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Abstract

We consider a model of individual stochastic choice with framing effects. Alterna-

tives are presented in a display comprising a collection of frames- each one correspond-

ing to an alternative. We characterise attention-biased stochastic choice rules. These

rules assign attention probabilities to different frames and select an alternative with

the joint probability of paying attention to its respective frame and ignoring the frames

which contain the more preferred alternatives.
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1 Introduction

The standard model of individual choice assumes that the consumer (or decision maker, DM

in short) is perfectly rational and chooses the most preferred alternative(s). Recent works

on bounded rationality and behavioural economics show that this is not always the case

and that their choices are influenced by the ‘frame’ or context in which the alternatives are

presented. In this paper we consider attention biases of the DM that occur due to framing

effects.

Framing affects the consumer’s decisions in various ways. Framing effects, like the posi-

tion of the alternative on the shelf, the quality and attractiveness of packaging, and other

types of framing often attract the consumer’s attention.

These include the order in which the alternatives are presented (Rubinstein and Salant

(2006)), the relative positions of the alternatives on a shelf (Salant and Rubinstein (2008)),

packaging over the alternatives, etc.

In this paper, we model framing effects when the decision maker’s choice is probabilistic

or stochastic. Moreover, our framework is such that the primitives of the DM’s choice- the

attention parameters and the preference ordering can be identified completely by observing

the choice data.

In our model limited attention arises due to the framing over the set of alternatives

rather than the alternatives themselves. And these biases may arise due to differences in the

types or quality of frames attached to the alternatives. This is consistent with theory and

experimental evidence.1

Once the DM has paid attention to a set of frames, intrinsic characteristics of the alter-

natives play an important part in determining her choice. Our main result captures both

these effects and separates the attention biases over frames from the preference over the

alternatives based on their intrinsic properties.

For example, an alternative which has been placed too far from the DM’s range of sight

will be prone to lack of attention irrespective of whether it is ranked high in the DM’s pref-

erence. Similarly, even if the DM prefers an alternative highly due to its intrinsic qualities,

inferior packaging might prevent it from attracting attention. In our model, the DM prob-

abilistically chooses the best alternatives among the set of alternatives the frames to which

she pays attention to. We provide an illustration.

We consider a model where each alternative is attached with its respective frame. This

is denoted as (x, fi) where x is the alternative and fi is the frame attached with x. We

call such pairs products and collections of these are denoted by G. For each G, the DM has

stochastic choice, i.e., a probability distribution over all such pairs (x, fi) in G.

In our main result, we characterise attention-biased stochastic choice rules with four

axioms- difference, reflexivity, dominance and independence. These rules assign an attention

parameter to each frame such that the probability of choosing an alternative is equal to

1For a broad survey of this literature see Kahneman and Tversky (2000) and related works.
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the joint probability of paying attention to the frames attached to that alternative and the

probability of not paying attention to the frames attached to the alternatives which the DM

prefers more.

There are various works which deal with attention biases in individual choice.2 However,

the paper that is closely related to ours is Manzini and Mariotti (2014). In their model, the

attention bias of the DM arises due to the alternatives themselves. Therefore, they do not

directly capture the source of the DM’s attention.

Example 1 Suppose the framing of the alternatives is their placement on a ‘grid’ denoted by

G. The dimension of a grid is the number of boxes or positions in that grid. The alternatives

appear in the boxes of a grid, where each box accommodates at most one alternative. For

example, a, b ∈ X can be displayed as follows:

b

a
G =

Suppose the preference of the DM is such that a is preferred to b but due to the placement

of the alternatives she pays attention to the top box with probability 0.8 and to the lower

box with probability 0.2. Her choice probabilities according to attention-biased revealed

stochastic choice rule are as follows:

(i) Probability of choosing a = Probability of paying attention to the frame attached to

a = 0.2.

(ii) Probability of choosing b = (Probability of paying attention to the frame attached to

b)× (Probability of not paying attention to the frame attached to a) = 0.8(1− 0.2) =

0.64.

(iii) Probability of choosing nothing = 1− 0.2− 0.64 = 0.16.

Therefore, even though the alternative a is preferred over b, due to the framing of the

alternatives and the fact that the DM hardly ever pays attention to the lower box, b gets

chosen with a higher probability.

Contrary to our model, in Manzini and Mariotti (2014) the choice probabilities of the

alternatives a and b would remain the same even if their positions were swapped in G. This

is due to the fact that the DM pays the same attention to the alternatives irrespective of the

framing. This ignores the effect of framing on attention paid by the DM, thereby, affecting

choice.

2See Masatlioglu et al. (2016) , Manzini and Mariotti (2014)).
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There are other papers which study stochastic choice rules. Ahn et al. (2017) characterises

a partially independent rule, Luce rule where the probability of choosing an alternative is the

average probability of being chosen among other alternatives from the given menu. However,

there are no framing effects and their concern is with the weakening the notion of stochastic

independence.3

The paper is organised as follows. Section 2 describes the model and lists the axioms.

Section 3 presents the benchmark result. Section 4 presents the main result followed by a

discussion and conclusion. Appendix contains the proofs and the bibliography is provided in

References.

2 Model

Let X be the set of all alternatives and F be the set of all frames. The pair (x, fi) is a

product where alternative x has been displayed in the frame fi. For simplicity we will write

xi to denote the product (x, fi).

Let A : X × F be the set of all products. We allow the decision maker not to choose

any product from a given set G ⊆ A- we assume the existence of a default product x∗. Let

A∗ = A ∪ {x∗}.
A stochastic choice rule from a set of products is a mapping P : A∗ × 2A

∗ → [0, 1]

such that P (xi, G) ∈ [0, 1] for all xi ∈ G,G ⊆ A∗; P (xi, G) = 0 for all xi ∈ A \ G; and∑
xi∈A∗ P (xi, G) = 1 for any G ⊆ A∗.

Note that when the set of products G is empty, the decision maker chooses the default

alternative. Therefore, P (x∗, φ) = 1.

We first characterise the following class of stochastic choice rules.

Definition 1 (Attention-biased stochastic choice) A stochastic choice rule from a set

of products P : A∗ × 2A
∗ → [0, 1] is an attention-biased stochastic choice rule if there exists

a function δ : F → [0, 1] and a complete, asymmetric binary relation � over A such that for

any xi ∈ G:

P (xi, G) = δiΠj:yj�xi;yj∈G(1− δj)

A decision maker with attention-biased stochastic choice rule selects a product with the

joint probability of paying attention to that frame attached to it and the probability of not

paying attention to the frames which contain the products which she prefers more.

We can show that the rule characterised by Manzini and Mariotti (2014) is a special case

of the above rule. Simply replace products xi with alternative a for all such products and

therefore removing the frames- then the above given rule is the same as the one characterised

by Manzini and Mariotti (2014). We introduce some notation in order to state our axioms.

3For other papers on stochastic or random choice rules, see Li and Tang (2017) and Fudenberg et al.

(2015), Block et al. (1960) Becker et al. (1963).
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Let G(X) ⊆ X and G(F ) ⊆ F be the set of elements and the set of frames in G respectively.

Difference. Suppose G,G′ ∈ 2A, |G|, |G′| > 1 such that G(X) = G′(X) and G(F ) =

G′(F ). Then P (xi, G) 6= P (yj, G) for all xi ∈ G, yj ∈ G′.
Difference states that the choice probabilities for two distinct products never coincide

irrespective of their framing and for any given non-singleton set of frames G and G′ which

comprise of the same set of alternatives and frames.

Invariance of singletons For all x, y ∈ X and fi ∈ F , P (xi, {xi}) = P (yi, {yi}).

Invariance of singletons requires that the choice probability of any two products from single-

ton sets is identical when the two products have the same frames. This axiom emphasizes

that stochasticity in choice arises from the frame attached to an alternative in the absence

of other alternatives.

Note that there is no conflict with difference. The latter compares the probabilities of

two products in any two non-singleton set of frames while the former compares the same

with their respective singleton frames.

Dominance. Suppose G ∈ 2A such that xi ∈ G. Then,

[P (xi, {xi, yj}) > P (yj, {xi, yj}) for all yj ∈ G]⇒ [P (xi, G) = P (xi, {xi})].

Dominance states that if xi ∈ G has a higher choice probability compared to any other

product yj ∈ G in the binary set of frames {xi, yj} then the choice probability of xi in G is

equal to the choice probability from the singleton set of frames {xi}.

Independence. Suppose G,G′ ∈ 2A such that xi, yj ∈ G and yj ∈ G′. Then,

[P (xi, {xi, yj}) < P (yj, {xi, yj})]⇒

[
P (xi, G)

P (xi, G \ {yj})
=

P (φ,G′)

P (φ,G′\{yj})

]
for all G′ ∈ 2A.

Independence states that if xi ∈ G has a lower choice probability compared to yj ∈ G

in the binary set of frames {xi, yj} then the effect of removing y from G (when attached to

frame fj ∈ F ) on the choice probability of xi in G is the same as that on the probability of

choosing nothing when y is removed from any other set of frames G′. We now provide the

benchmark result.

Theorem 1 A stochastic choice rule P is an attention-biased stochastic choice rule if and

only if it satisfies difference, dominance, reflexivity and independence.
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Theorem 1 characterises the benchmark model which is a generalised version of the rule

characterised in Manzini and Mariotti (2014). In this rule, the framing effect is adjoined

with the alternatives. To obtain their rule the products in our model can be replaced by

alternatives as if the framing effects were irrelevant. This points to the fact framing effects

have not been fully captured in their model. Our next section will clarify this further as we

present our main result.

3 The Main Result

In this section we characterise the following rule:

Definition 2 (Attention-biased stochastic choice (Revealed Preference)) A stochas-

tic choice rule P : A∗ × 2A
∗ → [0, 1]4 is attention-biased stochastic choice (RP) rule if there

exists a function δ : F → [0, 1]5 and a complete, asymmetric binary relation � over X such

that for any xi ∈ G:

P (xi, G) = δiΠj:y�x;yj∈G(1− δj)

The above rule states that the choice probability of a product xi depends on the attention

paid to the frame attached to the alternative x and on the attention paid to the frames

attached to the alternatives that dominate x according to the binary relation � over X.

In contrast to the previous rule this rule separates the framing effect on attention biases

from the underlying preferences which are based solely inherent properties of the alternatives.

We characterize the attention-biased stochastic choice (RP) rule with the following ax-

ioms. We introduce some notation in order to state our axioms. Let G(X) ⊆ X and

G(F ) ⊆ F be the set of elements and the set of frames in G, respectively.

The axiom invariance of singletons is defined in the same way as before. However, we

introduce new versions of difference, independence and dominance axioms.

Difference. For any x, y ∈ X and fi, fj ∈ F , P (xi, {xi, yj}) 6= P (yi, {xj, yi}).

Difference requires that for any two alternatives and frames, the choice probability of a prod-

uct from a binary set depends on the alternative that constitutes the product and also on

the presence of the other product. This axiom ensures that the choice probabilities are not

independent of the alternatives in binary sets. When x appears in frame fi, while y appears

in fj, the probability with which the decision maker chooses x differs from the probability

with which y is chosen when the frames are reversed.

Dominance. Suppose G ⊆ A∗ such that xi ∈ G. Then,

4P (x∗, φ) = 1
5δi is interpreted as the attention drawn by the frame fi. Our results remain unchanged if δ ∈ (0, 1).
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(i) P (xi, {xi}) > P (x∗, {xi})
(ii) [P (xi, {xi, yj}) > P (yj, {yi, xj}) for all yj ∈ G]⇒ [P (xi, G) = P (xi, {xi})].
(iii) [P (xi, {xi, yj}) > P (yi, {yi, xj}) for fi, fj ∈ F ] ⇒ [P (xk, {xk, yl}) > P (yk, {yk, xl})

for any fk, fl ∈ F ].

Dominance (i) requires that the choice probability of a product from a singleton set is

higher than the probability with which the decision maker refrains from making a choice,

i.e., chooses the default alternative x∗.

Dominance (ii) is similar as dominance in the previous section but with the alternatives

x and y swapped in their respective frames fi and fj. For any two alternatives x and y,

P (xi, {xi, yj}) and P (yi, {yi, xj}) are the choice probabilities of x and y from binary sets,

when they occur in the same frame fi, while the other alternative appears in the frame fj.

When xi is chosen with a higher probability from {xi, yj} than yi from {xj, yi}, we say that

x “dominates” y.

Dominance (iii) requires that if an alternative x in frame fi has a higher choice probabil-

ity when another alternative y (which was previously in some frame fj ∈ F ) takes its place

in frame fi ∈ F then its ‘dominance’ continues to hold for any other set of frames fk and fl
corresponding to x and y respectively.

For any alternative y ∈ X, we construct a set H(y) that contains those alternatives that

are dominated by y. Formally, H(y) = {x ∈ X∗|P (xi, {xi, yj}) < P (yi, {yi, xj})∀fi, fj ∈ F}.

Independence For any x, z ∈ H(y); G,G′ ⊆ A∗ such that xj, yi ∈ G and yi, zj ∈ G′:
P (xj ,G)

P (xj ,G\{yi}) =
P (zj ,G

′)
P (zj ,G′\{yi})

Independence requires that the influence of yi on the choice probabilities of any two

products that are dominated by y is the same. The influence of yi on a product xj is the

ratio
P (xj ,G)

P (xj ,G\{yi}) . This ratio is the same for any x, z ∈ H(y), and is also independent of the

sets from which the choice is made.

Theorem 2 A stochastic choice rule P is an attention-biased stochastic choice (RP) rule if

and only if it satisfies difference, invariance of singletons, independence and dominance.

Theorem 2 characterises attention-biased stochastic choice rule (RP). The binary relation

represents the preferences of the DM over the set of alternatives and not products. Therefore,

we separate the effect of framing on the attention from the pure preference effect.

The attention-biased stochastic choice rule (RP) recognizes that the frame attached to

an alternative may influence the probability with which it is chosen. A binary relation over

alternatives may differ from a binary relation over products. An alternative x may dominate

y, but in the presence of different frames, the product (y, fj) may dominate (x, fi). The

following example illustrates this.
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Example 2 Let �f be a complete and asymmetric binary relation over the set of products

A, and � be a complete and asymmetric binary relation over the set of alternatives X. For

x, y ∈ X and xi, yj ∈ A:

xi �f yj ⇐⇒ [P (xi, {xi, yj}) > P (yj, {xi, yj})]

x � y ⇐⇒ [P (xi, {xi, yj}) > P (yi, xj, yi})]

Let P (xi, {xi} = δi = 0.4, P (xj, {xj}) = δj = 0.8 and x � y. According to the attention

biased stochastic choice rule (RP): P (xi, {xi, yj}) = 0.4, P (yi, {xj, yi}) = 0.4(1−0.8) = 0.08,

P (yj, {xi, yj}) = 0.8(1− 0.4) = 0.48. Clearly, yj �f xi even though x � y.

3.1 Applications

The above rules are a special case of the following types of choice rules,

(i) Consideration sets. A decision maker only pays attention to subset of frames called the

consideration set. She chooses the most preferred alternative from this set of frames.

In such a case the δ = 1 for all frames in the consideration set and δ = 0 for all frames

that are outside it. Therefore, the most preferred alternative is picked with probability

1.

(ii) Rational choice rule: If the consideration set if the full set of frames then the DM picks

the most preferred alternative.

(iii) Ordered attention-biased RP rules: Suppose frames have a quality factor and the

attention parameters are ordered i.e. a higher quality frame has a higher attention

parameter. Alternatives in higher quality frames will have a higher probability of

being chosen depending on the preferences of the DM.

3.2 Suitable frames

A frame fi may influence the choice probability of two alternatives x and y in different ways.

This implies that P (xi, {xi}) 6= P (yi, {yi}). The attention biased stochastic choice rule

characterized in the previous section does not allow this possibility- the choice probabilities

of two products with the same frame is the same when they appear in singleton sets.

The role of a frame may not be limited to attracting the decision maker’s attention. It

is possible that certain alternatives are chosen more frequently when they occur in some

specific frames. For example, a decision-maker may prefer cotton candy to cheesecake while

at a picnic in a park, but may prefer cheesecake to cotton candy while dining at a restaurant.

Here, the frame is the environment in which the dessert is consumed. Another example of
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a frame that is suitable for some alternative, but not for every alternative are combination

meals offers: several restaurants offer a fixed combination such as burgers with a portion of

fries and coke. An offer of pasta with fries and coke is unlikely to be equally attractive as the

combination with the burger. In this example, burger and pasta are the alternatives, while

the offer of fries and coke creates the frame. The frame is suitable for burgers, but is not as

suitable for pasta. In this section we develop a general characterization of the broad class of

attention biased stochastic choice rules, which contains the choice rules characterized in the

previous section, and also allows for the stochastic parameter to depend on the frame, and

also on the alternative that is placed in the frame.

We introduce the notion of suitability of a frame for an alternative. Consider two frames

fi,fj ∈ F , and two products xi, yj ∈ A∗. We term a frame fi as suitable for the alternative

x relative to y as compared to frame fj, if the following inequality is satisfied:

P (xi,{xi,yj})
P (xj ,{xj ,yi}) ≥

P (yi,{xj ,yi})
P (yj ,{xi,yj})

We abbreviate the ratios
P (xi,{xi,yj})
P (xj ,{xj ,yi}) and

P (yi,{xj ,yi})
P (yj ,{xi,yj}) as I(xyij) and I(yxij). Notice that:

I(xyij) ≥ I(yxij) ⇐⇒ I(yxji) ≥ I(xyji)

i.e., for any two products xi, yj ∈ A∗, if fi is suitable to x relative to y, then fj is suitable

to y relative to x. Thus, for any two frames and two alternatives, both frames cannot be

suitable for the same alternative. We also use the terminology unsuitable in the following

manner: if I(xyij) < I(yxij), then xi and yj are products with unsuitable frames.

Further, we interpret I(xyij) = I(yxij) as a situation where neither frame fi nor fj is

suitable to x relative to y or vice versa.

We now introduce the following stochastic choice rule:

Definition 3 (Frame biased stochastic choice rule) A stochastic choice rule from frames

P : A∗ × 2A
∗ → [0, 1] is a frame biased stochastic choice rule if there exists a function

δ : A → [0, 1] and a complete binary relation � over F × A(2), where A(2) is the set of all

ordered pairs of alternatives in X, such that for any xi ∈ G:

P (xi, G) = δ(xi).Πj:fj�(y,x)fi;yj∈G[1− δ(yj)]

The parameter δ represents the attention paid to a product. For any product xi, δ(xi)

depends on the frame fi as well as the alternative x, which together constitute the product.

The same frame applied to two different alternatives may lead to different attention param-

eters for each of them. Similarly, when the same alternative is placed in different frames, the

attention paid to each would differ.

The frame biased stochastic choice rule states that the probability with which a decision-

maker chooses a product xi from the set G is the probability that he pays attention to x

when it is placed in frame fi and he does not pay attention to all those products that contain

alternatives in frames that are suitable to them, relative to x.
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This captures the idea that a suitable frame enhances the attractiveness of an alternative

relative to another alternative. Thus, a decision-maker’s choice of a product xi depends on

the probability of paying attention to the product, given the frame, and also on the suitability

of the frames attached to the alternatives in the other products relative to xi. A product yj
may affect the choice probability of xi only if it’s frame fj is suitable to y relative to x. If a

product’s frame is unsuitable, it is unlikely to draw the decision-maker’s attention in a way

that affects another product.

For each product xi ∈ A, we define the set H(xi) containing all those products that

appear in suitable frames, relative to x when it appears in the frame fi. Formally, H(xi) =

{yj ∈ X∗|I(yxji) ≥ I(xyji)}. Notice that if yj ∈ H(xi) then xi ∈ H(yj).

We introduce the following axioms:

Frame invariance. For any x ∈ X and for all fi, fj ∈ F ,

P (xi, {xi}).P (x∗, {xi}) = P (xj, {xj}).P (x∗, {xj})

Frame invariance requires that the joint probability with which a decision maker chooses

and does not choose an alternative from a singleton set is the same for all frames. This ax-

iom enables us to interpret suitability of frames for an alternative when the decision maker

is choosing from a singleton set. Notice that according to frame invariance P (xi, {xi}) ≥
P (xj, {xj}) ⇒ P (x∗, {xi}) ≤ P (x∗, {xj}), i.e. if the decision maker chooses x when it ap-

pears in frame fi with weakly higher probability than when it appears in frame fj from a

singleton set, then the default alternative must be chosen with weakly lower probability from

{xi} than from {xj}. In comparison with the default alternative frame fi is suitable to x

relative to the frame fj.

Independence of suitable frames. For any yj, zk ∈ H(xi); G,G
′ ⊆ A∗ such that xi, yj ∈ G

and yj ∈ G′:
P (xi,G)

P (xi,G\{yj}) = P (zk,G
′)

P (zk,G′\{yj})

Independence of suitable frames requires that the influence of a product yj on the choice

probability of xi when both x and y appear in suitable frames is the same as the influence

of yj on any other alternative that appears in a suitable frame as compared to xi.

Independence* Suppose G,G′ ⊆ A∗ such that xi, yj ∈ G and yj ∈ G′:

[I(xyij) ≥ I(yxij)]⇒ [ P (xi,G)
P (xi,G\{yj}) = P (x∗,G′)

P (x∗,G′\{yj}) ]

Independence* implies the following weaker version:

Weak Independence* Suppose G ∈ 2A. For any xi, yj ∈ G:

[I(xyij) ≥ I(yxij)]⇒ [ P (xi,G)
P (xi,G\{yj}) =

P (x∗,{yj})
P (x∗,φ)

]
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Independence* states that if two alternatives x and y are present in G within frames fi, fj
that are suitable to them respectively, then the effect of removing a product yj on another

product xi is the same as the effect of yj on choosing the default alternative when yj is

removed from any other set of frames G′.

Frame dominance. Suppose G ⊆ A∗ such that xi, yj ∈ G

[I(xyji) > I(yxji)∀yj ∈ G]⇒ [P (xi, G) = P (xi, {xi})]

Frame dominance states that if the frames attached to the alternatives are unsuitable for all

the products in the set G relative to some xi ∈ G, then the probability of choosing xi from the

set G is the same as the probability of choosing xi from a set that contains no other products.

Thus, the probability with which the decision-maker chooses xi is not adversely influenced

by the frames of other alternatives, as none of them can enhance the alternatives relative to x.

Theorem 3 A stochastic choice rule P is a frame biased stochastic choice rule if and only

if it satisfies frame invariance, independence of suitable frames and frame dominance.

4 Conclusion

We characterise a class of stochastic choice rules which separate the effect of framing on

attention biases from the preferences based on their inherent qualities.

5 Appendix

Proof of Theorem 1. We show necessity. By Axiom 1, exactly one of the following holds,

(i) P (xi, {xi, yj}) > P (yj, {xi, yj}) or (ii) P (xi, {xi, yj}) < P (yj, {xi, yj}.
Define a complete and asymmetric binary relation � over X × F as follows:

xi � yj iff P (xi, {xi, yj}) > P (yj, {xi, yj}).
Consider xi ∈ G. We partition G, the set of alternatives as follows: G = G1∪G2∪{xi} where

G1 = {yj ∈ G : P (xi, {xi, yj}) < P (yj, {xi, yj})} and G2 = {wr ∈ G : P (xi, {xi, wr}) >
P (wi, {xi, wr}). Moreover, G1 ∩G2 = φ and xi /∈ G1 ∪G2.

Notice that using the definition of the binary relation � we have the following:

yj � xi ∀yj ∈ G1 ⊂ G and xi � wr∀Wr ∈ G2 ⊂ G.

Pick an arbitrary yj ∈ G1 ⊂ G. By axiom 4:

P (xi, G)

P (xi, G \ {yj})
=
P (φ, {yj})
P (φ, {φ})

(1)
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As Σxi∈GP (xi, G) = 1, we know that P (φ, {yj}) = 1 − P (yj, {yj}) and P (φ, {φ}) = 1.

Therefore, we have,
P (xi, G)

P (xi, G \ {yj})
= 1− P (yj, {yj}).

This in turn implies that,

P (xi, G) = P (xi, G \ {yj})[1− P (yj, {yj})]. (2)

We pick another arbitrary alternative ql ∈ G1 \ {yj}.
By axiom 4,

P (xi, G \ {yj})
P (xi, G \ {yj, ql})

= [1− P (ql, {ql})].

which implies,

P (xi, G \ {yj}) = [1− P (ql, {ql})]P (xi, G \ {yj, ql}). (3)

Using equations 5 and 6 we get:

P (xi, G) = [1− P (yj, {yj})][1− P (ql, {ql})]P (xi, G \ {yj, ql}).

By the repeated application of axiom 4 for every yj ∈ G1,

P (xi, G) = P (xi, G \G1)Πyj∈G1 [1− P (yj, {yj})].

which implies:

P (xi, G) = P (xi, G2 ∪ {xi})Πyj∈G1 [1− P (yj, {yj})] (5)

Now consider G2 ∪ {xi}. By construction of G2, for all wr ∈ G2 ∪ {xi} such that wr 6= xi,

P (xi, G2 ∪ {xi}) > P (wi, G
′′
2 ∪ {xr}), where wi, xr ∈ G′′2 and G \ {xi, wr} = G′′ \ {wi, xr}.

Therefore, by axiom 3:

P (xi, G2 ∪ {xi}) = P (xi, {xi}) (6)

From (5) and (6) we get:

P (xi, G) = P (xi, {xi}).Πyj∈G1 [1− P (yj, {yj})]

Using the definition of the binary relation � and by the construction of G1, the above

expression can be written as:

P (xi, G) = P (xi, {xi}).Πyj�xi [1− P (yj, {yj})]
Define:

P (xi, {xi}) = P (yi, {yi}) = δi
P (xj, {xj}) = P (yj, {yj}) = δj Therefore, P (xi, {xi}) = δi and P (yj, {yj}) = δj. Therefore,

P (xi, G) = δi.Πyj�xi [1− δj]
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�
Proof of Theorem 2. We show necessity. By difference, exactly one of the following holds,

(i) P (xi, {xi, yj}) > P (yi, {xj, yi}) or (ii) P (xi, {xi, yj}) < P (yi, {xj, yi}. Define a binary

relation � over X as follows: for any x, y ∈ X and fi, fj ∈ F , x � y ⇐⇒ P (xi, {xi, yj}) >
P (yi, {yi, xj}). By (i) or (ii) above and dominance (iii), � is complete and asymmetric.

Consider xi ∈ G. We partition G as follows: G = G1 ∪ G2 ∪ {xi} where G1 = {yj ∈ G :

P (xi, {xi, yj}) < P (yi, {xj, yi})} and G2 = {wr ∈ G : P (xi, {xi, wr}) > P (wi, {xr, wi}).
Moreover, G1 ∩G2 = φ and xi /∈ G1 ∪G2.

Notice that using the definition of the binary relation � we have the following:

y � x, ∀yj ∈ G1 and x � w, ∀wr ∈ G2.

Pick an arbitrary yj ∈ G1. Let H(y) = {x ∈ X∗|P (yj, {xi, yj}) > P (xj, {yj, xi})}. By

dominance (i), P (yj, {yj}) > P (x∗, {yj}). Therefore x∗ ∈ H(y). By independence:

P (xi, G)

P (xi, G \ {yj})
=
P (x∗, {yj})
P (x∗, φ)

(4)

As Σxi∈GP (xi, G) = 1, we know that P (x∗, {yj}) = 1 − P (yj, {yj}) and P (x∗, φ) = 1.

Therefore, we have
P (xi, G)

P (xi, G \ {yj})
= 1− P (yj, {yj}).

This in turn implies that

P (xi, G) = P (xi, G \ {yj})[1− P (yj, {yj})]. (5)

Notice that
P (x∗,{yj})
P (x∗,φ)

= 1− P (yj, {yj}).

We pick another arbitrary alternative ql ∈ G1 \ {yj}.
By independence and

P (x∗,{yj})
P (x∗,φ)

= 1− P (yj, {yj}),

P (xi, G \ {yj})
P (xi, G \ {yj, ql})

= [1− P (ql, {ql})].

which implies,

P (xi, G \ {yj}) = [1− P (ql, {ql})]P (xi, G \ {yj, ql}) (6)

Using equations 5 and 6 we get:

P (xi, G) = [1− P (yj, {yj})][1− P (ql, {ql})]P (xi, G \ {yj, ql}).

By the repeated application of independence for every yj ∈ G1,

P (xi, G) = P (xi, G \G1)Πyj∈G1 [1− P (yj, {yj})].
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which implies:

P (xi, G) = P (xi, G2∪{xi})Πyj∈G1 [1−P (yj, {yj})] (7)

Now consider G2 ∪ {xi}. By construction of G2, for all wr ∈ G2 ∪ {xi} such that wr 6= xi,

P (xi, G2 ∪ {xi}) > P (wi, G
′′
2 ∪ {xr}), where wi, xr ∈ G′′2 and G \ {xi, wr} = G′′ \ {wi, xr}.

Therefore, by dominance (ii), P (xi, G2 ∪ {xi}) = P (xi, {xi}) (8)

From (7) and (8) we get: P (xi, G) = P (xi, {xi}).Πyj∈G1 [1−P (yj, {yj})]. Using the definition

of the binary relation � and by the construction of G1, P (xi, G) = P (xi, {xi}).Πyj :y�x[1 −
P (yj, {yj})]. Define P (xi, {xi}) = P (yi, {yi}) = δi and P (xj, {xj}) = P (yj, {yj}) = δj. Using

the definition of δ in P (xi, G), we get P (xi, G) = δi.Πj:y�x;yj∈G[1− δj].
�

Proof of Theorem 3. We show necessity. Define a binary relation � over F ×A(2) where

A(2) is the set of all ordered pairs of alternatives in X, as follows:

fi �(x,y) fj ⇐⇒ I(xyij) ≥ I(yxij)

Consider xi ∈ G. We partition G, the set of alternatives as follows: G = G1 ∪G2 ∪ {xi}
where G1 = {yj ∈ G : I(xyij) ≥ I(yxij)} and G2 = {wr ∈ G : I(xwir) < I(wxir). Moreover,

G1 ∩G2 = φ and xi /∈ G1 ∪G2.

Note that using the definition of the binary relation � we have the following:

fi �(x,y) fj for all yj ∈ G1

(1)

By frame invariance, for some fz ∈ F , P (xi,{xi})
P (xz ,{xz}) = P (x∗,{xz})

P (x∗,{xi}) . Therefore, x∗ ∈ H(xi). (2)

Pick an arbitrary yj ∈ G1. By independence of suitable frames and (2):

P (xi,G)
P (xi,G\{yj}) =

P (x∗,{yj})
P (x∗,φ)

As P (x∗, {yj}) = 1 − P (yj, {yj}) and P (x∗, φ) = 1, the above expression can be written as

P (xi, G) = P (xi, G \ {yj}).[1− P (yj, {yj})].
By the repeated application of independence of suitable frames for all yj ∈ G1, we get:

P (xi, G) = P (xi, G2 ∪ {xi}).Σyj∈G1 [1− P (yj, {yj})]

By frame dominance, P (xi, G2 ∪ {xi}) = P (xi, {xi}). Therefore,

P (xi, G) = P (xi, {xi}).Σyj∈G1 [1− P (yj, {yj})]
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Using (1) in the above expression, we get:

P (xi, G) = P (xi, {xi}).Σyj∈G:fi�(x,y)fj [1− P (yj, {yj})] (3)

Define δ(xi) = P (xi, {xi}); and δ(yj) = P (yj, {yj}). Using δ(xi) and δ(yj) in (3):

P (xi, G) = δ(xi).Σyj∈G:fi�(x,y)fj [1− δ(yj)]
We know that I(xyij) ≥ I(yxij) ⇐⇒ I(yxji) ≥ I(xyji). This implies fi �(x,y) fj ⇐⇒
fj �(y,x).

Therefore, P (xi, G) = δ(xi).Σj:fj�(y,x)fi;yj∈G[1− δ(yj)] �

We show that the axioms Axiom 1, difference, revealed dominance and weak independence

are independent of each other:

• Let G(2) be a set contaning all G ⊆ X such that |G| ≤ 2. Define a function g : F →
I++, where I++ is the set of all strictly positive integers. g assigns each frame in F an

integer ki ∈ I++. � is a complete, asymmetric binary relation over X such that for any

xi ∈ G;G ∈ G(2)

P (xi, G) = 1
(ki+1)|N(x)|+1

where |N(x)| = |{yj : yj � xi; yi ∈ G}|
This choice rule satisfies axiom 1, difference, revealed dominance (i) and (ii), but does

not satisfy independence.

• Define δi : F → (0, 1). � is a complete, asymmetric binary relation over X. For all

xi ∈ G, consider the following modification of the luce rule:

P (xi, G) = αx.δi
Σyj∈Gδj

where αx =

{
1, if @yj ∈ G such that y � x; y 6= x

0, otherwise
The above rule satisfies axiom 1, difference, weak independence and revealed dominance

(ii), but does not satisfy revealed dominance (i).

• Define αx : X → [0, 1]. � is a complete, assymetric binary relation over X such that

for all xi ∈ G

P (xi, G) = αxΠyj :y�x(1− αy)

The above rule is similar to the stochastic choice rule characterized in Manzini and

Mariotti (2014). It satisfies difference, revealed dominance (i) and (ii) and weak inde-

pendence but does not satisfy axiom 1.

• Let δi : F → (0, 1). For all x ∈ X, consider the following interpretation of the Luce

rule: we attach weights to frames.
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P (xi, G) = δi
Σyj∈Gδj

The above choice rule satisfies axiom 1. It vacuously satisfies revealed dominance (i)

and (ii), and independence, but does not satisfy difference.

• Let G(2) be a set containing all G ⊂ X such that |G| ≤ 2; for any xi, yj ∈ G, x 6= y. �
is a complete, asymmetric binary relation over X. For any xi ∈ G

P (xi, G) =

{
1 if [x � y∀yj ∈ G and i 6= i∗] or [y � x for some yj ∈ G and i = i∗]

0, otherwise

for some fi∗ ∈ F .

The above choice rule states that for some frame fi∗ , the alternative which is dominated

by the other alternative according to � is chosen when it occurs in this frame. This

rule satisfies axiom 1, difference, revealed dominance (i) and weak independence. It

does not satisfy revealed dominance (ii).
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