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Abstract: We propose a novel approach to estimate climate impacts and adaptation based on a 

decomposition of meteorological variables into long-run trends and deviations from them 

(weather shocks). Our estimating equation simultaneously exploits weather variation to identify 

the impact of shocks, and climatic variation to identify the effect of longer-run observed changes. 

We compare the simultaneously estimated short- and long-run effects to test for the presence and 

magnitude of adaptation. We apply our approach to the impact of climate change on air quality, 

estimating the climate penalty on ozone. Leveraging ambient ozone regulations, we find evidence 

of regulation-induced and residual adaptation. 
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1. Introduction 

It is unlikely that international organizations and the U.S. government will make progress on 

comprehensive mitigation programs to avoid damaging climate change1. Failure to achieve 

climate mitigation goals puts even more pressure on climate adaptation strategies, making it 

crucial to estimate climate impacts and adaptation properly, and understand the margins of 

adaptive response. Inspired by the macroeconomic literature on the effects of unanticipated 

versus anticipated shocks on the economy (e.g. Lucas, 1972, 1976), and by the labor literature on 

the importance of distinguishing transitory versus permanent income shocks in the estimation of 

intergenerational mobility (e.g. Solon, 1992, 1999), this study develops a new approach to 

measuring climate impacts and adaptation.  

The pioneer hedonic, cross-sectional approach to estimate the impact of climate change on 

economic outcomes (e.g. Mendelsohn, Nordhaus, and Shaw, 1994; Schlenker, Hanemann, and 

Fisher, 2005) has relied on the permanent, anticipated components behind meteorological 

conditions, but faces serious omitted variable bias. The panel fixed-effects approach (e.g. 

Deschenes and Greenstone, 2007; Schlenker and Roberts, 2009) exploits the transitory, 

unanticipated weather shocks, and deals with the bias, but identification of climate effects using 

weather variation is not trivial (Hsiang, 2016). Our unifying approach addresses those key 

challenges of the literature, provides a measure of adaptation by comparing short- and long-run 

effects (Dell, Jones, and Olken, 2009, 2012, 2014; Burke and Emerick, 2016), and, because these 

effects are novelly estimated in the same regression model, tests whether the magnitude of 

adaptation is statistically significant at conventional levels.  

A key element of our approach is the decomposition of meteorological variables into two 

components: long-run trends and weather shocks, the latter defined as deviations from those 

trends. Taking advantage of high-frequency data, we decompose temperature (and precipitation) 

into a monthly moving average incorporating information from the past three decades, often 

referred to as climate normal2, and a deviation from that lagged 30-year average3. This 

decomposition is meant to have economic content. Agents can only respond to climatic variables 
																																																								
1 According to the Fifth Assessment Report from the Intergovernmental Panel on Climate Change (IPCC, 2013), the 
warming of the climate system is unequivocal, and global temperatures are likely to rise from 1.5 to 4°C over the 
21st century, depending on the emissions scenario. 
2 Climate normals are three-decade averages of meteorological variables including temperature and precipitation. 
3 A graphical representation of our decomposition has been illustrated for Los Angeles county over the entire sample 
period of 1980-2013 in Figures A1 and A2, and for 2013 only in Figures A3 and A4 in Appendix A. 
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they observe. The 30-year moving average is purposely lagged to capture all the information 

available to individuals and firms up to the year prior to the measurement of the outcome 

variables. In contrast, agents cannot respond to weather shocks by definition. Our measure of 

adaptation is the difference between the simultaneously estimated responses to weather shocks 

and responses to changes in lagged 30-year moving averages4.  

Once weather shocks and longer-run climatic changes are obtained, our novel approach proceeds 

by bridging two strands of the climate-economy literature. In the same estimating equation, we 

exploit meteorological variation to identify the impact of weather shocks on economic outcomes, 

and climatological variation to identify the causal effect of longer-run observed climatic changes. 

We then compare the simultaneously estimated short- and long-run effects to provide a measure 

of adaptive responses by economic agents. The meteorological variation exploited in the 

estimation is day-to-day changes in weather, similar to most of the literature. The climatological 

variation, however, is new and relies on within-season changes in monthly 30-year moving 

averages. Intuitively, it works as if the “climate experiment” randomly assigns the average June 

temperature to April or May, for example.  

We apply our novel approach to study the impact of climate change on ambient “bad” ozone in 

U.S. counties over the period 1980-2013. This is an ideal application for four reasons. First, 

ozone is not emitted directly into the air, but rather quickly created by chemical reactions 

between nitrogen oxides (NOx) and volatile organic compounds (VOCs) in the presence of 

sunlight and warm temperatures. Hence, meteorological conditions do matter in determining 

surface ozone levels, and climate change may increase ozone concentration in the near future 

(e.g. Jacob and Winner, 2009). Second, our “climate experiment” is quite simple to understand in 

the ozone context, as the ozone season varies by state and usually consists of only six months 

(usually April-September), but concerns are mounting that longer spring and fall would expand 

the ozone season in some states (e.g., Zhang and Wang, 2016). Third, ground-level ozone is one 

of the six criteria air pollutants regulated by the U.S. Environmental Protection Agency (EPA). 

Counties in violations with the National Ambient Air Quality Standards (NAAQS) for ozone 

																																																								
4 Although we present our methodology focusing on adaptation, we are agnostic about the true impacts. There may 
be adaptation or intensification effects (Dell, Jones, and Olken, 2014). If economic outcomes are more affected by 
climatic changes than by weather shocks, agents may be not only abstaining from adjusting to climate change, but 
also slacking on any previous efforts. Perhaps they see those adjustments as too costly for what comes next. 
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face more stringent regulations, allowing us to investigate a potential mechanism of adaptation5 – 

adaptation induced by regulations6. Fourth, from the policy point of view, the so-called climate 

penalty on ozone means that climate change might offset some of the improvements in air 

quality expected from reductions in emissions of ozone precursors, and therefore some of the 

improvements in public health7. Thus, stronger emission controls may be needed to meet a given 

air quality standard8.  

We identify the impacts of climate change on ambient ozone by focusing on the effect of daily 

maximum temperature on daily maximum ozone concentration in the U.S. since 1980. We take 

advantage of (i) daily measurements of ambient ozone levels from hundreds of air quality 

monitors across the nation during 1980-2013; (ii) daily measurements of temperature (and 

precipitation) from the widespread network of thousands of weather stations across the U.S. 

during 1950-2013 and (iii) the rich spatial and temporal variation with which Clean Air Act 

regulations were rolled out. We choose the highest ozone concentration because EPA’s ambient 

ozone standards have been built around it. Likewise, increases in temperature are expected to be 

the principal factor in driving any ozone increases (Jacob and Winner, 2009). Indeed, data on 

ozone and temperature from our sample, plotted in Figure 1, highlights the close relationship 

between these two variables. Lastly, the Clean Air Act Amendments (CAAA) marked an 

unprecedented attempt by the federal government to mandate lower levels of air pollution. If 

pollution concentrations in a county exceed the federally determined ceiling, then EPA 

designates that county as “non-attainment”. Heavy emitters in non-attainment counties face far 

more stringent regulations than their counterparts in attainment counties. We use a standard 
																																																								
5 The measure of adaptation assumes that economic agents cannot respond to weather shocks. In reality, there might 
be some opportunities to make short-run adjustments in the context of ground-level ozone. Even though developed 
countries have usually not taken drastic measures to attenuate unhealthy levels of ozone because concentrations are 
generally low, developing countries have often constrained operation of industrial plants and driving in days of 
extremely high levels of ambient ozone. 
6 To understand this mechanism, consider a county where emissions of ozone precursors are under control in the 
baseline. If a rise in temperature leads to higher ozone formation and to the violation of NAAQS for ozone, that 
county may be forced to install equipment to reduce ozone concentration. Since that technology would have to be 
used because of higher temperatures rather than higher emissions, we interpret the decline in ozone levels as 
adaptation to climate change induced by clean air regulations.  
7 Graff Zivin and Neidell (2012), for instance, provide robust evidence that exposure to ozone levels well below 
federal air quality standards have a significant impact on labor productivity. 
8 In fact, when strengthening the standards for ground-level ozone from 75 to 70 ppb recently, the EPA has 
recognized the role climate change may play in driving air pollution in coming decades: “In addition to being 
affected by changing emissions, future O3 concentrations will also be affected by climate change. (…) If unchecked, 
climate change has the potential to offset some of the improvements in O3 air quality (…) that are expected from 
reductions in emissions of O3 precursors.” (EPA, 2015, p.65300) 
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fixed-effect approach, but replace the direct measurements of temperature with the two 

components of our decomposition – weather shocks and climatic changes. In our preferred 

specification, we interact such components with CAA “non-attainment” designations.  

We have four main findings. First, a changing climate appears to be affecting ground-level ozone 

concentrations in two ways. A 1°C shock in temperature increases ozone levels by 1.7 parts per 

billion (ppb) on average, which is expectedly what would have been found in the standard fixed-

effect approach. A change of similar magnitude in the 30-year moving average increases ozone 

concentration by 1.2ppb, which is 14 percent higher than what would have been found in the 

standard cross-section approach. Second, we find evidence of adaptive behavior. For a 1°C 

change in temperature, our measure of adaptation in terms of ozone concentration is 0.45ppb. 

When we compare our estimate of adaptation to the direct effect of the CAAA “non-attainment” 

designations, it is equivalent to over one third of that effect. Also, if adaptive responses were not 

taken into account in the measurement of the impact of climate change, then the climate penalty 

on ozone would be overestimated by approximately 17 percent. 

Third, adaptation in counties with levels of ozone above the EPA’s standards is estimated to be 

over 66 percent larger than baseline adaptation in “attainment” counties9, and is equivalent to 

about 45 percent of the direct effect of the CAAA “non-attainment” designations. Indeed, 

counties out of attainment must reduce ozone concentration by making costly adjustments in 

their production processes (Greenstone, List, and Syverson, 2012). For those counties, 

regulation-induced adaptation represents 40 percent of the total adaptation. Lastly, we have 

found a higher degree of adaptation in the 1980s relative to the following decades, but a similar 

magnitude for the estimates of adaptation in the 1990s and 2000s. This suggests that adaptation 

opportunities in the context of ground-level ozone might be shrinking or becoming more costly.  

This paper proceeds as follows: Section 2 explains the conceptual framework that we use to 

decompose meteorological variables into long-term trends and contemporaneous weather shocks, 

and describes our measures of adaptation. Section 3 provides a detailed background on ozone 

formation, its relationship with weather, and ambient ozone regulations. Section 4 describes our 

																																																								
9 This is what we call residual adaptation. Counties complying with EPA’s ozone standards might still adapt by 
exploiting technological advances such as photovoltaic panels (e.g.,Barreca et al, 2015, 2016), or by unconscious 
behavioral responses (e.g., Graff Zivin, Hsiang, and Neidell, 2018). 
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data, Section 5 presents our empirical methodology, and Section 6 reports our main findings. 

Section 7 illustrates the robustness of our estimates, and Section 8 concludes. 

 

2. Conceptual Framework 

We propose a unifying approach to estimating climate impacts, and ultimately measuring 

adaptation. Prior literature has exploited permanent, anticipated components behind 

meteorological conditions – the hedonic approach (e.g. Mendelsohn, Nordhaus, and Shaw, 1994; 

Schlenker, Hanemann, and Fisher, 2005), which utilizes cross-sectional climate variation but 

suffers from omitted variable bias – or transitory, unanticipated weather shocks – the fixed effect 

approach (e.g. Deschenes and Greenstone, 2007; Schlenker and Roberts, 2009), which deals with 

the bias but makes the transition from weather to climate effects nontrivial10. 

By using either the short- or long-run variation behind meteorological conditions to identifying 

climate impacts, those research designs trade off key assumptions. Our unifying approach 

bridges those two strands of the climate-economy literature, and provides a measure of 

adaptation in the spirit of the comparison between short- and long-run effects (Dell, Jones, and 

Olken, 2009, 2012, 2014; Burke and Emerick, 2016). In our approach, climate impacts refer to 

responses to variation in long-run trends, which may incorporate adaptive behavior, but we also 

allow for responses to weather shocks, which may only capture a limited number of adaptive 

actions. Because estimates associated with different time horizons have distinct informational 

content, the comparison between them should measure the degree of adaptation to climate 

change11.  

Decomposition of Meteorological Variables: Long-Run Trends vs. Weather Shocks 

In order to estimate the impacts of climate on economic outcomes, and ultimately uncover a 

measure of adaptation, we exploit both meteorological and climatological variation. The same 

estimating equation uses meteorological variation to identify the impact of weather shocks, as in 

the standard fixed-effect approach, and climatological variation within a season to identify the 

causal effect of longer-run observed climatic changes. The use of within-season variation in 

																																																								
10 Only in certain conditions weather variation exactly identifies the effects of climate (Hsiang, 2016). 
11 As it will be clear at the end of this section, although we focus on adaptation in our discussion, our approach can 
measure either adaptation or intensification. 
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long-run variables to recover climate impacts is an important innovation of our approach, as will 

be clear below. 

To take advantage of variation in both components, we decompose meteorological variables into 

long-run trends and weather shocks12. A similar idea has been used in macroeconomics to 

measure business cycles since the seminal contribution of Burns and Mitchell (1946)13, and in 

the literature of intergenerational mobility following Solon’s (1992) seminal work. In Solon’s 

context, observed income is noisy: it includes a permanent and a transitory component. To 

establish a relationship between permanent income of sons and fathers, Solon proposes 

averaging fathers’ income for a number of years to reduce the errors-in-variables bias. 

Importantly, the averaging is not needed for sons’ income, the dependent variable. We proceed 

in a similar way: we decompose only meteorological variables, not the main economic outcomes 

of interest. Illustrating the decomposition with temperature (Temp), we can express it as 

                                    Temp = TempC + TempW,                                            (1)                                    

where TempC represents climate patterns, and TempW (= Temp – TempC) deviations from those 

long-run patterns. The decomposition highlights the two sources of variation that have been used 

in the climate-economy literature14.  

To understand why this decomposition allows us to exploit within-season variation to identify 

climate impacts in a regression framework conditioning on weather shocks, first notice the 

deviations attenuate the need to saturate the econometric model with high-frequency time fixed 

effects. In a panel data approach, we usually include time fixed effects at the level of temporal 

aggregation used in the analysis to deseasonalize the time series, and control for observed and 

unobserved macroeconomic factors, before uncovering the causal effects of interest. From the 

Frisch-Waugh-Lovell theorem, however, we know the deseasonalization embedded in the highly 

saturated model is equivalent to the use of deviations in the final regression model, and that we 

do not need to transform the outcome variable. Therefore, our decomposition allows us to exploit 

																																																								
12 Again, a graphical representation of our decomposition has been illustrated for Los Angeles county over the entire 
sample period of 1980-2013 in Figures A1 and A2, and for 2013 only in Figures A3 and A4, in the appendix. 
13 See, for example, Hodrick and Prescott (1981,1997), Baxter and King (1999), and Christiano and Fitzgerald 
(2003). 
14 In related work, Kala (2016) studies adaptation under different learning models. Hence, variance of climatological 
variables is an important element of her framework. In our approach, dispersion shows up only implicitly in the 
sense that long-run trends take into account the frequency and intensity of daily temperature extremes. In the data 
section, however, we provide evidence that the variance of our weather shocks seems roughly constant over time. 
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variation that evolves slowly over time by including only higher-frequency time fixed effects. In 

fact, using seasonal rather than monthly or daily fixed effect allows us to take advantage of how 

climate varies across different months or days within a season and location. Intuitively, we 

exploit how economic agents respond when April temperature in a particular area is assigned the 

May temperature, for instance. Several researchers have pointed out that with climate change, 

springs could start earlier and falls could last longer in some locations (e.g., Zhang and Wang, 

2016). We leverage this idea in our unifying approach. 

A Measure of Adaptation to Climate Change 

TempC and TempW in the decomposition above are associated with different sets of information. 

On the one hand, TempC includes climate patterns that economic agents can only gather by 

experiencing weather realizations over a long period of time. It can be thought of as climate 

normals. On the other hand, TempW represents weather shocks, which by definition are revealed 

to economic agents virtually at the time of the weather realization. Now, one can only adjust to 

something they know. Therefore, adaptation can be measured as the difference between 

responses to changes in TempC relative to effects of weather shocks TempW.15 This is analogous 

to Lucas’ powerful insight that economic agents respond differently depending on the set of 

information that is available to them. Lucas (1977), for instance, provides an example of a 

producer that makes no changes in production or work less hard when facing a permanent 

increase in the output price, but works harder when the price increase is transitory. 

As mentioned above, important contributions to the literature have already pointed out that the 

comparison between the “short-” and “long-run” effects provides evidence of adaptive responses 

by economic agents (Dell, Jones, and Olken, 2009, 2012, 2014; Burke and Emerick, 2016). 

Unlike previous work, however, we are able to estimate and test the equality of those effects 

within the same econometric model using insights from Solon’s (1992) seminal work on 

intergenerational mobility. Also, it is imperative to mention that we introduce our measure as 

adaptation, but this is without loss of generality. It is possible that the difference in responses to 

climate vis-à-vis weather reflects adaptation and/or intensification. 

 
																																																								
15 In related work, Shrader (2016) introduces a method for identifying adaptation based on changes in expectations 
about a stochastic environmental process, and applies his method to estimate total adaptation by North Pacific 
albacore harvesters to ENSO-driven climate variation. 
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3. Background on Ambient Ozone Formation, Seasonality, and Federal Regulations 

We apply our novel approach to measure climate impacts and adaptation in the context of the 

effects of climate change on ambient ozone concentration. This is an ideal application for four 

reasons. First, ozone is formed and destroyed rapidly, with processes directly tied to temperature 

and other meteorological conditions. Second, it is a seasonal pollutant, with temporal patterns 

that mimic climatic changes, which allow us to identify climate effects. Third, ambient ozone is a 

one of the six criteria pollutants regulated by the U.S. EPA, providing us with a unique 

opportunity to study whether existing regulatory frameworks would trigger adaptation. Four, 

from a public policy perspective, the application is also relevant as there are increasing concerns 

that climate may generate a “penalty” in terms of increased ambient ozone concentration, 

potentially undoing some of the benefits of the Clean Air Act regulations. 

Ozone Formation and Seasonality 

The ozone the U.S. EPA regulates as an air pollutant is mainly produced close to the ground 

(tropospheric ozone)16. It results from complex chemical reactions between pollutants directly 

emitted from vehicles, factories and other industrial sources, fossil fuel combustion, consumer 

products, evaporation of paints, and many other sources. These highly nonlinear Leontief-like 

reactions involve volatile organic compounds (VOCs) and oxides of nitrogen (NOx) in the 

presence of sunlight. In “VOC-limited” locations, the VOC/NOx ratio in the ambient air is low 

(NOx is plentiful relative to VOC), and NOx tends to inhibit ozone accumulation. In “NOx-

limited” locations, the VOC/NOx ratio is high (VOC is plentiful relative to NOx), and NOx 

tends to generate ozone. 

As a photochemical pollutant, ozone is formed only during daylight hours, but is destroyed 

throughout the day and night. It is formed in greater quantities on hot, sunny, calm days. Indeed, 

major episodes of high ozone concentrations are associated with slow moving, high pressure 

systems, which are associated with the sinking of air, and result in warm, generally cloudless 

skies, with light winds. Light winds minimize the dispersal of pollutants emitted in urban areas, 

allowing their concentrations to build up. Photochemical activity involving these precursors is 

enhanced because of higher temperatures and the availability of sunlight. Modeling studies point 

																																																								
16 It is not the stratospheric ozone of the ozone layer, which is high up in the atmosphere, and reduces the amount of 
ultraviolet light entering the earth’s atmosphere. 
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to temperature as the most important weather variable affecting ozone concentrations17. 

Ambient ozone concentrations increase during the day when formation rates exceed destruction 

rates, and decline at night when formation processes are inactive18. Ozone concentrations also 

vary seasonally. They tend to be highest during the summer and early fall months19. The EPA 

has established “ozone seasons” for the required monitoring of ambient ozone concentrations for 

different locations within the U.S. (CFR, 2000)20. Recently, there is growing concern that the 

ozone season may prolong with climate change (e.g. Zhang and Wang, 2016).  

Clean Air Act Regulations 

Ambient ozone is an important component of smog that is capable of damaging living cells, such 

as those present in the linings of the human lungs. With the Clean Air Act Amendments of 1970, 

the U.S. EPA was authorized to enforce a National Ambient Air Quality Standard (NAAQS) for 

ambient ozone21. A nationwide network of air pollution monitors allowed the EPA to track ozone 

concentration, and two types of standards were used to determine whether pollution levels were 

sufficiently dangerous to warrant regulatory action. As the EPA (2005) states, “primary 

standards set limits to protect public health, including the health of ‘sensitive’ populations such 

as asthmatics, children, and the elderly. Secondary standards set limits to protect public welfare, 

including protection against decreased visibility, damage to animals, crops, vegetation, and 

buildings.” 

If any monitor within a county exceeds these standards, the EPA can designate the county “non-

attainment.” As part of a state implementation plan (SIP), a non-attainment county is required to 

outline its strategy to reduce air pollution levels in order to be compliant with the NAAQS. As 

																																																								
17 Dawson, Adams, and Pandisa (2007), for instance, examine how concentrations of ozone respond to changes in 
climate over the eastern U.S. The sensitivities of average ozone concentrations to temperature, wind speed, absolute 
humidity, mixing height, cloud liquid water content and optical depth, cloudy area, precipitation rate, and 
precipitating area extent were investigated individually. The meteorological factor that had the largest impact on 
ozone metrics was temperature. Absolute humidity had a smaller but appreciable effect. Responses to changes in 
wind speed, mixing height, cloud liquid water content, and optical depth were rather small. 
18 In urban areas, peak ozone concentrations typically occur in the early afternoon, shortly after solar noon when the 
sun’s rays are most intense, but persist into the later afternoon. 
19 In areas where the coastal marine layer (cool, moist air) is prevalent during summer, the peak ozone season tends 
to be in the early fall. 
20 Table A3 shows the ozone seasons during which continuous, hourly averaged ozone concentrations must be 
monitored. 
21 As shown in Table A1, the first standard put in place in 1971 was not focusing on ambient ozone, but rather all 
photochemical oxidants.  
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reported in Table A2, EPA allows emitters 3 to 20 years to adjust their production processes22. 

However, if pollution levels continue to exceed the standards or if a county fails to abide by an 

approved plan, the EPA can impose sanctions on the county in violation. These sanctions may 

include the withholding of federal highway funds and the imposition of technological “emission 

offset requirements” on new or modified sources of emissions within the county (National 

Archives and Records Administration, 2005). 

The first NAAQS for ambient ozone was established in 1979, when 120ppb was defined as the 

maximum 1-hour concentration that could not be violated more than once a year for a county to 

be designed as in attainment. In 1997, the standards were strengthened to 80ppb, but with a 

different form for the threshold: annual fourth-highest daily maximum 8-hour concentration 

averaged over 3 years23. With the 2008 and 2015 revisions, the current 8-hour threshold is now 

70ppb24. In the latest revision, EPA raised concerns about how climate change might affect air 

quality, indicating that this study may contribute to such an important policy debate25. 

 

4. Data Description 

To examine the impact of climate change on ambient ozone concentrations, and ultimately 

measure adaptation, we utilize information from three major sources, as described below. 

Ozone Data. For ground-level ozone concentrations, we use daily readings from the nationwide 

network of the EPA’s air quality monitoring stations. The data was made available by a Freedom 

of Information Act (FOIA) request. In our preferred specification we use an unbalanced panel of 

ozone monitors. We make only two restrictions to construct our final sample. First, we include 
																																																								
22 “Non-attainment” counties are “classified as marginal, moderate, serious, severe or extreme (…) at the time of 
designation” (EPA, 2004, p.23954). The maximum period to reach attainment is: “Marginal – 3 years, Moderate – 6 
years, Serious – 9 years , Severe –15 or 17 years, Extreme – 20 years” (EPA, 2004, p.23954). 
23 EPA justified the new form as equivalent to the empirical 1-hour maximum to not be exceeded more than once a 
year. “The 1-expected-exceedance form essentially requires the fourth-highest air quality value in 3 years, based on 
adjustments for missing data, to be less than or equal to the level of the standard for the standard to be met at an air 
quality monitoring site.” (U.S. EPA, 1997, p.38868) The new NAAQS was challenged in courts, and not 
implemented until 2004. 
24 Figures A8 and A9, in the appendix, show the trends in ozone concentration over time, as well as the several 
NAAQS for ozone over time. As we can see, on average the regulations seem to bring non-attainment counties to 
attainment. 
25 In the 2015 revision of the ozone NAAQS, EPA final rule mentions: “In addition to being affected by changing 
emissions, future O3 concentrations will also be affected by climate change. (…) If unchecked, climate change has 
the potential to offset some of the improvements in O3 air quality (…) that are expected from reductions in emissions 
of O3 precursors.” (EPA, 2015, p.65300) 
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only monitors with valid daily information. According to EPA, daily measurements are valid for 

regulation purposes only if (i) 8-hour averages are available for at least 75 percent of the possible 

hours of the day, or (ii) daily maximum 8-hour average concentration is higher than the standard. 

Second, as a minimum data completeness requirement, for each ozone monitor we include only 

years for which least 75 percent of the days in the ozone monitoring season (April-September) 

are valid; years having concentrations above the standard are included even if they have 

incomplete data.  

Figure 2 depicts the evolution of our sample monitors over the three decades in our data, and 

illustrates the expansion of the network over time. Table 1 provides some summary statistics 

regarding the increase in the number of monitors, and the decrease in ozone concentration 

decade by decade. We have valid ozone measurements for a total of 5,037,851 monitor-days. 

The number of monitors increased from 672 in the 1980s to 1026 in the 2000s, indicating a 

growth of 17.6 percent of the ozone monitoring network per decade. The number of monitored 

counties in our sample also grew from 390 in the 1980s to 601 in the 2000s. Table A4, in the 

Appendix, describes the sample of ozone monitors used in our analysis, for every year between 

1980 and 2013. 

Data on Non-Attainment Designations. We use publicly available data on the Clean Air Act 

Non-Attainment Designations to generate our indicator of non-attainment status for each county 

in our sample. This data is available at the EPA website from the Green Book of Non-Attainment 

Areas for Criteria Pollutants. In our preferred specification we use the non-attainment status 

lagged by three years because EPA gives heavy-emitters at least three years to comply with 

ozone NAAQS (EPA, 2004, p.23954). This is a binary variable that takes the value of one for 

counties not complying with the NAAQS for ground level ozone.  

Weather Data. For meteorological data, we use daily measurements of maximum and minimum 

temperature as well as total precipitation from the National Climatic Data Center’s Cooperative 

Station Data (NOAA, 2008). This dataset provides detailed weather measurements at over 

20,000 weather stations across the country. We have acquired information for the period 1950-

2013. These weather stations are typically not located adjacent to the ozone monitors. Hence, we 

develop an algorithm to obtain a weather observation at each ozone monitor in our sample. Using 

information on the geographical location of pollution monitors and weather stations, we calculate 
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the distance between each pair of pollution monitor and weather station using the Haversine 

formula. Then, for every pollution monitor we exclude weather stations that lie beyond a 30 km 

radius of that monitor. Moreover, for every pollution monitor we use weather information from 

only the closest two weather stations within the 30 km radius. Once we apply this algorithm, we 

exclude ozone monitors that do not have any weather stations within 30km26. Figure A5, in the 

Appendix, illustrates the geographical location of the weather stations that we have used from 

1950-2013, and Figure A6 illustrates the proximity of our final sample of ozone monitors to 

these matched weather stations. 

Our methodology takes advantage of two components of high frequency meteorological data: 

climatological variation and weather shocks. For climatological variation, we construct long-

term trends of daily maximum temperature and precipitation. Precisely, we first construct 

monthly means of daily weather measurements, and then construct 30-year moving averages of 

monthly means to generate our climate variables. We then construct weather shocks as 

deviations of meteorological variables from their 30-year moving averages. More details will be 

discussed in the following section.  

Table 1 reports the summary statistics for ambient ozone and temperature, for each decade. Table 

A5, in the Appendix, presents this information at a more disaggregated level, for each year in our 

sample from 1980-2013. Figure 3 reports the variation we have in both components of the 

maximum temperature, namely, the shocks and the long-term trends27. 

Consolidating information from the above three sources, we reach our final unbalanced sample 

of ozone monitors over the period 1980-2013. In our application, we focus on the effect of daily 

maximum temperature on daily maximum ozone concentration since 1980. We choose this 

outcome because EPA’s ambient ozone standards have been built around it. Likewise, increases 

in temperature are expected to be the principal factor in driving any ozone increases (Jacob and 

Winner, 2009). Indeed, data on ozone and temperature from our sample, plotted in Figures 1 and 

4, highlights the close relationship between these two variables. Interestingly, we see that not 
																																																								
26 For robustness purposes, we have varied this radius to 80 km and used information from the closest 5 weather 
stations. We also try different weights and the results are summarized in Table A14. 
27 This figure shows the variation in both components of temperature using a balanced panel of weather stations over 
time. Figure A7, in the appendix, depicts similar variation, but using temperature assigned to each ozone monitor. 
Notice that there seems to be more variation in the 30-year MA in the latter figure because it includes cross-sectional 
variation as well. Also, the 30-year MA trends down towards the end of the period of our study due to changes in 
ozone monitor location over time, as shown in Figure 2. 
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only does contemporaneous temperature have an effect on ground level ozone, but the long-term 

temperature trend also seems to be affecting it very closely. 

 

5. Empirical Strategy 

In this section, we present our methodology to examine the impact of climate change on the 

economic outcome of interest in our application, ground-level ozone concentration. First, we 

provide an empirical counterpart for the decomposition of meteorological variables described in 

the conceptual framework section. Second, we introduce and discuss features of our econometric 

model to estimate the effects of the two components of weather on ambient ozone levels. Lastly, 

we use our novel way to measure adaptation to climate change to estimate behavioral responses 

in our application to air pollution. 

Decomposition of Meteorological Variables: An Empirical Counterpart 

Focusing on temperature (Temp), our primary variable of interest28, we express it around ozone 

monitor i in day d of month m and year y as 

               𝑇𝑒𝑚𝑝!"#$ = 𝑇𝑒𝑚𝑝!",!!!! + 𝑇𝑒𝑚𝑝!"#$! .                                          (2)                              

TempC represents climate normals, and is defined as a 30-year monthly moving average (MA) of 

past temperatures. To make this variable part of the information set held by economic agents at 

the time that the outcome of interest is measured, we lag it by one year. For example, the 30-year 

MA associated with May 1982 is the average of May temperatures for all years in the period 

1952-1981. Therefore, economic agents should have had at least one year to respond to 

unexpected changes in climate normals at the time ozone is measured. We average temperature 

over 30 years because it is how climatologists usually define climate normals, and because we 

wanted individuals and firms to be able to observe climate patterns for a long period of time, 

enough to potentially make adjustments29. We use monthly MAs because it is likely that 

individuals recall climate patterns by month, not by day of the year. Indeed, meteorologists on 

																																																								
28 As emphasized before, among all meteorological variables, temperature is expected to be the main factor driving 
increases in ozone concentration as the climate changes (Jacob and Winner, 2009). 
29 In the robustness checks, we provide similar estimates using 10- or 20-year moving averages, and longer lags. 
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TV often talk about how a month has been the coldest or warmest in the past 10, 20, or 30 years, 

but not how a particular day of the year has deviated from the trend30.  

TempW represents weather shocks, and is defined as the deviation of the daily temperature from 

the lagged 30-year monthly MA. By definition, these shocks are revealed to economic agents 

only at the time ozone is being measured. Thus, in this case agents may have had only a few 

hours to adjust, limiting their ability to respond to such unexpected temperatures31. 

Econometric Model 

Given the decomposition of meteorological variables into two sources of variation, our primary 

econometric specification to estimate the impact of temperature on ambient ozone is the 

following:  

𝑂𝑧𝑜𝑛𝑒!"#$% = 𝛼 + 𝛽!!𝑇𝑒𝑚𝑝!"#$! +  𝛽!!𝑇𝑒𝑚𝑝!",!!!! +  𝛾𝑁𝑜𝑛𝐴𝑡𝑡𝑎𝑖𝑛!,!!!                                

+ 𝑃𝑟𝑐𝑝!"#$%𝛿 +  𝜆!"𝑍! +  𝜂! +  𝜙!"# +  𝜀!"#$ ,                                        (3) 

where i represents an ozone monitor located in county c in NOAA climate region r, and d stands 

for day, m for month, s for season (Spring or Summer), and y for year. As mentioned in the data 

section, our analysis focuses on the most common ozone season in the U.S. – April to September 

– in the period 1980-2013. The dependent variable Ozone captures daily maximum ambient 

ozone concentration. Temp’s32 account for the two components of the decomposition proposed 

above for meteorological variables. NonAttain, the Clean Air Act (CAA) non-attainment county 

designation, is a binary variable equals to one for counties not complying with the NAAQS for 

ground-level ozone – “non-attainment” designations followed regulation guidelines derived from 

the CAA Amendments. This variable is lagged by three years because EPA gives heavy-emitters 

																																																								
30 As another robustness check, we use daily instead of monthly moving averages. Economic agents, however, may 
still associate a day with its corresponding month when making adjustment decisions. 
31 Because precise weather forecasts are made available only a few hours before its realization, economic agents 
may have limited time to adjust prior to the ozone measurement. This might be true even during Ozone Action Days. 
An Ozone Action Day is declared when weather conditions are likely to combine with pollution emissions to form 
high levels of ozone near the ground that may cause harmful health effects. Individuals and firms are urged to take 
action to reduce emissions of ozone-causing pollutants, but only hours in advance. Nevertheless, unlike what 
happens in a few developing countries, neither production nor driving is forced to stop in those days, limiting the 
impact of short-run adjustments. In the robustness checks, we provide evidence that adaptation happens even 
counties facing the alerts. That is, short-run adjustments, if any, do not seem large enough to be comparable to what 
happens in the long run. 
32 We also add the two components of precipitation in our econometric analysis. Although less important than 
temperature, Jacob and Winner (2009) point out that higher water vapor in the future climate may decrease ground-
level ozone concentration. The estimates are in line with those authors’ assessment, and are available upon request. 
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at least three years to comply with ozone NAAQS (EPA, 2004, p.23954). Z represents time-

invariant covariates (latitude and longitude of ozone monitors), which are interacted with season-

by-year fixed effects in our econometric specification, η represents monitor fixed effects, Φ 

region-by-season-by-year fixed effects, and ε an idiosyncratic term.  

As should be clear by now, we exploit plausibly random, monthly variation in climate normals, 

and daily variation in weather within a season to estimate the impact of climate change on 

ambient ozone concentration. Identification of the effect of weather shocks relies on monitor-

level daily variation in the deviation of meteorological variables from lagged climate normals 

after controlling non-parametrically for regional shocks to ozone concentration at the season-by-

year level. For instance, let us consider the variation of May 1st, 1982 relative to the Spring 

(April-June) of 1982 in the Northeast region. The question we ask is the following: what happens 

to ozone concentration in a May 1982 day when the deviation of temperature from the May 1981 

climate normal is 1°C above the average daily temperature shock in the Northeast in the Spring 

(April-June) of 1982? Conditional on business-as-usual ozone precursor emissions, a higher 

temperature should lead to more ozone formation and, consequently, higher ozone concentration. 

Identification of the effect of climatic changes on ground-level ozone levels relies on plausibly 

random, monitor-level monthly variation in lagged 30-year MAs of meteorological variables 

after controlling non-parametrically for regional shocks to ozone concentration at the season-by-

year level. As an example, let us consider variation of lagged 30-year MA temperature in May 

1982 relative to the Spring (April-June) of 1982 in the Northeast region. Again, the question we 

ask is the following: what happens to ozone concentration in a May 1982 day when the normal 

temperature around the monitor in May 1981 is 1°C warmer than the average of all 30-year 

monthly MAs of temperature in the Northeast in the Spring (April-June) of 1981? If economic 

agents pursued full adaptive behavior, the unexpected increase in normal temperature would lead 

to reductions in ozone precursor emissions to avoid an increase in ozone concentration of 

identical magnitude of the weather shock effect in the same month of the following year. In other 

words, agents would respond to “permanent” changes in temperature by adjusting their behavior 

or production processes to offset that increase in normal temperature. Unlike weather shocks, 

which influence ozone formation by triggering chemical reactions conditional on a level of 

ozone precursor emissions, changes in the 30-year MA affect the level of emissions. 
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To understand better the identification strategy for the climate effects, let us compare it to the 

ideal experiment. In that experiment, we could have a glass dome covering each county, assign 

climate to each of them randomly and inform residents that the assigned climate is permanent, 

and collect information on a number of economic outcomes after some time. To approximate 

such an ideal setting, we use plausibly random, within-season variation in the lagged 30-year 

moving averages. Agents know the normal temperature in the spring for having observed it in the 

last thirty years, but it turns out that the substitution of last year’s average March temperature in 

the 30-year MA for the average March temperature three decades ago could generate some 

random variation in March climate. March could be randomly assigned April or May 

temperature, for instance. Likewise, April could experience March temperature randomly. 

Because individuals and firms have observed the temperature in the last three decades, they 

should interpret such changes as permanent, and update their climate information. As a result, 

they may make adjustments to cope with those changes, leading to adaptive (or intensifying) 

behavior. This is consistent with evidence that the ozone season could start earlier and/or last 

longer (e.g., Zhang and Wang 2016). In fact, when EPA strengthened the ozone standards in 

2015, it extended the ozone monitoring season for 32 states and the District of Columbia. A 

review of all available monitoring data from 2010‐2013 (including data from year‐round air 

quality monitors) showed that ozone could be elevated earlier in the spring and last longer into 

the fall than some states previously were required to measure (EPA, 2015). 

Our preferred econometric specification allows the effects of each component of our 

meteorological variables to differ according to the “attainment” or “non-attainment” designation 

of the county where each monitor is located. The estimating equation becomes 

𝑂𝑧𝑜𝑛𝑒!"#$% = 𝛼 + 𝛽!"! (𝑇𝑒𝑚𝑝!"#$! × 𝐴𝑡𝑡𝑎𝑖𝑛!,!!!)+  𝛽!"! (𝑇𝑒𝑚𝑝!",!!!! × 𝐴𝑡𝑡𝑎𝑖𝑛!,!!!)

+ 𝛽!"! (𝑇𝑒𝑚𝑝!"#$! × 𝑁𝑜𝑛𝐴𝑡𝑡𝑎𝑖𝑛!,!!!)+  𝛽!"! (𝑇𝑒𝑚𝑝!",!!!
! × 𝑁𝑜𝑛𝐴𝑡𝑡𝑎𝑖𝑛!,!!!)

+  𝛾𝑁𝑜𝑛𝐴𝑡𝑡𝑎𝑖𝑛!,!!! + 𝑃𝑟𝑐𝑝!"#$%𝛿 +  𝜆!"𝑍! +  𝜂! +  𝜙!"# +  𝜀!"#$ ,                  (4) 

Because of the use of 30-year MAs and deviations from it to characterize climate – and 

ultimately uncover a measure of adaptation – it may be reasonable to focus on continuous 

temperature instead of more flexible temperature bins. We could, however, compute moving 

averages for the bins as averages of monthly bin dummies over the past 30 years, and deviations 

of values of each dummy variable associated with a bin in the contemporaneous period relative 
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to the 30-year MA bin. Nevertheless, this procedure may decrease data variability by smoothing 

the temperature variables, and lead to a loss in statistical power when estimating the effect of 

each temperature bin. Indeed, deviations of a contemporaneous temperature measurement of 

31°C relative to a 30-year MA of 23°C, for example, should be not as smooth as deviations of a 

contemporaneous 30°-35°C bin from a 30-year MA associated with the number of months in that 

bin. Despite these issues, we provide estimates of such nonlinear effects in the results section. 

Measuring Adaptation 

Once we credibly estimate the impact of the two components of temperature – shocks and 

within-season changes in long-run trends – on ambient ozone concentration, we uncover our 

measure of adaptation. The average adaptation across all counties in our sample is the difference 

between the coefficients 𝛽!! and 𝛽!!  in equation (3). If economic agents engaged in full adaptive 

behavior, 𝛽!!  would be zero, and the magnitude of the average adaptation would be equal to the 

size of the weather shock effect on surface ozone concentration. As explained before, agents 

would react to “permanent” increases in temperature by reducing ozone precursor emissions to 

offset potential increases in ozone concentration.   

We can split our measure of average adaptation into two parts: regulation-induced and residual 

adaptation, as shown in Table 2. Regulation-induced adaptation reflects adjustments made by 

heavy emitters in “non-attainment” counties to comply with ozone NAAQS. EPA mandates 

those facilities to cut emissions by using the best pollution abatement technologies available. 

Because ozone formation depends on both emissions and meteorological conditions, by reducing 

emissions to abide by the CAA regulations, agents may be actually adapting to climatic 

changes33. Residual adaptation reflects adaptive responses by economic agents in counties under 

no pressure from stringent CAA regulations34. 

																																																								
33 Notice that, because those counties are also reducing emissions, some researchers might prefer using the term 
mitigation. Our argument is that those polluters would have not undertaken those costly investments if the climate 
had not changed, so we would rather call this a response to climate change or, in other words, regulation-induced 
adaptation. This is not a new use of the term adaptation. In the context of responses to natural disasters, Kousky 
(2012) explains that “The negative impacts of disasters can be blunted by the adoption of risk reduction activities. 
(…) [T]he hazards literature (…) refers to these actions as mitigation, whereas in the climate literature, mitigation 
refers to reductions in greenhouse gas emissions. The already established mitigation measures for natural disasters 
can be seen as adaptation tools for adjusting to changes in the frequency, magnitude, timing, or duration of extreme 
events with climate change.” (p.37, our highlights).  
34 If those counties are right below the ozone standards, it is possible that they take actions to avoid being out of 
attainment. If that is the case, then residual adaptation may include a component related to the threat of stringent 
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In our preferred econometric specification, behavioral responses are allowed to occur only in the 

year after the change in temperature trend is observed. Those adjustments, however, might be 

related to innovations in temperature happening both in the previous year and 30 years before. 

Indeed, the “moving” feature of the 30-year MA is, by definition, associated with the removal of 

the earliest observation included in the average – 30 years before –, and the inclusion of the most 

recent observation – one year before. Nevertheless, in the robustness checks we consider cases 

where economic agents can take a decade or two to adjust. Because EPA may give heavy 

emitters up to two decades to comply with ozone NAAQS, adaptive responses many years after 

agents observe changes in temperature trends may be plausible. 

Equations (3) and (4) are the econometric specifications used to estimate our main results. We 

can adjust them, however, to shed light on the impact of climate change on ambient ozone 

concentration for different decades. Indeed, in an additional specification, we interact the two 

components of meteorological variables and Attain/NonAttain county designations with each 

decade included in our sample – 1980s, 1990s, and 2000s. Once we have the estimates associated 

with weather shocks and lagged 30-year MAs in this case, we are able to provide measures of 

adaptation for each decade and each climate region in our sample. In all estimations, standard 

errors will be clustered at the monitor level35. 

 

6. Results 

In this section we report our findings regarding (i) the impact of temperature on ambient ozone 

concentration, (ii) the extent to which economic agents adapt to climate change in the context of 

ozone pollution, and (iii) how those effects change by decade (1980s, 1990s, and 2000s). Then, 

																																																																																																																																																																																			
regulations. In the robustness checks, we provide evidence that even counties far below the threshold of the 
standards engage in adaptive behavior. To provide an example of residual behavioral responses to climatic changes, 
we lean on Leard and Roth (2016). These authors find that mean temperatures above 80°F (relative to 50°-60°F) 
imply 5 percent fewer trips per household by light duty vehicles, which seems to be partially compensated by higher 
travel demand by ultralight duty vehicles. The overall decrease in travel demand and the change in vehicle 
composition induced by temperatures higher than expected can be seen as adaptive responses, and should imply less 
emissions of ozone precursors by vehicles. 
35 There may be a concern that our temperature shocks and trends are both constructed, so they could be considered 
generated regressors. In Table A16, we provide bootstrapped standard errors for our main estimates, and show that 
they vary from -5 percent to +11 percent, relative to the standard errors clustered at the monitor level. Given such a 
small variation, we opted to report the regular clustered standard errors. 
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we provide evidence of the robustness of our main results to alternative specifications and 

sampling strategies. 

Impact of Temperature on Ambient Ozone Concentration 

Table 3 presents the effects on ambient ozone of two components of observed temperature: 

climate, represented by the lagged 30-year monthly MA36, and weather shock, represented by the 

deviation from that long-run trend. Although they are uncovered by estimating equation (3), 

columns 1 and 2 benchmark them against effects that would have been found if one had 

exploited either only the cross-sectional (e.g. Mendelsohn, Nordhaus, and Shaw, 1994; 

Schlenker, Hanemann, and Fisher, 2005) or only the longitudinal (e.g. Deschenes and 

Greenstone, 2007; Schlenker and Roberts, 2009) structure of the data.  

Column 1 reports results from a cross sectional estimation of daily maximum ozone 

concentration on daily maximum temperature around each monitor, averaged over the entire 

period of analysis 1980-2013. These variables capture information for all the years in our sample 

and are good proxies for the average pollution and climate around each monitor. The estimate 

suggests that a 1°C increase in average maximum temperature is associated with a 1.09ppb 

increase in ozone concentration, approximately. Column 2 reports the effect of temperature on 

ozone identified by exploiting within-monitor daily variation in maximum temperature after 

controlling for region-by-month-by-year fixed effects. The coefficient indicates that a 1°C 

increase in maximum temperature leads to a 1.71ppb increase in maximum ground-level ozone 

concentration. When we decompose daily maximum temperature into our two components in 

column 3, as expected the effect on ambient ozone increases for the lagged 30-year MA, but is 

statistically the same for the weather shocks. A 1°C shock increases ozone concentration by 

1.69ppb, and a 1°C change in trends in the same month of the previous year increases ozone 

concentration by 1.24ppb. Therefore, by including the two components of temperature – the 

lagged 30-year MA and deviations from it – the impact of a 1°C change in long-run maximum 

temperature increases 14 percent when compared to cross-sectional estimates.  

																																																								
36 As mentioned before, even though we use monthly moving averages in our main estimates, as a robustness check 
we also estimate our preferred specifications using daily moving averages. The results are virtually identical, and are 
reported in Table A15. 
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It is widely recognized that the cross-sectional approach is plagued with omitted variable bias. In 

our context, if more informed/concerned local monitoring agencies inspect heavy emitters of 

ozone precursors more often when average temperature rises, and more intense enforcement of 

environmental regulations induces reductions in ozone concentration, then this unobserved 

behavior might lead to underestimation of the long-run impact of temperature. On the other hand, 

as emphasized in the conceptual framework, estimates from the standard panel-data methodology 

and our approach should be the same due to the properties of the Frisch-Waugh-Lovell theorem. 

The deseasonalization embedded in the panel-data model is equivalent to the use of deviations 

from 30-year trends in our regression model. 

Even with larger estimates of the impact on ambient ozone concentrations of both unexpected 

spikes in temperature and rises in long-term temperature, our estimates imply a climate penalty 

on ozone – the sum of both effects – on the lower end of the ranges found in the literature. 

Indeed, Jacob and Winner (2009), in their review of the effects of climate change on air quality, 

find that climate change alone can lead to a rise in summertime surface ozone concentrations by 

1-10 ppb. The EPA, in its Interim Assessment (2009), claims that “the amount of increase in 

summertime average ... O3 concentrations across all the modeling studies tends to fall in the 

range 2-8 ppb”. 

Column 4 shows that the estimates do not change when we include the CAA non-attainment 

county designation (NonAttain) in the regression, but column 5 indicates important heterogeneity 

in the effect of each component of temperature across counties in or out of attainment regarding 

the ozone NAAQS. A 1°C rise in the climate trend (as measured by the lagged 30-year MA of 

temperature) leads to a 0.98ppb rise in ozone concentrations in attainment counties, compared to 

1.45ppb in non-attainment counties. Similarly, a 1°C increase in the weather shock increases 

ozone levels by 1.3ppb in attainment counties, whereas it leads to a 1.99ppb increase in non-

attainment counties. It is imperative to note that the larger effects for non-attainment counties 

should not reflect higher levels of emissions of ozone precursors. In fact, we are controlling for 

emissions using the time-varying non-attainment status as a plausibly exogenous proxy in the 

econometric model. Therefore, we should interpret our estimates as the effects of the two 

components of temperature conditional on ozone precursor emissions. That is, even if emissions 

are stabilized in a particular location, climate change will induce higher concentrations of 

ambient ozone because it will lead to more suitable conditions for ozone formation.  
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Measuring Adaptation to Climate Change 

The comparison between the short- and long-run effects of temperature may provide a measure 

of adaptive responses by economic agents (Dell, Jones, and Olken, 2009, 2012, 2014; Burke and 

Emerick, 2016). Given the bias of the cross-sectional approach, by comparing the impact of 

long-run temperature on ozone concentration in column 1 of Table 3 with the effect of a 

temperature shock in column 2, adaptation would be overestimated – approximately 0.62ppb. 

Our measure of adaptation – also a comparison between the impact of the long-run temperature 

(lagged 30-year MA) and the effect of the temperature shock (deviation from the MA) – is 27 

percent smaller: 0.45ppb. 

Our results indicate that temperature shocks have a larger impact on ozone levels compared to 

long-term temperature trends. This suggests that economic agents might be adapting to climate 

trends. We summarize our measures of adaptation in Table 4. By comparing the coefficients of 

the temperature shock and the temperature trend in Column (4) of Table 3, we find that on 

average across all counties, the level of adaptation is 0.45ppb. This is roughly 37 percent of the 

direct effect of the Clean Air Act non-attainment designation (NonAttain), which means that our 

measure of adaptation is economically sizeable. If we ignore such adaptive responses by 

economic agents, then we would be overestimating the climate penalty on ozone by over 17 

percent37. 

Using our estimates from Column (5) of Table 3, we can now disentangle the overall adaptation 

into regulation-induced adaptation and residual adaptation. The coefficients of the interaction 

terms with Attain gives us the impacts of weather shocks and climate trends in attainment 

counties, whereas the coefficients of the interactions with NonAttain gives us the same for non-

attainment counties. From this specification, we find that the total adaptation in attainment 

counties is 0.33ppb whereas in non-attainment counties it is 0.55ppb. Hence, non-attainment 

counties adapt over 66 percent more than attainment counties in absolute terms. The incremental 

adaptation of 0.22ppb in non-attainment counties is our measure of regulation-induced 

adaptation. The remainder is residual adaptation. Therefore, 40 percent of the adaptation in non-

attainment counties should be driven by the Clean Air Act regulations.  

																																																								
37 In the absence of adaptation, the climate penalty would be twice the effect of weather shocks (i.e. 3.4 ppb) rather 
than the 2.9 ppb that we actually observe. 
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Results by Decade 

In Tables 5 and 6, we report our results by decades. We split our sample into three decades – 

1980-90, 1991-2001, and 2002-2013 – so that we have roughly the same number of years in each 

decade. In Table 5, we present the main estimates, where we see the heterogeneity of our results 

across time. We find that the effects of contemporaneous daily maximum temperature, and its 

two components of our decomposition, are decreasing over time. Nevertheless, looking at 

columns (3) and (4) and Table 6, we find evidence that adaptation by economic agents reduces 

from the 1980s to the 1990s, but stabilizes afterwards. The average adaptation across all counties 

in our sample drops from 0.58ppb in the 1980s to 0.39ppb in the 1990s, but it is still 0.41ppb in 

the 2000s. Also, from column (4) and Table 6 we find that the regulation-induced adaptation in 

non-attainment counties decreases consistently from around 0.22ppb in the 1980s to about 

0.09ppb in the 2000s. Residual adaptation varies from 0.42ppb in the 1980s to 0.27ppb in the 

1990s and 0.38ppb in the 2000s. Therefore, the 1980s, which marked the initial phases of the 

regulation and when the average pollution levels were also higher, exhibit on one hand the 

largest impacts of the climate on ground-level ozone, and on the other hand also show the largest 

degree of adaptation over time.  

 

7. Robustness Checks 

7.1 Nonlinearities 

Because ozone formation may be intensified with higher temperatures, we also look at the 

nonlinear effects of daily maximum temperature on ambient ozone concentrations. Instead of 

using daily maximum temperature continuously, we categorize contemporaneous daily 

maximum temperature and its monthly average into temperature bins of 5°C. The lowest bin is 

below 20°C (just over the 10th percentile of our temperature distribution), and the highest bin is 

above 35°C (90th percentile of our temperature distribution). To get a measure of the long-term 

climate trend, we take the lagged 30-year MAs of these temperature bin dummies; the measure 

of our weather shock is constructed by taking the difference between the contemporaneous 

temperature bin dummies and the 30-year monthly MA of temperature bin dummies. In Table 

A6 in Appendix A, we report our estimates from this nonlinear specification.  
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By interacting our temperature bins with the regulatory variables Attain and NonAttain, as 

before, we can analyze the nature and degree of regulation-induced and residual adaptation at 

different points of the temperature distribution. From column (1), as expected, we find that 

higher temperatures increasingly lead to hike in ozone concentrations. As each bin is of 5°C, we 

can see that for temperatures between 20°C and 25°C, a 1°C increase would raise ozone levels 

by 1.22ppb on average; whereas for temperatures between 25-30°C, 30-35°C and above 35°C, 

the effects are 3.1ppb, 4.76ppb, and 6.54ppb, respectively. From our estimates in column (2), we 

have the following results about the degree of adaptation at different levels of temperature, 

which are summarized in Table A7. 

Average Adaptation (across all counties). From column (2) of Table A6, the average level of 

adaptation across all counties ranges from 0.51ppb (19.7%) for temperatures between 20-25°C, 

to 0.16ppb (2.65%) for temperatures between 25-30°C; 0.45ppb (4.66%) for temperatures 

between 30-35°C, and lastly almost 0.82ppb (6.12%) for temperatures in our highest bin38. So, 

by comparing the adaptation percentages, we see that a lot of it is driven by the 20-25°C bin.  

Since the U.S. as a whole is predominantly NOx limited, we would expect that changes in 

electricity usage drastically affect ozone concentrations39. In the below 20°C bin or at 

temperature above 25°C people are generally more dependent on either the heater or the air 

conditioner and hence might not be able to adjust their electricity use. Temperatures between 20-

25°C, however, represent very pleasant weather which might potentially induce people to cut 

down on electricity demand and, hence, reduce NOx emissions, which might be driving the high 

degrees of adaptation in this bin. Indeed, Deschenes and Greenstone (2011) analyze the 

nonlinear effects of daily average temperature on residential energy consumption, and document 

a U-shaped function such that the hottest and coldest days are the highest energy consumption 

ones. Energy consumption at intermediate levels of temperature of around 60-80°F (comparable 

to our intermediate temperature bin of 20-25°C) is the lowest, conforming to our estimates of 

adaptation at different levels of temperature. At intermediate levels of daily temperature, 

																																																								
38 Adaptation percentages for each bin have been calculated by comparing the level of adaptation to twice the effect 
of the weather shock – i.e. the impact of a 1°C increase in temperature that we would have observed in the absence 
of any adaptation.  
39 Electricity generation is a major source of NOx, and, since ozone formation has a Leontief-like production 
function in terms of NOx and VOCs, changes in electricity use in a NOx limited region would imply large changes 
in ozone formation. 
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economic agents can adjust and bring down their energy consumption, hence leading to large 

decreases in ozone concentrations.  

It is also interesting to see a relatively high level of adaptation above 35°C. This can be plausibly 

explained by at least two reasons. First, regions having temperatures above 35°C might have 

higher incidence of sunlight which might lead to more extensive use of solar panels to generate 

electricity or heating. Thus, higher temperatures might be creating an environment that is more 

suited to shift away from conventional and dirtier sources of power generation, thus leading to 

higher levels of (residual) adaptation. Second, regions having higher temperatures have a larger 

climate penalty on ozone and, hence, might be more strongly regulated. This might determine 

larger levels of regulation-induced adaptation.    

Regulation-induced adaptation. Like our main results, we find more adaptation in non-

attainment counties at every level of temperature. However, out of the total adaptation in non-

attainment counties, the proportion of regulation-induced adaptation varies from around 25 

percent for temperatures between 20-25°C to around 62.5 percent for temperatures between 30-

35°C.  

7.2 Measurement Error 

A concern regarding our decomposition of meteorological variables in equation (2) might be 

measurement error. Because both components are intrinsically unobserved, we define the long-

run trend as the 30-year MA, and weather shocks as deviations from that moving average. If 

there is classical measurement error, the estimates of the coefficients of interest in equations (3) 

and (4) will suffer from attenuation bias. Moreover, the bias will be magnified in fixed effect 

regressions.  

To investigate the robustness of our results to measurement error, we carry out analyses using 

moving averages of different length. We start by using a 3-year MA, then 5-, 10-, 20-, and 30-

year MAs. As argued seminally by Solon (1992), as we increase the time window of a moving 

average, the permanent component of a variable that also includes a transitory component will be 

less mismeasured. If this is the case, we should observe the coefficients of interest increasing as 

longer windows are used for the moving averages. Our estimates in Table A8 remain remarkably 

stable over the different lengths of the moving averages, and if anything they get slightly larger 

until the 20-year moving average. 
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As pointed out by Angrist and Pischke (2015, p. 242-243), a fixed effects regression with 

variables under classical measurement error is plagued by larger attenuation bias. The identifying 

variation in a standard longitudinal analysis comes from deviations from the cross-sectional 

averages in the panel structure. Once the variables of interest are demeaned, the share of 

measurement error variation is magnified, and the coefficients of interest will be even more 

attenuated. Again, our estimates in Table A8 remain largely unchanged over the different lengths 

of the moving averages, with a slight attenuation of the coefficient of the weather shocks, and a 

slight reduction of the coefficient of the moving average when we move from the 20- to the 30-

year moving average. This latter result suggests that the widely used “climate normals” – three-

decade averages of meteorological variables including temperature and precipitation40 – are close 

to the “optimal” long-run trends. The improvements from reducing measurement error might be 

offset by the panel-driven attenuation bias between 20- and 30-year time windows.  

7.3 Lagged Responses 

Another potential concern with our preferred specification might be the fact that we have used 

the 1-year lagged 30-year moving average to capture the long-term climate trend, so agents have 

only one year to adapt. Hence, we check the sensitivity of our results when agents get 10 or 20 

years to adapt, instead of just one. In Table A9, we provide estimates from our preferred 

specification but using 20-year moving averages of temperature lagged by 10 years; and 10-year 

moving averages lagged by 20 years. By doing so, we are providing agents more time to adapt to 

climate change. Even though we would expect that the effects of the weather shocks to be 

similar, we anticipate the effects of the climate trend to be slightly smaller than before, as agents 

should now be able to adapt more than before. This is what we find from our estimates reported 

in Table A9, although the magnitude of the coefficients is close to that of our main results. 

 

7.4 Non-Random Siting of Ozone Monitors 

In recent work, Muller and Ruud (2017) argue that the location of pollution monitors is not 

necessarily random. The U.S. EPA maintains a dense network of pollution monitors in the 

country for two major reasons: (i) to provide useful data for the analysis of important questions 
																																																								
40 “The 30 year interval was selected by international agreement, based on the recommendations of the 
International Meteorological Conference in Warsaw in 1933. The 30 year interval is sufficiently long to filter out 
many of the short-term interannual fluctuations and anomalies, but sufficiently short so as to be used to reflect 
longer term climatic trends.” (Wisconsin State Climatology Office, aos.wisc.edu/~sco/normals.html, 2003) 
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linking pollution to its varied impacts, and (ii) to check and enforce the NAAQS for criteria 

pollutants. These are conflicting interests: while monitors should be placed in regions having 

different levels of pollution to provide representative data, they might be placed in areas where 

pollution levels are the highest to check for attainment status. Not surprisingly, the authors find 

out that most of the monitors tend to be in areas where pollution levels have been high, and 

compliance with the regulation is a question.  

Following those authors’ results, we can expect that ozone monitors that have consistently been 

in our sample across all years must be located in areas having very high pollution levels, thus 

commanding constant monitoring and regulation by the EPA. To check if this claim is accurate, 

we run our analysis using a balanced sample of ozone monitors. Starting from our original 

sample, and using only monitors that have been in the data for every year from 1980-2013, we 

are left with 92 pollution monitors. The results are reported in Table A10. We find that a 1°C 

increase in the daily maximum temperature leads to a rise in ozone concentrations by 1.88ppb. 

Average adaptation is 0.44ppb across all counties. We can further disentangle this to find that 

regulation-induced adaptation in non-attainment counties is 0.24ppb whereas residual adaptation 

is 0.25ppb. As expected, the effects obtained from the balanced panel are larger than those in our 

main results. The balanced panel leads to the overestimation of the climate penalty. Therefore, 

our preferred, unbalanced sample of monitors includes areas with different levels of air pollution, 

and our estimates should be more representative of the entire country. 

7.5 Role of Wind Speed and Sunlight 

Although temperature is the primary meteorological factor affecting tropospheric ozone 

concentrations, other factors such as wind speed and sunlight have also been noted as potential 

contributors. High wind speed may prevent the build-up of ozone precursors locally, and dilute 

ozone concentrations. Ultraviolet solar radiation should trigger chemical reactions leading to the 

formation of ground-level ozone.  

To test whether our main estimates are capturing part of the effects of wind speed and sunlight, 

we control for these variables in our preferred specification using a smaller sample containing 

those variables. Table A11 reports these estimates. Columns (1) and (2) present our main results 

from estimating Equations (3) and (4), respectively. Next, we present estimates from Equation 

(4) plus controls for average daily wind speed (meters/sec) in Column (3), total daily sunlight 

(mins) in Column (4), and both in Column (5). As expected, higher wind speeds lead to lower 
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ozone concentrations, and more sunlight leads to higher concentrations. From Column (5), we 

find that a 1 meter/sec increase in average daily wind speed would decrease ozone concentrations 

by 2.2ppb, whereas a 1 min increase in daily sunlight leads to 0.02ppb increase in ozone 

concentrations. More importantly, by comparing Column (2) with Column (5), even though our 

main climate impacts are somewhat reduced after the inclusion of these other meteorological 

variables, their patterns are qualitatively identical and our measure of adaptation is quantitatively 

similar. A shock in daily maximum temperature of 1°C leads to a 1.24ppb increase in daily 

maximum ozone whereas a 1°C increase in the climate trend leads to a 0.72ppb increase in 

ozone. Our measure of overall adaptation is 0.52ppb, and regulation-induced adaptation is 

0.17ppb in non-attainment counties. Therefore, our primary estimates of the impact of 

temperature on ozone concentrations, and hence our measures of adaptation, do not seem to rely 

crucially on other potentially important meteorological factors. 

 

7.6 Adaptation and the Attainment Threshold 

In our preferred specification given by Equation (4), we interact both our components of 

temperature – the climate trend and the weather shock – with the Clean Air Act attainment status 

(Attain) and Clean Air Act non-attainment status (NonAttain) to estimate the differential levels of 

adaptation in attainment versus non-attainment counties. However, within attainment group, 

some counties might have pollution levels very close to the federal threshold and some might be 

have levels much below it. A potential issue with our analysis is that most of the 0.33ppb of 

residual adaptation might still be driven by attainment counties that are on the margin of turning 

to non-attainment. If this is the case, then we would observe some degree of what would be 

threat-of-regulation adaptation.  

To check if any intrinsic residual adaptation exists at all, we estimate our preferred specification 

by interacting both the climate trend and the weather shock with the different categories of the 

Air Quality Index (AQI). The AQI levels are categorized into Good, Moderate, Unhealthy for 

Sensitive Groups, and Unhealthy. Counties having Good or Moderate air quality are in 

attainment, with the ones having moderate AQI falling just below the federal pollution threshold. 

Similarly, counties having air quality worse than moderate are generally in non-attainment, and 

might have to disclose that information to the local media along with meteorology. Table A12, 

column (1), summarizes the results from the above specification. The estimates are consistent 
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with our primary results. At each level of air quality, we find that a 1∘C increase in the climate 

trend as well as a 1∘C increase in the weather shock leads to an increase in ozone concentrations. 

Moreover, there is a positive and significant difference in these effects41, indicating that there is 

indeed adaptation at every level of air quality. Finally, we find 0.36ppb of adaptation in counties 

that have good air quality whereas only 0.12ppb of adaptation in counties having moderate air 

quality. Hence, within all counties that are in attainment, counties that are just below the 

threshold are exhibiting lower levels of adaptation than counties that are not facing an immediate 

threat of regulation. This supports our argument that apart from regulation-induced or threat-of-

regulation adaptation, there are other mechanisms through which economic agents might adapt, 

which we call residual adaptation42. 

 

8. Concluding Remarks 

In this paper, we propose a novel methodology to study the effect of temperature on ambient 

ozone concentrations and measure adaptation to climate change. By decomposing high frequency 

daily data on meteorological variables since 1950, made available by the National Oceanic and 

Atmospheric Administration (NOAA), we are able to examine the impact on air quality of both 

long-term climatic trends and short-term deviations from such trends (i.e. weather shocks) in a 

single estimating equation. Using daily data on ambient ozone concentrations from EPA’s Air 

Quality Systems (AQS) database, we find that unexpected spikes in temperature as well as 

increases in the long-term temperature trend have positive and significant impacts on ground-

level ozone levels. A 1°C shock in temperature increases ozone levels by 1.7ppb on average, 

which is what would find in the standard fixed-effect approach. A change of similar magnitude 

in the 30-year moving average increases ozone concentration by 1.2ppb, which is 14 percent 

higher than what would have been found in the (biased) standard cross-section approach. 

By comparing the long-term “climate effect” with the short-term “weather effect”, we arrive at 

our measure of adaptation to climate change. We find an average adaptation of 0.45ppb across 

all counties in our sample. This measure captures the fact that the long-term effect of 

																																																								
41 We have tested if the coefficients of the climate trend and the weather shock are significantly different from each 
other and the results are reported in Table A12, column (2).	
42 As reported in Table A13, qualitatively similar results are found when we restrict our sample to monitors with 
ozone concentrations just below and just above the NAAQS threshold. In that table, we see that there is almost no 
adaptation in counties with ozone concentrations around the threshold. 
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temperature, although positive, is smaller than the effect of a sudden shock, thus signifying 

potential changes in behavior of economic agents in response to a changing climate. In the 

absence of any adaptation, we would expect the impact of higher temperature to be twice as 

much as the effect of the temperature shock, i.e. a 3.4ppb increase in ozone levels. Thus, by 

ignoring adaptation, we would overestimate the climate penalty on ozone by over 17 percent.  

Using data on Clean Air Act Attainment designations from the EPA’s Green Book of Non-

attainment Areas for Criteria Pollutants, we are also able to provide a measure regulation-

induced adaptation, which is occurring in counties facing stringent regulations for being out of 

attainment of ozone NAAQS. That is above and beyond the measure of residual adaptation, 

which might be occurring in all counties. We find that non-attainment counties adapt over 66 

percent more in terms of ozone concentrations. Comparing our estimates to the benefits from the 

CAA regulations, we find that adaptation in non-attainment counties represents almost 45 

percent of the effect of being out of attainment. Finally, we break our analysis by decade to 

explore temporal heterogeneity of our estimates. We find that the 1980s, which marked the initial 

implementation phases of the Clean Air Act regulations and correspond to the highest pollution 

levels in our sample, had the largest impact of temperature on ambient ozone concentrations as 

well as the largest degree of adaptation to climate change. 

By estimating the causal effect of temperature on ambient ozone, we have taken the first step 

towards calculating the costs of climate change in terms of higher air pollution. We have 

illustrated that in the presence of climate change, pollution levels are exacerbated, hence 

implying larger external costs of emissions. Thus, such estimates are crucial to guide more 

informed policymaking and reaching the socially desirable level of emissions. This also provides 

scope for further research along similar lines, to estimate the climate penalty on other criteria air 

pollutants that have severe health effects. Another potential direction for further research might 

be to consider various adaptation mechanisms and behavioral adjustments made by economic 

agents, such as re-allocation of production across hours of the day or migration to less polluted 

regions.  
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Figures and Tables 

Figure 1: Relationship between Ozone and Contemporaneous Temperature 

 

Notes: This figure reports the daily maximum temperature and ozone, averaged across all monitor-days, for each 
year. The variables have been detrended by eliminating a linear time trend. 

 

Figure 2: Ozone Monitors by Decade of First Appearance 

 

Notes: This figure maps the ozone monitors in our final sample, by decade of first appearance. Each shaded region 
represents a single climatic region as designated by the NOAA. 
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Figure 3: Temperature – Trends and Shocks 

 

Notes: This figure reports the variation in both components of maximum temperature. The shock is a deviation of 
contemporaneous daily maximum temperature from the 30-year moving average. The variables have been averaged 
across all monitor-days in a given year. 

 

Figure 4: Relationship between Ozone and Moving Average of Temperature 

 

Notes: This figure reports the 30-year monthly moving average of daily maximum temperature and ambient ozone 
concentration, averaged across all monitor-days, for each year. The variables have been detrended by eliminating a 
linear time trend. 
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Table 1: Summary Statistics by Decades		

 
Notes: This table reports some summary statistics. Data used in construction of Panel A uses monitor-days for which 
8-hour averages were recorded for at least 18 hours of the day and monitor-years for which valid monitor-days were 
recorded for at least 75% of days between April 1st and September 30th. For Panel B, 30-year moving averages have 
been constructed at each pollution monitor, by using historical weather data from 1950-2013. Temperature 
deviations are defined as (Daily Max Temp – 30-Year monthly MA of Max Temp). Each pollution monitor has been 
matched to the closest two weather stations within a 30 km boundary. This table uses data for the months of April-
September as that constitutes the typical ozone season. Decades are 1980-1990, 1991-2001 and 2002-2013 
respectively. 

 

Table 2: Measures of Adaptation 

 

Notes: Estimates of Equation (3) gives us measures of average adaptation across all counties in our sample. The 
difference between the response to unexpected weather shocks,  𝛽!!, and observed climate trends, 𝛽!! , gives us a 
measure of adaptation by economic agents. In the absence of any adaptation, we would have 𝛽!! =  𝛽!! . Relative to 
this scenario, we find average adaptation to be (𝛽!! −  𝛽!!). Estimates from Equation (4) gives us levels of 
adaptation in attainment and non-attainment counties, using the interaction effects. Counties out of attainment have 
regulation-induced adaptation given by 𝜃!! −  𝜃!! . All counties exhibit residual adaptation, given by (𝛽!"! −  𝛽!"! ).  
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Table 3: Main Estimates 

 

Notes: This table reports our main climate impact results. Column (1) reports cross sectional estimates using 
average temperature and ozone concentrations at 2535 ozone monitors in sample. Having averaged the variables 
over all the years from 1980-2013, these estimates capture the effect of a change in the long-term climate trend. 
Column (2) reports the effect of daily temperature on ozone, exploiting day-to-day variation in maximum 
temperature and hence capturing the effect of a change in short term weather. In Column (3), we decompose daily 
temperature into climate trends and weather shocks in the same estimating equation, exploiting high frequency data. 
Recall that the 30-year MA is lagged by 1 year. In Column (4), we control for the Clean Air Act (CAA) non-
attainment county designation, lagged by 3 years, and this is the specification expressed in Equation (3). In Column 
(5), we include interactions of weather shocks and climate trends with the CAA designation status to estimate 
heterogeneous effects across attainment and non-attainment counties, and this is the specification expressed in 
Equation (4). Standard errors are clustered at the monitor level. ***, **, and * represent significance at 1%, 5% and 
10%, respectively. 
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Table 4: Adaptation Main Estimates 

 

Notes: This table reports our main adaptation results. For non-attainment counties, Level of adaptation (ppb) = 
Residual 𝛽!"! −  𝛽!"!   + Regulation-induced 𝜃!! −  𝜃!! , from column (5) of Table 3. For attainment counties, 
Level of adaptation (ppb) = 𝛽!"! −  𝛽!"! , from column (5) of Table 3. Overestimation of climate penalty for non-

attainment counties = (!!"#
! !!!"#

!

!!"#
! !!!"#

!  
)*100; for attainment counties = (!!"

! !!!"
!

!!"
! !!!"

!  
)*100. Average Level of adaptation 

(ppb) for all counties = 𝛽!! −  𝛽!! , from column (4) of Table 3. Note that in all calculations, the effect of the CAA 
regulation is given by 𝛾 as estimated by Equation (3), and reported in column (4) of Table 3. Proportion of counties 
in non-attainment in the entire sample is 0.54. Adaptation estimates for all counties are averages for estimates for 
attainment and non-attainment counties, weighted by the proportion of counties in non-attainment. Standard errors 
are clustered at the monitor level. ***, **, and * represent significance at 1%, 5% and 10%, respectively. 
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Table 5: Results by Decades 

 

Notes: This table reports our main estimates by the three decades in our sample: 1980-1990; 1991-2001 and 2002-
2013. Columns (1) and (2) show estimates obtained by Equations (3) and (4), respectively, but interacting our main 
variables with dummies for decades. Recall that the 30-yr MA is lagged by 1 year, and the CAA attainment/non-
attainment county designation is lagged by 3 years. Standard errors are clustered at the monitor level. ***, **, and * 
represent significance at 1%, 5% and 10%, respectively. 
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Table 6: Adaptation Estimates by Decades 

 

Notes: This table reports our adaptation results for the three decades in our sample: 1980-1990; 1991-2001 and 
2002-2013. The adaptation measures have been calculated using estimates from Table 5, and the calculations follow 
the methodology explained in Table 4. 
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(For Online Publication) 

Appendix 

Figure A1: Our Decomposition of Temperature Trends and Shocks (Los Angeles) 

 

 

Figure A2: Fixed-Effect Decomposition of Temperature Trends and Shocks (Los Angeles) 
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Figure A3: Our Decomposition of 2013 Temperature Trends and Shocks (Los Angeles) 

 

 

Figure A4: Fixed-Effect Decomposition of 2013 Temperature Trends and Shocks (Los Angeles) 
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Figure A5: Weather Stations from 1950-2013 

 

Notes: This figure maps the weather stations from 1950-2013 used in our analysis. For every ozone monitor in our 
final sample, we keep the closest two weather stations within a radius of 30 km. Each shaded region represents a 
single climatic region as designated by the NOAA. 

 

Figure A6: Matched Ozone Monitors and Weather Stations 

 

Notes: This figure maps the ozone monitors from 1980-2013 in our sample, and the matched weather stations. For 
each ozone monitor, the closest 2 stations within a 30 km radius have been used in the matching. Each shaded region 
represents a single climatic region as designated by the NOAA. 
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Figure A7: Temperature – Trends and Shocks (Matching Weather to Ozone Monitors) 

 

Notes: This figure reports the variation in both components of temperature. The shock is a deviation of 
contemporaneous daily maximum temperature from the 30-year moving average. The variables have been averaged 
across all monitor-days in a given year. This figure is analogous to Figure 3, but notice that there seems to be more 
variation in the 30-year MA here because it includes cross-sectional variation as well. Also, notice the 30-year MA 
trends down towards the end of the period of our study due to changes in ozone monitor location over time, as 
shown in Figure 2. 
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Figure A8:  Evolution of Maximum Ambient Ozone Concentration 

 
Source: Authors’ compilation based on EPA data. 

Notes: The 1979 NAAQS was built around the maximum ozone concentration, as explained in Table A1. 

 

Figure A9:  Evolution of the 4th Highest Ambient Ozone Concentration 

 
Source: Authors’ compilation based on EPA data. 

Notes: Starting with the 1987 NAAQS, the target of the regulation became the 4th highest ozone concentration, as 
explained in Table A1. 
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Table A1: History of Ozone NAAQS 

 

Source: epa.gov/ozone-pollution/table-historical-ozone-national-ambient-air-quality-standards-naaqs. 

Notes: This table shows the history of ambient ozone regulations in the U.S. The first standard was put in place in 
1971, but targeted all photochemical oxidants. The first NAAQS for ambient ozone was established in 1979, when 
120ppb was defined as the maximum 1-hour concentration that could not be violated more than once a year for a 
county to be designed as in attainment. In 1997, the standards were strengthened to 80ppb, but with a different form 
for the threshold: annual fourth-highest daily maximum 8-hour concentration averaged over 3 years. With the 2008 
and 2015 revisions, the current 8-hour threshold is now 70ppb. EPA justified the new form in 1997 as equivalent to 
the empirical 1-hour maximum to not be exceeded more than once a year. “The 1-expected-exceedance form 
essentially requires the fourth-highest air quality value in 3 years, based on adjustments for missing data, to be less 
than or equal to the level of the standard for the standard to be met at an air quality monitoring site.” (U.S. EPA, 
1997, p.38868) The 1997 NAAQS was challenged in courts, and not implemented until 2004. Lastly, as the EPA 
(2005) states, “primary standards set limits to protect public health, including the health of ‘sensitive’ populations 
such as asthmatics, children, and the elderly. Secondary standards set limits to protect public welfare, including 
protection against decreased visibility, damage to animals, crops, vegetation, and buildings.” 

 

Table A2:  Period to Comply with NAAQS 1979 

 

                            Source: U.S. Code (2011). 
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Table A3: Ozone Monitoring Seasons by State 

 

Source: U.S. EPA (2006, p. AX3-3).  

Notes: This table shows, for each state, the season when ambient ozone concentration is required to be measured and 
reported to the U.S. EPA. The ozone season is defined differently in different parts of Texas. 
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Table A4: Summary Statistics for the Ambient Ozone Monitoring Network by Year 

 

Notes: Decades are 1980-1990, 1991-2001 and 2002-2013 respectively. Data used in construction of this table uses 
monitor-days for which 8-hour averages were recorded for at least 18 hours of the day and monitor-years for which 
valid monitor-days were recorded for at least 75% of days between April 1st and September 30th. This table uses data 
for the months of April-September, as that constitutes the typical ozone season. 
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Table A5: Summary Statistics for Daily Maximum Temperature by Year 

 

Notes: Decades are 1980-1990, 1991-2001 and 2002-2013 respectively. 30-year moving averages have been 
constructed at each ozone monitor, by using historical weather data from 1950-2013. Temperature deviations are 
defined as (Daily Max Temp – 30-Year monthly MA of Max Temp).  Each pollution monitor has been matched to 
the closest two weather stations within a 30 km boundary. 
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Table A6: Non-Linear Effects of Temperature 

 

Notes: This table reports the non-linear effects of daily maximum temperature on ambient ozone levels. We 
categorize daily maximum temperature into 5 bins from <25oC to >35oC with 5oC intervals in between. In column 
(1), we decompose daily temperature into climate trends and weather shocks in the same estimating equation, 
exploiting high frequency data, as in Equation (3). In column (2), we include interactions of weather shocks and 
climate trends with the Clean Air Act (CAA) designation status to estimate heterogeneous effects across attainment 
and non-attainment counties, as in Equation (4). Recall that the 30-yr MA is lagged by 1 year, and the CAA 
attainment/non-attainment county designation is lagged by 3 years. Standard errors are clustered at the monitor 
level. ***, **, and * represent significance at 1%, 5% and 10%, respectively. 
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Table A7: Adaptation Estimates for Nonlinearities 

 

Notes: This table reports our adaptation results for each 5oC bin of temperature. The adaptation measures have been 
calculated using estimates from Table A6, and the calculations follow the methodology explained in Table 4. 
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Table A8: Alternative Definitions of Climate Trend 

 

Notes: This table reports the results for alternative definitions for the climate trend. Columns (1)-(4) show estimates 
obtained by Equation (4), but using moving averages of temperature for different time windows. For comparison 
purposes, our main results are reported in column (5). Recall that the 3to30-yr MA is lagged by 1 year, and the 
Clean Air Act attainment/non-attainment county designation is lagged by 3 years. Standard errors are clustered at 
the monitor level. ***, ** and * represent significance at the 1%, 5% and 10%, respectively. 
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Table A9: Lagged Responses 

 

Notes: This table reports estimates allowing more time for economic agents to engage in adaptive behavior. The 
estimates in columns (3) through (6) are obtained by Equations (3) and (4), but using 10 and 20 year moving 
averages of maximum temperature. For comparison purposes, our main results are reported in columns (1) and (2). 
Recall that the Clean Air Act attainment/non-attainment county designation is lagged by 3 years. Standard errors are 
clustered at the monitor level. ***, ** and * represent significance at the 1%, 5% and 10%, respectively. 
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Table A10: Balanced Panel of Ozone Monitors 

 

Notes: This table reports estimates from a balanced panel of ozone monitors over the period 1980-2013. Columns 
(3) and (4) show estimates obtained by Equations (3) and (4), respectively, but using a balanced panel of 92 ozone 
monitors. For comparison purposes, our main results are presented in columns (1) and (2). Recall that the 30-yr MA 
is lagged by 1 year, and the Clean Air Act attainment/non-attainment county designation is lagged by 3 years. 
Standard errors are clustered at the monitor level. ***, **, and * represent significance at 1%, 5% and 10%, 
respectively.  
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Table A11: Adding Wind Speed and Sunlight Irradiance 

 

Notes: This table reports estimates controlled for additional meteorological variables for a subset of our main 
sample. These estimates are obtained by Equation (4), but in column (2) we control for average daily wind speed 
(meters/sec); in column (3) we control for total daily sunlight (mins), and in column (4) we control for both. For 
comparison purposes, our main results are presented in column (1). Recall that the 30-yr MA is lagged by 1 year, 
and the Clean Air Act attainment/non-attainment county designation is lagged by 3 years. Standard errors are 
clustered at the monitor level. ***, **, and * represent significance at 1%, 5% and 10%, respectively. 
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Table A12: Climate Impacts and Adaptation Based on AQI Category 

 

Notes: This table reports estimates of temperature shocks and trends, but interacted with an Air Quality Index (AQI) 
category. Here, we replace the CAA Attain and NonAttain dummy variables in Equation (4) with AQI levels 
categorized as Good, Moderate, Unhealthy for Sensitive Groups, and Unhealthy. Counties with Good or Moderate 
air quality are both in attainment, with the ones having Moderate AQI falling just below the ozone NAAQS 
threshold. Similarly, counties having air quality worse than moderate are generally in non-attainment, and might 
have to disclose that information to the local media along with meteorology. In column (1), we report the main 
estimates, and in column (2), the implied adaptation measures. Recall that the 30-yr MA is lagged by 1 year. 
Standard errors are clustered at the monitor level. ***, **, and * represent significance at 1%, 5% and 10%, 
respectively. 
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Table A13: Sample of Ozone Monitors with Readings around Ozone NAAQS 

 

Notes: This table reports estimates with a sample of ozone monitors with concentrations falling just below and above 
the ozone NAAQS threshold. The estimates in column (2) are obtained by Equation (4), but with this restricted 
sample. For comparison purposes, our main results are presented in column (1). Recall that the 30-yr MA is lagged 
by 1 year, and the Clean Air Act attainment/non-attainment county designation is lagged by 3 years. Standard errors 
are clustered at the monitor level. ***, **, and * represent significance at 1%, 5% and 10%, respectively. 
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Table A14: Alternative Criteria for Selection of Weather Stations 

 

Notes: This table reports estimates from alternative criteria to match weather stations to ozone monitors. These 
estimates are obtained by Equation (4), but using different radius, number of weather stations, and weights. In our 
main analysis, reported again in column (1) for comparison purposes, we use a radius of 30 km, the 2 closest 
stations, and the inverse squared distance as the weight. In the following columns, we give the same weight (simple 
average), or use the inverse distance as an alternative weight. We also vary the radius to 80 km, and use the 
information from the closest 5 weather stations. Recall that the 30-yr MA is lagged by 1 year, and the Clean Air Act 
attainment/non-attainment county designation is lagged by 3 years. Standard errors are clustered at the monitor 
level. ***, **, and * represent significance at 1%, 5% and 10%, respectively. 
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Table A15: Daily Moving Averages 

 

Notes: This table compares our main estimates in columns (1) and (2) with the ones in columns (3) and (4), which 
are obtained by replacing monthly moving averages of temperature with daily moving averages. These estimates are 
obtained by Equations (3) and (4), respectively. Recall that the 30-yr MA is lagged by 1 year, and the Clean Air Act 
attainment/non-attainment county designation is lagged by 3 years. Standard errors are clustered at the monitor 
level. ***, **, and * represent significance at 1%, 5% and 10%, respectively. 
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Table A16: Bootstrapped Standard Errors 

 

Notes: This table compares the standard errors of our main estimates in columns (1) and (2) with the ones in 
columns (3) and (4), which are obtained by bootstrap. The issue is that our temperature shocks and trends are 
constructed, so they could be seen as generated regressors. Recall that the 30-yr MA is lagged by 1 year, and the 
Clean Air Act attainment/non-attainment county designation is lagged by 3 years. Standard errors in columns (1) 
and (2) are clustered at the monitor level. ***, **, and * represent significance at 1%, 5% and 10%, respectively. 

 


