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Abstract

This paper presents a simple set of su¢ cient conditions on sequence spaces [based
on Wold (1943)] that guarantee representation of preference orders. It is shown that in
the Wold approach weak monotonicity is not necessary for representation. Crucial to the
approach is representation along the diagonal of the sequence space. Through a series of
examples we show that our representation result is robust; it cannot be improved upon
by dropping or weakening our assumptions. An example is also presented to show that
existence of degenerate indi¤erence classes is not a detriment to the representation of
monotone preferences, thereby clarifying the extent to which substitution possibilities can
be useful in representation.
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1 Introduction

There are two principal methods leading to the representability of a preference order by a
numerical utility function. The �rst is due to Wold (1943) who proposed that if preferences
were monotone, and if for every consumption bundle, there was a unique diagonal bundle to
which it was indi¤erent, then the scalar associated with that diagonal bundle can be used as
a numerical measure of the utility of the consumption bundle. The second is due to Debreu
(1954), who showed that if the set of consumption bundles contained a countable order-dense
subset, then the preference order can be represented by a numerical utility function.

The condition of Debreu turns out to be necessary as well for the numerical representation
of a preference order [see Fishburn (1970), Kreps (1988) and Bridges and Mehta (1995)]. On
the other hand, following Debreu (1954) non-representability crucially builds on the lexico-
graphic preferences1 he introduced. The inability to represent lexicographic preferences may
be viewed as arising from the fact that there are not enough substitution possibilities � since
each consumption bundle is indi¤erent only to itself.

The emphasis on substitution possibilities for the representation of preference orders appear
in the writing of Georgescu-Roegen (1954). In his de�nitive study on consumer preferences,
Chipman (1960, pp. 210) says that the countable order dense property �has little intuitive
appeal�. He suggests (see Chipman (1960, pp. 194)) an Axiom of Substitution as part of
his formal axiomatic set up. The Wold approach can be seen as identifying a speci�c form
of substitution which is su¢ cient to guarantee representability of monotone preferences (see
Beardon and Mehta (1994) for an exposition of the Wold approach).

The conditions used by Wold are not necessary, even for the class of monotone preferences.
Nevertheless, because of its transparent geometric intuition, the method of Wold has been
widely used to establish numerical representation of preference orders under a variety of di¤erent
assumptions on preferences [see, for example, Diamond (1965), Asheim, Mitra and Tungodden
(2012), Mitra and Ozbek (2013), Banerjee (2014)]. In fact, the idea of Wold is so compelling that
it is now even included in a basic text on Intermediate Microeconomics to illustrate how a utility
function can be found to represent preferences [see Varian (2014)]. We undertake an analysis
of the Wold approach with the intention of exploring the role that substitution possibilities play
as a su¢ cient condition for representation.

Our �rst result (Theorem 1) shows that under a weak continuity assumption and existence of a
weakly better and weakly worse o¤ element along the diagonal, representation always obtains.
In particular, preferences need not be monotone. Our version of the Wold approach consists

1This order is also called the �dictionary order� [see Munkres (2000)] and was known to set theorist and
topologists alike, see Sierpinski (1965, pp. 221). In Sierpinski�s masterful development of set theory, in Chapter
11 he deals with sets of order type � � this is what we call representable orders. While his text was in
development since 1909, its completion date is recorded in the preface as 1952. Our reference is to the second
edition of the english translation which appeared in 1965.
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of two steps: the �rst step establishes the existence of a utility function on the diagonal and
in the second step, this function is extended to the entire space in a way that preserves the
ranking of o¤-diagonal terms.

The continuity assumption we use, Scalar Continuity, is used in Mitra and Ozbek (2013). It
states that the set of all pro�les on the diagonal that weakly dominate and those that are
dominated by x must be closed sets in the real line for every pro�le x. In other words, we
require that the intersection of the upper and lower contour sets with the diagonal be closed
in the real line (for a given x, these are denoted A(x) and B(x) respectively). Additionally we
require that these sets are also non-empty; this is our speci�c way of imposing the condition
that there are substitution possibilities.

Recent representation theorems by Mitra and Ozbek (2013) and Banerjee (2014) are established
under fairly mild assumptions using variations of the Wold method. However, though there
is considerable overlap of coverage in the two results, neither result follows from the other.
Theorem 1 yields both of these representation theorems as corollaries.

In view of our su¢ ciency result (Theorem 1) we ask whether our result can be improved by
dropping or weakening any of the conditions used. In Example 1 (section 4.1) we show that we
cannot drop the condition on the non-emptiness of the sets A(x) and B(x) and still guarantee
representation. On the other hand, we also show that if the non-emptiness condition fails to
hold only on a countable subset of the space, a representation result can be recovered (Theorem
2).

A crucial step in the Wold approach is to show that the indi¤erence set for each x has non-
empty intersection with the diagonal. We introduce this as the Wold Condition (in section
4.2) and study whether our Theorem 1 can be improved by assuming this weaker su¢ ciency
condition. Example 2 (in section 4.2) demonstrates the Wold condition cannot replace Scalar
Continuity in Theorem 1. However, a weak monotonicity assumption guarantees representation
in the presence of the Wold condition (Theorem 3). It is tempting to conjecture that this weak
diagonal monotonicity is necessary for representation when the Wold condition is satis�ed, we
show that to be not the case in Example 3.

Finally, we study the possibility of representation when there are absolutely no substitution
possibilities � indi¤erence sets pertaining to each bundle is degenerate. We present an example
of a preference order for which the indi¤erence set for every x is a singleton but the order is still
representable. This example shows in a very stark way that our Scalar Continuity condition
is not necessary for representation. It demonstrates in general that substitution conditions
(conditions that deal with properties of indi¤erence classes associated with elements of the
domain of preferences) cannot be necessary for representation, since representability can be
obtained even when absolutely no substitution possibilities exist.

To understand the signi�cance of our example let us provide a very rough paraphrase of the
intuition for representability in the context of consumer demand theory associated with the
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extent of substitutability from any given consumption bundle. The problem with the lexico-
graphic preference order is that it has no substitution possibilities at all: each point in the
commodity space is indi¤erent only to itself. This entails that the preference order is extremely
sensitive (to changes in any direction of the two-dimensional real space) and the set of real
numbers is not large enough to capture this sensitivity. If substitution possibilities are present,
so that one has non-degenerate �indi¤erence curves�, then �many�points can be assigned the
same real number, thereby economizing on the use of real numbers and making it feasible to
represent the preference order. Perhaps, the most explicit statement of the above intuition
for non-representability appears in the standard text on microeconomic theory by Mas-colell,
Whinston and Green (1995, pp.46), in their informal discussion of the lexicographic preference
order.�With this preference ordering, no two distinct bundles are indi¤erent; indi¤erence sets
are singletons. Therefore, we have two dimensions of distinct indi¤erence sets. Yet, each of
these indi¤erence sets must be assigned, in an order-preserving way, a di¤erent utility number
from the one dimensional real line.�

However, lest the reader gets carried away by this argument, the authors add a sentence of
caution,�In fact, a somewhat subtle argument is actually required to establish this claim rig-
orously.�Our example (in section 4.3) can also be seen as an elaboration on this sentence of
caution, and particularly on the distinction between substitutability and the existence of non-
degenerate indi¤erence sets. Speci�cally, we present an example of a preference ordering (in
two-dimensional real space), in which indi¤erence sets are singletons, just like the lexicographic
preference order, but which nevertheless can be represented by a real-valued function. Thereby,
the example shows that non-degenerate indi¤erence sets are not necessary for representability
of a preference order. The example is not entirely straightforward to construct; it draws on
methods which appear in the papers by Lindenbaum (1933) and Sierpinski (1934).

2 Preliminaries

2.1 De�nitions and Axioms

2.1.1 Sequence Spaces and Binary Relations

Let N be the set of non-negative integers, and R the set of real numbers. Denote RN by Z: For
z; z0 2 Z; we write z0 � z if z0t � zt for all t 2 N; we write z0 > z if z0 � z and z0 6= z; and we
write z0 � z if z0t > zt for all t 2 N:

Let Y be a non-empty connected set in R such that [0; 1] � Y 2 and X = Y m where m 2
M = N [ f1g � such a space will be called a sequence space. The constant m-dimensional

2All of these conditions on Y amounts to saying that Y is an interval in R. See Royden (1988), p.183.
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vector (1; 1; 1; ::::) is denoted by e; clearly the vector e 2 X. A particular subset of X, the
diagonal D is of special signi�cance in our paper. De�ne

D = fx 2 X : there exists � 2 Y such that x = �eg (1)

A binary relation % is called representable if there is some u : X ! R such that for all x; x0 2 X
x0 % x if and only if u(x0) � u(x). (2)

A real-valued function u that satis�es (2) will be called a utility function or a function that
represents %. We will consider a binary relation % on X�X satisfying a subset of the following
conditions. The phrase �a binary relation on X�will often be used for a binary relation on
X � X. We deal with complete and transitive binary relations and formally state this as
condition O. A binary relation satisfying condition O is called a preference order.

Order (O): The preference relation % is complete and transitive.

2.1.2 Scalar Continuity and Substitution Conditions

In addition to O, we document some conditions that have been studied in the context of
representing monotone preferences on sequence spaces. We introduce a class of conditions that
describe the extent of substitution possibilities allowed between points in X.

De�ne, for each x 2 X, the sets
A(x) = f� 2 Y : �e % xg

and
B(x) = f� 2 Y : x % �eg.

We next de�ne the concept of scalar continuity (SC) and the non-emptiness (NE) of the sets
A(x) and B(x).

Scalar Continuity (SC): If for each x 2 X, the sets A(x) and B(x) are closed subsets in Y .
Non-emptiness (NE): If for each x 2 X, the set A(x) and B(x) are both non-empty.
The crux of the Wold argument (for instance in its application to consumer theory) is in
establishing that each commodity bundle x is indi¤erent to at least one point along the diagonal
� this is explicitly stated as condition W below. The nature of our query also necessitates
the study of representability when there are no substitution possibilities. Under the re�exivity
assumption, absent any substitution possibility, the set IN(x) of y�s that are indi¤erent to x
would contain only x � this is stated explicitly as the degenerate indi¤erence set condition. It
will be clear from the analysis that follows that SC and NE is jointly a stronger requirement
thanW.

Wold Condition (W): The set I(x) = A(x) \B(x) is a non-empty subset of Y .
Degenerate Indi¤erence Set (DIS): The set IN(x) = fy 2 X : y � xg = fxg.
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2.1.3 Monotonicity Conditions

We introduce some conditions that relate the natural order of vectors in a sequence space (�) to
the preference order (%). Mitra and Ozbek (2013) study representability under an assumption
of weak monotonicity (M) and Banerjee (2014) introduced diagonal Pareto (DP) in his study of
representation following the Wold approach. Additionally we document two weak monotonicity
conditions on the diagonal (WID andWDD).

Monotonicity (M): For x; y 2 X with x � y we must have x % y.
Diagonal Pareto (DP): For �; � 2 Y with � > � we must have �e � �e.

Weakly Increasing along the Diagonal (WID): For �; � 2 Y and � > � we have �e % �e.
Weakly Decreasing along the Diagonal (WDD): For �; � 2 Y and � > � we have �e % �e.

3 Representation

3.1 Wold Representation Theorem

In this section we spell out precisely the assumptions that make Wold�s method work. It is
shown here that assumptions SC and NE together imply representability of binary relations
that satisfy O.

Theorem 1 If a binary relation % de�ned on X �X satis�es O, SC and NE, then there is
some u : X ! R representing % in the sense of (2).

Remarks on Theorem 1

(a) Wold Technique: A crucial step of the Wold construction demonstrates that for each x
there is some diagonal element to which x is indi¤erent. In the standard textbook treatment of
this result (see, Mas-collel, Whinston and Green (1995) for instance) monotonicity is assumed
along with continuity to achieve this step. In Theorem 1 condition NE plays a crucial role in
establishing the indi¤erence of each element to an element in the diagonal of the sequence space.
Observe the proof of Theorem 1 is in two steps3 � the �rst step shows the representability
of % when restricted to the diagonal and the second step extends this function to the entire
space. While the �rst step follows from SC (NE is not needed here and this part of the proof
is similar to the proof of Theorem I in Debreu (1954)) the second step makes critical use of
NE. The precise roles played by the conditions NE and SC is explored in section 4. While
several applications of the result pertaining to monotone orders have appeared in Mitra and

3See the introduction in Beardon and Mehta (1994) for another clear discussion of the process that originates
in Wold (1943).
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Ozbek (2013) we present a simple example of an instance where representation follows, using
Theorem 1, even when monotonicity fails.

Consider the following binary relation on [0; 1]� [0; 1] (denoted by X) for x; y 2 X we say

(x1; x2) % (y1; y2) i¤ f(
x1 + x2
2

) � f(y1 + y2
2

) (3)

where f : [0; 1]! [0; 1] is given by
f(t) = t� t2.

Clearly from the de�nition (3) it follows that % satis�es O. To verify SC assume that x 2 X
and �n 2 [0; 1] for each natural number n and consider x % (�n; �n). Under the assumption
that �n converges to some � we need to show that x % (�; �). We obtain from x % (�n; �n)

and (3) that f((x1 + x2)=2) � f(�n) holds and as f is continuous on [0; 1] and � 2 [0; 1] (note
that �n is a convergent sequence in a compact set, so the limit point, � must belong to the set
[0; 1] as well) it follows that f(�n) ! f(�). Finally as weak inequalities are preserved in the
limit we must have f(x1 + x2) � f(�) implying x % (�; �) (from (3)) establishing that B(x)
is closed. A similar argument also shows that A(x) is closed for every x in X, as needed for
SC. Non-emptiness (NE) also easily follows since it can be veri�ed that (1=2; 1=2) 2 A(x) and
(0; 0) 2 B(x) for all x 2 X. Theorem 1 (or direct inspection of the de�nition itself) can be
invoked to claim that the order is representable4.

The very nature of the function f guarantees that this order satis�es neitherWID orWDD.
This follows from noting that f attains its (unique) maximum at (1=2) and is strictly increasing
in the sub-domain [0; 1=2) and strictly decreasing in the sub-domain (1=2; 1].

(b) Relation to Representation Literature: The two step approach used in Theorem 1 is not new.
Explicit use of this approach is made in Arrow and Hahn (1971), Monteiro (1987), Beardon
and Mehta (1994) and Weibull and Voorneveld (2016) among others.

(i) Monteiro (1987): ConditionNE appears in the literature as an order boundedness property
of preference orders (see Monteiro (1987; pp. 148)). Condition SC, is also used in the proof of
his main result but no explicit mention is made of the condition. To elaborate, in Theorem 1
[Monteiro (1987)], NE is used by considering a connected, separable subset of X, say F having
the property that for every x 2 X there is some a; b 2 F such that a % x % b. This is used along
with closed upper and lower contour sets to show the existence of a representation. SC is used
in the �rst line of the proof of Theorem 1 (see Monteiro (1987), pp. 149), but the assumption of
closed upper and lower contour sets need not translate to closed upper contour sets relative to a
connected and separable subset, F which bounds % (condition NE). For instance on X = [0; 1]

consider the order � and observe that the the subset F = (0; 1) is connected and separable.
However, A(1=2) is not closed as it has a sequence that converges to 1 but 1 is not in F . Our

4One immediately observes that the representability issue here is trivial. Whether one can �construct� a
non-representable binary relation on R is not currently known to us. See an elaboration of this issue in Remark
(b) following Example 2.
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approach makes this assumption (SC is precisely closedness of intersection of upper and lower
contour sets with F = D) explicitly. Perhaps more importantly the two motivating issues for
us are (a) emphasizing transparency and clarity over generality and (b) to show that the Wold
(1943) approach is not intrinsically linked to monotonicity as is suggested in the literature and
in the textbook treatment of his method � in other words, our focus is the general applicability
of the Wold approach in showing existence of a representation even without an assumption of
monotonicity.

It is worth pointing out that in the in�nite dimensional case, that is when X = Y 1, order
continuity (as assumed in Monteiro (1987)) would be equivalent to continuity de�ned using the
sup-norm topology. Scalar continuity is known to be weaker than sup-norm continuity in this
context (see, Mitra and Ozbek (2013)). This shows that in addition to the general transparency
of stating the continuity on subsets of R our Theorem 1 does not directly follow from that of
Monteiro (1987).

(ii) Beardon and Mehta (1994):There seems a general consensus that some form of monotonicity
is needed for Wold approach to go through. In Beardon and Mehta (1994) this is very clearly
stated � �...a close examination of Wold�s paper reveals that, in fact, Wold assumed only that
the preference relation is weakly monotonic and, using only this, he was able to sketch a proof
(that is perhaps more subtle than he has been given credit for) of the existence of a continuous
utility function.�While this two steps approach has been used in more general settings we
make the explicit argument that even weak monotonicity is not needed, it su¢ ces to obtain
representation on a rich enough sub-domain that can then be extended to the entire commodity
space.

(iii) Mitra and Ozbek (2013), Banerjee (2014): Theorem 1 also uni�es several related results
in the literature. Consider the following corollary to Theorem 1.

Corollary 1 Let % be a binary preference relation on X �X which satis�es conditions O, M
and SC. Then, there is a function u : X ! R representing % in the sense of (2).

The proof of Corollary 1 follows from Theorem 1 since it can be easily veri�ed thatM implies
NE. Corollary 1 is the representation result stated as Proposition 2 in Mitra and Ozbek (2013).
It is shown in their paper how various other results in the literature follow from this represen-
tation result, so those additional results are not discussed here. Banerjee (2014) presents a
representation result comparable to Theorem 1 as well. He uses conditions O, NE and SC.
However, instead ofM, he uses conditionDP. Our Theorem 1 shows that in his result (Theorem
1, pp. 499), the condition DP is redundant.
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4 Examples and Generalizations

4.1 Non-Emptiness and Representation

A natural question to ask is whether we can strengthen Theorem 1 by dropping conditions
NE or SC. In this section we provide an example of a binary relation that satis�es O and
SC but NE fails and the order is not representable. This example demonstrates that one
cannot strengthen the statement of Theorem 1 by considering a set of su¢ cient conditions
including O and SC alone. Our example points to a particular weaker version of NE for which
representation can be obtained under O and SC. These themes are explored in detail in this
section.

Example 1 Consider the sequence space X = [0; 1] � [0; 1] and let Y = [0; 1]. Consider the
following subsets of X: V = fx 2 X : x1 = 1g, D = fx 2 X : there is � 2 Y such that
x = (�; �)g and R = X n V [D.

De�ne a binary relation % on X � X as follows: (i) For any x; y 2 V [ R we say x % y i¤
x �L y (where, �L is the standard lexicographic ordering), (ii) for any x 2 D and y 2 R we
let x � y, (iii) for [x 2 V and y 2 D] or [x 2 D and y 2 V ] or [x; y 2 D] we declare x % y i¤
minfx1; x2g � minfy1; y2g.

% is satis�es O: Completeness follows from observing that the sets V;D and R on which % is
de�ned along with (i)-(iii) exhausts all possibilities of comparisons for ordered pairs in X. To
verify transitivity �rst consider x 2 V , y 2 D and z 2 R with x % y and y % z. As x 2 V
and z 2 R we must have x � z (since x1 = 1 > z1 as z 2 X n V [D). The other cases follow
from noting that the three components of the de�nition of % are transitive (for example, when
attention is con�ned for triplets x; y; z in either (i) or (iii) transitivity readily follows). Thus,
% is complete and transitive � showing that % satis�es O.
A(x) and B(x) for any x 2 X is a closed subset of Y : Consider x 2 R: Observe that by (ii)
for any y 2 D we have y � x, showing that for each x 2 R the set A(x) must be [0; 1], hence
closed. For x 2 D (with x = (�; �)) we must have A(x) = [�; 1] (using (iii)) when � < 1

and A(x) = f1g with � = 1; in both cases A(x) is closed. For every x 2 V , using (iii) in the
de�nition of % we must have A(x) = [x2; 1] when x2 < 1 and A(x) = f1g when x2 = 1. This
shows that A(x) is closed when x 2 V as well. Thus, we have shown that A(x) is closed for
any x 2 X.

Now consider B(x) for x 2 R. Observe that by (ii) for any y 2 D we have y � x, showing
that for each x 2 R, implying that B(x) is empty, hence closed. For x = (�; �) 2 D we obtain
B(x) = [0; �] whenever � > 0 and B(x) = f0g when � = 0 showing that B(x) is closed in Y .
When (x1; x2) 2 V we get B(x) = [0; x2] when x2 > 0 and B(x) = f0g when x2 = 0 (using
(iii)). Hence in each case we have shown that B(x) is a closed subset of Y � the condition SC
is satis�ed by %.
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Observe that B(x) is empty for any x 2 R, so NE fails to hold for %.
% is not representable: Suppose u represents %. Consider the subset W = f(x1; x2) 2 X : 0 <

x1 < 1 and x2 2 f1; 0gg. The set W is a subset of R � since W has empty intersection with
D and V (since 0 < x1 < 1 and x2 2 f1; 0g). The set W is also uncountable.

If % is representable, then the restriction of % to W is also representable. For each � 2 (0; 1)
we observe that (�; 1) � (�; 0) (using (�; 1); (�; 0) 2 W � R and (i)) and u((�; 1)) > u((�; 0))
(as u represents % by assumption). Denote the interval I(�) is (u((�; 0)); u((�; 1))). Let � > �
(a similar argument can be made for the case � < �) we have (�; 0) � (�; 1) (using, W � R
and (i)) showing that the interval I(�) given by (u((�; 0)); u((�; 1))) has a empty intersection
with I(�) for any � 6= �. This leads us to the familiar contradiction arising from a one-
to-one correspondence between the countable rationals (each non-overlapping interval can be
associated with a unique rational) and the uncountable reals. Thus, % cannot be representable.
�
It is to be noted that the incidence of failure of the non-emptiness requirement in Example 1 is
on an uncountable subset of the space X. One is tempted to conjecture that if one can, in some
way, restrict the set on which violation of NE occur we can possibly recover representability
using weaker su¢ cient conditions than provided in Theorem 1.

Denote by NA = fx 2 X : A(x) is emptyg, NB = fx 2 X : B(x) is emptyg and write Z
for X n NA [ NB We explore some properties of NA and NB de�ned using a binary relation
satisfying O.

Property 1 NA and NB cannot have a common point, that is, NA \NB = ;. This follows di-
rectly from the fact that % is a complete binary relation, consequently when either A(x) (B(x))
is empty, B(x) (A(x)) must be non-empty.

Property 2 Assume % satis�es SC. If x 2 NA, y 2 NB and z 2 Z, then x � z � y holds. If
x 2 NA, then A(x) is empty and by completeness of % we must have Y � B(x). So, for � 2 Y
we must have x � �e (since x � �e is ruled out for any � in Y as A(x) is assumed to be
empty). A similar argument shows that for y 2 NB we must have �e � y. Now, transitivity
of % implies x � y. As z 2 Z , A(z) and B(z) are non-empty (by NE) and closed (by SC)
subsets of Y . By the completeness of % we have A(z) [ B(z) = Y . Since Y is connected it
must imply that A(z) \ B(z) is non-empty so there is some � 2 Y such that x � �e � z and
z � �e � y, showing that x � z � y is true as needed.

Property 3 If x 2 NA (or x 2 NB) and y � x, then y 2 NA ( y 2 NB). Suppose x 2 NA (x 2
NB) and y � x, then A(x) = A(y) (B(x) = B(y)) holds. This shows that y 2 NA (y 2 NB)
must be true as well.

We make a few additional observations true for each i 2 fA;Bg. De�ne for each x 2 Ni the set
Ei(x) = fz 2 X : z � xg. For x; y 2 Ni we must have Ei(x) \ Ei(y) = ; or Ei(x) = Ei(y) and

[x2NiEi(x) = Ni.
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Denote the collection of sets fEi(x) : x 2 Nig by �i and observe that sets in �i is a partition of
Ni. We impose a su¢ cient condition on the class of sets �i that weakensNE and in conjunction
with SC implies representability.

Countable Emptiness (CE): The collections �A and �B are countable.

Observe that in Example 1, CE fails since B(x) is empty for all x 2 R. Furthermore, the order
% in Example 1 restricted to the uncountable set R is lexicographic implying that the collection
�B of NB cannot be countable. We show in Theorem 2 that one can strengthen Theorem 1
by using CE in place of NE. The result is similar in spirit to Mitra and Ozbek (2013), they
show that for monotone preferences if violations of SC occur only on a countable subset of X
representability can still be recovered.

Theorem 2 If % a binary relation de�ned on X �X satis�es O, SC and CE, then there is
some u : X ! R representing % in the sense of (2).

4.2 Scalar Continuity and Representation

This section is devoted to understanding the role of SC in Theorem 1. Dropping SC entirely
will not yield a representation result. The standard lexicographic preference order of Debreu
(1954) will su¢ ce for this purpose. It is easily veri�ed that for the lexicographic order on R2+,
the sets A(x) and B(x) are not closed for any x 2 D. However, NE is satis�ed for lexicographic
preferences. These facts are routine and are not explicitly demonstrated here.

This however does not mean that Theorem 1 cannot be strengthened by using a weaker version
of SC. We dedicate this section to showing that a particular natural weakening of SC (as
suggested in the proof of Theorem 1) will not be su¢ cient to guarantee representation. Notice
that in the proof of Theorem 1 we crucially used the fact that for each x one can �nd a point on
the diagonal to which x is indi¤erent. SC is su¢ cient to guarantee that the indi¤erence class
of each x has a non-empty intersection with the diagonal. ConditionW is a precise statement
of this property and it is then logical to ask whether Theorem 1 holds true with this weaker
condition. We provide the example of a binary relation on R2, that satis�es O andW but fails
to be representable.

As a necessary background to our example we show that on any uncountable set we can de�ne
(i) a binary relation (satisfying O) that is representable and (ii) a binary relation that fails to
be representable.

Let X be any set and � be a binary relation de�ned on X. Following the terminology in
Munkres (2000) we will call a binary relation � a simple order if (a) it distinct elements are
comparable (for any x 6= y we have x � y or y � x) (b) transitive (for x; y; z 2 X if x � y and
y � z then x � z must be true) and (c) irre�exive (x � x does not hold for any x). A set X
endowed with a linear order � is called a simple ordered set and will be written as (X;�). A
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well known example of a simple ordered set is (R; >) where, > is the �greater than�order on
real numbers.

We will show that on any uncountable set one can always de�ne a preference order (that is, a
binary relation satisfying condition O) which is not representable in the sense of (2).

Let X be an uncountable set and � be a well-ordering of X (such a well-ordering5 exists by the
Axiom of Choice). De�ne x � y i¤ x � y or x = y. We can verify easily that � satis�es O. We
show that � is not representable in the sense of (2). If � was indeed representable, then there
would be some u : X ! R such that whenever x � y is true we would obtain u(x) � u(y).
Non-representability of � is shown by demonstrating two contradictory implications of the
de�nition � and its assumed representability.

Step 1: u(X) has the power of the continuum, and is a well-ordered subset of (R; >): To see
that u(X) is well-ordered, consider a subset S of u(X) and let S 0 = fx 2 X : u(x) 2 Sg. As
S 0 � X and X is well-ordered by � there is a smallest element s0 2 S, hence for all x 2 S 0 we
must have x � s0 which implies (by representability) u(s0) � u(x) and u(s0) 2 S proving that S
has a smallest element in the natural ordering �. This shows that u(X) must be well-ordered
under the natural ordering of reals. By the completeness of � and the fact that u represents �,
it follows that every x 2 X must be assigned a distinct number u(x), showing that u(X) must
be uncountable, as X is uncountable. [More precisely, R has the same cardinality as X and X
has the same cardinality as u(X) which implies (by the Cantor�Schröder�Bernstein Theorem)
that R has the same cardinality as u(X).]

Step 2: If C � R that is well-ordered (by >), then C must be countable: Assume thatC is un-
countable. Since C is well-ordered and assumed uncountable, the collection of intervals (x; y)
with x < y where, y is the immediate successor6 of x (under the assumption that C is uncount-
able, such an element exists for uncountably many x) must also be uncountable. However, with
each non-overlapping interval we can associate a distinct rational (rational r that is between x
and y), since the order intervals are non-overlapping the chosen rationals are distinct), thereby
establishing a one-to-one correspondence between a uncountable class of non-overlapping in-
tervals and the rationals, which are countable. This contradiction implies that C cannot be
uncountable, hence it has to be countable as was required. This fact appears as an exercise in
Kaplansky (1972, Exercise 5 pp. 54).

As Step 1 and 2 are in direct con�ict, one that originates in the assumption that � is repre-
sentable, it must be the case that � is not representable.

Example 2. We �rst de�ne a non-representable order on R which we then extend to R2 and
show that it satis�es O andW but is not representable.

5A formal textbook treatment of well-ordered sets can be found in Munkres (2000). A simple ordered set
(S;�) is well-ordered when � is a order relation and every subset of S has a smallest element� an element
s� 2 S such that s � s� for all s 2 S and s 6= s�.

6An element y 2 S is an immediate successor of x 2 S in the ordered set (S;�) if y � x and there is no
z 2 S such that y � z � x holds.
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There is a simple order P on R, such that the preference order xRy i¤ xPy or x = y is not
representable in the sense of (2). Now de�ne the binary relation % on R2 by

(x1; x2) % (y1; y2) i¤ (x1 + x2)R(y1 + y2).

It is easy to see that % satis�es O. Observe that

(x1; x2) � (
x1 + x2
2

;
x1 + x2
2

)

and for any � 6= [(x1+x2)=2] we have (x1; x2) 6� (�; �). Thus, I(x) for any x 2 R2 is a singleton.
As R is not representable it must be the case that % is not representable either. �
Remark on Example 2

(a) Long Chains: Our example shows that a non-representable binary relation exists in the one
dimensional Euclidean space as well. The disadvantage of the construction is in the use of Axiom
of Choice (which is equivalent to the statement that every set can be well-ordered) in de�ning
the preference order. We are aware of non-representable preferences of two main types, they are
(i) Debreu (1954) � the standard lexicographic preference in the two dimensional Euclidean
space and (ii) Jech (1978) � the ordered set (!1; <) where !1 is the �rst uncountable ordinal
and< is the natural ordering of the ordinal numbers which is also known to be non-representable
by a real-valued utility function. [In view of providing a readable account we omit the details
of the de�nitions involved in (ii); the interested reader should Beardon, Candeal, Herden and
Mehta (2002) for a comprehensive analysis of the issue of non-representability.] In Beardon,
Candeal, Herden and Mehta (2002) it is shown that in sets with cardinality less than (or equal
to) to R, the only two possibilities of non-representability is when there is a completely ordered
subset that is order-isomorphic (a function between two ordered set is order isomorphic when it
is order preserving, see Beardon, Candeal, Herden and Mehta (2002)) to either an ordered set
of type (i) or (ii). Our example is an explicit description and proof of how one can construct
a non-representable order in R of type (ii)7 (this is called a long chain, see Beardon, Candeal,
Herden and Mehta (2002)).

It follows from Example 2 that condition W alone will not yield a representation result like
Theorem 1. In fact an even more stringent requirement that I(x) = A(x)\B(x) be a singleton
will not yield a representation. This follows from noting that in Example 2, for x 2 R2 there is
only one point in D (the diagonal) to which x is indi¤erent, yet representation can fail.

Consider the possibility that an order is monotone when restricted to the diagonal, either in
the sense of being weakly increasing (recallWID: for �; � 2 Y and � > � we have �e % �e) or

7There are other �constructive�ways of de�ning a non-representable order on R, however those may not suit
our purpose as required in Example 2. For instance, since R and R2 are both uncountable, there is a bijection
g : R! R2 and we can let xTy i¤ g(x) �L g(y). The binary relation T on R is an order but is not representable.
The argument here does not rely on the Axiom of Choice (it uses the Cantor�Schröder�Bernstein Theorem) as
the statement of our construction in Example 2 does.
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weakly decreasing (recall WDD: for �; � 2 Y and � > � we have �e % �e), then intuitively,
condition W would allow us to represent each x by a point on the diagonal (precisely, the
associated scalar to which x is indi¤erent) and hence recover representability. We con�rm this
intuition by explicitly considering preference orders that are weakly increasing along the diag-
onal. The veri�cation of the result under an analogous �weakly decreasing along the diagonal
condition�will trivially follow from the result stated in Theorem 3.

Theorem 3 If % de�ned on X�X satis�esWID andW, then there is some u : X ! R that
represents % in the sense of (2).
One can replicate the proof of Theorem 3 under the assumption that the order is weakly
decreasing on the diagonal,WDD.

It is tempting to explore whether every representable order that satis�es W must be either
weakly increasing or weakly decreasing on the diagonal. This turns out to be not true � we
show by means of an example that one can construct orders that are representable, satisfyW
but fail to be eitherWID orWDD.

Example 3 De�ne f : R2+ ! R by

f(x1; x2) =

�
x1 + x2 if (x1 + x2) 2 I

(x1 + x2)=2 if (x1 + x2) 2 Q

where, I is the set of irrational numbers and Q the set of rational numbers. De�ne the binary
relation % on R2+ � R2+ by

(x1; x2) % (y1; y2) i¤ f(x1; x2) � f(y1; y2).

Since % is de�ned using a real-valued function, it follows that % satis�es O and it is repre-
sentable. It can be veri�ed that for any (x1; x2) 2 R2+ we must have

(x1; x2) � (
x1 + x2
2

;
x1 + x2
2

)

showing that % satis�esW.

We conclude by showing that % fails to satisfy eitherWID orWDD. Let � > 0 be irrational,
and r 2 (�; 2�) be a rational number. Note that (r=2; r=2) >> (�=2; �=2) but as f(r=2; r=2) =
(r=2) < � = f(�=2; �=2) we have (r=2; r=2) � (�=2; �=2), implying that % does not satisfy
WID. For any two rational numbers r < r0 we must have f(r; r) < f(r0; r0), showing that
% does not satisfy WDD as well. Thus, we have de�ned a representable preference order
(satisfying O) on a sequence space satisfying W that fails to meet either WID or WDD.
There is no hope that either one of these conditions are necessary for representability under
W. �
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4.3 Degenerate Indi¤erence Set and Representation

This section provides an example of a monotone, representable order whose indi¤erence classes
are singleton sets. This example has two interesting properties. It runs counter to the intuition
that non-degenerate indi¤erence classes (sets having more than one point) are necessary for
representation, since non-degeneracy intuitively provides one with enough maneuverability that
the �numbering (of) various iso-utility classes, in such a way that a preferred class always has
a higher number�[Banerjee (1964), pp. 160] is rendered possible. Secondly, it provides a stark
example that the conditions of Theorem 1 are not necessary for representation, even for the
class of binary relations satisfying monotonicity.

4.3.1 De�nition of the Binary Relation

Consider the sequence space X = Y 2 with Y = [0; 1]. We will de�ne a binary relation on X�X
satisfying O andM (NE is satis�ed by implication) but not W (hence, SC is not met either).
It will be representable and have singleton indi¤erence sets, hence will satisfy DIS.

For any p 2 Y we can express p in its binary expansion form as follows:

p =
a1
2
+
a2
22
+
a3
23
+ � � �+ an

2n
+ � � � (4)

where ai 2 f0; 1g for each i 2 N. It is well known that every real in the interval [0; 1] can
be expressed in the form (4) and such an expansion is unique provided it is not of the formP

i2S(1=2
i) for some �nite subset S of N. Given some �nite subset S of N let s denote the

maximum element of S. For x =
P

i2S(1=2
i) we will have exactly two binary representations:

(a) ai = 1 for all i 2 S and ai = 0 whenever i 6= S and (b) ai = 1 for all i < s, as = 0, ai = 1
for i � (s + 1) and ai = 0 for i 2 NnS [ fs + 2; s + 3; :::g. The analysis can now proceed by
stating that to make the binary expansion unique we will use the expansion of the form (b)
in the event of non-uniqueness8. Keeping this convention in mind, we will say that p has the
binary representation faig when p can be expressed as (4) using the sequence faig.
Now de�ne f : Y ! Y by

f(p) =
a1
4
+
a2
42
+
a3
43
+ � � �+ an

4n
+ � � � (5)

and h : Y ! Y by
h(q) = f(q)=2 (6)

Finally de�ne u : X ! R by
u(x1; x2) = f(x1) + h(x2). (7)

Using u de�ne the binary relation on X �X as:

for all x; y 2 X we will say x % y i¤ u(x1; x2) � u(y1; y2):
8An equivalent way of stating this, following Royden (1988), p. 40 would be to say that expression (4) is

non-unique only in the case where p is of the form q=2n where 0 < q < 2n is an integer.
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4.3.2 Properties of the Binary Relation

We show that % satis�es O,M. Before verifying the properties we make a crucial observation
that will be useful throughout the development of the example. For (p; p0) 2 X let m(p; p0)
denote the minfi 2 N : ai 6= a0ig, where faigand fa0ig are the standard binary expansions of p
and p0.

Observation Let 1 � p0 > p � 0 and faig and fa0ig be the standard binary expansions of p
and p0 respectively. Denote m(p; p0) by r. Then (a) a0r = 1; ar = 0 (b) there is some n � (r+1)
such that (a0n � an) 2 f0; 1g (c)

(4=3)
4r

� [f(p0)� f(p)] � (2=3)
4r
.

% satis�es O The de�nition of % is made using a real-valued function u as de�ned in (7) which
immediately implies that % satis�es O.
% satis�es M Since (using (17)) f and h are strictly increasing on Y monotonicity on X follows
immediately.

4.3.3 Degenerate Indi¤erence Sets

We now turn to the demonstration that all indi¤erence sets of % are degenerate. Suppose on the
contrary, there is x; x0 in X such that x 6= x0 and u(x) = u(x0). For convenience write x = (p; q)
and x0 = (p0; q0). As g; h are strictly increasing functions on Y , we can assume without any loss
of generality that p0 > p and q0 < q.

The fact that u(x0) = u(x) must yield applying (7)

f(p0)� f(p) = h(q)� h(q0). (8)

Using (5) and (8) we obtain

f(p0)� f(p) = (1=2)[f(q)� f(q0)]. (9)

Denote m(p; p0) by r and m(q; q0) by s. Two exhaustive possibilities emerge: (i) s � r; (ii)
s < r. In case (i) using (18)

(1=2)[f(q)� f(q0)] � (1=2)(4=3)

4s
=
(2=3)

4s
� (2=3)

4r
(10)

and using (17) we get

f(p0)� f(p) > (2=3)

4r
. (11)

Now (10) and (11) contradicts (9).

In case (ii) we have r � s+ 1 and so, using (18) we get

f(p0)� f(p) � (4=3)

4r
� (4=3)

4s+1
=
(1=3)

4s
. (12)
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On the other hand using (17) we have

(1=2)[f(q)� f(q0)] > (1=2)(2=3)

4s
=
(1=3)

4s
. (13)

Clearly, (12) and (13) contradict (9). Thus, we must have that every indi¤erence class associated
with % must be a singleton or equivalently, degenerate. However, % is representable which
follows directly from the de�nition of the binary relation.

Banerjee (1964, pp. 160-161) provides a lucid exposition of how existence of non-degenerate
indi¤erence sets is ensured if one postulates that preferences are representable by a continuous
utility function9. Note that while the order de�ned in this section is representable, even when
the underlying binary relation exhibits a serious dearth of substitution possibilities such a rep-
resentation cannot be continuous. Mathematically, this fact has nothing to do with indi¤erence
sets, preference orders or utility functions. This is contained in Sierpinski (1965), pp. 70-71, so
we state this as a maxim without proof.

There exists no continuous function f(x; y) of two real variables (even continuous only with
respect to each variable separately) on X = Y 2 with Y = [0; 1] which for di¤erent pairs of real
numbers (x; y) would always assume di¤erent values.

5 Conclusion

This paper has produced results on two aspects of representation. The �rst set of results
(Theorem 1, 2 and 3) distills the Wold approach and clari�es that monotonicity plays no role
in obtaining representation. We provide several examples to show that our results cannot
be improved upon by either dropping or weakening the conditions scalar continuity and non-
emptiness.

Our second contribution addresses the role of substitution possibilities for an order to be repre-
sentable � we show, by means of an example, that a monotone order can be constructed with
no substitution possibilities (the indi¤erence class for each x is a singleton) however, the order
is representable. In view of our Theorem 1 and Chipman (1960; pp. 214) Theorem 3.3 (which
he proves using an axiom of substitution), the present example provides a clear limit to the
intuitive appeal that implications of substitution possibilities can have for representability.

9Actually, Banerjee (1964, p.161) goes on to say,�Thus iso-utility points (i.e., indi¤erence classes) necessarily
exist if we start from a real-valued utility function.� But, clearly, he means continuous real-valued utility
function, in view of the argument he has provided
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6 Appendix

6.1 Proof of Theorem 1, 2 and 3

This appendix collects the proofs of the main results (Theorem 1, 2 and 3).

Theorem 1 If a binary relation % de�ned on X �X satis�es O, SC and NE, then there is
some u : X ! R representing % in the sense of (2).

Proof of Theorem 1: We will demonstrate that % is representable by showing the existence
of a countable order dense subset of X. Let Z = f�e : � 2 Y \Qg, where Q denotes the set of
rationals in R. Then Z is a countable set.

Consider any x; y 2 X with x � y. The sets A(x) and B(y) are non-empty closed subsets of
Y by condition SC. Further, they are disjoint. [For if there is some � 2 A(x) \ B(y); then
�e % x � y % �e; which contradicts condition O]. Since Y is an interval of R, and hence a
connected set, we cannot have A(x)[B(y) = Y: Thus, there is some �0 2 Y; such that �0 =2 A(x)
and �0 =2 B(y): That is, x � �0e and �0e � y: Since �0 2 Y; we can �nd a sequence f�ng of
rationals in Y , such that �n ! �0 as n!1.

We claim that there is N(x) 2 N; such that for all n � N(x); we have x � �ne: For, if this
does not hold, then there is a subsequence f�nrg of f�ng; such that �nr ! �0 as nr !1; and
�nre % x for all nr: Since A(x) is a closed subset of Y by condition SC, we must therefore have
�0e % x; which contradicts the fact that x � �0e: This establishes the claim. We can similarly
establish the claim that there is N(y) 2 N; such that for all n � N(y); we have �ne � y:

Pick any n � maxfN(x); N(y)g: Then, we have x � �ne � y: Since �ne 2 Z; we have now found
an element z 2 Z such that x � z � y: That is, the preference order % on X has the countable
order dense property on X and is therefore representable in the sense of (2) by Lemma II in
Debreu (1954). �
Theorem 2 If % a binary relation de�ned on X �X satis�es O, SC and CE, then there is
some u : X ! R representing % in the sense of (2).

Proof of Theorem 2: Recall that the subset X n NA [ NB is denoted by Z. The �rst step
of the argument is to verify that there is some v : Z ! (�1; 1) such that v represents the
restriction of % to Z. Observe that the diagonal D of X is a subset of Z�this follows from
noting that for any �e 2 D, re�exivity implies that NE holds. By Theorem 1 (notice that on
Z the binary relation satis�es both SC and NE in addition to O and as D � Z, the arguments
from Theorem 1 apply) there is a function v̂ : Z ! R that represents % restricted to Z. A
suitable transformation10 of v̂ provides a v : Z ! (�1; 1) that represents % on Z � Z.
10For any a < b, we can de�ne v : Z ! (a; b) by

v(z) =
(b� a)
�

arctan v̂(z) +
a+ b

2
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We will now show that restriction of % to the set NA and NB are representable. Consider the
class of sets �A; by CE, �A is countable and can be written as fE1; E2; :::g. De�ne a binary
relation ��on �A � �A by E �� E 0 i¤ x � y for all x 2 E and y 2 E 0. We will show that �� is
a asymmetric and negatively transitive binary relation on �A � �A. Asymmetry of �� follows
from the asymmetry of �. To show that �� satis�es negative transitivity let :(E �� E 0) and
:(E 0 �� E 00) for distinct sets E;E 0 and E 00 in �A. We will verify that :(E �� E 00) holds.
Since :(E �� E 0) and :(E 0 �� E 00) holds, there exists x 2 E, x01; x02 2 E 0 and x00 2 E 00 such
that x01 � x and x00 � x02 holds (note that since E and E 0 are distinct, any pair of elements
from E � E 0 must be strictly ordered). Since x01; x02 2 E 0 we must have x01 � x02 implying
x00 � x by transitivity. This shows that :(E �� E 00) holds. By Theorem 1.3.1 in Bridges and
Mehta (1995), there is w : �A ! (1; 2) that represents �� (the range can be chosen to be any
interval by Footnote 8). De�ne vA : NA ! (1; 2) by vA(x) = w(E(x)), where, E(x) is the
unique indi¤erence class to which x belongs to (Property 1). A similar argument establishes
the existence of a function vB : NB ! (�2;�1) such that vB represents % restricted to NB.
To complete the argument de�ne u : X ! R by

u(x) =

8<:
vA(x) x 2 NA
vB(x) x 2 NB
v(x) x 2 X nNA [NB

We are left to verify that u represents %. For x � y, can arise only when x, y both belong to a
particular indi¤erence class of either NA or NB or they are indi¤erent element of Z. In either
case the de�nitions of vA; vB and v can be used to conclude u(x) = u(y). Let x � y. If x; y are
both in either NA; NB or Z, then the fact that vA; vB and v are representations of % restricted
to NA, NB and Z respectively allows us to conclude u(x) > u(y). The only other possibilities
for x � y are x 2 NA and y 2 Z [ NB or x 2 Z and y 2 NB (by Property 3). In each of
these instances of strict ordering, the choice of range of vA; vB and v yields the required strict
relation u(x) > u(y). �
Theorem 3 If % de�ned on X�X satis�esWID andW, then there is some u : X ! R that
represents % in the sense of (2).
Proof of Theorem 3: The result is obvious if for each x, there is a unique � satisfying the
Wold condition W. However, under assumption W there is no guarantee that the �e on the
diagonal to which x is indi¤erent be unique. The crux of the argument rests on the following
observation, which we state and use without proof for now.

Observation 1 . For each x 2 X, we must have (inf I(x); sup I(x)) � I(x).

De�ne u : X ! R by u(x) = (1=2)(inf I(x) + sup I(x)). We demonstrate that u indeed
represents %. Let x; x0 be such that x � x0. In this case, I(x) = I(x0), which immediately
implies that u(x) = u(x0) as was needed. Suppose now for x; x0 2 X we have x � x0. By

for all z 2 Z. It can be checked easily that v also represents % on Z � Z.
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construction u(x) 2 (inf I(x); sup I(x)), which yields x � u(x)e (using Observation 1) and
x0 � u(x0)e. Now x � x0 implies

u(x)e � u(x0)e. (14)

UsingWID we must have
u(x) � u(x0). (15)

We now need to rule out the possibility u(x) = u(x0). If u(x) = u(x0) holds, then u(x0) 2
(inf I(x); sup I(x)) which yields (from Observation 1) u(x0) 2 I(x) implying u(x0)e � x � u(x)e,
a contradiction to (14). Thus, u(x0) 6= u(x) must hold. Now using (15) we conclude that
whenever x � x0 we must have u(x) > u(x0).

We conclude by providing a short proof of Observation 1.

(i) If �1 < �2 be such that �1; �2 2 I(x), then (�1; �2) 2 I(x). Assume � 2 (�1; �2), then �1e -
�e - �2e (follows from WID) and �2e - �1e (as �1; �2 2 I(x)) implies (using transitivity)
�e � �1e � x. Thus, � 2 I(x).

As I(x) is non-empty subset of the real line (byW) it has a well de�ned (unique) supremum
and in�mum. If sup I(x) = inf I(x), then W implies that the intersection of the indi¤erence
class I(x) with the diagonal is unique. When inf I(x) < sup I(x), given � 2 (inf I(x); sup(I(x))
there exists �1 < � < �2 such that �1; �2 2 I(x). Observe that in this case [�1; �2] 2 I(x) (by
(i)) and hence � 2 I(x), as was needed. This concludes the proof of Observation 1 and hence
of the main result. �

6.2 Proof of Observation

We present in this section the proof of Observation from section 4.3.2.

Observation Let 1 � p0 > p � 0 and faig and fa0ig be the standard binary expansions of p
and p0 respectively. Denote m(p; p0) by r. Then (a) a0r = 1; ar = 0 (b) there is some n � (r+1)
such that (a0n � an) 2 f0; 1g (c)

(4=3)
4r

� [f(p0)� f(p)] � (2=3)
4r
.

Proof : Let a and a0 denote the sequences faigand fa0ig, the binary representations of p; p0
respectively. Since p 6= p0 there is some i for which ai 6= a0i holds, which guarantees that
m(p; p0) is well de�ned. There are two possibilities: (i) a0r = 0 and ar = 1; (ii) a0r = 1 and
ar = 0.

Suppose (i) is true then,

p0 � p =
1P
n=r

(a0n � an)
2n

= � 1
2r
+

1P
n=r+1

(a0n � an)
2n

� � 1
2r
+

1P
n=r+1

1

2n
= 0
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which contradicts the fact that we are given p0 > p. Thus, (i) cannot be true, implying (ii)
must hold verifying (a). For ready reference let us make note part (a) explicitly.

If 1 � p0 > p � 0, then a0r = 1 and ar = 0, where r = m(p; p0). (16)

Now consider the possibility that (a0n � an) = �1 for all n � r + 1, then

p0 � p =
1P
n=r

(a0n � an)
2n

=
1

2r
+

1P
n=r+1

(a0n � an)
2n

= � 1
2r
�

1P
n=r+1

1

2n
= 0

would again be in violation of the assumed ordering p0 > p. This shows that (b) must also be
true.

To show (c) evaluate the di¤erence [f(p0)� f(p)] as follows

[f(p0)� f(p)] = (a0r � ar)
2r

+
1P

n=r+1

(a0n � an)
4n

=
1

4r
+

1P
n=r+1

(a0n � an)
4n

>
1

4r
+

1P
n=r+1

(�1)
4n

=
1

4r
� 1

4r+1
4

3
=
1

4r
2

3
> 0. (17)

The second line of (17) follows from the �rst line using (16) and strict inequality in the the
third line follows from noting that (a0n� an) > �1 for at least some n � r+1. This shows that
[f(p0) � f(p)] � (2=3)

4r
. From the second line of (17) using (a0n � an) � 1 for all n � r + 1 we

obtain

[f(p0)� f(p)] = 1

4r
+

1P
n=r+1

(a0n � an)
4n

� 1

4r
+

1P
n=r+1

1

4n
=
1

4r
4

3
(18)

proving (c). �
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