followed the convention

and we have decided to report clustered standard errors, we also offer this note of

caution in interpreting them.

Both OLS specifications confirm the result from the descriptive statistics: the coeffi-

cient of the interaction between PR and pixel population is positive and significant.

Therefore, the link between light and population is stronger in PR than MAJ coun-

tries. the picture that emerges from this exercise is one where proportional systems

are much more responsive to the population in terms of provision of light.

4.3.2 Instrumental Variable and Fixed Effects

One concern is that the average light around the pixel is endogenous. Hence, we have

instrumented the average light around the pixel with the total light in the 21x21

outer square surrounding the 11x11 square. The rationale is that those pixels are

too far to directly affecting the light level in pixel p, but they can affect it indirectly

through the 11x11 square. As reported in Table 1 Column 3, the coefficient of

the interaction between PR and pixel population remains positive and with similar

magnitude.

Our results are also consistent to the inclusion of country fixed effects, thus control-

ling for all time-invariant country characteristics. In other words, Column 4 Table

1 reports the estimates for the following regression:

lightpdc = β0 + β1lpoppdc + β3PRc ∗ lpoppdc + α1lpopdc + γ1xpdc + µc + εpdc (13)

Where µc are the country fixed effects and we have continued to instrument average
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light around the pixel. The results are qualitatively and quantitatively similar to

the OLS and IV results. The interaction between PR and pixel population remains

positive even if the country fixed effects take into account factors commons to all

the pixel in a country, such as national culture, religion, language, colonial history,

and social capital.

Finally, Column 5 in Table 1 replicates Column 4 using as dependent variable an

indicator equal to one if the pixel is lit, zero otherwise. The results are in line with

those obtained using the continuous outcome variable: more populated pixels are

more likely to be lit, and such probability increases with population more under PR

than under MAJ.

4.3.3 Additional interactions

Table 2 extends Table 1 by adding the interaction between PR and regional popula-

tion, as well as between PR and country population when country fixed effects are

not included (Columns 1-3). In addition to check whether the inclusion of such vari-

ables affects our previous conclusions, the aim of this extension is to test Proposition

1.

Indeed, the implication from that model is that in PR the key variable is the ratio

between pixel population and national population, while regional population should

not matter since, unlike MAJ, the competition is at the national level, not at the

district level. Therefore, since we are taking the logarithm of population, we would

expect the coefficient of regional population (logdc) to be similar in magnitude and

with opposite sign to the coefficient of the interaction between PR and regional

population (PR ∗ logdc). On the other hand, national population does matter in PR

more than in MAJ, and a larger national population decreases the relative power of

the population within a pixel. As a result, we would expect a negative sign when

estimating the coefficient of the interaction between PR and country population

22



(PR ∗ logc).

As shown in Table 2, the interaction between PR and pixel population is positive in

all specifications. This is true when looking at the OLS estimates (Columns 1-2), the

IV ones (Column 3), when adding country fixed effects (Column 4), as well as when

looking at the binary variable lit instead of the continuous light measure (Column

5). These results confirm our conclusions from the descriptive statistics and Table

1: PR countries are more responsive to population than MAJ countries.

As predicted, the coefficients of regional population and its interaction with PR

mirror each other in the IV and fixed effect specifications. The symmetry is not

perfect, but it supports the prediction from Proposition 1. Moreover, it is worth

stressing that, due to data limitations, we are using administrative districts, not

electoral ones, so ours is just a proxy for the true pivotal geographical level. Finally,

as expected, the interaction between PR and country population is always negative.

5 Welfare and Inequality in Public Good Provi-

sion

The previous Sections have been devoted to the discussion of how the political system

affects the relationship between provision of local public goods and population. The

question is what does this mean in terms of inequality of public good provision and

even how should we measure that inequality?

Key to understanding why inequality matters is to understand its impact on wel-

fare. Hence, this section develops a politics-free benchmark to gain insights into the

welfare question.
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Following Atkinson (1970, 1983), we assume that individuals have CRRA preferences

Wl (q) =

 log(ql) if ρ = 1;

q1−ρl

1−ρ if ρ 6= 1 and ρ > 0.

The question is how to allocate public goods to the different locations l under the

budget constraint that
∑

l ql = τ .

Harsyani (1953, 1955) and Rawls (1971), theories of social justice argue that soci-

eties make choices under what Rawls terms the original position, behind a ”veil of

ignorance” that prevents people from knowing their own social and economic posi-

tions, their own special interests in the society, or even their own personal talents

and abilities (or their lack of them) (Harsanyi, 1975; p.594).

For our purpose, the relevant dimension is location. If under the veil of ignorance

any particular individual had equal probability of being born in any possible loca-

tion, then this benchmark defines the average of the expected individual citizens’

preferences in each location as the social social planner’s objective :

WL =
1

L

∑
l

Wl (q) . (14)

In this case, the planner’s ideal would be to divide the budget equally across the

different locations. Let τL be the smallest budget needed to reach the same level of

welfare as the actual allocation of public goods:

τL =

 LΠl(ql)
1/L if ρ = 1;

L
−ρ
1−ρ
∑

l(ql
1−ρ)

1
1−ρ if ρ 6= 1.
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The equivalent to the Atkinson index of inequality would then be

AT ≡ 1− τL

τ
=

 1− Πl(ql)
1/L

τ/L
if ρ = 1;

1− 1
L

∑
l(

ql
τ/L

1−ρ)
1

1−ρ if ρ 6= 1.
(15)

This measure of inequality of public provision is 0 when local public goods is equally

provided in all localities and maximal if one location received the entire budget. This

is what we call a measure of geographical inequality in public good provision.

Now equal distribution of public good is an optimum under the assumption, made

in (14), that all locations are as likely as each other under the veil of ignorance.

As a result highly populated and nearly inhabited areas carry the same weight.

However, this interpretation of the veil of ignorance may be too extreme. A more

natural assumption might be that individuals actually know the distribution of the

population in the country. One may not know where he or she will be born but

believe that the likelihood to be born in a given location is proportional to the

population actually living in the given location.

Taking this interpretation, the social planner’s objective under the veil of ignorance

is given by a weighted average of individual citizens’ preferences:

WP =
∑
l

nlWl (q) , (16)

and the highest level of welfare possible is given by

W∗(τ) =


∑

l nl lnnl + ln τ if ρ = 1;(∑
l n

1
ρ

l

)ρ
τ1−ρ

1−ρ if ρ 6= 1.

We can define the equivalent budget as the budget for local public goods that would
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be needed to give the same welfare as the current allocation of public goods as

τP =W∗−1(WP )

The resulting measure of inequality a la Atkison is then

AP ≡ 1− τP

τ
=


1− 1

τ
Πl(

ql
nl

)nl if ρ = 1;

1−

∑l nl
ql
τ

1−ρ(∑
k n

1
ρ
k

)ρ


1
1−ρ

if ρ 6= 1.
(17)

This is what we call the population based measure of inequality in public good pro-

vision.

If the differences in local public provision are only reflecting the inequalities in the

population distribution but are optimal according to 16 then we say that there is

no inequality in the provision of pubic goods.

Now recall our findings in Sections 3 and 4 that, compared with majoritarian sys-

tems, proportional representation regimes allocated more local public goods to

highly populated areas and less to more scarcely populated areas. Clearly, mea-

suring inequality in public good provision according to (15) would then tell us that

there is more inequality in the allocation of public good provision in proportional

representation systems. This is sharp contrast with the typical finding in the litera-

ture Persson and Tabellini (1999, 2000); Persson (2002); Lizzeri and Persico (2001,

2005); Milesi-Ferretti, Perotti, and Rostagno (2002), and Myerson (1993) that ma-

joritarian systems lead to more inequality than under proportional representation.

No if we use 17 to measure inequality, then the answer of which systems is more

unequal is less clear.
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6 Appendix:

Competitive and non-competitive districts:

Following Persson and Tabellini (1999) and Galasso and Nannicini (2011), we con-

sider two types of regions: swing and non-swing regions. Swing regions are such

that if A (B) spends as much as he can on region r while B (A) spends 0, then A (B)

has a strictly positive chance of winning a majority of the votes in that region. The

other regions are non-swing: one of the two parties has no chance of winning. As

we will clarify below, these regions are non-competitive because their distribution

of ideological voters is sufficiently biased towards one of the two parties (i.e. |bj|

large enough). We assume that half of the non-swing regions favor party A, while

the other half favor party B. We denote by S the set of swing regions, and by C the

set of non-swing regions. Importantly, it is not because a region is non-swingable

that no voter in that region can be swung. Actually, the interesting case requires

that there are swing voters in non-swing regions.

Let us identify the “ swing voter” and the “ideology neutral” voter in locality l

respectively as:

ν̃l(q, δ) = ∆Wl (q)− δ and ν0
l (δ) = −δ.

A locality l has always swing voters if ν̃l(q, δ) ∈ [βl − 1
2φl
, βl + 1

2φl
] for all q and δ,

and it always has “ideology neutral” voters if ν0
l (δ) ∈ [βl − 1

2φl
, βl + 1

2φl
] for all δ.

There are always “ideology neutral” voters if

− 1

2γ
≥ βl −

1

2φl
&

1

2γ
≤ βl +

1

2φl
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or

3 1

2φl
− 1

2γ
≥ βl ≥ −

1

2φl
+

1

2γ
, (18)

or :
1

2φl
≥ βl +

1

2γ

which requires that φl be sufficiently smaller than γ.

Let wl(τ) is the utility when all the resources go to locality l: ql = τ . There are

always some swing voters in l if

−wl(τ)− 1

2γ
≥ βl −

1

2φl
& wl(τ) +

1

2γ
≤ βl +

1

2φl

or

1

2φl
− wl(τ)− 1

2γ
≥ βl ≥ −

1

2φl
+ wl(τ) +

1

2γ

or :
1

2φj
≥ βl +

1

2γ
+ wl(τ)

We are now in position to clarify the meaning of non-swingable regions. Let’s define

the set of non-swingable regions as C ≡ {r|pAr (q) = 0 or pAr (q) = 1 ∀q}.

Let W̄j,r be the level of Wj (q) reached when the entire budget τ is distributed to

maximize
∑

j ωj,rWj (q). Clearly,
∑

j ωj,r (∆Wj (q)− βj) is maximized (minimized)

at
∑

j ωj,r
(
W̄j,r − βj

)
(
∑

j ωj,r
(
−W̄j,r − βj

)
).

Hence, pAr (q) = 0 for all q iff

∑
j

ωj,rβj ≥
∑
j

ωj,rW̄j,r +
1

2γ
.
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Similarly, pAr (q) = 1 for all q iff

∑
j
ωj,rβj ≤ −

(∑
j

ωj,rW̄j,r +
1

2γ

)
.

Non-swingable regions are therefore r such that

∣∣∣∑
j
ωj,rβj

∣∣∣ ≥ 1

2γ
+
∑
j

ωj,rW̄j,r. (19)

Conversely, a region r does not belong in C if:

|
∑

j
ωj,rβj| <

1

2γ
+
∑
j

ωj,rW̄j,r.

If βj = β ∀j then non-swing states are such that
∑

j ωj,rW̄j,r ≤ |β| − 1
2γ

.

Objective in MAJ:

In a majoritarian system, there are D single-member districts. As discussed, A wins

district d with probability Fδ
[
δ̄d(q)

]
where Fδ is the cumulative distribution of the

common preference shock δ.

Let i(n,q) be a function that gives the index of the district with the nth lowest

threshold δ̄d (q) for n ∈ {1, 2...D}.4 Party A’s objective is to maximize the expected

number of seats:

(D)Fδ(δ̄i(1,q)(q)) + (D − 1)
[
Fδ(δ̄i(2,q)(q))− Fδ(δ̄i(1,q)(q))

]
+

(D − 2)
[
Fδ(δ̄i(3,q)(q))− Fδ(δ̄i(2,q)(q))

]
+ ...+

[
Fδ(δ̄i(D,q)(q))− Fδ(δ̄i(D−1,q)(q))

]
.

4Assume that it picks the lowest index if the thresholds are the same for two districts.
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Simplifying this expression gives us the following objective

D∑
n=1

Fδ
[
δ̄i(1,q)(q)

]
.

Since this objective in symmetric in the index, maximizing it is equivalent to maxi-

mizing
D∑
r=1

Fδ(δ̄d(q)). (20)

Hence, the choice of qA by party A maximizes (20) subject to the budget constraint:∑
l kl(ql) = τ .

Proofs:

Proof of the tilt in Section 3.2: From the first-order conditions, we have that

nl
k′l(ql)

∂Wl

(
qP
)

∂qPl
=

nl′

k′l′(ql′)

∂Wl′
(
qP
)

∂qPl′
,∀l 6= l′, or

∂Wl

(
qP
)

∂qPl
/
∂Wl′

(
qP
)

∂qPl′
=

nl′

nl
.

It implies that

dql
dql′

=
−∂2Wl′(qP )

∂2qP
l′

/
∂Wl′(qP )

∂qP
l′

−∂2Wl(qP )

∂2qPl
/∂Wl(qP )

∂qPl

.

Suppose that nl′ > nl.This implies that ql′ > ql. An increase in budget flows dis-

proportionally towards small localities if and only if dql
dql′

> 1. This requires that the

absolute risk aversion, i.e.−∂2Wl(qP )
∂2qPl

/
∂Wl(qP )
∂qPl

, not to decrease in q.
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Table 1: Effect of PR on Light and Lit - OLS and FE 

 (1) (2) (3) (4) (5) 

 Light OLS Light OLS Light IV Light IV-FE Lit IV-FE 

PR -59.350** -21.400* -27.430*   

 (24.483) (12.136) (14.247)   

Pixel Pop 18.153*** 4.251*** 4.972*** 5.049*** 0.055*** 

 (2.734) (0.827) (0.991) (1.009) (0.007) 

Regional Pop -0.503 -0.519*** -0.589** -0.656* -0.002 

 (1.324) (0.151) (0.283) (0.382) (0.009) 

Country Pop -8.205*** -4.738*** -5.636***   

 (2.899) (1.346) (1.410)   

PR*PixelPop 14.955** 5.873* 7.353* 7.896** 0.008 

 (6.756) (3.238) (3.843) (3.992) (0.017) 

Latitude  Yes Yes Yes Yes Yes 

Altitude  Yes Yes Yes Yes Yes 

Country Controls   Yes Yes Yes No No 

Fractionalization  No Yes Yes No No 

11x11 Pop  No Yes Yes Yes Yes 

11x11 Altitude  No Yes Yes Yes Yes 

11x11 Light  No Yes Yes Yes Yes 

Country FE  No No No Yes Yes 

N pixels 13,029,666 12,950,167 12,950,167 13,029,666 13,029,666 

N countries 71 66 66 71 71 

R2 0.258 0.822 0.811 0.812 0.393 

Adjusted R2 0.258 0.822 0.811 0.812 0.393 

Standard errors in parentheses clustered at country level. Only pixels with population greater than 10 have been 

considered. Population (Pop) is the Ln(population in the pixel+1). Only democratic countries considered. Original 

question for PR (DPI2012): “Which electoral rule (proportional representation or plurality) governs the election of 

the majority of House seats?”. Country Controls: GDP per capita (lagged and squared), oil producer, war, country 

size, macroregions. Fractionalization: linguistic, ethnic, religious division. We have used as IV for average light 

around the pixel (11x11 square) the total light in the 21x21 square (excluding the total light in the 11x11 square). 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 2: Effect of PR on Light and Lit - OLS and FE - Additional interactions 

 (1) (2) (3) (4) (5) 

 Light OLS Light OLS Light IV Light IV-FE Lit IV-FE 

PR -35.280 3.777 6.240   

 (49.635) (12.967) (16.818)   

Pixel Pop 17.980*** 4.209*** 4.894*** 5.052*** 0.055*** 

 (2.700) (0.814) (0.973) (1.006) (0.007) 

Regional Pop -1.433 -0.325** -0.545 -0.740* -0.008 

 (1.582) (0.156) (0.336) (0.411) (0.009) 

Country Pop -6.476** -4.409*** -5.019***   

 (3.006) (1.198) (1.239)   

PR*PixelPop 15.495** 5.987* 7.580* 7.891** 0.008 

 (6.773) (3.306) (3.912) (3.989) (0.017) 

PR*RegPop 3.569 -0.324 0.226 0.207 0.013 

 (2.548) (0.406) (0.532) (0.783) (0.018) 

PR*CountryPop -5.118** -1.087 -2.158**   

 (1.955) (0.929) (1.073)   

Latitude  Yes Yes Yes Yes Yes 

Altitude  Yes Yes Yes Yes Yes 

Country Controls   Yes Yes Yes No No 

Fractionalization  No Yes Yes No No 

11x11 Pop  No Yes Yes Yes Yes 

11x11 Altitude  No Yes Yes Yes Yes 

11x11 Light  No Yes Yes Yes Yes 

Country FE  No No No Yes Yes 

N_pixels 13,029,666 12,950,167 12,950,167 13,029,666 13,029,666 

N_countries 71 66 66 71 71 

R^2 0.260 0.822 0.811 0.812 0.393 

AdjR^2 0.260 0.822 0.811 0.812 0.393 

Standard errors in parentheses clustered at country level. Only pixels with population greater than 10 have been 

considered. Population (Pop) is the Ln(population in the pixel+1). Only democratic countries considered. Original 

question for PR (DPI2012): “Which electoral rule (proportional representation or plurality) governs the election of 

the majority of House seats?”. Country Controls: GDP per capita (lagged and squared), oil producer, war, country 

size, macroregions. Fractionalization: linguistic, ethnic, religious division. We have used as IV for average light 

around the pixel (11x11 square) the total light in the 21x21 square (excluding the total light in the 11x11 square). 
* p < 0.10, ** p < 0.05, *** p < 0.01 


