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ABSTRACT 

Measurement error is often deliberately added to data in order to protect the confidentiality of human 

subjects. For example, variables such as birth date and district of residence are often coarsened, and 

sensitive survey questions may be asked in a way that deliberately induces noise to encourage truthful 

reporting. We focus on measurement error in spatial data, where a perturbation vector consisting of a 

random distance at a random angle is added to geographic coordinates. The use of perturbed data as 

explanatory variables in a regression model will generally make naïve estimates of all parameters biased 

and inconsistent. 

 

We develop a general method for unbiased and consistent estimation for cases in which an explanatory 

variable is deliberately reported with error. Our method replaces the mismeasured variable with the 

expectation of the true variable and relies on knowledge of both the form of the measurement error 

and the underlying distribution of the true variable. We show how our method can be applied to 

several examples and conduct a Monte Carlo simulation exercise on an artificial dataset to show how 

replacing mismeasured distances to an exposure with expected distances using numerical integration 

over all possible true locations yields unbiased and consistent parameter estimates. 

 

KEY WORDS 

Measurement error; Data privacy; Demographic and Health Surveys (DHS); Numerical integration; 
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1. INTRODUCTION 

It is well known that measurement error in an explanatory variable in a regression usually biases the 

estimate of its coefficient towards zero (attenuation bias) and can render the coefficient estimates on 

all variables inconsistent. Usually, measurement error is inadvertent and its structure is unknown. 

Various approaches have been proposed to dealing with such measurement error, including regression 

calibration (Hardin et al. 2003; Spiegelman et al. 1997) and maximum likelihood methods (Rabe-

Hesketh et al. 2003a, b,p.). In some instances, however, measurement error is deliberately added to 

reported data in order to prevent respondents from being identified and to protect their 

confidentiality. For example, variables such as a respondent’s age are often coarsened such that the 

year and month of birth, but not the day, are reported. Similarly, a dataset may report a household’s 

state of residence but not a smaller sub-unit (e.g. district, township, village), which together with other 

information in the dataset may identify the respondent. In some cases the measurement error may be 

built into the way the data is collected. The randomized response technique, which generates a random 

response by the respondent, has been used for questions on sensitive topics, such as sexual activity, 

where people may not want to reveal the information to the interviewer. For example, a respondent 

can be asked to throw a die privately and respond “no” on a one, and “yes” on a six, but answer the 

question truthfully on other numbers. Previous studies have proposed how to analyze such a 

randomized response as the dependent variable in a regression (Blair et al. 2015); our method shows 

how to such mismeasured responses as explanatory variables.       

 

The motivating example that we examine is the case of adding perturbations to spatial location data 

in the Demographic and Health Surveys (DHS), which are nationally representative cross-sectional 

surveys that cover a range of health topics (USAID and ICF Macro International 2014). To protect 

the identity of interviewed households, the DHS masks the precise location data that are collected as 
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part of the survey (Burgert et al. 2013; Perez-Heydrich et al. 2013). Reported location coordinates in 

the DHS are perturbed by adding a randomly generated distance, at a randomly generated angle, to 

the true location. This perturbed location data is frequently used by researchers to generate distance 

measures, for example, by measuring the minimum distance from the displaced respondent location 

to the known locations of health facilities or to other locations such as roads, rivers, schools, or 

markets. In such cases, distances that are generated from the perturbed location data will be measured 

with error. 

 

Monte Carlo simulation studies of the effect of using perturbed location rather than actual locations 

to measure distance to an exposure have confirmed a large downward bias in parameter estimates 

(Arbia et al. 2015), and similar results have been found in a study where the actual location data is 

known and results using the actual locations are compared to those when using perturbed locations 

(Elkies et al. 2015). Adjusting for this bias may be important for our understanding of some important 

mechanisms. For example, some health studies that used perturbed location data frequently found 

that measured distance to the nearest health facility was not significantly associated with child mortality 

(Lohela et al. 2012), while other studies that used actual distances find significant effects (Schoeps et 

al. 2011; Karra et al. 2016). 

 

While the structure of the measurement error that is added to location data is known, it is very 

complex, thereby making it difficult to recover good estimates of the actual location and distances to 

exposures. For example, while it can be shown that the expected measurement error in distances has 

positive mean and is bounded when measuring the distance to a fixed point (Elkies et al. 2015), when 

measuring distance to the nearest of a set of facilities, it is possible that the “nearest” facility may 

change when noise is added to the respondent location.  If we assume that both the distributions of 
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actual distances, and of the measurement errors in distances that are induced by using perturbed 

locations are independent and normally distributed, then we can apply the regression calibration 

method (Warren et al. 2016). However, the assumption of normality is generally not true (Arbia et al. 

2015; Elkies et al. 2015). 

 

Rather than deal with a specific case, we develop a theory that allows unbiased and consistent 

estimation of any linear regression model in which we have a known distribution of measurement 

error in an explanatory variable. In particular, we assume that the structure of the measurement error 

(the algorithm or process that was used to generate the error) is known to the researcher. We begin 

by showing that we can consistently estimate the linear regression so long as we can first obtain the 

expected value of the true variable of interest given the perturbed data for each observation. We show 

that we can construct this expected value by integrating over all the possible actual values of the true 

data, weighted by the conditional probability of the data values given the observed perturbed data and 

other observed variables in the dataset. These conditional probabilities can be derived provided that 

we know both how the measurement error is generated and the distribution of the true variable for 

observations in the dataset. Essentially, we replace our perturbed variables with new variables that 

contain only Berkson errors that allow consistent estimation in linear models (Fuller 2009). 

 

Our method is related to the regression calibration approach; we show that regression calibration is 

equivalent to our approach when the underlying distributions of the true variable and the measurement 

error are both independent and normally distributed. However, our approach imposes no restrictions 

on the form of the underlying true distribution of the variable or of the measurement error. While we 

obtain unbiased and consistent estimates, we show our parameter estimates are less precise (i.e. have 
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larger standard errors) than those estimates that could be obtained if we knew the true values of the 

variable in the survey. 

 

In some sample cases that we examine the integration needed to calculate the required expected values 

may be straightforward and the value of the integral can be can be calculated analytically. In complex 

cases, however, the integration may be difficult, but we show that the value of the integral can be 

approximated arbitrarily closely by numerical methods. 

 

Our approach requires an independent source for obtaining the underlying true distribution of the 

misreported data. For example, if we want to link a random sample of individuals to exposures at the 

district level, but the data only reports a cruder measure such as state of residence, we require 

independent information on the population numbers in each district in the state to find the conditional 

probably that a particular individual resides in a particular district. Similarly, for perturbed location 

data, we require a population density map, to give the unconditional probability an individual resides 

at a particular location. 

 

Given that we know the form of the measurement error it may be possible to invert the distribution 

of observed perturbed data to generate the underlying distribution of the true data, which would 

remove the need for an external source for this underlying distribution. We show that the distributions 

of the true and perturbed observed variables are linked by a non-homogenous Fredholm integral 

equation of the first kind (Polyanin and Manzhirov 2008). The problem of solving such equations for 

the unknown true distribution, given a perturbed observed distribution, has been extensively studied 

(Hansen 1992). In general, however, this “inverse” problem is not well posed – we cannot guarantee 

existence or uniqueness of a solution. This is obvious for the case where the data is coarsened; if we 
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have information on an individual’s state of residence but not her district, any possible distribution of 

the state’s residents across the state’s districts is compatible with the observed state level data, and 

there will be multiple solutions to the integral equation linking the individual’s actual district of 

residence to her observed state of residence. In this case, external data on the distribution of the 

population across districts is required for our method. However, in some simple cases, for example 

the randomized response technique for a binary variable, we show that inversion is possible, and the 

underlying distribution of the underlying variable can be constructed from the observed perturbed 

data. 

 

In Section 2, we derive our theory that allows for consistent estimation with induced measurement 

error in one explanatory variable. We also describe a numerical method for calculating the expected 

value of the explanatory variable for complex cases where the integral cannot be calculated analytically. 

In Section 3, we extend our results to the case where several variables are measured with error and the 

model to be estimated has interactive effects. This is important for our motivating example of location 

data, where the two dimensional coordinates of the location are perturbed. In Section 4, we provide a 

number of examples that illustrate how our method can be used. We begin with two examples of 

coarsening, for discrete and continuous underlying variables, where the variable is reported only at a 

higher level of aggregation. We then show how out method can be applied when subjects provide 

randomized responses. Our fourth example is the case in which a normally distributed noise term is 

added to a normally distributed underlying variable, and we show that our method gives results that 

are the same as using the regression calibration approach. In these four simple examples, we solve the 

integral explicitly to derive the expected value of the true variable given the reported data. In Section 

5, we apply our approach to the more complex case where the explanatory variable of interest is 

distance from the individual’s location to the nearest facility. In this case, the integral required to 
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calculate the expected distance given the perturbed location data cannot be calculated analytically and 

we approximate it through numerical integration over all possible true locations for the individual. We 

conduct a Monte Carlo simulation study to show that our method overcomes the bias in the estimates 

that results from directly using perturbed data. 

 

2. THEORY 

We begin with a simple case in which the variable that is measured with error has a true value that is 

a real number x  drawn from the set X . Suppose we wish to estimate a relationship of the following 

form: 

 i i i iy g x z         (1) 

where 
iy  is the outcome,  ig x  is a known function g  of the variable 

ix , 
iz  is a covariate 

(generalization to many covariates is straightforward), and 
i  is a random error term with mean zero 

and that is independent of both ix  and iz . In the data, ix  is not observed, but we do observe im , 

which is a perturbation of 
ix , where we assume that the probability density function of the error 

generation process, denoted  |p m x  is known. 

 

It is well known that simply replacing ix  with im  will typically make the results estimates of Equation 

1 inconsistent and biased. However, suppose we can calculate the expected value 

     | , | ,i i i i i
X

E g x m z g x p x m z dx      

Now set 

    | , zi i i i iu g x E g x m       
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Here, 
iu  is the gap between the true value  ig x and our calculated expected value. By the law of 

iterated expectations, we have 

 

       

   

| , z

| , z | , z | , z

| , z | , z 0

i i i i

i i i i i i i i i i

i i i i i i

E u E g x m

E g x E g x m E E g x m E g x m

E g x m E g x m

    

                 

        

 

So 
iu  is an error term with expected value zero for all values of   | , zi i iE g x m   and so is 

uncorrelated with   | , zi i iE g x m    .  

 

Again by the Law of Iterated Expectations and the fact that     | , zi i i i ig x E g x m u    , we have 

        | , | , | , | , | ,i i i i i i i i i i i i i i iE g x m z E E g x m z u m z E g x m z E u m z               
 

Hence, we have  | , 0i i iE u m z   for all ,i im z , and we see that 
iu  is an error term with expected value 

zero for all values of ,i im z and is therefore uncorrelated with both 
ix  and 

iz .  

 

Since     | , zi i i i ig x E g x m u    , we can rewrite the estimating equation as 

   ,| ,i i i i i i i i iy E g x m z z v v u             (2) 

where the error term i i iv u    is mean zero and uncorrelated with either of the explanatory 

variables,   | ,i i iE g x m z     or  iz . 

 

It follows that by replacing the unknown  ig x  in the regression with   | ,i i iE g x m z   , we can 

estimate Equation 2 using the standard Ordinary Least Squares (OLS) methods to obtain consistent 
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and unbiased estimates of  ,  , and  . Moreover, since all of the classical assumptions of OLS are 

satisfied following the correction, the standard errors of the parameter estimates will also be correct.  

While we have unbiased and consistent estimates, the standard deviation of the error term 
iv  , using 

our calculated expected values of the explanatory variable, will be larger than the standard deviation 

of the error term 
i  when estimating using the true values. This will make our estimates less precise, 

with higher standard errors, than if we used the true explanatory variable. 

 

However, these results depend crucially on the fact that the underlying relationship that we want to 

estimate is linear. 

 

In order to calculate   | ,i i iE g x m z   , we note that by using Bayes rule, the term can be written as 

       
   

   

|
| , | ,

|

i

i

i z

i i i i i
X X

i z
X

p m x p x
E g x m z g x p x m z dx g x dx

p m x p x dx
     


 

Without loss of generality, we assume that the error generation process for im  depends only on ix  

and not the value of iz . We can calculate this expectation, provided that we know the mechanism that 

was used to induce the error structure,  |ip m x , and we know the underlying probability density 

function of the true values x  given iz , given by  
iz

p x . In order to calculate this expectation, we 

need to know the process generating the perturbed measure im  given the true value ix  and also the 

true underlying distribution of ( , )x z  so we can calculate the marginal distribution  
iz

p x of x  given 

a particular observed value iz  .  
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It is important to condition the expectation on covariates when they are present since they may be 

correlated with the unobserved variable 
ix  and may also contain information on it over and above 

what is present in the perturbed value 
im . In what follows, we assume for notational simplicity that 

we estimate a model without covariates so that we have 

       
   

   

|
| |

|

i

i i i
X X

i
X

p m x p x
E g x m g x p x m dx g x dx

p m x p x dx
     


 

While this can be calculated in principle, it may be difficult to calculate analytically if the functions are 

complex. For complex cases, suppose we divide the range of x , given by the interval  min max,x x , into 

an evenly spaced grid with grid with 1S   points and S  intervals, at 
sx  for 0,...,s S , where 

0 minx x  and 
maxSx x . Let the mesh of the grid be denoted as 

 max min

1s s

x x
h x x

S



     

Then, we have that for all 0  , there exists a 0 0h   such that for 0h h , we have 

 
   

   
 

   

   

1

1
0

0

| |

| |

S
i i s s

s SX
s

i i s sX

s

p m x p x p m x p x h
g x dx g x

p m x p x dx p m x p x h









 
 

 

by the definition of the Riemann integral, provided the functions  g x ,  |ip m x , and  p x  are 

continuous almost everywhere, that is, the set of points at which there are discontinuities are of 

Lebesgue measure zero. For example, functions with any finite set of discontinuities are continuous 

almost everywhere (Rudin 1976). If the range of x  is infinite, then we can replace the summation with 

fixed limits  min max,x x  and we can sum over a wider range as S  increases, i.e.    min max,x S x S   .  

Provided that this range goes to infinity, while the mesh converges to zero, then as S increases, we 

will obtain the same result. It therefore follows that we can approximate the continuous integral 
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arbitrarily closely through numerical integration by taking a large number of grid points S , with 

sufficiently small mesh h , over all possible values of x . 

 

In some cases, we may know the underlying distribution of the true values of x , given by  p x , from 

external data. For example, if the sample is a random draw from an underlying population, and we 

know the population density  p x  for the underlying population, then this will also be the underlying 

distribution of x  in our sample. The distribution  p x  should have the property that given the 

mechanism for producing the measurement error, the induced distribution of measured outcomes 

matches the empirical distribution  q m  of the data, that is: 

     |
X

q m p m x p x dx   
(3) 

This is useful for checking the validity of the underlying distribution  p x  if it is based on external 

information. In the absence of external information, we can, in principle, construct an estimate of the 

underlying distribution  p x  based on a solution to Equation 3. Let    , |Z m x p m x , then  

     ,
X

q m Z m x p x dx   
(4) 

Equation 4 is a non-homogenous Fredholm integral equation of the first kind with kernel  ,Z m x  

(Polyanin and Manzhirov 2008). We can think of the integral in Equation 4 as a linear operator T  

from the Hilbert space of all square integrable functions on the interval  min max,x x  into itself, given 

by  2

min max,L x x . That is  q T p  where  2

min max, ,p q L x x . The problem of finding the inverse 

of the equation, that is the underlying distribution  1p T q , given the kernel  ,Z m x  and some 

observations from the distribution  q m  has been extensively studied (Hansen 1992). Inverse 
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problems of this kind are called “well posed” if a solution exists, is unique, and varies continuously in 

q . Unfortunately, in many cases, non-homogenous Fredholm integral equation of the first kind are 

not well posed in the sense that they do not have a unique solution. For example, in our examples 

section below, we consider the case where location data for a respondent is coarsened to protect 

confidentially by reporting only a larger administrative unit, such as state of residence and not a smaller 

administrative unit, like district, while the exposure to a covariate that affects the outcome for the 

respondent is measured at the district level.  In this case, any probability distribution over the districts 

that adds up to the correct observed total for the state will be compatible with the observed data, and 

the solution of the Fredholm integral equation for the distribution of the true data will not be unique. 

Given the possibility of lack of uniqueness we propose the use of external data to determine the 

underlying true distribution on the mismeasured variable.   

 

3. MULTIPLE VARIABLES WITH INDUCED MEASUREMENT ERROR AND 

INTERACTIVE EFFECTS 

In some cases there may be several variable measured with error and interactive effects. This will have 

particular relevance in our application to perturbed location data, which is two dimensional. To make 

things explicit, suppose that we have two explanatory variables and an interactive effect 

  1 1 2 2 1 2,i i i i i iy x x g x x           

where both  1 2,i ix x  are measured with error and where we observe only the mismeasured variables 

 1 2, iim m . 
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Let     2 1 21, | ,i ip m m x x be the known distribution of the mismeasured observation given the true 

pair  1 2,i ix x . Note that we allow for the possibility that the each mismeasured variable depends on 

both true variables. For each observed pair  1 2, iim m , we wish to calculate 

      
1 2

1 2 21 1 1 2 1 2 1| , , | ,i i
X X

i i iE x m m x p x x m m dx dx       

      

      1 2

1 2

1 1 2 1 2

1 2 1

1 2 1 2 2 1

2

1 2

, | , ,

, | , ,
X X

i
X

i

X

i

i

p m m x x p x x
x dx dx

p m m x x p x x dx dx
  

 
 

Similarly 

      
2 1

1 2 22 2 1 2 1 1 2| , , | ,i i
X X

i i iE x m m x p x x m m dx dx       

      

      2 1

2 1

1 1 2 1 2

2 1 2

1 2 1 2 1 2

2

1 2

, | , ,

, | , ,
X X

i
X

i

X

i

i

p m m x x p x x
x dx dx

p m m x x p x x dx dx
  

 
 

Finally, we calculate the interactive effect 

          
2 1

1 2 1 22 1 21 1 22 1, | , , , | ,
X X

i i i iE g x x m m g x x p x x m m dx dx       

 
      

      2 1

2 1

1 1 2 1 2

1 2 1 2

1 2

2

1 2 21 2 1

, | , ,
,

, | , ,

i i

i i

X X

X X

p m m x x p x x
g x x dx dx

p m m x x p x x dx dx
  

 
 

Note that we need to know the underlying joint distribution  1 2,p x x  to calculate all three of these 

expectations. The mismeasured value of one variable may contain information on the value of the 

other unless the underlying joint distribution of the two variables is independent. Given these 

expectations, we can then estimate 

       1 2 2 2 2 21 2 21 22| , | , , | ,i i i i i i i iy E x m m E x m m E g x x m m v                
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where, as before, each expectation is uncorrelated with 
iv , and this equation can then be estimated by 

standard methods. 

 

4. SIMPLE EXAMPLES 

We now highlight several cases where our method may be used to correct for various types of 

measurement error that are induced in the exposure variable. 

 

4.1. Measuring Exposure With Coarsened Discrete Variables  

Suppose the model which we wish to estimate includes exposure variables measured at a low 

geographical level of aggregation, such as districts, while the survey data only has location measured 

at a higher level of aggregation, such as states. We would like to run the regression with the true 

exposure value for each individual based on their district of residence.  Let 
kid  be a set of k  district 

dummies variables, one for each district, each of which takes the value 1 if the individual 𝑖 is in district 

k  and 0 otherwise. The survey data, however, only contains a state-level indicator 
im  which takes 

different values for different states. Let our functional form for the exposure of individual i  be  

 i ki

k

x x k d  

where  x k  is the exposure level in district k . We assume that we have prior data on the probability 

that an individual in the sample lives in district k , given by  p k . If the sample is a random sample 

of the whole population, then this probability will simply be the proportion of the total population 

that lives in district k . For more complex sample designs,  p k  will depend on the structure of 

stratification and on the sample weights. Now, it is straightforward to show that the expected value 

of 
ix  given the state of residence measures im  is 
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( ) ( )
( ) ( ) ( ) ( )

( ) ( )

i k k

i i k i

k k i k k

k

p m d p d
E x m x k p d m x k

p m d p d
  


 

Now, note that  ( )kip d p k . Also, ( ) 1i kp m d   if district k  is in state 
im  and zero otherwise. Let 

 ( ) : ( ) 1i i kK m k p m d  . This is the set of districts that make up the state 
im  . Therefore 

( )

( )

( ) ( )

( )
( )

i

i

k K m

i i

k K m

x k p k

E x m
p k










 

where  p k  is the prior probability that an individual lives in district k . Our method is therefore 

equivalent to constructing the regressor as the population weighted exposure of people in the state 

using the relative district population sizes as weights. This approach is precisely what a researcher 

would have done intuitively to measure the average exposure level of an individual in the state.  

 

While this method is equivalent to our approach in the simple case where we seek the expected 

exposure, it will also apply to more complex cases. 

 

4.2 A Continuous Variable Reported in Intervals 

In some cases, continuous variables may be reported as a discrete set of intervals. For example, rather 

than report household income directly, a respondent may be presented with a set of household income 

intervals and asked to choose the household income interval to which they belong. This discretization 

of the continuous variable may serve to protect respondent confidentiality or may increase response 

rates to a sensitive question. Let ix  be the true value of the continuous variable which has known 

distribution ( )p x  while  1, 2,...,im K  is the income interval that is reported by respondent i . Let 
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kx  be the lower bound of income interval k  and let 
1Kx 
 be the upper bound on the last income 

interval K . Note that it is possible that 
1x    and 

1Kx    . Then, we have 

       
   

   

|
| |

|

i

i i i
X X

i
X

p m k x p x
E g x m k g x p x m k dx g x dx

p m k x p x dx


     


 


 

  
 

 

1

1

k

k
k

k

x

xx

x

p x
g x dx

p x dx




 


  

If ( )g x x  and ( )p x  is the uniform distribution, and each interval is bounded, this reduces to  

1 1

1( ) 2

k

k

x
k k

x
k k

x xx
dx

x x

 






  

which is the average value of x  in the observed interval. However, in more complex cases, where 

( )g x  is nonlinear, or ( )p x  is not uniform, an explicit calculation of the integral is required through 

numerical integration over the empirical distribution of the continuous variable. 

 

4.3 Randomized Responses 

Suppose a question has a binary response that takes on a value of 0 or 1. The true value of the variable 

for respondent i  is  0,1ix  . However, in order to help elicit a truthful response, the respondent is 

asked to give a random response under the following conditions: with probability q , she answers 0, 

with probability q  she answers 1, and with probability 1 2q  she answers truthfully.  For example, if 

the respondent privately throws a die and answers 0 on a score of one, 1 on a score of six, and 

truthfully otherwise, we have 1
6

q  . This method of responding to the question implies that the 

interviewer cannot infer exactly the true answer given the randomized response. Let im  be the random 

response that is provided by the respondent. We then have: 
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( 1) ( 1)
( ) ( 1 )

( 1) ( 1) ( 0) ( 0)
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p m x p x
E x m p x m

p m x p x p m x p x

 
  

    
 

( 1 1) ( 1)
( 1) ( 1 1)

( 1 1) ( 1) ( 1 0) ( 0)

i ii
i i i i

i i i ii i

p m x p x
E x m p x m

p m x p x p m x p x

  
    

      
 

(1 ) ( 1)

(1 ) ( 1) ( 0)

i

i i

q p x

q p x qp x

 


   
 

( 0 1) ( 1)
( 0) ( 1 0)

( 0 1) ( 1) ( 0 0) ( 0)

i ii
i i i i

i i i ii i

p m x p x
E x m p x m

p m x p x p m x p x

  
    

      
 

( 1)

( 1) (1 ) ( 0)

i

i i

qp x

qp x q p x




   
 

Hence, we can calculate the expected value of the true binary response if we know the underlying 

prevalence of the true response ( 1)ip x   in the data. However, in this simple case, the Fredholm 

integral equation is invertible. Given this underlying unknown prevalence is the same for each 

individual, we have: 

( 1) (1 2 ) ( 1)p m q q p x      

And hence 

 
( 1)

( 1)
(1 2 )

p m q
p x

q

 
 


 

Let 
1

1
*

N

i

i

m m
N 

   be the mean of the observed randomized response. In large samples, this mean 

will converge to ( 1)p m   in the population, and we can use this to calculate 

* *
( 1) , ( 0) 1

(1 2 ) (1 2 )

m q m q
p x p x

q q

 
    

 
 

Note that, by construction, * 1q m q   , which implies that we can calculate the mean of the true 

underlying response given the mean of the randomized response. In particular, we have: 
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(1 )

(1 )( * )(1 2 )
( 1)

(1 )( * ) (1 *)* *
(1 ) 1

(1 2 ) (1 2 )

i i

m q
q

q m qq
E x m

q m q q q mm q m q
q q

q q




 
  

      
   

  

 

*

( * )(1 2 )
( 0)

( * ) (1 )(1 *)* *
(1 ) 1

(1 2 ) (1 2 )

i i

m q
q

q m qq
E x m

q m q q q mm q m q
q q

q q




  

      
   

  

 

By replacing the observed randomized response with these expectations of the true underlying 

variable, we can then unbiasedly estimate the effect of the hidden true variable in a regression. 

 

4.4 Normally Distributed Additive Measurement Errors and Underlying Variables 

Suppose x  is known to be normally distributed with mean *x  and variance 2

x , and the measured 

value is 
i i im x u  , where 

iu  is a normally distributed error term with mean 0 and variance 2

u , then 

we have 

 
 

2
*

22

1
exp

22 xx

x x
p x



 
 
 
 

 

 and 

   
 

2

22

1
| exp

22

i

i i i

uu

m x
p m x p u m x



 
     

 
 

 

 

It therefore follows that 

   
   

   

|
| |

|

i

i i
X X

i
X

p m x p x
E x m xp x m dx x dx

p m x p x dx
  


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   

   
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2 22 2

1 1
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i

u xu x

X

i
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u xu x

x xm x

x dx
x xm x
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  

  

   
  

   
   


   
  

   
   





 

*x u
i

x u x u

m x
 

   
 

 
  

 

So if we know the distribution of the error 2

u  and the distribution of x , and hence *x  and 2

x , we 

can calculate  | iE x m  and replace this term in the estimating equation, Equation 1. 

 

This has a very close relationship with the regression calibration approach for normally distributed 

variables and measurement errors (Fuller 2009). Regression calibration assumes we have the perturbed 

normally distributed data 
im  but also a validation data set that has both true values of the variable and 

perturbed values. Regression calibration uses the validation dataset to estimate 
u  as the standard 

deviation of the normally distributed residuals from a simple linear regression of m on x . The method 

then uses the fact that, for normally distributed variables and for  i i im x u  , we have 
2 2 2

m x u   

, and hence we have 
2 2 2

x m u     to estimate the variance of x
2

x  from the variance of the 

measured observations 
2

m  and the estimate of the variance of the errors 
2

u . In our approach, we 

have an advantage in that we know 
2

u  as the variance of the error that is deliberately added to protect 

confidentiality, and so we do not need an external validation dataset. If we know the underlying 

distribution of x  is normal, we can calculate it mean and variance from the mean and variance of the 

observed data and the error mechanism. 
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5. PERTURBED LOCATION DATA AND DISTANCE TO EXPOSURE: A 

NUMERICAL INTEGRATION EXAMPLE 

The examples above allow for the explicit calculation of the integral or sum to give the expected value 

of the underlying true variable given the observed perturbed variable. However, this explicit 

calculation is not always possible, and we must therefore rely on numerical integration methods to 

estimate the expected value of the true exposure variable. We now examine the case of perturbed 

location data, an example where numerical integration has to be used. 

 

Suppose we have true location data for an individual i  given by a pair of coordinates  1 2,i ix x . These 

coordinates will exactly identify the location of the individual. To protect respondent confidentiality, 

suppose the data collection team perturbs the coordinates by randomly displacing the coordinates 

 1 2,i ix x  by a random angle that is uniformly distributed over 0 to 2  radians and by a random 

distance that is uniformly chosen between 0 and d  kilometers at this angle. The resulting displaced 

coordinates for this respondent are given by  1 2,i im m , which are then shared with the researcher. It 

is easy to see that the probability density function of the perturbed data give the true data is: 

    
   

   
   

2 2

1 1 2 2

2 21 2 1 2

1 1 2 2
2 2

1 1 2 2

0

, | , 1

2

i i i i

i i i i

i i i i

i i i i

m x m x d

p m m x x
m x m x d

d m x m x

    
  

  
    

     

 

 

Now, suppose we have a set of W  exposures located at locations  1 2,w w wr r r  for 1, ,w W .  

These may represent W   health facilities or other locations that may affect the outcome of interest. 

The function g  is given by the Euclidean distance from the individual to the nearest exposure unit 

(e.g. the nearest health facility), which is defined as follows: 
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         
2 2

1 2 1 2 1 2 1 1 2 2, min , , , mini i i i w w i w i w
w w

g x x d x x r r x r x r        

We then wish to estimate the relationship between the true minimum distance to a facility and some 

outcome 
iy  given by: 

 1 2,i i i iy g x x       

A naïve estimation of the equation above would use the reported location data  1 2,i im m  and run the 

following regression: 

 1 2, mi m m i i iy g m u     

where the function  1 2, mi ig m is the minimum distance from a reported location  1 2,i im m  to a 

facility. Estimates based on this approach are likely to be biased. 

 

Using our method for each observed individual’s location  1 2,i im m , we wish to calculate 

          
2 1

1 2 1 2 11 2 2 1 21 2, | , , , | ,i i ii ii
X X

E g x x m m g x x p x x m m dx dx       

 
      

      2 1

2 1

1 1 2 1 2

1 2 1 2

1 2

2

1 2 21 2 1

, | , ,
,

, | , ,

i i

i i

X X

X X

p m m x x p x x
g x x dx dx

p m m x x p x x dx dx
  

 
 

 

What we do is take each possible location for the individual and calculate the minimum distance from 

this location to a facility. We that calculate the expected minimum distance based on the probability 

that each location is the true location given the observed perturbed location. 

 

Exact calculation of this integral is not possible. However, we can approximate this expectation using 

our numerical integration method by taking a grid of points  1 2,j kx x  , for 0, ,j S  and 
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0, ,k S  that covers the complete 
1 2( , )i ix x  space. Let values of each coordinate lie in the range 

 0, X , then we have    01 1 02 20, , ; 0, ,S Sx x X x x X       . With equal spacing h  on each 

axis, that covers all possible locations of the individual, and we can calculate 

     
       

       
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1 2 1 2 1 2
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, | ,
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i i j k j k

i i j k

i

S S

S S

j k i kj jk k j

x xp xm m p h
E g x x m m

x
x x

x xm x x
g

p m p h

 

 

 
 

  

   
 

   
 

 
 

 

Given this expectation for each individual we can calculate the effect of the expected minimum 

distance on the outcome given by:  

   1 2 1 2, | ,i c c ii i iiEy x m vg x m       

Our theory implies that this estimator will be consistent and will recover the same value of   as if we 

used the actual location of each individual. We test this in a Monte Carlo simulation. We first generate 

a 100 x 100 grid space over which 100 health facilities and 1,000 respondents are located. In particular, 

we generate 100 facilities at locations  1 2,w w wr r r  for 1,...,100w   where each coordinate is 

randomly and uniformly distribution on the range  0,100 , that is  1 2, ~ 0,100w wr r U , and we 

similarly generate 1,000 respondents to be at their true locations  1 2,i i ix x x , where 

 1 2, ~ 0,100i ix x U . 

 

We calculate the minimum distance from each facility to the true respondent location, and we then 

generate an outcome variable iy , which we define by the following relationship: 

 1 21 1 ,i i i iy g x x      (5) 
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where  ~ 0,1i N  is a randomly drawn error term. That is we generate the data on the assumption 

that the true values of the parameters are 1, 1    . 

 

We then simulate perturbed location coordinates to their new location  1 2,i i im m m . We displace 

the respondent coordinates by a random distance d  that is uniform on the interval  0,5  and by 

random angle that is uniform on  0, 2 . This displacement algorithm implies that the probability 

density function of the perturbed data give the true data is: 
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  

  
    

    

 

 

Since our clusters are uniformly distributed across the 100 x 100 space, our expectation simplifies to 

 

      
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Our simulation approach has a number of steps. In each iteration, we undertake the following: 

1. We randomly draw 100 facility locations  1 2,w w wr r r  where  1 2, ~ 0,100w wr r U . 

2. We randomly draw 1000 individual locations  1 2,i i ix x x , where  1 2, ~ 0,100i ix x U . 

3. We calculate the true minimum distances 

         
2 2

1 2 1 2 1 2 1 1 2 2, min , , , mini i i i w w i w i w
w w

g x x d x x r r x r x r        
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4. We draw a random error term 
i  with  ~ 0,1i N  and generate  1 2,i i i iy g x x       

with 1, 1   . 

5. We estimate the relationship  1 2
ˆˆ ˆ,i x x i i iy g x x     , using the true minimum distance 

data, by OLS to give the estimated effect ˆ
x . 

6. We generate a displacement vector and then perturb each respondent 
ix  to a new location 

im  

using a randomly generated distance that is uniform on the interval  0,5  at a randomly 

generated angle in radians that is random and uniformly distributed on [0,2 ] . 

7. We generate the minimum distance measure for each perturbed individual location 

         
2 2

1 2 1 2 1 2 1 1 2 2,m min ,m , , mini i i i w w i w i w
w w

g m d m r r m r m r        

8. We estimate the relationship  1 2
ˆˆ ˆ, mi m m i i iy g m u    , using the perturbed minimum 

distance data, by OLS to give the estimated effect ˆ
m . 

9. We then calculate the expectation of the true minimum distance given by 

     
    

    

1 1
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p m m x x
E g x x m m g x x

p m m x x

 

 

 
 

    
 

 

by numerical integration.  

10. We estimate the relationship    12 21, |ˆˆ ˆ,i ii c c i i iy vE g x x m m        using the corrected 

expectation of the distance to nearest facility. 

11. We save the estimates. ˆ ˆ,x m   and ˆ
c for this iteration. 

We repeat Steps 1-11 to generate empirical distributions for the parameter estimates ˆ ˆ,x m   and ˆ
c , 

for 1,000 iterations. 

 



26 

 

 

 

Table 1 presents summary statistics from the simulation exercise set out in steps 1-11, in which we 

run 1,000 iterations over a grid mesh length of 1h   (a 100 x 100 mesh space) to generate empirical 

distributions for the parameter estimates. 

 

 Table 1: Summary Statistics from the Monte Carlo Simulation, 1,000 Iterations 

 Mean SD Minimum Maximum 

ˆ
x  0.9997 0.0094 0.9703 1.0301 

ˆ
x  1.0004 0.0587 0.8193 1.1965 

ˆ
m  0.8604 0.0151 0.8112 0.9085 

ˆ
m  1.7238 0.0951 1.4458 2.0546 

ˆ
c  0.9920 0.0170 0.9427 1.0460 

ˆ
c  1.0524 0.0945 0.7785 1.3634 

N 1,000    

 

As expected, the mean of the estimates ˆˆ ,x x   based on the true minimum distance data are very close 

to the true values of 1, 1   . The standard deviation of the estimates is small and the range is 

small and fairly symmetrical around the true values. However, when we run regressions using the 

perturbed location data to construct minimum distances, the estimate ˆ
m  is biased downwards. The 

mean of the estimate is well below the true value of 1  ; in fact, in all 1,000 simulations the estimated 

value is below one. The estimate of the intercept ˆ
mx is correspondingly biased upwards. When we use 

the expected value of the minimum distance given the perturbed location data as a regressor, the mean 

estimates using this corrected data, ˆˆ ,c c  , are again close to the true values of 1, 1   . However, 

the standard deviations and the ranges of the estimates are somewhat larger than what are observed 

for the true minimum distance data, which are expected given the greater noise in the regression error 

when using the corrected explanatory variable. Figure 1 shows the empirical distributions of the 

estimated values of   for our three different estimators using 1,000 iterations. 
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Figure 1: Empirical Distributions of Parameter Estimates for  , 1,000 Iterations 

 
Note: The vertical purple line indicates the true parameter value, 1  .  

 
In practice, applying our method to actual data may be somewhat more difficult. Firstly, the method 

that is used to generate the perturbed data may the more complex than what we have employed. In 

the data reported by the DHS, for example, urban locations are perturbed by up to 2 kilometers at a 

random angle, while rural locations are perturbed by up to 5 kilometers, and a further randomly 

selected 1 percent of rural locations are perturbed by up to 10 kilometers. Moreover, if the displaced 

location lands outside the geographical area that is being surveyed, the DHS takes a new draw of the 

displacement. While this perturbation process is more complex than we have employed, it is feasible 

to generate the probability distribution of the perturbed data for each underlying possible location in 

a grid and implement our method. For the purposes of demonstrating our method, we have assumed 

a uniform underlying distribution of the population; however, a more realistic application would 

require us to use a population density map to generate the underlying distribution of the population. 
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6. CONCLUSIONS 

In this study, we propose a general method for consistent inference under circumstances where an 

independent variable is deliberately measured with error. Our method is based on calculating the 

expected value of the true variable given the information we have, including the perturbed data that 

is reported. Our method relies on knowing how the measurement error is constructed and usually 

requires on knowing the underlying distribution of the underlying variable. We provide several 

examples of applications of the method; however, the method is applicable for any form of deliberately 

induced measurement error. We also conduct a Monte Carlo simulation of our method on an artificial 

dataset to show that replacing exposure data based on perturbed location with the expected exposure 

yields improved estimates in reasonable sample sizes. 
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