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Abstract

This paper de�nes the Limited Foresight Equilibrium (LFE). Foresight is de�ned

as the number of subsequent stages of a sequential game that a player can observe

from a given move. In the context of a �nite sequential game with perfect information,

we model a scenario where players can possess various levels of limited foresight and

each player is uncertain about her opponents' foresight-levels. The LFE provides an

equilibrium assessment for this model. We show the existence of LFE. In LFE, limited-

foresight players' perception of the game changes as they move through the stages of

the game; their strategies evolve and they update their beliefs about the opponents'

foresights within the play of the game. If a player has greater foresight, then her LFE

beliefs about the opponents' foresights are more accurate. If a limited-foresight player

�nds herself at an �unexpected� position, she discovers that she is playing against some

higher foresight opponent. Players' LFE strategies take reputations about their fore-

sight into account. In applications, LFE is shown to rationalize experimental �ndings

on the Bargaining game and the Centipede game. The LFE's novel predictions are

corroborated by data from a modi�ed Race game.
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1 Introduction

Consider the setting of a �nite set of players playing a sequential move game where each

player knows all prior actions played at each of her moves. That is, consider the setting

of a �nite sequential game with perfect information. To solve for her optimal action at

each move, each player should think ahead to the last stage and reason backwards using

backward induction. That is, each player's optimal strategy should be calculated using the

payo� possibilities in the game and her belief about the actions of her opponents in the

future stages of the game. However, there are several experimental studies showing that

even when this backward induction can reveal a weakly dominant strategy for the player,

a high proportion of players are unable to perform such backward induction (cf. �Race

Game� �ndings of Rampal (2017), Mantovani (2014), Levitt, List and Sado� (2011)).1 It

is hard to explain this failure to play a dominant strategy using Dynamic Level-k models2

(Ho and Su (2013), Kawagoe and Takizawa (2012)). These models posit that players are

utility maximizers but their chosen strategies are determined by their subjective beliefs about

their opponent's cognitive-level, which determines the opponent's strategy. However, such

subjective beliefs don't help in explaining the failure to play weakly dominant strategies,

precisely because a weakly dominant strategy is a strict best response irrespective of the

players' subjective beliefs as long as players believe that their opponent(s) can play the

perfect strategy with a strictly positive probability. Further, as Johnson et al (2002) show,

a sizable proportion of players ignore payo�-relevant information about the future stages of

a game even when it is available upon browsing on their decision screen. Therefore, the

limited ability to think/look ahead in a multi-stage game appears to be a speci�c form of

bounded rationality which generates corroborative patterns of behavioral data, for example,

1For example, in Rampal (2017), in one of the treatments, a highly signi�cant 40 percent (approximately)
of the subjects fail to play the dominant strategy in a �winner-take-all� sequential game against a computer
which plays perfectly.

2Unless one resorts to a very speci�c strategy for the Level-0 player which involves failing to play the
dominant strategy at the �rst few stages of a sequential game but playing perfectly towards the last few
stages.
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the tendency to make lower proportion of dominated choices as one gets closer to the end of

a dynamic-game (cf. Rampal (2017), Mantovani (2014), Levitt, List and Sado� (2011)).

We model this �limited ability to think/look ahead in a multi-stage game,� or what we

call limited foresight, as one of the two main components of our theory. Foresight is de�ned to

be the number of subsequent stages that a player can look ahead in a multi-stage sequential

game.3 If the foresight of a player does not extend to the last stage of the game from each

of her moves, she is said to have limited foresight.4

The second, novel, feature of this paper is that we also model the scenario where players

are uncertain about their opponents' foresights. Several experimental studies (cf. Rampal

(2017), Levitt, List and Sado� (2011), and Palacios-Huerta and Volij (2009), among others)

have combined players with di�erent degrees of expertise in sequential games with perfect

information and found that the information about the opponents' expertise has a signi�cant

impact on behavior.5 We model the scenario where this degree of expertise is captured by

the level of foresight. That is, we model the scenario where players are playing a �seemingly�

perfect information game, which means that the players can observe all prior actions every

time they move, but the players are uncertain about the levels of foresight of their opponents.

That is, players appear to be playing a game with perfect information, but they are actually

playing a game with imperfect information with uncertainty about the opponents' foresights.

As a result, in our model, a limited foresight player's �optimal� choice depends on both his

foresight and his belief about the opponents' foresights.6

3Other, independent, studies that have modeled limited foresight similar to this paper are Ke (2017),
Mantovani (2014), and Roomets (2010).

4We do not model or investigate why players have limited foresight. For example, we don't answer the
following questions. Does limited foresight occur because calculations are harder with more stages in the
game? Or does it occur because players think that they don't need to consider future stages? Instead we focus
on modeling only the implication of these possible primitives, i.e., limited foresight, and simultaneously we
model uncertainty and belief updating about opponents' foresights. For an epistemic discussion of backward
induction see Aumann (1995), Battigalli (1997), Ben-Porath (1997), Binmore (1996), and Brandenburger
and Friedenberg (2014). Bonanno (2001) studies backward induction in terms of temporal logic.

5While Rampal (2017) induces di�erent degrees of expertise by varying the degree of experience of the
players in the game tested there, Levitt, List and Sado� (2011) and Palacios-Huerta and Volij (2009) do so
by mixing expert chess players with student subjects.

6Optimal choices also depend on his beliefs about the opponents' beliefs about his foresight, and so
on, but we make the assumption that the prior distribution over foresight-levels across players is common
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In our model, in addition to being uncertain about the opponents' foresights, players

also update their beliefs about the opponents' foresights as they observe more moves of their

opponents. That is, beliefs about the opponents' foresights evolve within the play of a game.

The Limited Foresight Equilibrium (henceforth LFE) that we de�ne and apply in this paper

formalizes the meaning of �optimal� choices given �consistent� beliefs in this framework of

limited foresight and uncertainty about the opponents' foresights.

The summary of the model and LFE is as follows. We start with an arbitrary game with

�seemingly� perfect information. For example, consider Ann and Bob playing a Sequential

Bargaining game (Rubinstein (1982) and Ståhl (1972)) where all prior choices are displayed.

We map this game with perfect information to a game with imperfect information, called

an Interaction Game. In our example, the Interaction Game is a scenario where there

are multiple possible types of Ann and multiple possible types of Bob. Each type of Ann

(respectively Bob) is uncertain about which type of Bob (Ann) she (he) is bargaining with.

A type denotes a particular level of foresight.

Mapping the game with perfect information to its corresponding Interaction Game mod-

els the uncertainty about the opponent's type/foresight-level. However, this doesn't model

limited foresight. In particular, to solve for the optimal actions of a limited-foresight type

of Ann, we cannot use the whole Interaction Game because the limited-foresight type, by

de�nition, cannot observe all the stages of the Interaction Game. Therefore we must consider

curtailed versions of the Interaction Game to model both limited foresight and uncertainty

about the opponent's foresight simultaneously. We call such curtailed versions of the Inter-

action Game as Curtailed Games.

The LFE is solved and de�ned recursively. We start with the shortest possible curtailed

version of the Interaction Game: the 1-staged Curtailed Game(1), named CG(1), in which

knowledge, which lets us end this line of thinking at the second-order beliefs. The last section of this paper
weakens the common prior assumption to model subjective prior beliefs. Even in the subjective prior case,
higher-than-second-order beliefs are not considered. The properties and evolution of these �rst-order and
second-order beliefs within the play of a sequential game make for a �rich� analysis. Extension to models
which deal with limited foresight and higher order beliefs is left for future research.
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we curtail the Interaction Game after the �rst stage actions. If Ann starts the bargaining

game, then CG(1) is the game observed by the 0-foresight type of Ann, or 0Ann at stage-1.

This is because 0Ann can observe 0 plus the stage number of her current move from each of

her moves (in this case the stage number is 1). CG(1) models both: (i) the fact that 0Ann

has a foresight-level of 0; and (ii) that 0Ann is uncertain about Bob's type. We solve for

the Sequential Equilibrium (henceforth SE) (Kreps and Wilson (1982b)) of CG(1) to obtain

the �rst stage LFE action and beliefs of 0Ann.
7 Next, taking the stage-1 LFE action of 0Ann

as given as Nature's moves in CG(2) (Curtailed Game(2)), we solve for the SE of CG(2),

thereby solving for the LFE actions and beliefs of 1Ann at her stage-1 information set, and

0Bob at his stage-2 information set; as they both observe CG(2) at those information sets.

We proceed recursively to obtain the LFE actions and beliefs for all the information sets of

the Interaction Game. Therefore, in LFE, all foresight-types do the best they can within the

bound of their foresight, given their belief about the probability distribution on opponents'

types. The LFE accounts for the fact that the total foresight (de�ned as the total number

of stages of the Interaction Game observed) and beliefs of a limited-foresight player evolve

as she plays the Interaction Game.

De�ning LFE as above provides us with the following properties. First, the LFE exists

and it is upper hemi-continuous with respect to the prior distribution and payo� pro�le.

Second, higher foresight types correctly anticipate lower types' moves. This property is

approximately mirrored in a �nding from Reynolds' (1992): testing recognition of opponent's

expertise among chess players, he found that �Higher rated players consistently made lower

7To make CG(1) a well de�ned game we need to de�ne payo� pro�les for its terminal histories/nodes. In
particular, if we are curtailing an Interaction Game with more than two stages after the �rst stage actions,
then how do we construct payo�s after the �rst stage actions in CG(1)? In this paper, in each Curtailed
Game, after each last-stage action of that Curtailed Game, we construct a payo� pro�le such that the payo�
to each player-type is equal to the (min + max)/2 of the payo�s possible for that player-type from that
action in the Interaction Game. For example, if 0Ann asks for the whole �rst stage pie (worth a 100 units)
in the �rst stage, then curtailing the bargaining Interaction Game after she demands 100 in the �rst stage
implies a payo� of (100+0)/2 in CG(1). This is because the minimum Ann can get after making any o�er is
0 (when there is no agreement among Ann and Bob at any stage), and the maximum is 100. We explain this
�curtailment rule� in more detail in the model section. Mantovani (2014) also uses this same �curtailment
rule� to map payo�s from a sequential game to payo�s for its curtailed versions. Ke (2017) formulates the
axiomatic foundations of di�erent possible �curtailment rules.�
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estimation errors� (of other chess players' ELO ratings). Third, when high-foresight types

are estimating which lower-foresight opponent-type they are playing against, their belief

becomes more accurate as they observe more moves of the opponent. This property is also

mirrored in Rampal (2017) and Reynolds (1992); both studies found that the estimation error

(about the opponent's expertise) decreased as the number of prior moves revealed increased.

Fourth, due to the the recursive de�nition of LFE, if a player-type observes actions that

were not part of the LFE strategies of opponents'-types with lower foresight than himself,

then he discovers that he is playing against some opponent-type with higher foresight than

himself. The attempt by limited-foresight types to recognize opponent-type and adjust

behavior foreshadows the �fth feature of our model: reputation e�ects. High-foresight types

have to decide on what's optimal: pretending to be a low type or revealing their high-foresight

type. Importantly, in LFE, the updating of beliefs by di�erent foresight-types happens within

a play of the sequential game.

Two applications of LFE are described in this paper. In both applications we do not use

game-speci�c types who follow speci�c strategies tailor made for the game; we only work with

the tools of the LFE model: Limited foresight and uncertainty about the opponent's foresight.

In the �rst application, LFE is shown to have the ability to explain several qualitative �ndings

on the Sequential Bargaining game. We show that the LFE can simultaneously explain

delays, near equal splits, disadvantageous counterproposals and subgame inconsistency. In

particular, according to the LFE, disadvantageous counterproposals (Ochs and Roth (1989))

can be caused in a three period bargaining game because the second mover, when of a

speci�c limited-foresight type, can fail to take into account that he has no bargaining power

in the third period and that the pie shrinks after he rejects the �rst period o�er. Thus, he

rejects the �rst-period o�er he receives, but when he has to make a counterproposal, he faces

a shrunk second-period pie and he realizes his lack of last-period bargaining power, which

make a disadvantageous counterproposal sequentially rational. In the second application, we

show that the LFE implies passing by all types of both players (including the type with no
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foresight limitation) until the last few stages in a Centipede game with more than 4 stages,

for arbitrary probability on limited foresight. This result follows from a reputation argument

similar to (McKelvey and Palfrey (1992)) and Kreps, Milgrom, Roberts and Wilson (1982).

1.1 Experimental Findings Regarding the Limited Foresight Equi-

librium: A Summary

For an experimental evaluation of the LFE model, we direct the reader to Rampal (2017)

which uses �race games� to test the novel predictions of LFE. We summarize the �ndings of

Rampal (2017) here. In the �rst experiment in Rampal (2017), the �race game� used there

is as follows. Imagine a box containing 9 items. Players move alternately, removing 1, 2,

or 3 items from the box at each move. The player who removes the last item loses, and his

opponent wins. There is a second mover advantage in this game.8 The prize from winning

as the �rst-mover (second-mover) is 500 (200, respectively) experimental currency. Before

the game begins, to decide the �rst and second movers, both players in a pair simultane-

ously choose between ��rst-mover� and �second-mover.� Either of the two players' choice of

starting position is selected and implemented with 50 percent chance each. Note that the

prize from winning as the selected �rst-mover is greater than the prize from winning as the

selected second-mover, but winning as the selected �rst-mover is possible only if the selected

second-mover makes a mistake, that is, only if the selected second mover chooses a domi-

nated action. Rampal (2017) found that if an experienced player, who had clearly displayed

expertise in implementing the second-mover advantage in previous rounds, was told that his

opponent was inexperienced then he was much more likely to choose ��rst-mover� as opposed

to when the experienced player was told that his opponent was also experienced.

In the second (di�erent) experiment in Rampal (2017) there are 13 items in the box which

makes the game longer and the backward induction, required to solve for the SPNE strategy,

harder. In this second experiment, experienced players were not told if their opponent was

8The second mover should remove (4− opponent's previous choice) at each move to win.
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experienced or inexperienced. Instead, an experienced player only observed how his opponent

played a similar race game (with 13 items in the box) against a perfectly playing computer,9

before the opponent and he played the race game (with 13 items in the box) against each

other. The key �nding from this experiment was that the experienced player was signi�cantly

more likely to choose ��rst mover� when he observed that his opponent had failed to play

the dominant strategy against the computer, compared to the case where his opponent

displayed perfect play against the computer. That is, Rampal (2017) found that both (i)

exogenous information, and (ii) endogenous inference about the opponent's inexperience

increase the probability with which experienced players abandon the �sure-win� strategy

(of being the second-mover) and try for a higher payo� attainable only by winning from a

losing position, i.e., a position from which one wins only if the opponent makes a mistake.

A maximum likelihood analysis shows that compared to the AQRE model (McKelvey and

Palfrey (1998)), the LFE model has a signi�cantly higher likelihood with respect to the

data in both experiments. The maximum likelihood analysis shows that compared to the

Dynamic Level-k models (Ho and Su (2013) and Kawagoe and Takizawa (2012)), the LFE

model generates a similar likelihood in the �rst experiment. In the second experiment, the

number of items in the box is 13, which makes the sequential structure of the game more

salient. This implies that the backward induction, required to understand and implement

the selected second mover's dominant strategy, is harder. Therefore, the percentage of

observations where the selected second mover fails to play the dominant strategy is higher

compared to the �rst experiment (13.7% in the �rst experiment and approximately 57%

in the second experiment). As these observations get 0 probability according to Dynamic

Level-k models (unless an error structure is added to carry out the MLE), the LFE model

9In the race game between human and computer, the decision to go �rst or second was taken unilaterally
by the human. The human subject was guaranteed a win against the computer if he/she followed the
following strategy: Choose �second mover,� and as the second mover, choose (4−computer's previous choice)
at each move. Any deviation from this strategy meant a loss against the perfectly playing computer. The
payo� from winning the race game versus the computer was an additional 500 experimental currency over
and above the earnings from the race game versus human opponent. Thus, losing to the computer to signal
low expertise meant losing 500 experimental currency. Thus, it was a dominated strategy.
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has a signi�cantly higher likelihood compared to the Dynamic Level-k models in the second

experiment.

Therefore, three key aspects of the LFE model are established by Rampal (2017): �rst,

the salience of the beliefs about the opponent's ability to do backward induction; second,

that experienced players update their beliefs about the opponent's expertise based on the

opponent's past moves in the game; third, that the LFE model has a signi�cantly higher

likelihood, with respect to this data in the second experiment, when compared to the AQRE

model and the Dynamic Level-k models.

1.2 Related Literature

Most of the related Level-k literature deals with simultaneous move games (Stahl and Wilson

(1995); Nagel (1995); Stahl (1996); Ho et al. (1998); Costa-Gomes et al. (2001); Camerer

et al. (2004); Costa-Gomes and Crawford (2006); Crawford and Iriberri (2007a, b), among

others), but it does capture the uncertainty about the opponent's expertise. The paper from

this literature that is closest in spirit to LFE is Alaoui and Penta (2016) which endogenizes

the choice of level in a Level-k framework. In their model, the choice of the level of a

player is a function of his maximum possible level, which is endogenously determined by his

incentives and costs of thinking about the game at hand, his belief about the opponent's

maximum possible level and his belief about his opponent's belief regarding himself (i.e., his

second-order beliefs). They disentangle the e�ect of these factors using a novel experimental

design. While we don't model the analogous question of how a player's maximum possible

foresight is determined, the LFE model does have the feature that a particular foresight type

considers his �rst order beliefs (beliefs about opponents' foresight) and second order beliefs

(his belief about the opponents' beliefs about his foresight) in choosing his optimal strategy.

Further as we are dealing with sequential games, we also study how these beliefs evolve

across the stages of a single play of the game. Experimental studies of the relation between

the opponent's cognitive level and a player's choices in simultaneous Level-k settings include
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Agranov et al (2012), Gill and Prowse (2014), and Slonim (2005), among others.

The closest works to ours in the area of sequential games are the working papers of

Ke (2017), Mantovani (2014), and Roomets (2010). These papers, in independent projects,

model limited foresight in a similar fashion to ours. Ke (2017) describes the axiomatic foun-

dations of curtailment rules to model one player, multi-stage, decision problems as observed

by a player with limited foresight. Mantovani (2014) endogenizes the choice of foresight.

He also demonstrates the existence of limited foresight using an experiment on a di�erent

race game. The Valuation Equilibrium by Jehiel and Samet (2007) models how cognitively

constrained players may group nodes of a sequential move game into exogenously given simi-

larity classes, where each similarity class has a given valuation. Although related, Valuation

Equilibrium does not deal with limited foresight speci�cally. Jehiel (1995) de�nes the Lim-

ited Forecast Equilibrium, where each player, at each of his moves, chooses his strategy to

maximize his average payo� within his foresight horizon, given his forecast about the up-

coming moves within that horizon. The forecasts are constrained to be consistent with the

equilibrium strategies. Jehiel (1998a) provides a learning justi�cation for these forecasts. Je-

hiel (1998b) and Jehiel (2001) extend the Limited Forecast Equilibrium to repeated games.

The key di�erence among these papers and our work is that the second feature of our model,

the uncertainty about the opponents' foresight-types, is absent from all the papers men-

tioned above. Consequently, updating belief about one's opponents' types within the game,

strategic adjustments after updating these beliefs and reputation e�ects do not feature in

these papers.

Ho and Su (2013) and Kawagoe and Takizawa (2012) have adapted the Level-k model for

sequential move games. They allow for updating about the opponent's level/expertise across

repetitions of play of the same game as opposed to within the play of a game as in here.

The AQRE model of McKelvey and Palfrey (1998) de�nes a sequential game analogue of

the QRE model where players are playing error prone strategies. As discussed above, these

theories do not model the speci�c form of bounded rationality that we model in LFE, i.e.,
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limited foresight. The distinction is important because limited foresight generates particular

patterns (Rampal (2017)). Three examples of such data patterns are: �rst, failure to play

dominant strategies in a sequential game; second, a signi�cant decline in the proportion of

dominated choices towards the end-stages of the game; third, evolution of players' beliefs

(hence strategies) about the opponent's expertise within a play of the game based on the

opponent's past moves in the game.

The reputation e�ects in our model are similar to the crazy type literature started by

Kreps, Wilson, Milgrom and Roberts in 1982, yet there are important di�erences. Unlike this

paper, their crazy types' behavior is exogenous, and their crazy types (whose counterparts

in the LFE model would be the player-types with low foresight) are given no incentive to

discover whom they are playing against.

2 Model

The model that we de�ne here seeks to capture the scenario where players are playing what

�seems to be� a �nite sequential game with perfect information. Speci�cally, all prior actions

taken in the game are observed by every player at his move, but every player has a particular

level-of-expertise/experience in the game and every player is uncertain about each opponent's

level-of-expertise/experience in the game. In particular, we will focus on the case where this

level of expertise/experience translates into a level of foresight. That is, we will model the

scenario where every player can have one of various possible levels of foresight and every

player is uncertain about the level of foresight of each of his opponents.10 The foresight level

of a player is de�ned as the number of subsequent stages that a player can observe from any

given move. This model is in the paradigm of sel�sh utility maximization. That is, we will

not model any form of uncertainty about players' utilities due to other-regarding preferences

or game-speci�c types, etcetra. We will assume that all relevant information about payo�s

10We don't model how or why the expertise/experience translates into a particular level of foresight. This
is left for future research.
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is captured by the payo�s of the �nite sequential game with �seemingly� perfect information

that the players are playing.

To model limited foresight and uncertainty about the opponents' foresight, we start with

the game that the players �seem to be� playing, i.e. a �nite sequential game with perfect

information called Γ0. As an example, think of Γ0 as the game with perfect information

that the experimenter sets up for a set of players to play. We map Γ0 to the game that is

�actually� being played, i.e., a standard Bayesian game with imperfect information called Γ.

The construction of Γ from Γ0 is done by introducing a set of possible types corresponding

to each player in Γ0, where each type denotes a particular level of foresight. For example,

in the experiment in Rampal (2017), at the beginning of every round players were randomly

paired up to play what �seemed to be� a �nite sequential game with perfect information:

the �race game� (the Γ0 in our model). However, subjects were aware that about half the

subjects were experienced in the race game, while the other half were inexperienced. Before

the game began, each player was uncertain about the experience-level of his/her randomly

paired opponent. So to model this uncertainty one must transform the race game (Γ0) to a

�race game with uncertainty about the opponent's experience-level� (Γ).11

In Γ, each player-type is uncertain about each opponent's level of foresight or, equiva-

lently, each opponent's type. The Limited Foresight Equilibrium (henceforth LFE) provides

a strategy and a belief pro�le for Γ. However, we cannot solve for the LFE actions and

beliefs of player-types who have limited foresight using Γ because player-types with limited

foresight cannot observe Γ at their moves. Therefore we will consider appropriately curtailed

versions of Γ, which is what the limited-foresight player-types observe, to solve for the LFE

strategy and belief pro�le of Γ. In subsection 2.1 we de�ne the underlying sequential game

with perfect information Γ0. In 2.2 we construct Γ, the sequential game with imperfect

information, from Γ0. In 2.3 we construct the curtailed versions of Γ which are observed by

player-types possessing limited foresight.

11Rampal (2017) found that beliefs about the opponent's experience level were indeed signi�cant in deter-
mining optimal behavior.

12



1

2

1

(8, 32)

P3

(16, 4)

T3

P2

(2, 8)

T2

P1

(4, 1)

T1

Figure 1. An Underlying Sequential Game with Perfect Information: Three-Staged Cen-
tipede Game
Notes. The LFE model is applicable to all �nite sequential games with perfect information.
We use the 3-staged Centipede Game to illustrate LFE because it is simple to draw as it has
only 4 terminal histories despite being a 3-staged game.

2.1 The Underlying Sequential Game with Perfect Information

We use the standard notation from Osborne and Rubinstein (1994), with minor modi�ca-

tions, to de�ne a sequential game with perfect information and perfect recall called Γ0.
12 In

particular, Γ0 is de�ned as a collection of the following components.

• A �nite set of players N0.

• A set H0 of �nite sequences of actions or histories such that:

� The empty sequence ∅ is a member of H0.

� If a sequence of actions h0 = (ak0)k=1,...,K ∈ H0 and L < K holds, then (ak0)k=1,...,L ∈

H0. The k
th action, ak0, is said to be taken at the kth stage of the game. The set of

terminal histories, denoted as Z0, is de�ned as the set of histories (a
k
0)k=1,...,K ∈ H0

such that there is no (K + 1) such that (ak0)k=1,...,K+1 ∈ H0.

12We don't specify the conditions for perfect recall.
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• A set of possible actions in the game, A0, and an action correspondence A0(.) which

maps h0 ∈ H0 to a set A0(h0) ≡ {a0 ∈ A0 : (h0, a0) ∈ H0}.

• A function P0(.), called the player function that assigns a player P0(h0) to each history

h0. That is, P0(.) maps each element of H0 to an element in N0.

• For each player i ∈ N0, a Bernoulli utility function ui which maps terminal histories

to real numbers. That is, ui maps a terminal history z0 ∈ Z0 to a payo� ui(z0) ∈ R.

Thus, Γ0 is de�ned as {N0, H0, P0, A0, {ui}i∈N0}. Let the number of stages in Γ0 be S.
13 Con-

sider the three-staged centipede game in Figure 1 as an example of an underlying sequential

game with perfect information.

2.2 Modeling Uncertainty: From Perfect Information to Imperfect

Information

We now construct a sequential game with imperfect information called Γ from the sequential

game with perfect information, Γ0. The only form of imperfection in information we allow

in Γ relative to Γ0 comes from the aim to model a scenario where each player i ∈ N0

has several possible types and each player's type is his private information. In particular

except Nature's initial move, which determines the probability distribution over possible

combinations of players'-types playing each other, all other prior actions will be known at

each move. For example, consider the case where N0 = {Ann, Bob} are playing Γ0 in the

underlying game. To de�ne Γ, in the very �rst stage of Γ, we will introduce Nature's move

which speci�es the probability distribution over the possible combinations of types of the

players in N0. Roughly speaking, after Nature moves, Ann and Bob will play Γ0 knowing

his/her own type, but without knowing his/her opponent's type. For example, suppose Γ0 is

tic-tac-toe. Suppose that Nature speci�es that �type tAnn of Ann has a 30 percent chance of

occurring and type t′Ann of Ann has a 70 percent chance of occurring. Independently, type

13Formally, S ≡ max{K: (ak0)k=1,...,K ∈ H0}.
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Figure 2. The Three-Staged Centipede Game Converted to an Interaction Game
Notes. The �gure shows the conversion of Γ0 (the Centipede game depicted in Figure 1)
into an Interaction Game, Γ, depicted here. As there are 3 stages in the Centipede game in
Figure 1, so there are 3 types of player-1 possible, {01, 11, 21}, and two types of player-2
possible, {02, 12}. For each combination of player-1's type and player-2's type (who could
be playing Γ0 with each other) we redraw Γ0 to generate Γ. We construct the information
sets so that each player-1 type, at each of his moves, observes the sequence of prior actions
played, but doesn't know which player-2 type (02 or 12) he is playing against. Similarly,
each player-2 type, at each of her moves, observes the sequence of prior actions played,
but doesn't know which player-1 type (01, 11 or 21) she is playing against. Suppose ρ, the
common-knowledge prior probability distribution on players'-types is (1

3
, 1
3
, 1
3
) on {01, 11, 21},

and independently, ( 1
10
, 9
10
) on {02, 12}. That is, let ρ(01, 02) = ρ(11, 02) = ρ(21, 02) =

1
30

and
ρ(01, 12) = ρ(11, 12) = ρ(21, 12) =

9
30
.

tBob of Bob has a 60 percent chance of occurring and type t′Bob of Bob has a 40 percent

chance of occurring.� Then in Γ, after this Nature's move, Ann will play tic-tac-toe with Bob

knowing her type, tAnn or t′Ann, whichever it may be, but without knowing if Bob's type is

tBob or t
′
Bob. As an illustrative example of what we are trying to do, consider the conversion

of the Centipede game in Figure 1 to an Interaction Game depicted in Figure 2.

We know proceed to formally de�ning the construction of Γ from Γ0. The Interaction

Game Γ (which is a �nite sequential game with imperfect information), constructed from Γ0,
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has the following components.

• A �nite set of player-types: N . To construct N from N0, each i ∈ N0 generates

a corresponding set of i-types in Γ called Ti. Let si denote the �rst stage of Γ0 at

which i moves,14 then the set of possible types of player i in Γ is given by Ti ≡

{0i, 1i, .., (S−si)i}. So N =
⋃

i∈N0
Ti. Further, a particular combination of player-types

of Γ is t ∈ T = ×i∈N0Ti. A player-type, for example 1i, should be interpreted as follows.

1i is type 1 of player i ∈ N0. 1i is that type of player i who has the foresight-level of

1, i.e., given his move in Γ, 1i can observe one more stage after his move. We model

limited foresight more comprehensively in the next subsection.

• A set of sequences H, and a set of terminal sequences Z. The sets H and Z are

generated from H0 using a set valued mapping Seq: H0 =⇒ H. The set Seq(h0),

a subset of H, contains elements of the form (t, h0). That is, the Seq: H0 =⇒ H

correspondence replicates each sequence h0 in Γ0 for each possible player-type combi-

nation t in Γ. So Seq((ak0)k=1,...,K) = {(t, (ak0)k=1,...,K): t ∈ T}. Thus, each sequence

h0 = (ak0)k=1,...,K ∈ H0 corresponds to a set of sequences in H, and H is de�ned as⋃
h0∈H0

Seq(h0).

• A player function P , which maps each element of H\Z to an element in N . The

function P has the following properties.

� P (∅) =Nature.15

� If player i moved after h0 = (ak0)k=1,...,K ∈ H0 in the underlying game, then ti ∈ Ti

moves after ((ti, t−i), h0) ∈ H for all t−i ∈ T−i. That is, consider an arbitrary

((ti, t−i), h0) ∈ H. If P0(h0) = i, then P (((ti, t−i), h0)) = ti.

14Formally, if i moves at ∅ in Γ0, then si = 1. Otherwise, si ≡ min{K: (ak0)k=1,...,K−1 ∈
H0 and P0((a

k
0)k=1,...,K−1) = i}

15We say that the Nature's ∅ history action is taken at the 0th stage.
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• Nature's move which speci�es a probability distribution on T . This distribution, de-

noted by ρ, is assumed to be common knowledge.16 Further, ρ(t) ∈ [0, 1] for all t ∈ T ,

and
∑

t∈T ρ(t) = 1 hold.

• A set of possible actions in the game, A, and an action correspondence A(.).

� A(.) maps h ∈ H to a set A(h) ≡ {a ∈ A : (h, a) ∈ H}.

� The set of possible actions, or action set, after a sequence h ∈ H is the same

as the action set after the corresponding h0 ∈ H0 that generated h. Formally,

consider an arbitrary h ∈ H such that h 6= ∅. Let h = (t, h0) (or, put another

way, h ∈ Seq(h0)). Then A((t, h0)) = A0(h0).

• For each player-type ti, a partition I(ti) of the set of histories/sequences of H where

ti moves, i.e., a partition I(ti) of {h ∈ H: P (h) = ti}. An information set of ti in I(ti)

is denoted as I(ti). The information sets in I(ti) obey the usual restriction that the

actions available from and the player-type moving at all histories of an information set

must be the same.17 The construction of Γ from Γ0, described above, gives us more

structure. Consider an arbitrary history h0 of Γ0. Suppose i is the player moving

after this sequence of actions, h0, in the underlying game. That is, let P0(h0) = i.

Then h0 will map to Seq(h0) = {(t, h0): t ∈ T} in Γ. The set {(t, h0): t ∈ T}

will be subdivided into |Ti| (the cardinality of the set Ti) information sets in Γ, one

information set for each ti ∈ Ti. Further, for each ti, if ti's information set I(ti) is a

subset of Seq(h0), that is I(ti) is generated from h0 in Γ0, then it must be the case

that I(ti) = {((ti, t−i), h0): t−i ∈ T−i}. So, at each such information set of Γ the

player-type moving there, say ti, is aware about all prior actions (given by h0); but ti

16The common-knowledge-prior assumption helps provide a tractable structure to a lot of the following
analysis. Even with this assumption, we will see that the beliefs of players with di�erent foresight-levels
evolve di�erently upon observing the same sequence of prior actions. We discuss this assumption in more
detail in the last section, which de�nes the LFE for the case of subjective prior beliefs, that is, for the case
where prior beliefs are allowed to di�er across player-types.

17Formally, P (h) = ti ∀h ∈ I(ti), and A(h) = A(h′) ∀h, h′ ∈ I(ti).
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is uncertain about which combination of opponents' types (t−i) he is playing against.

As
⋃

h0∈H0
Seq(h0) = H holds, all the information sets of Γ obey this structure.

• For each player-type ti ∈ N , a Bernoulli utility function uti which maps terminal

histories Z to real numbers. These uti functions also obey additional structure. In

particular, for each z ∈ Z, if z ∈ Seq(z0), then the utility derived by an arbitrary

player-type ti at z, denoted as uti(z), is equal to the utility derived by i at the cor-

responding z0 ∈ Z0. That is, uti(z) = ui(Seq
−1(z)), ∀ ti ∈ Ti, ∀ i ∈ N0, and for all

z ∈ Z.

Thus, the Interaction Game Γ = {N, H, {I(ti)}ti∈N , P, A, {uti}ti∈N , ρ}, corresponding to

the underlying sequential game with perfect information Γ0, is de�ned by its construction

using the Seq(.) correspondence.

2.3 Modeling Both Limited-Foresight and Uncertainty: Curtailed

Games

The Limited Foresight Equilibrium (LFE) provides an outcome prediction for the Interaction

Game Γ by specifying an �equilibrium� strategy pro�le and the associated belief pro�le for it.

We put �equilibrium� in quotes because LFE cannot be solved using the Interaction Game.

We can't use a solution concept directly on the Interaction Game because limited-foresight

player-types may not observe the Interaction Game at their information sets, hence they

cannot optimize based on the Interaction Game. At each of their moves, limited-foresight

player-types optimize based on a curtailed version of the Interaction Game that they ob-

serve from that move given their limited foresight. That is, player-types use their move

speci�c curtailed version of the Interaction Game to optimize. These curtailed versions of

the Interaction Game are said to be the Curtailed Games generated from the Interaction

Game.

As the name suggests, a Curtailed Game is de�ned by curtailing the Interaction Game at
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a particular stage. Consider an Interaction Game with S-stages: Γ. An n-staged Curtailed

Game constructed from Γ will be labeled as CG(n). Intuitively, CG(n) will be constructed

by curtailing the Interaction Game after the nth stage actions. Let

CG(n) = {N, Hn, {In(ti)}ti∈N , P n, An, {un
ti
}ti∈N , ρ}.

The components of CG(n) are de�ned as follows.

• CG(n) is an exact replica of Γ until (and including) stage (n− 1). The player set N of

CG(n) is the same as the player set N of Γ. Hn, the set of histories of CG(n), is de�ned

as (t, (ak0)k=1,...,K) ∈ H such that K ≤ n and t ∈ T . Let Zn be the set of terminal

histories of CG(n) (de�ned in the next bullet point). The set of non-terminal histories

of CG(n), (Hn\Zn), is partitioned into information sets, {In(ti)}ti∈N , exactly as (H\Z)

is partitioned into {I(ti)}ti∈N . The player function P n(h) = P (h), and the action

function An(h) = A(h), for all h ∈ (Hn\Zn)
⋂
(H\Z). Nature's common-knowledge

prior distribution over T , given by ρ in Γ, is the same in every CG(n) and it remains

common knowledge in every CG(n).18

• The set of terminal histories of CG(n), denoted as Zn, contains two kinds of termi-

nal histories. First, the terminal histories of Γ which end at or before an nth stage

action. These terminal histories are collected in Zn(1) ⊂ Zn. Formally Zn(1) =

{(t, (ak0)k=1,...,K) ∈ Z: K ≤ n and t ∈ T}. Second, those sequences/histories of the In-

teraction Game, (t, (ak0)k=1,...,K), with K > n, which are curtailed at (t, (ak0)k=1,...,n),

converted to terminal histories and collected in Zn(2) ⊂ Zn for the construction of

CG(n). Formally, Zn(2) = {(t, (ak0)k=1,...,n) ∈ (H\Z)}. The set of terminal histories

18The common-knowledge prior distribution assumption helps in reducing the number of possible di�erent
ways the various limited-foresight players can observe a curtailed version of the Interaction Game. If every
player-type has a di�erent subjective prior belief over opponents' types, then we must construct a move-
speci�c Curtailed Game for each individual player-type. The common-knowledge prior distribution lets us
consider only S possible curtailed versions of Γ for the purpose of solving for the strategies and beliefs of all
the player-types. The bene�t of this common-knowledge prior distribution assumption will become clearer
when we de�ne LFE (next section). One method for weakening this assumption will be speci�ed when we
model subjective prior beliefs (last section).
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of CG(n) is Zn = Zn(1)
⋃

Zn(2).

• Payo�s. For those terminal histories of CG(n) which are also the terminal histories

of Γ, the payo�s of each player-type remain the same. That is, for all zn ∈ Zn(1),

un
ti
(zn) = uti(z

n). The �controversial� choice that must be made in curtailing the

Interaction Game is that �what is the payo� pro�le associated with those terminal

histories of CG(n) which are not terminal histories of Γ?� Any payo� numbers placed

at such �synthetic� terminal histories in Zn(2) of CG(n) will have to follow some rule.

We use the [(min + max) ÷ 2] �curtailment� rule of Mantovani (2014).19 Consider

the terminal sequence h ∈ Zn(2) of CG(n). The [(min + max) ÷ 2] rule implies

that each player-type's payo� after h in CG(n) is the average of the minimum and

the maximum that that player-type could achieve in Γ following all possible terminal

action sequences after h. That is, for each h ∈ Zn(2), let Z(h) be a subset of Z such

that for any arbitrary terminal history z in Z(h), the actions in the �rst n stages of

z are played as speci�ed in h. Formally, let Z(h) = {z ∈ Z: z = (h, (ak0)k=n+1,...,S)}

(where S is the number of stages in Γ). Then, for each ti ∈ N , un
ti
(.) is de�ned over

Zn(2) as follows.

un
ti
(h) =

min{uti(z): z ∈ Z(h)}+max{uti(z): z ∈ Z(h)}
2

for all h ∈ Zn(2) (1)

As an example of a Curtailed Game, consider the one-staged Curtailed Game, CG(1) de-

picted in Figure 3, constructed from the Interaction Game in Figure 2.

19Shaowei Ke (2017) discusses these rules axiomatically. Our contribution is to model limited foresight
with uncertainty and updating about the opponent's foresight within a play of the game. Thus, we stick to
a simple curtailment rule and model these features with this simple rule. In an older version of this paper we
used a �mean of stage-wise means� rule explained there, which didn't change any of the results that follow.
The interested reader can access the paper by an emailed request at jeevantr@iima.ac.in.
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Figure 3. Curtailed Game (1)
Notes. The �gure shows the conversion of Γ, the Interaction Game depicted in Figure 2, into
its shortest Curtailed Game, CG(1) (short for Curtailed Game (1)), depicted here. CG(1)
is identical to Γ in all respects except that CG(1) ends after the �rst stage action. If any
type of player-1 chooses T1 (take in stage 1) in the �rst stage then the associated CG(1)
payo� pro�le is (4, 1), identical to the Interaction Game. However, we need to specify a
payo� pro�le for the case where a player-1 type chooses P1 (pass in stage 1). As shown in
the construction of CG(1), we curtail the Interaction Game after the action P1 and use the
min+max

2
rule for payo�s. For example, after playing P1, the maximum a player-1 type can

get in Γ is 16 and the minimum he can get is 2, thus, his payo� from choosing P1 in CG(1)
is min+max

2
= 9. We mark 0′1s �rst-stage information set as D1. This is because CG(1) is

exactly what 01 observes at his �rst-stage information set. Thus, CG(1) is decisive for 01 at
stage-1. CG(1) represents the payo� pro�les observed by 01 at stage-1, thus any �reasonable�
notion of optimality should specify that 01 chooses P1 (asterisked) at his stage-1 information
set and has the belief ( 1

10
, 9
10
) (asterisked) over (02, 12) as per the prior distribution speci�ed

in Γ (Notes of Figure 2). These assertions and the reason behind underlining the action P1
for 11 and 21 at their respective information sets and bracketing their beliefs will be made
precise when we de�ne LFE.

3 Limited Foresight Equilibrium

We now proceed to de�ning the Limited Foresight Equilibrium (LFE). The �rst step in this

direction is de�ning total foresight. The total foresight of a limited-foresight type determines

the Curtailed Game that that limited-foresight type observes. A limited-foresight type's

total foresight is de�ned as the sum of (i) the stage number that the limited-foresight type

is moving at, and (ii) the level of foresight of that limited-foresight type. If this sum is

greater than the total number of stages in the Interaction Game, say S, we say that the

total foresight is S. We make this precise in De�nition 1 below. In what follows, let the

foresight-level of player-type ti be denoted as ti itself. For example, the player-type 3i has
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a foresight-level of 3. We denote the foresight-level of 3i as 3i, it is understood that the

foresight level is actually 3.20 The de�nition of total foresight is as follows.

De�nition 1 (total foresight): consider a sequence h = (t, (ak0)k=1,...,s−1) ∈ H of an S-staged

Interaction Game. Suppose the player-type P (h) = ti moves at the sth-staged sequence h.

Let P (h) = ti. The total foresight of player-type ti at stage s is min{(ti + s), S}.

As an example of the application of De�nition 1, consider the 3-staged Centipede Game

example in Figures 1-5, the total foresight of player-type 01 (foresight-level of 0) at stage-one

is equal to 1 and this total foresight is captured by CG(1) (Figure 3). The total foresight of

02 at stage-two and 11 at stage-one is 2, and this is captured in CG(2) (Figure 4). The total

foresight of 01, 11, and 21 at stage-three, 12 at stage-two, and 21 at stage-one is 3 (the total

number of stages), and this is captured in CG(3) (Figure 5).

The next de�nition, makes the phrase �the Curtailed Game that a limited-foresight type

observes at a certain move� precise. In particular, we de�ne decisive information sets of a

Curtailed Game and the decisive Curtailed Game for an information set.

De�nition 2 (decisive information sets and decisive Curtailed Games): Let Γ be an S-staged

Interaction Game. Consider an n-staged Curtailed Game, CG(n), constructed from Γ.

CG(n) is said to be decisive for the information sets Dn of Γ, i� for all I ∈ Dn, the

player-type moving at I, P (I), has the total foresight of n at I. The information sets in Dn

are said to be decisive for CG(n).

De�nition 2 implies that the player-types moving at the decisive information sets of a

Curtailed Game, say CG(n), observe exactly CG(n) at these information sets due to their

respective foresight-level and the stage number of their respective decisive information set.

Thus, they use CG(n) to optimize, so CG(n) is decisive for these information sets. In our

20So if 3i is moving at stage-4, his total foresight is 3i + 4 = 7. This abuse of notation helps simplify the
notation.
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Centipede game example, CG(1) is decisive for 01 at his stage-1 information set, CG(2) is

decisive for 02 at stage-2 and 11 at stage-1, and CG(3) is decisive for all other information

sets.

In de�ning the LFE and discussing its features, it will be useful to establish a hierarchy

among player-types based on their total foresight. The next de�nition establishes higher and

lower types relative to a given player-type with a given total foresight.

De�nition 3 (higher types and lower types): Consider a player-type ti moving at an infor-

mation set I(ti) of the Interaction Game Γ. Suppose ti has total foresight equal to n at I(ti).

So CG(n) is decisive for ti at I(ti). An arbitrary player-type tj, moving at an information

set I(tj) of CG(n), is considered a higher (respectively lower) type than ti at I(ti), if tj's

total foresight at I(tj) is weakly greater than n (strictly lower than n).

Consider the following examples of higher and lower types. Consider the 3-staged Cen-

tipede Game example in Figures 1-5. For 01 at stage-one (total foresight of 1 (Figure 3)),

both 11 and 21 at their respective information sets in stage-one are higher types. For 11

at stage-one and 02 at stage-two (total foresights of 2 (Figure 4)), only 01 at stage-1 is a

lower type, and player-types at other information sets in CG(2) are higher types. For 21 at

stage-one, 12 at stage-two, and all player-1-types at stage-three (total foresights of 3 (Figure

5)), 01 and 11 at stage-1, and 02 at stage-2 are lower types (because their total foresights are

equal to 2), and player-types at other information sets (including 01 at stage-3) are higher

types.

A Rule-of-Thumb De�nition of LFE

The de�nition of LFE (we state the precise de�nition later) boils down to three rules-of-

thumb. Suppose we have already constructed an Interaction Game Γ from a game with

perfect information using ρ, the common knowledge prior distribution over foresight-levels

across players. Suppose now we are trying to solve for the LFE action of the limited-foresight
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player-type ti moving at some information set I(ti). Let n be ti's total foresight at I(ti).

So ti observes CG(n) at I(ti). The three rules-of-thumb for solving for ti's LFE action and

belief at I(ti) are:

(a) ti knows the LFE actions of lower types. He considers these actions �xed as Nature's

moves in CG(n).

(b) ti assumes that higher types, and ti himself, choose a strategy for CG(n). Each higher

type's chosen strategy in the strategy pro�le so constructed must be a sequentially rational

best response in CG(n) given the ��xed� LFE actions of lower types (as per rule (a)), the

rest of the strategy pro�le, and beliefs.

(c) ti's beliefs, and the beliefs of all other player-types in CG(n) are calculated using the

Bayes' rule (whenever possible), given Nature's moves (as per rule (a)), the strategy pro�le

described in (b), and ρ, the common prior.

All of these rules are captured in the following de�nition: Formally, we solve for ti's LFE

action and belief at I(ti) by solving for the Sequential Equilibrium (SE) of CG(n), after

taking the LFE actions in (a) given as Nature's moves. As we �rst apply these rules at

CG(1), then proceed to CG(2), and then step-wise to longer Curtailed Games, rule (a) is

well de�ned at each step. Further, in the next section, Proposition 2 will show that, under

certain conditions, calculating the SE of each Curtailed Game, say CG(n), is straightforward

as di�erent types of each player can be treated as the same type if their total foresight is n

or more (and strategies of player-types with total foresight strictly less than n is given by

rule (a)).

As an example of these rules, consider the 3-staged Centipede Game again. Consider

Figure 4, which depicts the method for solving for the LFE action and belief of 11 at stage-

one. As the total foresight of 11 at stage-one is 2, we use CG(2) to solve for 11's LFE

action at his stage-one information set. Rule (a) implies that at 01's stage-one information

set, �Nature� replaces 01 as the player moving there. Further, 01's LFE action (P1) at his

stage-one information set is considered as Nature's move and marked as P1S, where the
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superscript denotes �solved.� Thus, rule (a) implies �modifying� CG(2) and constructing the

Modi�ed Curtailed Game(2) (MCG(2) for short) from CG(2). Figure 4 depicts MCG(2).

We will formally de�ne a MCG in the next sub-section. Rule (b) implies that 11, 21, 02 and

12, moving at their respective information sets in CG(2) are higher types compared to 11

at stage-one; thus, they must choose actions which are sequentially rational in CG(2) given

Nature's (acting on behalf of 01) stage-one action, i.e. P1S, the actions chosen by others,

and their beliefs at their respective information sets. Rule (c) implies that the beliefs used

in rule (b) must be calculated using the prior distribution, the strategies speci�ed in rules

(a) and (b), and Bayes' rule. All three rules, (a), (b) and (c) are satis�ed if we simply solve

for the SE of CG(2) after taking 01's stage-one action, P1S, as Nature's move. As Figure 4

shows, the LFE action of 11 at stage-one is P1 (asterisked) and his beliefs (asterisked) over

player-2's types are the same as the prior distribution over player-2's types.

It is worth noting that due to the assumption that the prior distribution over players'

foresight-levels is common knowledge, 02 at stage-two observes exactly the Curtailed Game

observed by 11 at stage-one. Thus, we can use the same Curtailed Game, CG(2), to solve

for 02's stage-two LFE action.21 So in solving the SE of CG(2), we have also solved for the

LFE action and beliefs of 02 at his stage-two information set: 02 chooses P2 in stage-two

and his beliefs over player-1's types are the same as the prior distribution over player-1's

types. The next step would be to consider CG(3), replace the LFE actions for the decisive

information sets of CG(1) and CG(2) as Nature's moves in CG(3) and solve for the SE of

CG(3). Proceeding from the shortest Curtailed Game to the Interaction Game as above

gives us the LFE for an Interaction Game. Figure 5, completes the construction of LFE for

the 3-staged Centipede Game example.

21This would not be the case if 02's prior belief were di�erent from 11's prior belief. In that case, in order
to consider the CG that 02 uses to optimize, we would have to construct a di�erent CG(2), one with Nature's
initial distribution over foresight levels as per 02's prior beliefs. We retain the common prior assumption
until the last section where we discuss subjective prior beliefs. Even with the common prior assumption, we
will see that the beliefs of players with di�erent foresight-levels evolve di�erently upon observing the same
sequence of prior actions.
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Figure 4. Modi�ed Curtailed Game (2)
Notes. From CG(1), depicted in Figure 3, we know that in LFE, 01 chooses P1 (pass
at stage-1) at his �rst-stage information set, D1, for which CG(1) is decisive. MCG(2) is
constructed from CG(2) in two steps: First, the player function of MCG(2) speci�es Nature,
instead of 01, as the player moving at D1; second, 0′1s LFE action at D1 is considered
as common-knowledge Nature's move and marked with the superscript S, which denotes
�solved� (so P1 becomes P1S). MCG(2) is identical to Γ in all respects except that (i)
MCG(2) curtails Γ after the second-stage action and (ii) in MCG(2), we take 0′1s LFE
action at D1 as Nature's move. As both 11 at stage-1 and 02 at stage-2 observe two stages
of the Interaction Game, MCG(2) is decisive for both these information sets, denoted by
D2. Note that it is strictly better for all player-2 types to choose P2, irrespective of beliefs.
Thus, in any SE of MCG(2), and so in LFE, 11 chooses P1 (asterisked) in stage-1 and 02
chooses P2 (asterisked) in stage-2, irrespective of their beliefs. Consistent with this SE of
MCG(2), the LFE beliefs (asterisked) of 11 at stage-1 and 02 at stage-2 are their priors
over the opponent's type given from Γ (Figure 2 notes). Note that we mark the SE actions
and beliefs at even the non-decisive information sets of MCG(2) by underlining them and
bracketing them, respectively, as we did in CG(1) (Figure 3). These beliefs are the second
order beliefs of 11 at stage-1 and 02 at stage-2. These SE actions and beliefs at non-decisive
information sets are calculated because they are needed to calculate the LFE actions and
beliefs at decisive information sets (in general, but not in this example).

26



Note that in solving for the Sequential Equilibrium of a Curtailed Game, we are also

solving for the SE actions and beliefs of player-types at information sets other than the

decisive information sets of that Curtailed Game. For example, in solving for the SE of

CG(2), we also solved for the SE actions and beliefs of 21 at his stage-one information set.

We do not consider the SE actions at the �non-decisive� information sets of a Curtailed

Game as LFE actions. These actions, for example 21's action of P1, are typically needed to

calculate the LFE actions and beliefs at the decisive information sets of the Curtailed Game

(in most Curtailed Games, but not this CG(2) example). Using the SE for CG(2) implies

that at their stage-two and stage-one information sets, respectively, 02 and 11 think that other

player-types will play sequentially rational strategies for CG(2) and that they will have beliefs

consistent with the strategy pro�le in CG(2).22 Note that the SE beliefs of player-types at

these �non-decisive� information sets of a Curtailed Game are the second-order beliefs of the

players at the decisive information sets. In our example, in the SE of CG(2), the SE beliefs of

21 at his stage-one information set in CG(2) are the second-order beliefs of 02 and 11. That

is, the SE beliefs of 21 represent what 02 and 11 (at stage-two and stage-one respectively)

believe are the beliefs of 21 at stage-one. These second-order beliefs are important in that

they help determine 21's stage-one SE action, which in turn determines the SE (and LFE)

actions of 02 and 11 at their stage-two and stage-one information sets, respectively. In what

follows, we assume that the belief hierarchy terminates at these second-order beliefs.

Suppose a player-type ti has total foresight n at an information set I(ti). Further suppose

that the LFE strategy pro�le is such that at I(ti), ti is facing a higher type with probability

equal to one, and ti knows this. One might ask, why should ti still use the CG(n) he observes

to try and understand his opponent's choice? Our answer to this question is that CG(n)

represents the limit of the foresight of ti at I(ti), and he uses this limit to try and reason

22Selecting a common SE for CG(2) to represent what both 02 and 11 think at their respective information
sets is a signi�cant assumption when there are multiple SE of the Curtailed Game. We persist with this
de�nition for simplicity and in keeping with the notion of an equilibrium.
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Figure 5. Modi�ed Curtailed Game (3): Solving for the LFE.
Notes. From Figure 3 (CG(1)) and Figure 4 (MCG(2)) we know the LFE actions and beliefs
of 01 and 11 at stage-1 and 02 at stage-2. We �x these as Nature's moves (mark them with
the superscript S) in Γ given in Figure 2 to construct the MCG(3) depicted here. All other
information sets of Γ are decisive information sets of MCG(3), and each of them is marked
with D3. To complete the LFE description, we need to solve for the LFE actions and beliefs
at D3, using the SE of MCG(3). In the unique SE of MCG(3), thus in LFE, at stage-3, all
player-1 types choose T3 (asterisked), irrespective of beliefs. Thus 12 chooses T2 (asterisked)
irrespective of beliefs. 2′1s stage-1 beliefs are derived from Nature's prior distribution using
Bayes' rule. Thus, 2′1s stage-1 belief over {02, 12} is ( 1

10
, 9
10
) (asterisked). In SE, and thus in

LFE, 21 chooses T1 (asterisked) because while 0
′
2s choice of P2 in stage-2 is �xed as Nature's

move, 12 chooses T2 in stage-2. Thus 2′1s expected payo� from P1 is 16×1
10

+ 2×9
10

= 3.4, which
is strictly less than 4, his expected payo� from T1. Finally, consistency of SE beliefs implies
1′2s stage-2 LFE belief over {01, 11, 21} is given by (12 ,

1
2
, 0) (asterisked), and all player-1 types'

stage-3 LFE belief over {02, 12} is (1, 0) (asterisked). To sum up, the LFE of this example
(Figures 1-5) is as follows (πti and µti denote t

′
is LFE strategy and LFE belief respectively).

π01 = π11 = {P1, T3}, π21 = {T1, T3}; π02 = {P2}, π12 = {T2}.
µ01 = µ11 = µ21 = {( 1

10
, 9
10
), (1, 0)} on {02, 12} at stage-1 and at stage-3, respectively.

µ02 = (1
3
, 1
3
, 1
3
) and µ12 = (1

2
, 1
2
, 0) on {01, 11, 21} in stage-2.
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on the behalf of his opponent in such a scenario. If he could apply greater foresight, he

would also use it for himself! This has a parallel with Alaoui and Penta's (2016) model of

Level-k. In particular, in their model if a player, say Bob, knows that his opponent, say Ann,

is cognitively more sophisticated, and Bob knows that Ann knows this, then Bob chooses

his own highest possible level. We now proceed to formally de�ning the Limited Foresight

Equilibrium.

3.1 Limited Foresight Equilibrium: De�nition

Consider an S-staged Interaction Game Γ. Γ generates S distinct Curtailed Games given the

assumption that Nature's distribution over T is common knowledge in each Curtailed Game.

Denote a strategy pro�le of Γ as π, where π = ((πti)ti∈N). Denote a belief system of Γ as

µ, where µ = ((µti)ti∈N). For each player-type ti, (πti , µti) speci�es the action choice and

belief of ti at all the information sets of Γ where ti moves. Formally, consider an arbitrary

information set I(ti) where ti moves. Let I(ti) be generated by the sequence h0 ∈ H0 from

the underlying sequential game with perfect information. That is, Seq−1(I(ti)) = h0 holds.

Then πti : I(ti) 7−→ ∆(A(I(ti))), and µti : I(ti) 7−→ ∆{((ti, t−i), h0) : t−i ∈ T−i} .

Consider a stage n ∈ {1, ...S}. Let (σn, bn) denote an assessment for CG(n). That

is, σn = ((σn
ti
)ti∈N) and bn = ((bnti)ti∈N) denote a strategy and belief pro�le for CG(n)

respectively. For each player-type ti, (σ
n
ti
, bnti) speci�es the (possibly mixed) action choice

and beliefs of player-type ti at all the information sets of CG(n) where ti moves. Let the

set of Sequential Equilibria of any game G be denoted as Ψ(G). Let Dn denote the decisive

information sets of CG(n). The Limited Foresight Equilibrium of Γ will be an assessment

(π, µ) for Γ that we will construct below.

We need one more de�nition before de�ning an LFE: Modi�ed Curtailed Games (MCG

for short). A Modi�ed Curtailed Game captures rule (a) in the rules-of-thumb. That is,

a Modi�ed Curtailed Game formally de�nes how to modify a Curtailed Game to model

the feature that a limited-foresight type considers the LFE actions of lower types �xed as
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Nature's moves.

De�nition 4 (Modi�ed Curtailed Games): First, de�ne MCG(1) ≡ CG(1). Next, consider

a Curtailed Game CG(n) for some n ∈ {2, .., S}. Suppose π(.) provides the LFE strategy

pro�le for all the information sets in
⋃n−1

k=1 D
k, which is the union of the decisive information

sets of CG(1) through CG(n − 1). Then MCG(n) is de�ned by its construction from

CG(n), given π, by making two modi�cations. First, modify the player function of CG(n),

P n, to mP n so that in MCG(n), for all the decisive information sets of CG(1) through

CG(n − 1), the player-type moving there is replaced by Nature. That is, in MCG(n), we

set mP n(I) = Nature for all the information sets I ∈
⋃n−1

k=1 D
k. For other information sets,

the modi�ed player function is the same as P n, the player function of CG(n). That is, for

all I /∈
⋃n−1

k=1 D
k, mP n(I) = P n(I) holds. Second, we specify how Nature moves at these

information sets using ρn, which is an augmented version of the Nature's move in CG(n),

given by ρ. In particular, in MCG(n), the prior distribution over players' types is the same

as CG(n) and Γ, that is, ρn(∅) = ρ. Additionally, for all I ∈
⋃n−1

k=1 D
k, ρn(I) = π(I), that is,

for all the decisive information sets of CG(1) through CG(n− 1), Nature moves exactly as

the LFE action speci�ed by π.

In what follows we will assume the following. Assumption 1 (below) imposes a restriction

on the prior distributions over foresight-levels across players.

Assumption 1: The common-knowledge prior distribution over the foresight-levels across

players, ρ, is such that for every player i and for every i-type, ti, conditional on i's type

being ti, the probability of the pro�le (S − sj)j 6=i
23 is strictly greater than 0.

Pr((tj has no foresight limitation)j 6=i|ρ, ti) = Pr((tj = (S − sj)j)j 6=i|ρ, ti) > 0,

23(S − sj)j is the player-j-type with no foresight limitation.
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∀i ∈ N0, ∀ti ∈ Ti.

Assumption 1 states that we only allow those prior distributions over foresight-levels

which imply that every player-type has a strictly positive prior probability of facing an

opponent-pro�le such that each of the opponents is of the type who has no foresight limita-

tion. We will discuss the point at which Assumption 1 is used after de�ning the LFE.

Given the notation and de�nitions above, we have the following de�nition of LFE.

De�nition 5: (π, µ) is a Limited Foresight Equilibrium of an S-staged Interaction

Game Γ if it is constructed in the following S steps:

Step 1: Select a Sequential Equilibrium assessment (σ1, b1) ∈ Ψ(CG(1)). Set (π(I), µ(I)) =

(σ1(I), b1(I)) ∀I ∈ D1.

Step 2: Convert CG(2) to MCG(2) using π(D1) obtained from Step 1. Select an assessment

(σ2, b2) ∈ Ψ(MCG(2)). Set (π(I), µ(I)) = (σ2(I), b2(I)) ∀I ∈ D2.

Step n: Convert CG(n) to MCG(n) using π(
⋃n−1

k=1 D
k) obtained from Step 1 through Step

(n-1). Select an assessment (σn, bn) ∈ Ψ(MCG(n)). Set (π(I), µ(I)) = (σn(I), bn(I))

∀I ∈ Dn. Repeat Step n until n = S.24

4 Limited Foresight Equilibrium Properties

Remark 1: The Interaction Game nests the underlying �nite sequential game with perfect

information. In particular, if an Interaction Game, Γ, has the common knowledge prior

24In the construction of an LFE in De�nition 5, we are assuming that a player-type observing a longer CG
correctly anticipates which one of the many possible SE was selected at each of the shorter Curtailed Games.
For example, for constructing MCG(2), we need a selection from the Sequential Equilibria of CG(1). We
are assuming that 02 at stage 2 and 11 at stage 1 correctly guess which one of the many possible optimal
choices is chosen by 01 at stage 1. This assumption is signi�cant in general and comes with the territory of
an equilibrium notion. This assumption has no bearing on our Centipede game and Sequential Bargaining
game results, as any CG 6= Γ has a unique SE there.
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distribution, ρ, such that all players are of the no-foresight-limitation type with a prior

probability equal to 1, that is, for all i ∈ N0, Pr(ti|ρ) = 1 holds i� ti = (S − si)i holds,

then Γ is equivalent to Γ0, the underlying sequential game with perfect information that

generated Γ.25 Therefore, in that case, the set of LFE of Γ is equal to the set of Sequential

Equilibria of Γ which is identical to the set of SPNE of Γ0.

Now we describe some properties of the LFE de�ned above. First, existence and upper

hemi-continuity.

Proposition 1(a) (existence): For every �nite Interaction Game, there exists at least one

Limited Foresight Equilibrium.

1(b) (upper hemi-continuity): Given the extensive form, {N,H, {I(ti)}ti∈N , P, A} , for an

Interaction Game, the correspondence from pairs (ρ, u) of initial probability distributions and

payo� pro�les to the set of Limited Foresight Equilibria for the Interaction Game so de�ned

is upper hemi-continuous.

The proof of existence and upper hemi-continuity of LFE follows from the existence

and upper hemi-continuity of the Sequential Equilibrium (Kreps and Wilson (1982b)). The

details are given in the Appendix. Note 1 (below) characterizes trivial information sets where

the LFE, (π, µ), places no restrictions on beliefs or actions.

Note 1: Trivial information sets. Fix an LFE, (π, µ), of an S-staged Interaction Game

Γ. Suppose ti is moving at a stage-K information set: I(ti) ={((ti, t−i), (a
k
0)k=1,...,K−1): t−i ∈

T−i}. Suppose for some r < K, there exists a subsequence (ak0)k=0,...,r−1 of (a
k
0)k=1,...,K−1, such

that at the information set I ′(ti) ={((ti, t−i), (a
k
0)k=0,...,r−1): t−i ∈ T−i}, ti moves and the total

foresight of ti at I
′(ti) is strictly less than S.26 Given these conditions, if πti(a

r
0|I ′(ti)) = 0

25For example, Palacios-Huerta and Volij (2009) may have been able to establish this condition in their
experiment when expert chess players played other expert chess players in a Centipede game, and the degree
of expertise of both players in each pair was common knowledge among the pair.

26Here and in what follows, (t, a00) is de�ned as the stage-1 move after Nature chooses the player-type
combination t ∈ T .
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holds, then I(ti) occurs with probability 0 because ti's own prior move, at an information set

where his total foresight was strictly less than S, rules out the possibility of reaching I(ti).

Thus, I(ti) is a trivial information set of MCG(K + ti),.., MCG(S) and the properties of

LFE are irrelevant there.27

Note 1 states that when we construct the MCG(K + ti), ti's move at the preceding

information set will be considered as Nature's move, and if Nature's move rules out I(ti), then

it is theoretically and empirically a zero probability event. I(ti) being a trivial information

set implies that if we modify the LFE (π, µ) by arbitrarily changing the action or beliefs

only at I(ti) to generate (π′, µ′), then (π′, µ′) is also an LFE. As an example, suppose in

the Centipede game example in Figures 1-5, the payo� pro�le from T1 is changed to (10, 1).

Then 01's LFE action at stage-1 will be T1. So, 01's stage-3 information set will be a trivial

information set, because his own action of T1 rules out the action sequence (P1, P2) being

played. Note that, given Assumption 1, the only way trivial information sets of a player-type

are generated is by the player-type's own LFE action, at a preceding information set, where

that player-type's total foresight is strictly less than S. This is because, by Assumption 1, in

everyMCG, the pro�le of opponent-types with no ex-ante foresight limitation, ((S−sj)j)j 6=i,

occurs with a strictly positive prior probability, and none of their moves are �xed as Nature's

moves in any MCG. So, in what follows, the properties of LFE described below are relevant

only at non-trivial information sets.

Next, we de�ne the corresponding information sets of di�erent types of the same player

as follows. For the purpose of this de�nition, consider a player i ∈ N0 and any two i-types,

ti and t′i, such that ti 6= t′i. Consider two information sets of an Interaction Game, I(ti) and

I(t′i), such that the player-type moving at I(ti) is ti, and the player-type moving at I(t′i) is

t′i.

De�nition 6 (corresponding information sets): Any two information sets, I(ti) and I(t′i)

27Here and in what follows, if (K + ti) > S, then MCG(K + ti) ≡MCG(S).
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are corresponding information sets if they are preceded by the same action sequence, except

Nature's initial move at the ∅ history. That is, if Seq−1(I(ti)) = Seq−1(I(t′i)) = h0, for

some action sequence h0 ∈ H0 of the underlying game, then I(ti) and I(t′i) are corresponding

information sets. In other words, for some h0 ∈ H0, I(ti) and I(t′i) are corresponding

information sets if I(ti) is of the form I(ti) = {((ti, t−i), h0) : t−i ∈ T−i} and I(t′i) is of the

form I(t′i) = {((t′i, t−i), h0) : t−i ∈ T−i}.

At corresponding information sets, di�erent types of the same player move after observ-

ing the same sequence of actions. Using this de�nition, we will now state Proposition 2

and its corollary. Suppose the prior probability distribution over the foresight-levels, ρ, is

pairwise-independent across players. Then Proposition 2 and its corollary tell us that cal-

culating the SE of a given MCG(n) is typically simple. In particular, Proposition 2 implies

that if ρ obeys the pairwise-independence property, then for any SE of any MCG(n), the

SE beliefs (not necessarily LFE beliefs) of all types of a particular player at corresponding

(non-trivial) information sets are identical. That is, if di�erent types of a particular player

observe the same prior sequence of actions, then, in SE, they have identical beliefs over the

possible pro�les of opponents. The corollary of this proposition is that if an SE of MCG(n)

speci�es a strategy for a player-type that is strictly better than alternative strategies from

a particular information set of MCG(n), then the SE must specify an identical strategy for

other types of that player from their respective corresponding information sets. We now

formally state Proposition 2 and its corollary.

Proposition 2 (SE are �simple�): Consider an arbitrary MCG(n) with a pairwise inde-

pendent prior distribution over players' types. That is, Pr(ti, tj|ρ) = Pr(ti|ρ).P rob(tj|ρ) for

any ti ∈ Ti and tj ∈ Tj and for any i, j ∈ N0. Let σn be some totally mixed strategy pro�le

of MCG(n). Let I(ti) and I(t′i) be (non-trivial) corresponding information sets which are

preceded by the same action sequence (excluding Nature's initial move at ∅), given by h0. If
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beliefs bn(.) are calculated using σn and Bayes' rule, then:

bn((t−i, h0)| ti, I(ti), σn) = bn((t−i, h0)| t′i, I(t′i), σn) holds ∀t−i ∈ T−i. (2)

Therefore, for any MCG(n) and for any of its Sequential Equilibria, for all i ∈ N0, the

equilibrium beliefs of all types of player i are identical at corresponding information sets.

The proof is given in the Appendix.

Corollary of Proposition 2: Consider an arbitrary MCG(n) and a SE, (σn, bn), of

MCG(n). Suppose ρ satis�es the independence property described in Proposition 2. Con-

sider an arbitrary action sequence h0, which immediately follows Nature's initial move at

the ∅ history. Suppose that σn speci�es a strict best response for ti from each information

set following h0. Then σn must specify the same strategy for all t′i at each corresponding

information set of t′i following the action sequence h0.

The corollary of Proposition 2 follows because, by Proposition 2, other types of player i

have identical beliefs at corresponding information sets. Further, they face the same strategy

pro�le (σn
tj
)j 6=i. Therefore, at corresponding information sets, the mapping from strategies

to expected payo� is the same for all i− types. As σn speci�es a strict best response for ti

from each information set following h0, the sequential rationality requirement of a SE implies

σn
t′i
= σn

ti
, for all t′i ∈ Ti, at corresponding information sets of t′i following h0. The proof is in

the Appendix.

Illustrating Proposition 2. Consider CG(1) ≡ MCG(1) in Figure 3; note that the SE

beliefs of all player-1 types at corresponding information sets in stage-one are the same:

( 1
10
, 9
10
) on {02, 12}. Consider MCG(2) in Figure 4, note that the SE beliefs of 02 and 12 at

corresponding information sets in stage-two are the same; (1
3
, 1
3
, 1
3
) on {01, 11, 21}. Further,
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in MCG(2), the SE beliefs of 11 and 21 at corresponding information sets in stage-one are

also the same: ( 1
10
, 9
10
) on {02, 12}. Last, consider MCG(3) in Figure 5; note that the SE

beliefs of all player-1 types at corresponding information sets in stage-three are the same:

(1, 0) on {(Nature as 02), 12}. It is worth noting that the corollary of Proposition 2 also holds

in each case. In the SE of CG(1), all 1-types choose P1 at corresponding information sets

in stage-one. In the SE of MCG(2), both 2-types choose P2 at corresponding information

sets in stage-two and both 11 and 21 choose P1 at corresponding stage-one information sets.

Last, in MCG(3), all 1-types choose T1 at corresponding information sets in stage-three.

Discussion of Proposition 2. Recall that the purpose of constructing an MCG(n) is to

model how a player-type, say tAnn, moving at a decisive information set ofMCG(n), perceives

the Interaction Game and optimizes. In MCG(n), all player-types with total foresight less

than n have been replaced by Nature and their moves are commonly known as Nature's

moves. To optimize, tAnn has to anticipate what other player-types will choose in MCG(n).

The SE selected for this MCG(n) represents what tAnn thinks (and all player-types at the

other decisive information sets of MCG(n) think) will be the strategies and beliefs of all

player-types in MCG(n). Using the SE implies that tAnn thinks that all player-types will

play sequentially rational strategies in MCG(n) and that they will have beliefs consistent

with the strategy pro�le so constructed. In principle, the SE of MCG(n) can be quite

complicated. However, Proposition 2 states that, when the prior distribution over types is

independent across players, the SE of MCG(n) boils down to tAnn �lumping� di�erent higher

types of the same player into one. That is, in MCG(n), if two di�erent types of a player

observe the same prior action sequence, then in any SE (tAnn thinks that) they have the same

belief over opponents' type pro�le. This identical belief property has the corollary that if in

SE, a player-type's chosen strategy, σn
ti
, from a given information set is strictly better than

the next-best alternative, then in the SE of MCG(n), (tAnn thinks that) the strategy of all

other types of that player at their corresponding information sets is also σn
ti
. That is, (tAnn
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thinks that) all higher types of a particular player can be treated identically in MCG(n) up

to the case of indi�erence.28 Next, starting with Note 2, we move on to specifying other

properties of LFE beliefs.

Note 2: (LFE beliefs of player-types with no foresight limitation). Suppose that ti has no

foresight limitation at I(ti). That is, suppose the total foresight of ti at I(ti) is S (the number

of stages in the Interaction Game, Γ). Then the LFE beliefs of ti at I(ti) are calculated using

some SE, (σS, bS) of MCG(S). In MCG(S), the LFE strategy pro�le, π, at
⋃S−1

n=1 D
n are

given as Nature's moves. Further, π at DS is given by σS at DS. So, Bayes' rule implies,

µti(h| I(ti)) =
Pr(h | π, ρ)

Pr(I(ti) | π, ρ)
holds ∀h ∈ I(ti), if Pr(I(ti) | π, ρ) > 0.

If Pr(I(ti) | π, ρ) = 0, then µti(h| I(ti)) is equal to the SE beliefs bSti(h| I(ti)), ∀h ∈ I(ti).
29

Note 2 tells us that the LFE beliefs of player-types with no foresight limitations are

standard. We now describe properties of LFE beliefs of player-types at moves where theymay

have foresight limitations. Consider an arbitrary player-type, ti, moving at an information

set I(ti). Recall that I(ti) is identi�ed by the player-type moving there, ti in this case, and the

action sequence of the underlying sequential game with perfect information that generates

it, say h0 = (ak0)k=1,...,K−1 such that Seq−1(I(ti)) = h0 holds. In what follows we will refer

to histories/sequences in information sets as �nodes.� So if I(ti) = {((ti, t−i), h0): t−i ∈

T−i}, then each di�erent node of I(ti) implies a di�erent combination of opponents' types,

t−i ∈ T−i, that, along with ti, played the same preceding action sequence: h0. In what

28The case of indi�erence doesn't arise in any MCG shorter than the Interaction Game in the Bargaining
game and the Centipede game applications. Note that we have not been able to show the following claim:
For any MCG, there always exists a SE such that di�erent types of a player have identical strategies and
beliefs at corresponding information sets. The notation of the possible proof of this claim is turning out to be
too complicated for this paper. However, Proposition 2 already shows this property for SE beliefs. Further,
the proof of the corollary of Proposition 2 shows the equality of the expected payo� of di�erent types of a
player from identical strategies at corresponding information sets. Thus, the marginal gain from the claim
appears to be limited.

29The de�nition of a SE implies that bSti(h| I(ti)) is well de�ned ∀h ∈ I(ti) when Pr(I(ti) | σS , ρS) =
Pr(I(ti) | π, ρ) = 0.
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follows, it will be useful to distinguish among nodes of I(ti) on the basis of opponents'-types'

total foresight. In particular, it will be useful to identify those nodes of I(ti) such that at

each move in the action sequence preceding that node, the opponent-type moving there had

strictly lesser total foresight (was a lower type). We will call the subset of I(ti) containing

such nodes as L(I(ti)). We now de�ne this set.

De�nition 7 (playing against lower types): Consider an arbitrary stage-K information set

I(ti) of Γ. Let I(ti) = {(t, (ak0)k=1,...,K−1) : t−i ∈ T−i}; that is, let (ak0)k=1,...,K−1 be the

action sequence preceding I(ti) (excluding Nature's initial move at the ∅ history). Consider

h, an arbitrary node of I(ti) of the form h = (t, (ak0)k=1,...,K−1). De�ne L(I(ti)) as the

subset of I(ti) such that a node h in I(ti) belongs to L(I(ti)) i� for any subsequence ĥ =

(t, (ak0)k=0,...,r−1) of h, the opponent-type moving at ĥ has strictly lower total foresight at ĥ

than ti's total foresight at h. That is, if P (ĥ) = tj, then the total foresight of tj at ĥ, given

by tj + r, is strictly less than (ti +K), which is ti's total foresight at h.
30

De�nition 7 states that for each h ∈ L(I(ti)), ti, is playing against opponents'-types

who were lower types at all preceding moves. In other words, at h, ti has strictly greater

total foresight than the total foresight of his opponents at their respective prior moves along

the action-sequence (ak0)k=1,...,K−1 leading into I(ti). De�ne the complement of L(I(ti)) as

Lc(I(ti)) = I(ti) − L(I(ti)). At any node in Lc(I(ti)), ti has weakly lower total foresight

than at least one of his opponents at some move of that opponent along the action-sequence

(ak0)k=1,...,K−1. For the two-player case, a node in Lc(I(ti)) implies that the opponent is a

higher type at some move preceding that node.

Proposition 3 (below) states a consistency condition that the LFE belief, µ, obeys. It

states that in any LFE (π, µ), given an information set, I, the belief distribution over L(I),

which contains the nodes of I where the player-type moving at I is playing against lower

30If h ∈ L(I(ti)) and (ti +K) ≥ S hold, then (tj + r) must be strictly less than S.
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opponents'-types, should be derived from the LFE strategy pro�le, π, and the prior distribu-

tion, ρ, using Bayes' rule wherever possible. In other words, the LFE belief distribution over

L(I), conditional on L(I), is �accurate� with respect to the LFE strategy pro�le π. Remark

2 leads us to an important implication of Proposition 3.

Proposition 3: Let I be a stage-K information set of Γ, such that P (I) = ti. In any LFE

(π, µ), ti's belief distribution over the set of nodes in L(I), conditional on L(I), must be

derived from the LFE strategy pro�le using Bayes' rule wherever possible. That is, ∀h ∈ L(I),

if Prob(L(I) | ρK+ti) > 0 holds, then we must have:

µti(h| L(I)) =
Pr(h | π, ρ)

Pr(L(I) | π, ρ)
=

Pr(h | ρK+ti)

Pr(L(I) | ρK+ti)
∀h ∈ L(I). (3)

Remark 2: If player i's foresight-level is higher, say t′i instead of ti, then for any action

sequence observed, more opponent-type combinations, t−i ∈ T−i, are such that along the

sequence of actions observed, i's opponents'-types playing the actions are lower types (whose

LFE strategies at preceding moves are known to i's type) compared to i's type. That is,

consider two corresponding information sets, I(ti) and I(t′i), of Γ. If ti < t′i holds, then we

must have |L(I(ti))| ≤ |L(I(t′i))|.

The proofs of Proposition 3 and Remark 2 are given in the Appendix. Proposition 3

follows from the recursive construction of an LFE. As an example of Proposition 3, suppose

Ann and Bob are playing a 6-staged alternate move game where Ann moves �rst. Suppose

1Ann observes a sequence of two actions at her stage-3 information set, I. Suppose according

to the LFE strategy pro�le and ρ (the prior distribution over Ann′s types and Bob′s types),

conditional on I, 1Ann faces 0Bob, 1Bob and 2Bob with probabilities (1
4
, 1
2
, 1
4
) respectively. Note

that 0Bob and 1Bob at stage-2 are lower types than 1Ann at stage-3. Proposition 3 states that
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the LFE belief of 1Ann must satisfy:

µ1Ann
(Bob's type is 0Bob| Bob's type is 0Bob or 1Bob, I) =

1

3
, and

µ1Ann
(Bob's type is 1Bob| Bob's type is 0Bob or 1Bob, I) =

2

3
.

However, Proposition 4 (stated below) will tell us that µ1Ann
( Bob's type is 0Bob or 1Bob| I)

need not by equal to 3
4
, as implied by the LFE strategy pro�le and ρ. This is because in LFE,

1Ann is allowed to �misunderstand� higher Bob-types' LFE strategies. Given Proposition 3,

the signi�cance of Remark 2 is that, given a sequence of prior moves observed, if a player's

foresight-level is higher, then the player's beliefs are �accurate,� in the sense of Proposition

3, over more opponent-type combinations. In the present example, Proposition 3 implies

that at the corresponding information set of 2Ann, say I(2Ann), the LFE belief of 2Ann,

µ2Ann
(mBob| I(2Ann)), must be accurate with respect to the LFE strategy pro�le and ρ for

m = 0, 1, and 2.

Remark 2 approximately captures the �ndings from Reynolds (1992). Reynolds (1992),

while testing recognition of opponent's expertise among chess players, found that �Higher

rated players consistently made lower estimation errors� (of other chess players' ELO ratings).

If one proxies for foresight using experience-level or ELO ratings, then the Remark 2 hints

at this �nding. The reasons for only approximate similarity to Reynolds' (1992) �nding

are: First, the proxying of foresight using ELO ratings is a leap of faith. Second, in an

LFE, the total belief placed on lower types, µti(L(I(ti))| I(ti)), need not be derived from

the LFE strategy pro�le using Bayes' rule (shown in Proposition 4 (below)). However, as

Proposition 3 says, conditional on L(I(ti)), the distribution of µti(L(I(ti))| I(ti)) among the

various nodes of L(I(ti)), i.e. the distribution of µti(L(I(ti))| I(ti)) among lower types, is

derived from the LFE strategy pro�le using Bayes' rule. It is notable that starting from

the same common knowledge belief over opponents' types, the belief of higher foresight-level

types becomes �more accurate� (at least in the sense of Proposition 3 and Remark 2) after
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the same sequence of actions. Proposition 4 speci�es the limited accuracy of LFE beliefs.

Proposition 4: Fix an LFE, (π, µ), of Γ. If the total foresight of ti at I(ti) is strictly less

than the number of stages in the Interaction Game, then the beliefs of ti over the nodes in

I(ti) need not be derived from the LFE strategy pro�le using Bayes' rule. Thus, it need

not be true that µti(h| I(ti)) = Prob(h| π,ρ)
Prob(I(ti)| π,ρ) holds ∀h ∈ I(ti) and for all (non-trivial)

information sets I(ti) of Γ .

Proof of Proposition 4 by counter-example. Consider the Interaction Game in Figure

2. The LFE for this Interaction Game is speci�ed in the notes of Figure 5. The second-stage

LFE belief of 02 after observing P1 in the �rst-stage is µ02 = (1
3
, 1
3
, 1
3
) over {01, 11, 21}.

However, 21, in LFE, puts 0 probability on P1. So according to the LFE strategy pro�le and

Bayes' rule, after observing P1, the belief of 02 over {01, 11, 21} should be (12 ,
1
2
, 0) 6= (1

3
, 1
3
, 1
3
).

Q.E.D.

Proposition 4 follows because the LFE beliefs at a given information set are derived using

a SE of that information set's decisive Modi�ed Curtailed Game. The selected SE strategy

pro�le for this MCG may not stipulate the same actions as the LFE strategy pro�le at the

non-decisive information sets of the MCG. Recall that, although the SE of the MCG and

the LFE strategy pro�les can be di�erent, the SE strategy pro�le provides a sequentially

rational best response strategy in the MCG for each player-type given the SE beliefs.

Proposition 5 (below) states that, in LFE, if a player-type observes a sequence of moves

that cannot occur when playing against lower opponents'-types (whose moves are considered

�xed as Nature's moves), then he discovers that he is playing against at-least one higher

opponent-type, and must use his total foresight at that move to optimize.

Proposition 5: Suppose Assumption 1 holds. Consider a stage-K information set, I(ti), of

MCG(K+ ti). Suppose Nature's moves in MCG(K+ ti), denoted by ρK+ti, imply that there

is 0 probability of reaching the nodes in L(I(ti)), which have the property that Nature moves
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at all moves in the sequences preceding these nodes.31 Then for any LFE, (π, µ), the LFE

belief of ti, conditional on I(ti), must put probability 1 on the nodes in Lc(I(ti)), which have

the property that at some move in the preceding sequence, some opponent-type moving there

had total foresight of at least min{(K + ti), S}. That is, for all ti ∈ N , for all I(ti) ∈ I(ti)

(such that I(ti) is a non-trivial information set):

[Prob(L(I(ti)) | ρK+ti) = 0] =⇒ µti([L(I(ti))]
c | I(ti)) =

Prob([L(I(ti))]
c)| ρ, π)

Prob(I(ti)| ρ, π)
= 1 (4)

The proof is given in the Appendix.32 Consider ti at an information set I(ti) which is gener-

ated from some action sequence h0 of the underlying game. Proposition 5 takes Proposition

3 further. According to Proposition 3, ti knows the probability with which lower oppo-

nents'-types choose the actions in the action sequence h0. In fact, ti knows these lower

opponents'-types' moves as Nature's moves. So if ti knows that the choices of these lower

opponents'-types imply a zero probability of h0 being played and yet he �nds himself moving

after h0, then he knows that he is at a node of I(ti) where at least one opponent-type was

a higher type at some preceding move. In the two player case it means that one knows

that one's opponent had a higher total foresight at some preceding move. Recognition of

the higher opponent-type implies that the LFE actions of the lower types don't matter for

ti's calculation of the sequentially rational action at I(ti); ti must use his total foresight to

optimize.33

31Here and in what follows, if (K + ti) > S, then ρ(K+ti) ≡ ρS .
32We use Assumption 1 to prove Proposition 5. Assumption 1 ensures that for all limited-foresight player-

types, higher opponent-types exist with a strictly positive probability.
33As an example of Proposition 5, suppose that in the 3-staged Centipede Game (Figure 1), we changed

the payo� pro�le from T1 to (10,1). Then in the corresponding MCG(2), when 02 observes P1, in SE (and
thus in LFE) 02 must put probability 1 on his opponent being 11 or 21, because 02 has �xed 01's choice of
�T1 with probability 1� as Nature's move in MCG(2). Note that Assumption 1 is important here. If 02 had
put 0 prior probability over both 11 and 21, then the LFE belief of 02 after observing P1 would not be well
de�ned. Assumption 1 guarantees that 02 puts a strictly positive prior probability on his opponent being 21
and thus, his SE (and thus LFE) beliefs are well de�ned.
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Reputation Concerns. It is worth noting that using the SE to solve for the LFE actions at

decisive information sets of appropriate Modi�ed Curtailed Games implies that player-types

take reputation concerns into account in order to optimize within the MCG (which may

be shorter or equal to the Interaction Game). As the propositions above specify, in LFE,

player-types are updating about the opponents' foresight-levels within the play of the game.

So player-types must choose the optimal between mimicking a lower type or choosing a

strategy that is di�erent from the lower types which may reveal his/her own foresight-level

to opponents. For example, in the next section, we will see that in the Centipede game,

even player-types with no foresight limitation pretend to be a limited-foresight type to gain.

One can think of several applications where it is better to reveal one's high foresight-level.

For example, suppose a �rm is looking for a partner for starting a new business. Further,

suppose the new business requires several stages of costly and unrecoverable investment

from both partners before �high� returns accrue to both parties. The �rm will look for a

partner who has displayed high foresight in previous interactions, otherwise it runs the risk

of a low-foresight partner quitting midway and saddling it with losses.34 Thus it would be

optimal to reveal one's high foresight-level to the �rm if one is su�ciently con�dent of the

�rm's foresight. Remark 3 (below) speci�es the e�ect on the LFE beliefs of a player-type

from observing more/less preceding actions.

Remark 3: Suppose ti moves at two information sets at stage K and K ′ of Γ. Suppose

K < K ′ holds. Then, in LFE, by the construction of LFE, if ti at stage-K knows (as

Nature's moves) the LFE action choice of some player-type, say tj, at I(tj), then ti, moving

at stage-K ′ also knows the LFE action choice of tj at I(tj); but the converse may not hold.

Remark 3 follows because at stage-K ′, ti knows players'-types' LFE strategy at the infor-

mation sets
⋃(K′+ti−1)

n=1 Dn. At stage-K, ti knows players'-types' LFE strategy at
⋃(K+ti−1)

n=1 Dn;

and
⋃(K+ti−1)

n=1 Dn ⊂
⋃(K′+ti−1)

n=1 Dn holds. Remark 3 approximately mirrors �ndings from

34It is easy to construct payo�s where the min+max
2 curtailment rule implies positive payo�s in the �rst

few stages of such a game, but negative curtailed payo�s after these stages.
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Reynolds (1992) and Rampal (2017). The latter study found that the more moves of the

opponent observed by an expert �race game� player, the better his/her guess about the op-

ponent's experience-level. In the same token, Reynolds (1992) found that estimation error

about the opponent's ELO rating (as a chess player) decreased as a function of number of

moves revealed. Remark 3 suggests that in an LFE this can happen, because when moving

at a later stage, the same player-type has higher total foresight and hence observes a longer

Modi�ed Curtailed Game. Thus, the player-type knows (as Nature's moves) other player-

types' moves he knew at the earlier stage, and, in most cases he knows more moves of other

player-types at the later stage.

5 Applications

In this section we apply the LFE model to the Centipede game introduced by Rosenthal

(1981) and the Sequential Bargaining game analyzed by Rubinstein (1982) and Ståhl (1972).

We do not add game-speci�c types (eg. altruistic types, or other �crazy� types) to explain

the qualitative �ndings for these games. Such additional features are often important in

better capturing stylized data facts of di�erent games. Instead, we restrict ourselves to the

LFE model where players are sel�sh utility maximizers, but can possess various degrees of

limited-foresight; and limited-foresight player-types are uncertain about his/her opponents'

foresight-levels. The aim of this section is to illustrate general applicability of this LFE

model; and to show that even without additional features, the LFE model explains vari-

ous qualitative �ndings on two of the more studied empirical puzzles in perfect information

sequential games. To see an experimental evaluation of the LFE model vis-a-vis other be-

havioral models, we direct the interested reader to Rampal (2017) which uses �race games�

to illustrate the novel predictions of LFE.
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5.1 Sequential Bargaining

The Sequential Bargaining game (Rubinstein (1982) and Ståhl (1972)) has been studied

extensively in the literature (c.f. Binmore et al (1985), Neelin et al (1988), Guth and Tietz

(1988,1990), Ochs and Roth (1989), Johnson et al (2002), and Binmore et al (2002), among

others). One version of the game consists of two players bargaining over a pie of size X over

multiple periods. In each period one player makes a proposal on how to split the pie, and

the other player accepts or rejects this proposal. So each period has two stages: Proposal

stage followed by accept/reject decision stage. If a proposal is accepted then the game ends

and that proposal is implemented. If a proposal is rejected then the game proceeds to the

next period where the player who rejected the last proposal now makes an o�er, but from

a smaller pie as the pie gets multiplied by a �common� discount factor, δ ∈ [0, 1]. In the

�nite period case, if no proposal is accepted, then after a rejection in the last period, both

players get 0 payo�. The SPNE prediction is that in a K period bargaining game, when K

is odd, the �rst proposal which o�ers the �rst-mover/proposer X[(1− δ) (1−δK−1)
1−δ2

+ δK−1] will

be accepted.

Four stylized data trends, which are incongruent to the SPNE outcome prediction, have

emerged in the experimental study of the Sequential Bargaining game. First, a tendency for

�rst o�ers proposing equal split (Guth and Tietz (1988); Ochs and Roth (1989)) or o�ering

the second round pie (Neelin et al (1988)) to the second-mover. Second, o�ers made in the

�rst period are often rejected (Ochs and Roth (1989)). Third, and perhaps the most sur-

prising �nding is that the �rst period o�ers are very often succeeded by disadvantageous

countero�ers (Ochs and Roth (1989) found that 81 percent of countero�ers were disad-

vantageous). Fourth, subgame consistency is violated (Binmore et al (2002)): the outcomes

of an s-period Bargaining game are di�erent from the outcomes of a �theoretically identical�

s-period Bargaining subgame of an S-period Bargaining game (where S > s).

Now, we proceed to show that one can rationalize all these stylized data facts simultane-

ously by utilizing the LFE model of limited foresight and uncertainty about the opponent's
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Figure 6. Sequential Bargaining Game and Associated Curtailed Payo�s Without Uncer-
tainty
Notes: The �gure shows curtailed payo� pro�les being calculated using the (min+max)/2
curtailment rule. The curtailed payo�s are depicted in blue above the game. The pies are
1000, 600 and 360 in period 1, 2 and 3 respectively. xi is player 1's o�er (to himself) in
period i. y2 is player 2's o�er ( to player 1) in period 2. R implies �reject� and A implies
�accept.�

foresight. In particular, our rationalization does not use altruistic preferences, or preferences

speci�c to the Bargaining game.

We consider the three-period Bargaining game with δ = 0.6 as Γ0, the underlying se-

quential game with perfect information.35 We make the initial size of pie 1000 for simplicity.

Note that the SPNE outcome is for the �rst mover to propose a split of (760, 240) in the

�rst period and for the second mover to accept it immediately. We convert Γ0 into the

Interaction Game, Γ, and present the features of its LFE. Figure 6 depicts the Curtailed

payo�s associated with Γ0, without showing the uncertainty.

As the three-period Bargaining game given in the Figure 6 has six stages, we have six

player-1 types {01, 11, 21, 31, 41, and 51} and �ve player-2 types {02, 12, 22, 32, 42}. For

simplicity, we assume independent uniform prior distributions on both players' types. The

LFE strategies for this uniform case are calculated in the Appendix and detailed in Table 1

there.36

35These speci�cations are used by Ochs and Roth (1989) in one of their treatments. Neelin et al (1988)
and Johnson et al (2002) use δ = 0.5, which doesn't change the features of the LFE outcome we discuss
below.

36In practice, the prior distribution, ρ, is a free parameter available to the researcher that can be optimized
to maximize the likelihood of the observed data. Rampal (2017) does this for the observed data on �race
games.�
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The following qualitative outcomes observed by the studies on the Bargaining game

(mentioned in brackets) are observed in the LFE that we detail in the Appendix. We now

state brief explanations of how and why the LFE generates these outcomes.

1. First round o�er rejection (c.f. Ochs and Roth (1989)). In LFE, the �rst period

proposal of 11 and 21 is (700, 300). This proposal is rejected by 22 and 32 because they

fail to take into account that player-1 has absolute bargaining power in the last (third)

period and that the pie will shrink to 600 in the next (second) period when they will

have to make a counterproposal.37

2. First o�ers with near equal split or an o�er equal to the second round pie (c.f. Neelin

et al (1988); Guth and Tietz (1988); Ochs and Roth (1989)): 31, 41, and 51 propose

(580, 420) in the �rst period. 31, and 41 choose (580, 420) because they cannot foresee

that they will have absolute bargaining power in the last (third) period. In particular,

31 and 41 think that their payo� in the last period will be 180, and not 360. Thus

31, and 41 think that they must o�er 600 − 180 = 420 to player-2 in the �rst period

to obtain immediate acceptance and the highest possible payo�. 51 chooses (580, 420)

despite having no foresight limitation. This is because 51 gets immediate acceptance

from all player-2 types with this o�er. If 51 were to o�er less than 420 to player-2, his

o�er would be rejected by 12 and 22. Note that the prior probability on 12 and 22 (
2
5

in this uniform distribution case) is crucial here. For example, if 51 knew that player-2

is the no-foresight-limitation type with a �high enough� probability, then 51 would

propose the SPNE split of (760, 240) because he would face rejection from only the

limited-foresight player-2 types, but the probability of player-2 being a limited-foresight

type would be low enough.

3. Disadvantageous counter proposals (c.f. Ochs and Roth (1989)). The LFE model

3701's �rst round o�er is also rejected. 01 overestimates his bargaining position in the �rst period due
to limited foresight. Thus, 01 demands the whole �rst period pie. This demand is rejected by all player-2
types. These outcomes do not seem realistic. In applications, one can choose ρ to �t the data. So, in this
Bargaining application it might be better to put 0 prior probability on 01.
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generates disadvantageous countero�ers when 11 is matched with 32 or 21 is matched

with 32. Player-types 11 and 21 make a proposal of (700, 300) in the �rst period.

However, 22 and 32 reject anything that gives them less than 420 because, due to their

limited foresight, they think that all player-1 types will accept a proposal of (180, 420)

in the second period. However, once 32 moves forward and reaches the second period,

he observes the full three-period Bargaining game. So, in the second period, 32 observes

the absolute bargaining power of his opponent in the last (third) period. Thus, after

rejecting a proposal of (700, 300) in the �rst period, it is sequentially rational for

32 to make a disadvantageous counterproposal of (360, 240) in the second period. A

theoretical prediction of the LFE model is that this feature should disappear if we

change the extensive form and make player-2 think about the acceptance/rejection

decision simultaneously with the counterproposal decision. Thus, one should take

great care in matching the speci�cation of moves in the game to the foresight of the

players.

4. Subgame consistency violation (c.f. Binmore et al (2002)):38 Consider the two-period

Bargaining game with the starting pie of 600 being tested separately and its data being

compared to the data generated from the subgame consisting of the last two periods of

the three-period Bargaining game. LFE shows that the results of the former may not

match the data generated from the latter because these seemingly perfect information

games may, in fact, be Interaction Games. In the three-period Bargaining game we

consider, the outcome of the last two periods depends on what happened in the �rst

period. For example, if the �rst proposal were (700, 300), then player-1's type can be

11 or 21 with equal probability. These di�erent player-1 types, have di�erent optimal

acceptance thresholds for the second period o�er that they receive. So player-2's types,

38Binmore et al (2002) studied subgame consistency violation using the one-period subgame of a two-period
Bargaining game. The LFE model cannot explain their �ndings because in the last period, limited-foresight
has no bite. So all types are supposed to make �rational� choices in the last period, regardless of prior moves.
However, if the subgame has more than one period, then we will show that LFE can explain subgame
consistency violation.
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32 and 42, update about player-1's type based on the �rst period proposal and adjust

their optimal proposals in the second period. However, if two players are beginning

a two-period Bargaining game, then their optimal choices only depend on their prior

belief about the opponent's foresight, which may well be di�erent from their updated

belief going into period-two after observing the opponent's choice in the �rst period of

a three-period Bargaining game.

Thus the LFE concept provides us several channels to explain several qualitative features of

the data on Sequential Bargaining experiments. Fitting experimental data using this model

is left as future work.

5.2 The Centipede Game

The Centipede game (Rosenthal (1981)) describes a situation in which two players alternately

decide whether to take or pass a pile of money which increases whenever a player passes it

to the opponent. Consider an S-staged Centipede game. First, player-1 decides whether to

take or pass a pile of money; if the player moving at stage i decides to take at stage i then

he gets ai, the larger share of the existing pile of money, ai + bi, while his opponent gets bi.

If the player passes, the pile of money grows to ai+1+ bi+1, that is, ai+ bi < ai+1+ bi+1 holds.

But if the player passes, and his opponent takes in the next stage, he gets a payo� of bi+1,

and bi+1 < ai holds. However, if his opponent passes in stage-(i + 1), then the pile grows

again and the player has a chance to take in stage-(i+2) and achieve a payo� of ai+2, which

is strictly greater than ai. In the last stage, if the player moving there takes then he gets a

payo� of aS, while his opponent gets bS, where aS−1 < bS < aS holds. If the player moving at

the last stage chooses pass then his payo� is bS+1, which is strictly less than aS. The unique

SPNE prediction is that the �rst player should take in the very �rst stage, regardless of the

number of stages that the pile can be passed and grown. The logic is that in the last stage,

as aS > bS+1 holds, so the player moving there should take ; but given this, one should take

in the second-last stage, and this optimality of taking given one's opponent is going to take
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Figure 7. The Six-Staged Centipede Game

in the next stage continues inexorably backwards, and leads to the SPNE prediction: take in

the �rst stage. This is unintuitive and various experiments, eg. McKelvey and Palfrey (1992,

1998) reject the SPNE prediction. Consider an S-staged Centipede game as Γ0. We restrict

our analysis to the Centipede games with the following, commonly used, payo� structure.

De�nition 7: An S-staged Centipede game is said to have the payo� structure P if for all

i ∈ {1, .., S + 1}: (i) bi < bi+1 < ai < bi+3 < ai+2 (ii) ai <
bi+1+ai+2

2
(iii) ai−bi+1

ai+2−bi+1
= ηi <

1
3
.

The six staged Centipede game used by McKelvey and Palfrey (1992), depicted in Figure

7, also has the payo� structure P with ηi =
1
7
for all i.39 The condition bi+1 < ai < ai+2 follows

from Γ0 being a Centipede game. Conditions (ii) and (iii) of De�nition 7 will be used in

proving Proposition 6 below. An S-staged perfect information Centipede game Γ0 generates

an Interaction Game Γ with the player set N = {01, 11, ..., (S − 1)1, 02, 12, ..., (S − 2)2}.

The following proposition says that given a certain form of prior distribution over limited-

foresight types, even with arbitrary positive total prior probability on limited-foresight types,

all LFE outcomes entail pass being played with strictly positive probability by all foresight-

types (including the no-foresight-limitation type) of both players, until the end stages of a

Centipede game.

Proposition 6: Consider an S-staged Centipede game Γ0 with payo� structure P. Γ0 gen-

erates an S-staged Interaction Game Γ. Let ρ, the prior distribution in Γ be such that

39If a term, for example bi+3, does not exist then any condition on that term is satis�ed vacuously.
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Pr(j1) = Pr(k2) = q ∈ (0, 1] ∀ j = 0, 1, .., S − 2 and ∀ k = 0, 1, .., S − 3,

and
S−1∑
j=0

Pr(j1) =
S−2∑
k=0

Pr(k2) = 1 hold.

So Pr((S − 1)1) = 1− (S − 1)q and Pr((S − 2)2) = 1− (S − 2)q, hold.

Further, suppose the distribution on player-1's types is independent of the distribution on

player-2's types. Then in any LFE of Γ, all types of both players �pass� with strictly positive

probability from stage-1 through stage-(S-3).

The proof is given in the Appendix. This result depends on the following argument.

First, player-types with total foresight strictly less than S always pass because according to

the Curtailed Game they observe, the highest payo� for all types of either player occurs when

both players pass until the end of that Curtailed Game. Next, in LFE, the player-type with

no foresight limitation ((loosely) referred to as the �rational� player-type) pretends to be a

low-foresight type and attains a higher payo� by passing until the end stages. The rational

player-type can pass because, in LFE, his rational opponent reciprocates by passing with a

high enough probability until the end stages of the game. The rational opponent reciprocates

by passing because when the rational opponent observes pass, he believes with a high enough

probability that he is playing against someone who will have strictly limited-foresight in the

next stage, i.e., someone who will pass for sure. This analysis is almost parallel to the

McKelvey and Palfrey (1992) model without the errors in actions, heterogeneous beliefs and

learning components. In particular, if we have a ρ such that Pr(01) = Pr(02) = 1 − q and

Pr((S − 1)1) = Pr((S − 2)2) = q hold, then we can use McKelvey and Palfrey (1992) to

characterize the unique LFE.40 Both these analyses are in the same vein as the reputation

40The only di�erence would be that we would have to replace S by S − 1 in their analysis as their altruist
type (corresponding to 01, 02), who occurs with probability (1 − q) chooses pass in all stages. However, in

51



literature starting from Kreps, Milgrom, Roberts and Wilson (1982). The key takeaway from

the Centipede game result is the applicability of the LFE in explaining multiple existing

puzzles regarding perfect information games without using game speci�c �crazy� types.

6 Modeling Subjective Beliefs

The assumption of a common-knowledge prior distribution over foresight-levels across players

simpli�es the LFE model. This assumption implies that while player-types foresee di�erent

numbers of stages of the Interaction Game being played, each player-type has the same

prior belief about the distribution over foresight-levels; and this prior belief is identical to

the �true� distribution. The common prior assumption implies that we can use the same

Curtailed Game to solve for the LFE actions of all player-types who have the same total

foresight (recall that total foresight is de�ned as foresight-level plus stage-number of the

move), even though their foresight-levels may be di�erent. However, if we allow for subjective

prior beliefs, that is, prior beliefs that may be di�erent from the �true� prior distribution

and vary based on the type/foresight-level of the player-type, then we introduce another

dimension along which player-types have a subjective view of the Interaction Game (the

�rst one being di�erent foresight-levels).

In the subjective beliefs framework, at each move of each player-type, we have to con-

struct a di�erent Curtailed Game that models both the player-type's total foresight and his

subjective belief about the prior distribution. In particular, we may not be able use the same

Curtailed Game for player-types with the same total foresight if they have di�erent prior

beliefs. For example, consider again the Centipede game example in Figures 1-5. In Figure

4, we use MCG(2) to solve for the LFE actions of both 11 at stage-one and 02 at stage-two,

because their total foresights at their respective moves are the same, 2, and they both have

the same prior beliefs: The prior distribution speci�ed in the Interaction Game (Figure 2's

notes). Without the common prior assumption, we will need di�erent Curtailed Games for

the LFE model, even the lowest foresight types in our analysis, 01 and 02, take in the Sth stage.
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11 at stage-one and 02 at stage-two. For 02 (respectively 11) we need a two-staged Curtailed

Game with a prior distribution given by his subjective belief: ρ02 (respectively ρ11). In this

section, we will �rst describe the LFE for the case where the prior beliefs vary based on

the foresight-level of the player: For example, ρ02 is di�erent from ρ11 . It is straightforward

to extend this model to the case where a player may have di�erent types with the same

foresight-level but di�erent prior beliefs. That is, the case where the description of a type

includes both foresight-level and prior beliefs. For example, the latter case would allow for

a speci�cation such that there can be two di�erent types of player-2: Both have a foresight-

level equal to 0, but the �rst has the prior beliefs given by ρ02(1), and the second has the

prior beliefs given by ρ02(2), and ρ02(1) 6= ρ02(2). We discuss such extensions at the end of

this section.

We will �rst model the case of subjective prior beliefs where a player-type's foresight-level

determines his prior beliefs. Consider an underlying sequential game with perfect information

game, Γ0. In this model, we will consider a player-type-speci�c corresponding Interaction

Game, Γρti
= {N, H, {I(ti)}ti∈N , P, A, {uti}ti∈N , ρti}, for each player-type ti ∈ N and

solve for his actions and beliefs using the Curtailed Games constructed from Γρti
. The

Interaction Games Γρti
di�ers across player-types as ρti is possibly di�erent across ti ∈ N .

We will work with the following two assumptions in what follows. Assumption 2 helps

restrict the belief hierarchy of the player-types to their second-order beliefs. Assumption 3

is the subjective belief analogue of Assumption 1.

Assumption 2: Each player-type ti believes that other player-types also have the same

prior belief about the distribution over foresight-levels across players as her own subjective

prior belief, ρti .

Assumption 3: For every player i and for every player-type ti, her subjective prior belief

about the distribution over foresight-levels across players, ρti , is such that conditional on ti,
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the probability of the pro�le (S − sj)j 6=i is strictly greater than 0. That is,

Prob((tj has no foresight limitation)j 6=i|ρti , ti) = Prob((tj = (S − sj)j)j 6=i|ρti , ti) > 0,

∀i ∈ N0, ∀ti ∈ Ti.

Now we de�ne an LFE with Subjective Beliefs (henceforth LFESB). Consider the �true�

Interaction Game Γ = {N, H, {I(ti)}ti∈N , P, A, {uti}ti∈N , ρ} which has the �true� prior

distribution denoted by ρ.41 Let N(ρ̂) be the subset of player-types who have the same

subjective prior beliefs: ρ̂. That is, N(ρ̂) ≡ {ti ∈ N : ρti = ρ̂}. As the set of player-types,

N , is �nite, there is a �nite set of possible subjective prior beliefs, ρ̂, such that N(ρ̂) is

non-empty. The de�nition and construction of an LFESB for Γ works as follows. Consider all

the di�erent subjective prior beliefs that di�erent player-types have. For each such subjective

prior beliefs, say ρ̂, construct Γρ̂ and solve for its LFE. If there are more than one LFE of

Γρ̂, then arbitrarily select one LFE. Call it (πρ̂, µρ̂). To construct the LFESB strategy and

belief for the player-types in N(ρ̂), set (πti , µti) = (πρ̂
ti , µ

ρ̂
ti) for all ti in N(ρ̂). Repeat these

steps for all ρ̂ such that N(ρ̂) is non-empty to complete the construction of an LFESB. So

the de�nition of LFESB is as follows.

De�nition 8: (π, µ) is a Limited Foresight Equilibrium with Subjective Beliefs of

Γ if it is constructed as follows. For each subjective belief about the prior distribution ρ̂ such

that N(ρ̂) ⊂ N is non-empty, �x an LFE of Γρ̂ denoted by (πρ̂, µρ̂). For all ti ∈ N(ρ̂), set

(πti , µti) = (πρ̂
ti , µ

ρ̂
ti).

Due to Proposition 1, it follows that an LFESB always exists for any �nite Γ. Note that

using (πρ̂, µρ̂) to construct the LFESB strategy and belief for all ti ∈ N(ρ̂) is a consistency

41By �true� we mean that ρ is the distribution over foresight-levels across players in the population (for a
given underlying game). In a statistical exercise, ρ would be used by the researcher to �t observed data on
the underlying sequential game with perfect information.
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condition. In particular, this de�nition nests the common prior case when ρti = ρ for all

ti ∈ N . The construction of an LFESB in De�nition 8 implies that every player-type is

optimizing using a move speci�c MCG where this MCG is constructed using ρti as the prior

distribution over foresight-levels across players. The researcher can �t observed data using

this model. The �free parameters� will be the �true� prior distribution ρ, and the set of

subjective prior beliefs (ρti)ti∈N . The latter will generate a LFESB strategy pro�le given by

π. Together, ρ and π will imply a probability distribution over outcomes of the underlying

sequential game with perfect information, which can be compared with data.

It is worth noting that the LFESB model can be extended to the case where a player may

have di�erent types with the same foresight-level but di�erent prior beliefs. That is, the case

where the description of a type includes both foresight-level and prior beliefs. This case is

modeled as follows. We allow for Rti < ∞ di�erent player-types corresponding to ti. In the

Interaction Game, the set of types corresponding to i, Ti, would now include ti(1), ti(2),...,

ti(Rti), instead of just ti ∈ Ti. For each r ∈ {1, .., Rti}, ti(r) has a di�erent subjective prior

given by ρti(r). The �true� distribution ρ would include these additional player-types {ti(1),

ti(2),..., ti(Rti)} in its support. Given Assumption 2, each player-type assumes that all other

player-types have the same prior belief as his own. Thus, each of the other players'-types

will not be able to di�erentiate among {ti(1), ti(2), ..., ti(Rti)}. Therefore, this model will

be exactly like the LFESB setup where the LFE calculation needs to done for additional

player-types with their own subjective prior beliefs.

Conclusion

This paper de�nes the Limited Foresight Equilibrium (LFE). The LFE is de�ned for general

applicability in the class of �nite sequential move games with perfect information. We model

the case where players are interested in maximizing own payo�, but each player possesses

one of di�erent levels of foresight. Further, players are uncertain about their opponents'
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foresight. The LFE model nests the perfect information case. We prove the existence,

upper hemi-continuity and other properties of LFE. These properties are: (a) The higher

the foresight-level of a player, the better he can estimate his opponents' foresight-level. (b)

The more moves any player-type observes, the better he becomes at guessing the opponent's

foresight-level. (c) If a particular foresight-type is surprised by a sequence of moves impossible

against lower types, he discovers that he is playing against some higher type, and must

use his total foresight at that move to optimize. (d) The high foresight type must choose

between revealing his type or pretending to be a low type. We show the applicability of LFE

in two existing puzzles in the class of �nite, two player alternate move games, namely, the

Centipede game and the Sequential Bargaining game. In the Centipede game, LFE unleashes

reputation e�ects, as in Kreps, Milgrom, Roberts and Wilson (1982), and McKelvey and

Palfrey (1992), which lead to cooperative behavior even among players with no foresight

limitation. In the Sequential Bargaining application, the properties of LFE help rationalize

the disparate �ndings from the study of bargaining: That is, LFE produces outcomes that

show (i) �rst round o�er rejection (ii) �rst round o�er of near equal split (iii) disadvantageous

counterproposals (iv) subgame inconsistency. These LFE results for Sequential Bargaining

are parallel to several qualitative results in di�erent experimental studies on bargaining.

Last, the LFE is extended to the case where limited-foresight types have subjective prior

beliefs about the distribution over foresight-levels across players.
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Appendix

Proof of Proposition 1(a). (Existence of LFE ): Consider an arbitrary �nite Interaction

Game Γ. The CG(1) derived from Γ is also �nite. Due to Proposition 1 of Kreps and Wilson

(1982b), there exists a SE of CG(1). We can select an arbitrary SE(1) of CG(1) to construct

MCG(2). MCG(2) is also �nite. Thus the SE(2) of MCG(2) also exists. Proceeding thus,

given the existence of SE for each of CG(1), MCG(2),...,MCG(n − 1), we can construct

MCG(n) in step n of De�nition 5. As MCG(n) is �nite, there exists a SE of MCG(n). As

this holds for n = 2, ..., S, each of the steps in De�nition 5 is well de�ned. Thus, there exists

at least one LFE of Γ. Q.E.D.
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Proof of Proposition 1(b). (Upper hemi-continuity of LFE ): Consider an arbitrary

S-staged extensive form, {N, H, {I(ti)}ti∈N , P, A}, generated from Γ0 using the Seq(.)

correspondence. Let the correspondence f : ∆T ×RN =⇒ Π×M be the set valued func-

tion, mapping a tuple of initial conditions, i.e. a tuple comprising of the prior distribution

and payo�s,(ρ, u), to the set containing all the LFE assessments of the Interaction Game, Γ,

so de�ned. An element of the set f(ρ, u) is an LFE of Γ, denoted as (π, µ). Fix a sequence

(ρk, uk) such that (ρk, uk) → (ρ, u) and an associated sequence (πk, µk) ∈ f(ρk, uk), such that

(πk, µk) → (π, µ). To show upper hemi-continuity, we need to show that (π, µ) ∈ f(ρ, u).

Given an arbitrary extensive form {N ′, H ′, {I ′(ti)}ti∈N ′ P ′, A′}, let Ψ : ∆T ×RN ′
=⇒

Σ×B be the upper hemi-continuous (by Proposition 2 of Kreps and Wilson (1982b)) corre-

spondence mapping the common prior and payo�s, (ρ′, u′), to the set Ψ(ρ′, u′), which contains

all the Sequential Equilibria assessments, (σ, b), of the game so de�ned. Let π(I), µ(I) de-

note the vectors π and µ restricted to the coordinates corresponding to the information sets

contained in I. Let f(ρ, u)(I) also represent each LFE assessment in f(ρ, u) restricted to I.

We will now prove upper hemi-continuity by induction.

Step 1. We show that (π(D1), µ(D1)) ∈ f(ρ, u)(D1). Consider CG(1) ≡ MCG(1). Cor-

responding to (ρk, uk) we have (ρ1k, u
1
k) for each element of the sequence k = 1, 2, .... The

superscript denotes the length of the CG. The construction of u1
k using the min+max

2
cur-

tailment method was described earlier. As the function which maps a �nite set of real

numbers to their min+max
2

is a continuous function, uk → u implies u1
k → u1. Also, ρ1k = ρk

holds for all k, so (ρk, uk) → (ρ, u) implies (ρ1k, u
1
k) → (ρ1, u1). Note that for each k in

the sequence, (πk(D
1), µk(D

1)) = (σ1
k(D

1), b1k(D
1)) holds for some (σ1

k(D
1), b1k(D

1)) ∈

Ψ(ρ1k, u
1
k)(D

1). We are given that (πk(D
1), µk(D

1)) converges to (π(D1), µ(D1)). Thus,

(σ1
k(D

1),b1k(D
1)) = (πk(D

1), µk(D
1)) is a convergent sequence. We know that Ψ(.) is up-

per hemi-continuous. Thus if (σ1
k(D

1),b1k(D
1)) → (σ1(D1), b1(D1)) then (σ1(D1), b1(D1))

∈ Ψ(ρ1, u1)(D1). Given that (πk(D
1),µk(D

1)) → (π(D1), µ(D1)), and given that (πk(D
1),
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µk(D
1)) = (σ1

k(D
1), b1k(D

1)) → (σ1(D1),b1(D1)) it follows from the uniqueness of a limit

that (σ1(D1), b1(D1)) = (π(D1), µ(D1)) ∈ Ψ(ρ1, u1)(D1) ⊂ f(ρ, µ)(D1). Therefore (π(D1),

µ(D1)) ∈ f(ρ, µ)(D1).

Step n. Consider MCG(n), where n ∈ {2, .., S}. Let (π(
⋃i=n−1

i=1 Di), µ(
⋃i=n−1

i=1 Di))

∈f(ρ, u)(
⋃i=n−1

i=1 Di). We will show that (π(
⋃i=n

i=1 D
i), µ(

⋃i=n
i=1 D

i)) ∈ f(ρ, u)(
⋃i=n

i=1 D
i). Given

step 1, this will complete the proof. Corresponding to (ρk, uk) we have (ρnk , u
n
k) for each

k = 1, 2, ... . Using πk(
⋃i=n−1

i=1 Di) and ρk we generate ρ
n
k as detailed earlier in the construction

of MCG(n). By continuity, un
k → un holds. As πk(

⋃i=n−1
i=1 Di) → π(

⋃i=n−1
i=1 Di) by assump-

tion, thus: (i) (ρnk , u
n
k)→(ρn, un) and (ii) it will su�ce to show (π(Dn), µ(Dn)) ∈ f(ρ, u)(Dn).

Now note that for each k, (πk(D
n), µk(D

n)) = (σn
k (D

n), bnk(D
n)) for some (σn

k (D
n), bnk(D

n))

∈Ψ(ρnk , u
n
k)(D

n). We are given that (πk(D
n), µk(D

n)) converges to (π(Dn), µ(Dn)). Thus,

(σn
k (D

n),bnk(D
n)) = (πk(D

n), µk(D
n)) is a convergent sequence. We know that Ψ(.) is up-

per hemi-continuous. Thus, if (σn
k (D

n),bnk(D
n)) →(σn(Dn), bn(Dn)), then (σn(Dn), bn(Dn))

∈Ψ(ρn, un)(Dn). Given that (πk(D
n),µk(D

n)) → (π(Dn), µ(Dn)), and given that

(πk(D
n), µk(D

n)) = (σn
k (D

n), bnk(D
n)) → (σn(Dn), bn(Dn)), holds,

by the uniqueness of a limit, it follows that

(σn(Dn), bn(Dn)) = (π(Dn), µ(Dn)) ∈ Ψ(ρn, un)(Dn) ⊂ f(ρ, µ)(Dn).

Therefore, (π(Dn), µ(Dn)) ∈ f(ρ, u)(Dn). Q.E.D.

Proof of Proposition 2. Suppose the precedent of Proposition 2 holds and h0 is the

sequence of actions of the underlying sequential game with perfect information that generates

the corresponding information sets I(ti) and I(t′i) of MCG(n). Then

bn((t−i, h0)| ti, I(ti), σn, ρn) =
Pr((ti, t−i, h0)| σn, ρn)∑

t−i∈T−i
[Pr((ti, t−i, h0)| σn, ρn)]

(5)
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We have to show that

Pr((t′i, t−i, h0)| σn, ρn)∑
t−i∈T−i

[Pr((t′i, t−i, h0)| σn, ρn)]
=

Pr((ti, t−i, h0)| σn, ρn)∑
t−i∈T−i

[Pr((ti, t−i, h0)| σn, ρn)]
holds. (6)

The aim of the proof is to show that the right hand side (RHS) of (5) does not depend on

ti (the player-type), it only depends on i (the player). Without loss of generality, consider

an action sequence h0 = (ak0)k=1,...,K . Let the information set containing a history (t, h0) be

denoted as I(t, h0). Using the independence of ρ we get the following.

Pr((ti, t−i, h0)| ρn, σn) = Pr(ti|ρ).P r(t−i|ρ).P r(a10|I(t), ρn, σn)

.P r(a20|I(t, a10), ρn, σn) ... P r(aK0 |I(t, (ak0)k=1,...,K−1), ρ
n, σn). (7)

Let (t, a00) denote the stage-1 move immediately following Nature's selection of the player-

type combination: t. De�ne a subsequence/subhistory of (t, h0) as (t, (ak0)k=0,...,r−1), such

that r ∈ {1, .., K} and there exists a unique sequence of actions (ak0)k=r,...,K such that

(t, (ak0)k=0,...,r−1, (a
k
0)k=r,...,K) = (t, h0) holds.

For any (ti, t−i, h0) such that t−i ∈ T−i, let R(i) be the collection of stage numbers of

MCG(n), r(i) ∈ {1, .., K}, such that ti moves at the subhistory ((ti, t−i),(a
k
0)k=0,...,r(i)−1) of

(ti, t−i, h0). Further, let Rc(i) be the stage numbers where some tj moves, such that j 6= i

holds. That is, Rc(i) = [{1, .., K} − R(i)]. Note that, by the construction of Γ, the sets

R(i) and Rc(i) do not depend on ti or t−i; they only depend on i and the h0 component

of (t, h0). Recall that in any MCG(n), the information sets only re�ect the uncertainty

about the opponents'-types, (t−i). Therefore, given an action sequence h0, di�erent pro�les

of opponents'-types playing h0 only implies di�erent nodes in the same information set.

So for any t−i, t
′
−i ∈ T−i, I((ti, t−i), (a

k
0)k=0,...,r(i)−1) = I((ti, t

′
−i), (a

k
0)k=0,...,r(i)−1) holds by
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construction. Thus, we can rewrite (7) as:

Pr((ti , t−i, h0)| σn, ρn) = Pr(t−i|ρ)Πs∈Rc(i)[Pr(as0| I(t, (ak0)k=0,...,s−1), ρ
n, σn)]

× Pr(ti|ρ)Πr∈R(i)[Pr(ar0| I(t, (ak0)k=0,...,r−1), ρ
n, σn)]. (8)

Equation (8) implies that we can cancel Pr(ti|ρ)Πr∈R(ti)[Pr(ar0| I(t, (ak0)k=0,...,r−1), ρ
n, σn)]

from both the numerator and denominator of both the RHS and LHS (left hand side) of (5).

So the RHS of (5) can be written as

Pr((ti, t−i, h0)| σn, ρn)∑
t−i∈T−i

[Pr((ti, t−i, h0)| σn, ρn)]
=

Pr(t−i|ρ)Πs∈Rc(i)[Pr(as0| I(t, (ak0)k=0,...,s−1), ρ
n, σn)]∑

t−i∈T−i
Pr(t−i|ρ)Πs∈Rc(i)[Pr(as0| I(t, (ak0)k=0,...,s−1), ρn, σn)]

(9)

The proof will be complete if we show that the RHS of (9) does not depend on the type

of player i: ti. First note that the term Pr(t−i|ρ) does not depend on ti. Next, as argued

before, Rc(i) also does not depend on ti. Last, notice that for any s ∈ Rc(i), the term

σn(as0| I(t, (ak0)k=0,...,s−1), ρ
n) does not depend on ti. To see this, suppose the player-type

moving at (t, (ak0)k=0,...,s−1) is tj. Then, for di�erent ti, given the preceding action sequence

(ak0)k=0,...,s−1, all the nodes ((ti, tj, t−(i,j)), (ak0)k=0,...,s−1) where ti ∈ Ti, are in the same

information set for tj: I(t, (ak0)k=0,...,s−1)). Therefore, tj must choose the same probability

of the action as0, regardless of i's type. Therefore, for the term on the RHS of (9), both

the numerator and all the terms in the denominator are independent of ti ∈ Ti. Thus, the

RHS of (5) does not depend on ti, and remains constant across ti, t
′
i ∈ Ti for corresponding

information sets, which implies that (6) holds. Q.E.D.

Proof of corollary to Proposition 2. Let Un
ti
(σn|ρn, bn, I(ti)) denote the expected pay-

o� of ti from the probability distribution on the terminal histories of MCG(n) implied

by (σn, ρn, bn), conditional on reaching the information set I(ti). By Proposition 2, if
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Seq−1(I(ti)) = Seq−1(I(t′i)), then bn(I(ti)) = bn(I(t′i)). Further other players' (j 6= i)

types cannot choose di�erent actions for di�erent types of player i. Thus, ti and t′i face the

same strategy pro�le ((σn
tj
)tj∈Tj

)j 6=i. In other words, σn
−ti

is identical to σn
−t′i

for the purpose

of payo� calculation. Let Ih0(ti) denote all the information sets of ti which follow the ac-

tion sequence h0. Let Ih0(t′i) denote the corresponding information sets of t′i. Let Ih0(ti)

and Ih0(t′i) be arbitrary corresponding information sets in Ih0(ti) and Ih0(t′i), respectively.

The arguments above imply that Uti(s|σn
−ti

, bn, Ih0(ti)) = Ut′i
(s|σn

−t′i
, bn, Ih0(t′i)) holds for all

strategies s(.) at corresponding information sets Ih0(ti) and Ih0(t′i). Let σ
n
t′i
denote the strat-

egy identical to σn
ti
(the only di�erence being that the former is played by t′i, the latter by

ti). Thus, the precedent of the corollary to Proposition 2 implies that

Ut′i
(σn

t′i
|σn

−t′i
, bn, ρn, Ih0(t′i)) > Ut′i

(snt′i |σ
n
−t′i

, bn, ρn, Ih0(t′i)) holds,

for all Ih0(t′i) ∈ Ih0(t′i), and for all possible strategies snt′i
(Ih0(t′i)) over Ih0(t′i). Given

that σn
ti
is ti's strict best response at all Ih0(ti)∈Ih0(ti), and given that σn is a SE strat-

egy pro�le, sequential rationality implies that σn
t′i
(Ih0(t′i)) = σn

ti
(Ih0(ti)) must hold when

Seq−1(Ih0(ti)) = Seq−1(Ih0(t′i)) holds. Q.E.D.

Proof of Proposition 3. Consider an arbitrary LFE, (π, µ), of Γ. Consider an arbitrary

stage-K information set of Γ: I. Suppose the player-type moving at I is ti, i.e., P (I) = ti

holds. So ti's total foresight at I is (K + ti). Let (K + ti)≤S.42 Let h be an arbitrary

node of I such that h ∈ L(I). Let, without loss of generality, h be of the form h =

(t, (ak0)k=1,...,s−1). The LFE belief µti(h| L(I)) (corresponding to the LFE (π, µ)) is derived

using MCG(K + ti) at step (K + ti) of the construction of an LFE speci�ed in De�nition 5.

To construct MCG(K+ ti), we need to complete steps 1 through (K+ ti−1) of De�nition 5.

In constructing MCG(K + ti), for any such h ∈ L(I), using the de�nition of L(I), it follows

that for all subsequences of h of the form ĥ = (t, (ak0)k=0,...,r) such that r ≤ (K − 1) holds,

42The argument for (K + ti) > S is very similar.
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mP (K+ti)(ĥ) = Nature holds because some MCG shorter than MCG(K + ti) is decisive

for ĥ. That is, ĥ ∈
⋃K+ti−1

n=1 Dn holds. We know the LFE actions, π(
⋃K+ti−1

n=1 Dn), by

steps 1 though (K + ti − 1) of the construction of an LFE. Further, these LFE actions are

considered as Nature's moves in MCG(K + ti). Thus, in constructing MCG(K + ti), we set

ρK+ti(ĥ) = π(ĥ) for all subsequences ĥ of each h ∈ L(I). As µti(h| L(I)) is calculated using

the SE of MCG(K + ti), µti(h| L(I)) is calculated using the Bayes' rule (wherever possible)

and ρK+ti , or equivalently, using Bayes' rule and (π, ρ). The equivalence follows because, by

construction, ρK+ti is identical to (π, ρ) wherever ρK+ti is de�ned. Therefore, equation (3)

holds wherever Prob(L(I) | ρK+ti) > 0 holds. Q.E.D.

Proof of Remark 2. Suppose t′i > ti holds. Let h = ((ti, t−i), (ak0)k=1,...,K−1) ∈ L(I(ti)).

We will show that h′ = ((t′i, t−i), (ak0)k=1,...,K−1) ∈ L(I(t′i)) to complete the proof. De�ne

(t, a00) ≡ t. All subsequences of h can be written as ((ti, t−i), (ak0)k=0,...,r−1) for some r < K.

Fix one such arbitrary subsequence of h: ĥ = ((ti, t−i), (ak0)k=0,...,r−1). As h ∈ L(I(ti)), it

must be the case that if P (ĥ) = tj, then r + tj < K + ti holds. By the construction of Γ

using the Seq(.) function, we must have that for the same r, the subsequence of h′ given by

ĥ′ = ((t′i, t−i), (ak0)k=0,...,r−1) is such that P (ĥ′) = tj. Given that ti < t′i holds, we must have

that r+ tj < K + ti < K + t′i holds. As the choice of r < K was arbitrary, it follows that for

all subsequences of h′, the player-type moving at that subsequence has strictly lesser total

foresight than t′i at stage-K. Thus, if h ∈ L(I(ti)) then h′ ∈ L(I(t′i)). Q.E.D.

Proof of Proposition 5. The LFE beliefs of ti at I(ti) must be derived from some SE of

MCG(K+ti). So �x an arbitrary SE ofMCG(K+ti): (σ
K+ti , bK+ti). By the LFE de�nition,

all the subsequences preceding the nodes in L(I(ti)) have Nature as the player moving there

and the actions taken by Nature (given by ρK+ti) are common knowledge in MCG(K + ti).

Thus, the probability of reaching I(ti) via only Nature's moves, can be calculated using ρK+ti
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by ti at I(ti). Thus, if Pr(L(I(ti))| ρK+ti) = 0 and Pr(I(ti))| σK+ti , ρs+ti) > 0, then

bK+ti
ti (L(I(ti)) | I(ti)) =

Pr(L(I(ti))| ρK+ti)

Pr(I(ti))| σK+ti , ρK+ti)
= 0.

As µti(L(I(ti)) | I(ti)) = bK+ti
ti (L(I(ti)) | I(ti)), we have µti(L(I(ti)) | I(ti)) = 0.

Further, as

µti([L(I(ti))]
c | I(ti)) + µti(L(I(ti)) | I(ti)) = 1 holds,

µti([L(I(ti))]
c | I(ti)) = 1 holds.

However, if Pr(I(ti))| σK+ti , ρK+ti) = 0, then we cannot use the previous argument. In this

case, by the de�nition of a SE, there must exist a consistent sequence (σK+ti , bK+ti)m such

that (σK+ti)m is a totally mixed strategy pro�le in MCG(K + ti) and (σK+ti , bK+ti)m →

(σK+ti , bK+ti) as m → ∞. For any such sequence, Pr(I(ti)| (σK+ti)m, ρ
K+ti) > 0 holds for

every m because of Assumption 1 and because (σK+ti)m is a totally mixed strategy pro�le.43

Further, we are given that Prob(L(I(ti))| ρK+ti) = 0 holds. So it must hold that

(bK+ti
ti (L(I(ti)) | I(ti)))m =

Prob(L(I(ti))| ρK+ti)

Prob(I(ti)| (σK+ti)m, ρK+ti)
= 0 ∀m = 1, 2, ...

Thus (bK+ti
ti [L(I(ti)]

c | I(ti)))m = 1 for each m in the sequence. So for any SE (σK+ti , bK+ti)

of MCG(K + ti) we must have bK+ti
ti (L(I(ti)) | I(ti)) = 0 and bK+ti

ti ([L(I(ti))]
c | I(ti)) =

1. Thus, by the de�nition of an LFE, we must have that µti(L(I(ti)) | I(ti)) = 0 and

µti([L(I(ti))]
c | I(ti)) = 1. Q.E.D.

LFE calculation for the 3-period bargaining game. We assume the prior to be

such that Pr(t1) =
1
6
for t1 ∈ {01, 11, 21, 31, 41, 51}, and independently, Pr(t2) =

1
5
for t2 ∈

{02, 12, 22, 32, 42}. Recall that every period has two stages: Proposal stage followed by the

accept/reject decision stage. Let x1 (respectively x3) denote the demand of the �rst mover

43And because we are assuming that I(ti) is a non-trivial information set.
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(player-1; P1 for short) for himself in the �rst stage (�fth stage), when the period number

is one (three) and the size of pie is 1000 (respectively 360). Thus, (1000 − x1) (respec-

tively (360 − x3)) is the share of the �rst-stage (�fth-stage) pie o�ered to player 2 (P2 for

short). The o�er of P2 to P1 in the third-stage (period number two) is denoted as y2. Thus

(600 − y2) is the share of the third-stage pie demanded by P2 for himself. We summarize

the LFE strategies in Table 1. X1 (respectively X3) denotes the maximum share of P1 out

of the �rst (third) period pie, such that (1000−X1) (respectively (360−X3)) is acceptable

to P2 in period one (period three). The minimum share of the second-period pie o�ered by

P2 to P1, such that it is acceptable to P1, is denoted as Y2. As per the de�nition of LFE,

we construct the LFE starting with the SE of CG(1). In what follows, we specify the SE

and LFE beliefs only when needed to determine optimal actions.

Step 1: In CG(1), as per the curtailment rule, the payo� of P1-types is increasing in x1.

Thus, in the unique SE(1) of CG(1), all P1-types choose x1 = 1000 regardless of beliefs.

We have solved for the LFE action at D1, which only contains the information set of 01 at

stage-I. Thus the LFE action of 01 at stage-I is x1 = 1000.

Step 2: Fix 01's move at stage-I as Nature's move in CG(2) to generate MCG(2). The

curtailment rule implies that the payo� of P2-types from rejecting P1's stage-I o�er is 300.

Thus, in the unique SE(2)44 of MCG(2), all P2 types at stage-II accept if x1 ≤ 700, re-

gardless of belief on P1-types. Thus, in SE(2), all P1-types other than 01 choose x1 = 700,

regardless of beliefs. We note the SE(2) actions at D2. This gives us the LFE actions at

D2, which contains the information sets of 11 and 02, at stage-I and stage-II, respectively.

Step 3: Fix the LFE actions atD1 andD2 as Nature's moves to convert CG(2) toMCG(3).

The curtailment rule implies that P2-types' stage-III payo� is decreasing in y2. Thus, in the

unique SE(3) of MCG(3), all P2-types at stage-III choose y2 = 0, irrespective of belief.

44This uniqueness is only of the SE strategy pro�le, not necessarily the belief pro�le. In what follows, we
only consider the uniqueness of the SE strategy pro�le.
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Thus, the stage-II SE(3) action for all P2 types is to accept if x1 ≤ 700, regardless of belief

on P1-types. Thus, in SE(3), all P1-types propose x1 = 700, regardless of beliefs. We note

SE actions at D3. This gives us the LFE actions at D3, which contains the information sets

of 21, 12, and 02, at stage-I, stage-II, and stage-III, respectively.

Step 4: Fix the LFE actions at
⋃3

n=1 D
n, solved above, as Nature's moves to convert

CG(4) to MCG(4). The curtailment rule implies that P1-types' payo� from rejecting P2's

stage-III o�er is 180. Thus, in the unique SE(4) of MCG(4), all P1-types at stage IV accept

if y2 ≥ 180, irrespective of belief. Therefore, the stage-III SE(3) action is for all P2-types to

choose y2 = 180, regardless of belief on P1-types. Therefore, the stage-II SE(4) action is for

all P2-types to accept if x1 ≤ (1000 − (600 − 180)) = 580, regardless of belief on P1-types.

Therefore, inMCG(4), at stage-I, 31, 41, and 51 (others replaced by Nature) face an expected

payo� of 388 (= 2×700
5

+ 3×180
5

) from choosing x1 = 700 versus an expected payo� of 580 from

choosing x1 = 580, given that they must have beliefs as per the prior distribution in SE(4).

Therefore, in SE(4), at stage-I, 31, 41, and 51 choose x1 = 580. We note SE actions at D4.

This gives us the LFE actions at D4, which contains the information sets of 31, 22, 12, and

01 at stage-I, stage-II, stage-III, and stage-IV, respectively.

Step 5: Fix the LFE actions at
⋃4

n=1D
n, solved above, as Nature's moves to convert CG(5)

toMCG(5). We now describe the unique SE(5) ofMCG(5). All P1-types at stage-V choose

x3 = 360 irrespective of belief, because their stage-V payo� is increasing in x3 according to

the curtailment rule. The curtailment rule implies that choosing x3 = 360 gives P1-types a

payo� of 180 in the last stage of MCG(5). Therefore, the stage-IV SE(5) action is for all

P1-types to accept if y2 ≥ 180, regardless of belief on P2-types. Given this, the stage-III

SE(5) action is for all P2-types to choose y2 = 180. Therefore, the stage-II SE(5) action

for all P2-types is to accept if x1 ≤ 580. Therefore, in SE(5), all P1-types choose x1 = 580

given beliefs determined by the prior distribution on P2-types. We note SE actions at D5.

This gives us the LFE actions at D5, which contains the information sets of 41, 32, 22, 11,
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and 01 at stage-I, stage-II, stage-III, stage-IV, and stage-V, respectively.

Last step: Fix the LFE actions at
⋃5

n=1D
n, solved above, as Nature's moves to convert

Γ to MCG(6). We now describe the unique SE(6) of MCG(6). Any player-type who

observes MCG(6) has no foresight limitation. Thus, in SE(6), all P2-types at stage VI

accept x3 ≤ 360. Given this, the stage-V SE(6) action of all P1-types is x3 = 360, regardless

of belief on P2-types. Therefore, the stage-IV SE(6) action of all P1-types is to accept

y2 ≥ 360. Note that 32 and 42, moving at stage-III, know that if x1 = 1000, then with

probability one, P1's type is 01, who will accept y2 = 180 in stage-IV. Thus, conditional on

x1 = 1000, 32 and 42 o�er y2 = 180. Conditional on x1 = 700, 32 and 42, moving at stage-III,

know that P1's type is 11 or 21 with probability 1
2
each. Thus, their stage-III o�er of 180 will

be rejected by 21 with probability 1
2
, and lead to an expected payo� of 210 (= (600−180)

2
+ 0

2
),

which is less than the payo� from proposing (360, 240), and getting a payo� of 240 for sure.

Thus, conditional on x1 = 700, 32 and 42 o�er y2 = 360 in stage-III. Therefore in SE(6), in

stage-II, 42 accepts x1 ≤ 760. If 42 receives x1 /∈ {1000, 700, 580} at stage-II, i.e. o�-LFE, 42

believes P1's type must be 51. In stage-I, 51 evaluates the expected payo� from x1 = 580,

or 700, or 760, given that his beliefs on P2-types are identical to the prior distribution on

P2-types. At stage-I, in SE(6), 51 chooses the expected payo� maximizing option: x1 = 580.

We note the SE(6) actions at all the information sets not in
⋃5

n=1D
n. Steps 1-6 give us

the LFE actions for all the information sets of Γ, which completes the LFE strategy pro�le

stated in Table 1.

Proof of Proposition 6.

Lemma 1: Suppose Γ0 has the payo� structure P and we replace the payo� pro�le after

�pass� at stage-s with (xs+1, ys+1); where (xs+1, ys+1) is the payo� pro�le calculated, using

the min+max
2

curtailment rule. Then, min{xs+1, ys+1}>max{(ai)i≤s, (bi)i≤s} holds ∀ s < S.
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Player-type Stage I Stage II Stage III Stage IV Stage V Stage VI

01 x1 = 1000 Y2 = 180 x3 = 360

11 x1 = 700 Y2 = 180 x3 = 360

21 x1 = 700 Y2 = 360 x3 = 360

31 x1 = 580 Y2 = 360 x3 = 360

41 x1 = 580 Y2 = 360 x3 = 360

51 x1 = 580 Y2 = 360 x3 = 360

02 X1 = 700 y2 = 0 X3 = 360

12 X1 = 700 y2 = 180 X3 = 360

22 X1 = 580 y2 = 180 X3 = 360

32 X1 = 580
y2 = 180 if (x1 = 1000)

X3 = 360
else y2 = 360

42 X1 = 760
y2 = 180 if (x1 = 1000)

X3 = 360
else y2 = 360

Table 1. LFE Strategies for the Sequential Bargaining Game
Notes: (x1, 1000 − x1), and (x3, 360 − x3) are the �rst and third period LFE proposals,
respectively, of the �rst-mover. X1 and X3 are the maximum �rst and third period demands,
respectively, of the �rst-mover such that (X1, 1000−X1) and (X3, 360−X3) are acceptable to
the second-mover in those periods in LFE. (y2, 600− y2) is the second-period LFE proposal
of the second-mover. Y2 is the minimum second-period o�er of the second-mover such that
(Y2, 600− Y2) is acceptable to the �rst-mover in the second period in LFE.

Lemma 1 follows straightforwardly due to the properties of payo� structure P.45 For

example, curtailing Figure 7 at stage-3, we get (x4, y4) = (132, 72), the minimum of which,

72, is higher than the maximum number in {(4,1), (2,8), (16,4)}: 16. Due to Lemma 1, in

any Curtailed Game with less than S stages, the highest payo� for both players occurs if

both players pass in all stages of the Curtailed Game. So, irrespective of ρ (Nature's prior

distribution on N), for all CG(1), MCG(2), ....,MCG(S − 1), there is a unique Sequential

Equilibrium: All player-types pass with probability 1 at all stages. Thus all limited-foresight

types choose pass if their total foresight is strictly less than S and they cannot observe Γ.

This implies that in MCG(S) (modi�ed version of Γ), according to ρS, any Nature's move,

at any non-initial node, speci�es the pure action: pass.

45Lemma 1 also holds for several other curtailment rules, including a �mean of stage-wise means� rule
followed in an earlier version of this paper. The min+max

2 rule is only signi�cant for Lemma 1 in the proof
of Proposition 6. Therefore, Proposition 6 holds for several other curtailment rules too.
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The decisive information sets of MCG(S) are those where the player-types moving there

have total foresight equal to S. We (loosely) refer to the player-types moving at these

information sets as rational types. In what follows, we use Proposition 2, and denote the

identical beliefs of all rational-types at their corresponding information sets in stage-i as ri.

To show that we can use Proposition 2, we need to show that all the information sets of

MCG(S) at stage-i are corresponding information sets. To see this, note that di�erent types

of the same player move at stage−i, and all the information sets at stage-i are generated from

the same action sequence of the underlying Centipede game with perfect information: pass

played (i − 1) times. Thus, by De�nition 6, all rational types' information sets at stage-i

are corresponding information sets; and by Proposition 2, LFE beliefs of these rational

types at corresponding information sets are identical. Let ri denote the identical belief of

every rational player-type at stage-i that at stage-(i + 1) the opponent will be Nature. By

Lemma 1, if Nature moves in stage-(i + 1) on behalf of a limited-foresight opponent-type

and (i + 1) < S holds, then Nature will choose the pure action pass in stage-(i + 1). Let

pi denote the identical probability put on the action pass by every rational player-type at

stage-i. To show Proposition 6, we only need to show that in any SE of MCG(S), it cannot

be the case that pi = 0 holds for any i = 1, ..., (S − 3). Lemma 2 will be useful in showing

this.

Lemma 2: For any Sequential Equilibrium (σS, bS) of MCG(S) : (a) If σS implies that

pi = 1 holds, then σS must imply that ps = 1 holds, for s ≤ i, where i = 1, ..., S. (b) If bS is

such that at stage-i, ri > ηi holds, then σS must imply that pi = 1 holds, for i = 1, ..., S − 2.

Proof of Lemma 2(a): Let (σS, bS) imply that pi = 1. That is, suppose all rational

player-types pass with probability 1 at stage-i. Then, sequential rationality of SE strategies

implies that according to σS, irrespective of beliefs, pi−1 = 1 must hold. This is because

any rational type's choice to pass at stage-(i − 1) is going to be reciprocated by pass with

probability 1 at stage-i. Therefore, the payo� from pass at stage-(i − 1) is at least ai+1;
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and ai+1 > ai−1 holds, where ai−1 is the payo� from take at stage-(i − 1). Repeating this

argument, pi−1 = 1 implies that due to sequential rationality of σS, we must have pi−2 = 1,

and so on for all s ≤ i. Q.E.D.

Proof of Lemma 2(b): Let i ∈ {1, .., (S − 2)}. In MCG(S), let vi be the value to the

rational types moving at stage-i given SE play from stage-i on. By sequential rationality of

σS, it follows that vi ≥ ai holds for all stages i ∈ {1, .., (S − 2)}. The payo� from take at

stage-i is ai, the expected payo� from pass at stage-i is at least rivi+2+[1− ri]bi+1 (because,

by Lemma 1, Nature chooses pass with probability 1 at stage-(i + 1)). So if ri > ηi holds,

then:

rivi+2 + [1− ri]bi+1 ≥ riai+2 + [1− ri]bi+1 > ηiai+2 + [1− ηi]bi+1 = ai hold. (10)

The strict inequality in (10) follows because ai+2 > bi+1 holds by payo� structure P, and

ri > ηi holds. The last equality in (10) follows from the de�nition of ηi. Note that (10)

implies that the expected payo� from pass at stage-i, which is greater than the leftmost

term of (10), is strictly greater than the payo� from take at stage-i: ai. So, by the sequential

rationality of σS, pi = 1 must hold. Q.E.D.

Given Lemma 1 and Lemma 2, Proposition 6 must also hold for rational player-types.

This is because for any SE of MCG(S), (σS, bS), it cannot be the case that σS implies pi = 0

at some i ≤ S − 3. We show this by contradiction. Suppose σS implies pi = 0 at some

i ≤ S − 3. Without loss of generality, suppose player A moves at stage-i. At stage-i, (S − i)

A-types have total foresight strictly less than S; and at stage-(i + 2), (S − i − 2) of those

A-types have total foresight strictly less than S.46 By Lemma 1, all player-types whose total

foresight is strictly less than S, choose pass with probability 1 at all stages, until their total

foresight is S. Thus, if pi = 0, then at stage-(i+1), the player moving there faces only (S−i)

46{0A, ..., (S− i− 1)A} all have total foresight strictly less than S at stage-i. {0A, ..., (S− i− 3)A} all have
total foresight strictly less than S at stage-(i+ 2).
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equiprobable limited-foresight A-types who chose pass, out of whom (S− i− 2) A-types will

choose pass again in stage-(i+ 2). So, by the consistency of SE beliefs, if pi = 0, then

ri+1 =
S − i− 2

S − i
≥ 1

3
> ηi+1 =

1

7
holds.

So, by Lemma 2(b), we must have pi+1 = 1 according to σS. But then Lemma 2(a) implies

pi = 1 must hold according to σS, which is a contradiction. So in any SE of MCG(S), and

thus in any LFE, it cannot be the case that pi = 0 holds for i = 1, ..., (S − 3). Q.E.D.
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