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Abstract

The development and di�usion of modern, high-yielding seed varieties (MVs) played a central
role in the Green Revolution, but the welfare bene�ts of this technological revolution remain a
topic of substantial debate. We provide novel estimates of the impacts of the spread of MVs
on infant mortality, a powerful summary measure of human welfare, across 36 countries in the
developing world. Our analysis makes use of geocoded survey data on the births of nearly 600,000
children, coupled with newly constructed, spatially precise proxies of MV adoption. Across our
sample, the proportion of cropped area planted to MVs rose from 0% in the 1960s to an average
of 21% in 2000. Our estimates suggest that this di�usion of MVs led to around a 3-4 percentage
point decrease in infant mortality (from a baseline of 17%), averting around 3-5 million infant
deaths per year by 2000. We further show that the impact is signi�cantly higher for male infants.
Our results provide new empirical evidence to the debate on the merits of continued investment
in improving agricultural technology.
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1 Introduction

Modern crop varieties (MVs), developed by dozens of national agriculture programs with the sup-
port of the research centers of the Consultative Group for International Agricultural Research, spread
globally during the past 70 years in one of the most far-reaching technological revolutions of mod-
ern time. While there is little disagreement that the use of MV seeds played a large part in the 20th
century’s dramatic increase in staple crop production (Evenson and Gollin 2003), much less is known
about the direct impacts of MV adoption on household welfare (Masters 2014).

In recent years, the impacts of agricultural productivity gains on human welfare have come under
renewed scrutiny. On the one hand, few scholars dispute the bene�ts of the ‘green revolution’ - the
spread of modern, high-yielding varieties (MVs) of cereal crops and intensive management practices
- for food production and caloric intake (Evenson and Gollin, 2003a). On the other hand, several
scholars emphasize its negative impacts on the environment, crop and dietary diversity, and argue
that strategic re-evaluation of R&D priorities for agriculture is warranted (Murgai et al., 2001; Per-
fecto and Vandermeer, 2010; McIntyre, 2009; Brainerd and Menon, 2014). These doubts are echoed
in the steady decline in funding for cereal crop improvement over the last few decades (Beintema
and Stads, 2006; Walker and Alwang, 2015). Some researchers also question whether investing in in-
creased agricultural productivity by smallholder farmers is the most e�ective strategy for economic
development, health improvement, and poverty alleviation in sub-Saharan Africa (Collier and Der-
con, 2014; Dercon, 2009; Evenson and Gollin, 2003a; McIntyre, 2009).

For the debate on the overall merit of improved cereal varieties to be empirically informed, it is
important to accurately evaluate the bene�ts of MV di�usion. However, credible estimates of the
causal welfare impacts of the spread of varieties in the 20th century remain surprisingly scarce,
and are mostly con�ned to studies in single countries (Fan et al., 2002, 2001) or subnational regions
(Pinstrup-Andersen and Jaramillo, 1991). In this paper, we provide such evidence at a precision and
scale that has not been attempted to date, using spatially precise household level data on children
born between 1959 and 2001 collected in 37 developing countries. The analysis improves upon ex-
isting literature in several dimensions, as we discuss below.

To improve the prospects for causal inference, we construct high resolution, sub-national proxies of
MV di�usion and couple them to geo-referenced household-level IM indicators from publicly avail-
able household survey data. MV proxies are constructed by combining high-resolution global crop
maps with country level indicators of MV di�usion. IM data is collected from Demographic and
Health Surveys (DHS) in 37 developing countries (Figure 1), and includes more than 600,000 child
observations. Our results suggest that the di�usion of MVs contributed to improvements in infant
health. We �nd that one standard deviation (1σ) increase in MV di�usion decreased child’s infant
mortality risk by about 9% (from 10% to 9.1%). We further look into heterogeneous e�ect on gender,
and our estimates suggest the MV di�usion improves the health of male infants more than female
infants. We also document region-wise heterogeneity in the impact of MV di�usion.

The development and di�usion of MVs, along with associated increases in agronomic inputs (e.g.
fertilizers, irrigation, and pest control), are thought to have driven the dramatic improvements in
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agricultural productivity and calorie production per capita that have taken place in the course of
the 20th century in many (but not all) developing countries. There are multiple potential pathways
through which increases in yields can improve human health and welfare. Increases in supply can
reduce food prices, leading to higher consumption and improved food intake. For farmers who are
net food sellers, income may also increase (depending on how far prices decline). At the aggre-
gate economy level, yield increases might also have triggered broader structural transformation in
the economy leading to urbanization, higher productivity, a larger tax base and subsequent public
health investments (McArthur and Sachs, ming; McArthur and McCord, 2014). Some researchers
have argued that ‘green revolutions’ underpin later stages of economic growth, and cite Africa’s
relative lack of a green revolution as a key reason why the region has not yet experienced greater
long-term economic success (Diao et al., 2010).

Despite these myriad possible channels of in�uence, empirical assessments of the historical associa-
tion between the di�usion of MVs and human welfare on a global scale are severely limited by data
availability. Correlations at the country level are both inconclusive (see below) and particularly di�-
cult to interpret because agricultural productivity and a range of welfare indicators trend together as
part of the general process of economic development, whose underlying root causes remain debated
(although a recent paper by Gollin et al. (2016), uses a novel methodology to disentangle the e�ects
of MVs). Unfortunately, high quality sub-national data on MV di�usion is unavailable at the required
spatial and temporal resolution and scale. This makes the causal impacts of past MV di�usion on
human health di�cult to disentangle.

Our analysis focuses on the e�ects of MV di�usion, and associated increases in agronomic inputs,
on a powerful summary indicator of health and welfare: infant mortality (IM). IM is highly corre-
lated with income across and within countries, as well as over time and is widely used to assess
levels of economic development (Baird et al., 2011; Lee et al., 1997; Hicks and Streeten, 1979). IM
has declined dramatically in the developing world over the same period in which adoption of MVs
increased globally: from 154 deaths per 1,000 live births in 1960 to 42 deaths in 2010. The di�usion
of MVs could have contributed to the decrease in infant mortality if the subsequent yield increases
led to improved maternal and infant nutrition, to increased incomes among farming families, or to
decreases in the real price of food bene�ting the entire population1. An inspection of the relation-
ship between MV di�usion and IM declines at the country-year level, however, does not yield a clear
conclusion (Table 7). This is perhaps not surprising given the coarseness inherent in country level
summaries of variables that display substantial sub-national heterogeneity, and the limited sample
size. More fundamentally, correlations at the country level cannot be interpreted as a causal esti-
mate, since a range of other variables could confound the impacts of MV di�usion. For example,
a country experiencing rising incomes due to successful export manufacturing might enjoy rising
incomes, raising the demand for food and pro�tability in the farming sector, incentivizing farmers to
use more inputs (including MVs). Health might be improving as households can a�ord to spend more
on health and the public health system improves with rising tax revenue. The association between

1The vulnerability of rural households to food shortages is evident in the e�ect of large-scale feeding programs on
anthropometric outcomes (Beaton et al., 1982), and in how rainfall shocks experienced by pregnant women in Indonesian
farming communities a�ect their female children’s height, weight, and school completion as adults (Maccini and Yang,
2009). Agricultural technology improvements have been found to reduce the likelihood of households living below the
poverty line in Mexico (Becerril and Abdulai, 2010), Ethiopia (Zeng et al., 2015), Rwanda and Uganda (Larochelle et al.,
2015)
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increased MV use and declining infant mortality in this narrative does not represent the causal e�ect
of MV di�usion.

Our statistical analysis compares trends in MV di�usion and IM declines across di�erent locations in
the same country in a sub-national di�erence-in-di�erence approach. We utilize sub-national vari-
ation in the rate of MV di�usion that arises from a combination of di�erences in the national rate
of MV di�usion between crops, and geographical heterogeneity in cropping patterns. It then tests
whether these temporal changes in MV di�usion are correlated with temporal changes in IM within
countries, and pools results from all countries in the sample. By comparing rates of change in MV
and IM, rather than their absolute levels (i.e. di�erence-in-di�erences estimation), while control-
ling for location speci�c �xed e�ects, we avoid basing our estimates on cross sectional comparisons
across locations, which are highly susceptible to bias from confounding variables. And by only com-
paring trends in locations within the same countries (i.e by including country × year �xed e�ects),
we implicitly control for all country-level, time changing variables that might have otherwise bi-
ased country-level analyses of the MV-IM relationship. This approach does not eliminate all possible
causes of bias, but it dramatically reduces the scope for such bias when compared with a country-
level analysis.

This paper is organized as follows. Section 2 describes data used. We provide details on the con-
struction of local MV indicator in Section 3 and our empirical speci�cation in Section 4. Results are
reported in Section 5, and Section 6 concludes.

2 Data

2.1 Infant Mortality

Our main outcome variable, infant mortality, is measured through the Demographic and Health Sur-
veys (DHS), which are the only high-quality, spatially-referenced, and internationally-comparable
household surveys that provide detailed data on health of individuals. We compiled DHS data for
developing countries in 5 regions: sub-Saharan Africa, Latin America, Middle East and North Africa,
South East Asia and South Asia. Each mother is asked her fertility history, allowing for a record
of 3 million children. We then restrict the data to rural areas and to mothers that have never mi-
grated, since we are assigning the exposure of each child to MV di�usion according to their location.
We focus on children born between 1961 and 2000, given the available data on MV di�usion data,
described below. The resulting sample (once matched with the MV di�usion data) includes 18,142
villages in 438 administrative regions spread across 36 countries2. The DHS are geo-referenced to
roughly within 5 km, which can be spatially merged with crop distribution data allowing for an
analysis at high spatial resolution. The DHS clusters in our study are mapped in Figure 1. Table
1 provides summary statistics for the data for children born around 1980 and around 2000. Infant
mortality decreased in the data from 13% to 8% over these two decades, concurrently with increased
di�usion in modern varieties across the developing world.

[Insert Figure 1: The locations of rural Demographic and Health Survey (DHS) clusters]
2The data are derived from 73 surveys and Table 8 shows the number of infants, country-wise, in our estimating sample.
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[Insert Table 1: Summary statistics]

2.2 MV adoption

Historical data on MV di�usion are available by country from Evenson (2003a). The dataset (referred
to as EGMV from here onwards) reports the fraction of area planted with modern varieties for each of
11 major crops (wheat, maize, rice, barley, pearl millet, sorghum, cassava, potato, groundnut, beans,
and lentils) in 90 countries, at �ve-year intervals between 1960 and 2000 (Figure ?? and ?? illustrate
the temporal and geographical coverage of MV di�usion data). Note that these are the important
staple crops in terms of caloric intake, and cover 60% of cropland in our sample locations on average.
We only use data for the 36 countries for which geo-referenced DHS data is available.

2.3 Crop area

We make use of spatially-explicit, global crop harvested area datasets to determine the relative crop
mix in each location in each country. These data sets report the area cultivated with each crop in
every location (pixel) of the world. We make use of this data to construct our proxy for localized MV
di�usion rates (see below). Three dataset of this kind are available, as far as we are aware, and we
conduct our analysis while using each of them, in turn, to assess the robustness of our results to the
choice of the data. We note that the three data sets di�er in terms of crops covered, data sources and
methodology.

The �rst is the EarthStat (earthstat.org) dataset from Monfreda et al. (2008), which reports harvested
area data circa 2000 (1997-2003) for 175 crops, 11 of which are of interest due to the availability of MV
data. This dataset uses agricultural census and survey information to distribute crop harvested area
across physical cropland areas, which are determined from remote sensing and agricultural census
and survey information (Ramankutty et al. 2008). (Figure ?? provides a sample snapshot of data.)

The second dataset is the the Spatial Production Allocation Model (SPAM). Similar to the EARTH-
STAT data, the SPAM maps are based on a collection of agricultural census and survey data, however
the disaggregation to the grid cell is based on a modeling approach that includes information on crop-
land areas, biophysical crop suitability assessments, population density, and crop prices (You et al.,
2014). SPAM2000 includes crop harvested area data for 10 crops with MV data. All three datasets are
available at a �ve arc-minute resolution.
The third is the historical EarthStat crop harvested area dataset (Ray et al. 2012). This dataset is sim-
ilar to the �rst one, except that it also reports yearly historical harvested area data from 1961-2008,
but it only covers the three major cereal crops with MV data: maize, wheat, and rice (the dataset also
includes soybean, but no MV data is available for this crop). The spatial and temporal frequency of
the source data di�ers by country, and is not as complete as Monfreda et al. (2008). When historical
subnational data was not collected for a speci�c country, the harvested area estimates are determined
from the circa 2000 crop distribution data and historical national-level data. (Figure ?? provides a
sample snapshot of data.)
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3 Methodology

3.1 Construction of local MV Di�usion Indicators (MVDIs)

A central component of our analysis is the construction of a MV Di�usion Indicator (MVDI) at high
spatial resolution. This indicator is constructed by combining the EGMV data with global high-
resolution crop maps described above. Our approach is illustrated in Figure 2 in the case of Nigeria.
The top rows map the spatial distribution of the six crops in the Monfreda data in 2000, showing the
di�erent distribution by crop (for example, maize is grown throughout, rice is more concentrated in
the center of the country, and wheat is grown exclusively in the north). Below each map a graph
shows the progression of MV di�usion at the national level by crop from the EGMV data. The bottom
three maps show our composite MVDI for 1965, 1985 and 2000, constructed as explained below.

[Insert Figure 2: Crop distribution and modern variety data for Nigeria]

The MVDI is constructed in each grid cell and 5-year time step as the weighted average of crops’ MV
di�usion rate at that year (reported at the country level by Evenson and Gollin (2003b)), where the
weights represent the relative share of cropped area in that grid cell devoted to that crop:

MVDIvct =

∑j
(CropAreajvc × EGMV Areajct)∑j

CropAreajvc
(1)

where v is a location (village) in country c and t is the period of observation. EGMV Areajct is the
share of area cultivated with crop j that is planted with MVs in country c at time t, andCropAreajvc
is the area cultivated with crop j in location v, as reported in the global crop maps (which are time
invariant) mentioned above. The summation is conducted over all crops covered by the crop map in
question. As explained above, we construct three variants of MVDI, using the three available global
crop maps described above: the EARTHSTAT circa 2000 data from Monfreda et al. (2008), for which
j =  (Barley, Beandry, Cassava, Groundnut, Lentil, Maize, Millet, Potato, Rice, Sorghum, Wheat);
the SPAM dataset, for which j =  (Barley, Beandry, Cassava, Groundnut, Maize, Millet, Potato,
Rice, Sorghum, Wheat); and the historical EARTHSTAT data from Ray et al. (2012), for which j = 
(Maize, Rice, Wheat)3. (Figure ?? and ?? illustrate the variation in the constructed MVDI variables.)

These MVDI variables will be used as proxies for the actual, but unobserved, local rate of MV di�u-
sion in our empirical analysis. For the analysis to be interpreted correctly, these constructed di�usion
rates should be highly correlated with actual di�usion rates. It is of course impossible to test this
directly because local MV di�usion rates are not observed globally. However, we can perform two
partial tests.

First, it is evident from the construction of the variables that two su�cient conditions for this to hold
are (a) fraction of areas devoted to various crops should remain well correlated over time, and (b) the
share of the area cropped with a MV, for each crop and location, should not be substantially higher
in areas that were not cropped with the crop in question in 1965 than in those that were (in other

3Figure 8 and Figure 7 illustrate the crop area and MVDI maps based on EARTHSTAT 1961-65 and SPAM 2000 respec-
tively.
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words, initial cropping patterns matter for subsequent MV adoption). Condition (a) can be veri�ed
by checking the correlation of grid cell crop areas between 1965 and in 2000 for countries in our
sample with historical sub-national census records as reported by Ray et al (2012). The correlation
is 0.92 in the case of maize, 0.57 in the case of wheat, and 0.95 in the case of rice, suggesting little
variation in the spatial crop mix of main staple crops over time.

Second, we can test the validity of the proxy in locations in which local MV di�usion rates were mea-
sured over time. Even though India is not included in our sample of analysis (since geo-referenced
DHS data is not available there in the time period of the analysis), data on MV use is available at the
district/admin 2 level from 1960-2000 (ICRISAT 2013). Comparing this data to our constructed proxy
reveals a high degree of correlation between actual MV di�usion rates and both variants of our MV
indicator (Figure 9).

4 Empirical speci�cation

We estimate the following regression model:

yivct = γMVDIvct + uv + Zct +Xivct + eivct (2)

where, y is a binary indicator of infant mortality observed for child i, in village (sample cluster) v,
in country c and in year t. MDV Ivct is the constructed indicator of MV di�usion in the grid cell
to which village v belongs, country c and year t. X is a vector of child level controls that includes
the child’s sex and a quadratic function of the mother’s age. The regression controls for village �xed
e�ects uv and country × year �xed e�ects, Zct (one �xed e�ect for each combination of country and
year).

Our model tests whether a child born when MV di�usion was higher has a di�erent mortality risk
than a statistically identical child born in the same village in a di�erent year when MV di�usion was
lower. This is accomplished by including an extensive set of ‘�xed e�ects’, i.e. collection of binary
variables that �exibly control for categories of potentially unobservable confounders. We include a
range of binary indicators uv for each village (DHS sampling cluster) that absorb all time-invariant
village characteristics that could confound inference, such as climate or soils or distance to the cap-
ital city. Including these �xed e�ects in the regression ensures our estimates are based on variation
in MV di�usion within villages, over time, rather than across villages. We also include �exible time
trends at the country level, represented by binary indicators Zct for each combination of country
and year. These absorb any time-varying confounders that are de�ned at the country level, includ-
ing national policy changes. Including these ‘�xed e�ects’ in the regression ensures our estimates
are based on comparisons of changes in MV between villages located in the same country.

The term eivct represent idiosyncratic errors. Our estimates cluster standard errors at the admin-1
level (there are 434 state-level administrative zones in the 37 countries in our data). This procedure
accounts for possible correlation in these error terms across any two observations that are located
in the same administrative region of a given country, correcting biases in standard errors that arise
from spatial correlation in the treatment variable as well as temporal autocorrelation in the outcome
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variable Bertrand et al. (2004).

The coe�cient of interest is γ which we hypothesize to be negative if increases in MV di�usion lead
to reductions in IM. It is important to note that the di�usion of MVs was accompanied by increases
in crop inputs (Tilman et al. 2002, Pingali 2012). Our estimate of MV di�usion implicitly includes the
yield-enhancing e�ects of input intensi�cation that accompany the use of MVs. Therefore, e�ects
on health should not only be considered a response to the MVs themselves, but to the wholesale
adoption of more intensive and productive cropping practices stimulated by the use of MVs. A sec-
ond point is that our indicator tracks replacement of traditional crop varieties with modern varieties.
Additional crop yield and human welfare bene�ts would be expected as more advanced modern va-
rieties replace earlier varieties, but our approach only measures the average health impact across all
types of modern varieties that were adopted.

Our empirical strategy estimates a ‘reduced-form’ relationship, meaning it does not allow us to di-
rectly identify the mechanism driving the relationship. The two primary candidate mechanisms in-
clude a direct e�ect on the income of farmers resulting from increased yields, or through improved
food intake of both mothers and infants due to increased food availability. Since our estimates re-
�ect di�erences in the rates of IM declines across villages in the same country, they can only capture
those impacts of MV di�usion that are localized in nature. In particular, increases in yields that re-
sult in uniform declines in food prices across an entire country would be ‘missed’. Only localized
relative changes in income and food prices would be captured by our estimates, which are therefore
a lower bound. We note, however, that imperfect market linkages in developing countries make the
possibility of localized price changes quite likely (Ravallion, 1986).

We estimate the above regression model independently using each of the two variants of the MV
indicators described above. The variant using 1965 cropped areas generates a more exogenous sub-
national proxy for MV di�usion, since subsequent crop distributions might shift as a response to
MV availability. On the other hand, using the 2000 cropped areas allow us to include more crops
in the analysis, and sidesteps data quality issues in the construction of 1965 cropland area maps in
countries lacking agricultural census data in that time period.

In addition to estimating e�ects on total IM, we also report gender separated impacts for two reasons.
First, male infants consistently exhibit higher mortality rates than females, especially in response to
in-utero stress (Almond and Currie, 2011) (Almond and Mezumder, 2011; Almond and Currie, 2011).
Many scholars attribute the di�erence to males being biologically weaker (Naeye et al. 1971) and
more susceptible to disease than female infants due to a more vigorous immune response among
females (Bouman et al 2005, Read et al 1997, Waldron 1983), though the size of the biological e�ect
is contested (Pongou, 2012). Second, di�erences in the impacts of household income �uctuations on
boys and girls are routinely observed in developing countries, and typically thought by development
scholars to arise from prevalent gender biases in intra-household resource allocation. Evidence from
several studies indicates that households often prioritize boys over girls in di�cult times (Dreze and
Sen, 1989) (Dreze and Sen, 1989; Jayachandran, 2005; Maccini and Yang, 2008; Baird, Friedman and
Schady, 2011), including in terms of nutrient allocation (Behrman, 1988; Behrman and Deolalikar,
1990).
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5 Results

Table 2 reports estimates of the e�ect of MV di�usion on IM derived from regression (2). Columns
1-3 reports estimates derived by using the three variants of MDVI that are constructed from the three
global crop maps described above.

Column (1) reports estimates derived by using the EARTHSTAT global crop map (2000 crop mix for
11 crops). The results indicate that across both sexes (panel A) children were less likely to die in
infancy when born in places with higher MV use. The magnitude of the estimate suggests that an
increase of MV di�usion rates from 0% (no MV) to 100% (full MV coverage) is associated with a 6%
decline in infant mortality (down from a sample mean of 10%). A one standard deviation increase
(14%) in the rate of MV di�usion is associated with a 0.9% decline in infant mortality.

Columns (2) and (3) report parallel estimates derived by using the SPAM and historical EARTHSTAT
global crop maps, respectively. The results remain qualitatively similar. Column (3) constitutes our
preferred speci�cation, since crop areas are observed in 1965, reducing concerns about endogenous
changes in crop mix resulting from MV di�usion.

Panel B limits the sample to female infants. The three regressions suggest that the e�ect of MV
di�usion on the mortality of infant girls is negative, but lower than the overall e�ect and statisti-
cally imprecise. Panel C reports results for males and �nds impacts that are large and precise. The
coe�cients across the three models range from . − ., suggesting that males born when
MV di�usion is 1 standard deviation higher bene�t from a . − . percentage point reduction in
mortality risk (compared to a mean value of 11% mortality rate in the male sample). These results
suggest that the bene�t of MV di�usion, whether through improved nutrition or higher incomes,
improves the health of male infants more than that of female infants. We test whether the salubrious
e�ect occurs in the womb by comparing the male-to-female infant sex ratio in years before and after
MV di�usion, and �nd only weak evidence that MV di�usion led to an increase in the sex ratio (Ta-
ble S1). This suggests that the health e�ects on infant mortality, in particular those detected among
males, occur not by changing the rate of miscarriage of male fetuses compared to female fetuses but
by improving the health of fetuses and infants that were already going to result in a live birth in the
absence of MVs.

[Insert Table 2: The impact of modern variety (MV) di�usion on the mortality of all infants]

Table 3 compares results across regions, using the 1965 crop mix speci�cation reported in column
(3) of Table 2. The results indicate that the infant mortality decline triggered by modern variety dif-
fusion is mainly driven by Latin America, the Middle East & North Africa (MENA), and Sub-Saharan
Africa. The magnitude of the e�ect is substantially larger in Latin America (∼5x) and MENA (∼8x)
than in Sub-Saharan Africa. In all three regions, the bene�cial e�ect of MV di�usion on infant health
is mostly only evident in the case of male infants (the e�ect on females is only statistically signi�cant
in MENA).

We do not �nd indication that MV di�usion in South and Southeast Asia (SSEA) lead to reductions
in infant mortality. While this may seem puzzling (given that the Green Revolution success stories
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are often from Asian countries), there are several reasons why our ability to detect a relationship
is compromised in SSEA. First, we note that our sample size of countries SSEA is limited, since
only Bangladesh, Nepal, and the Philippines provide geo-referenced DHS data. Second, these coun-
tries are dominated by rice cropping; since variation in our constructed MV indicator relies upon
geographical heterogeneity in the crop mix, the dominance of rice may limit the variation of our
explanatory variable and thus lead to imprecise estimates. For the three major cereals represented in
the Ray et al. (2012) dataset, 69% of harvested area was devoted to rice in 1997-2003 (FAOSTAT), and
in Bangladesh it was as high as 93%. Among all 11 crops with MV data, 63% of harvested area was
devoted to rice (FAOSTAT). Since variation in the constructed MVDI indicator relies upon geograph-
ical heterogeneity in the crop mix, the dominance of rice may limit the variation of the explanatory
variable and thus result in less precise estimates. The root mean square error in the MVDI (after
removing village �xed e�ects and time trends as in our main speci�cations) reveals that the observa-
tions in SSEA exhibit less than half as much variation in the MVDI compared to other regions. Third,
we note that the children in the sample were mostly born after the di�usion of MV technologies in
Asia (the median baby in the sample was born in 1991, and 90% of babies were born after 1980). By
1990, Bangladesh already had 60% of wheat and 40% of rice planted to MVs, Nepal had 80% of wheat
and 30% of rice planted to MVs, and the Philippines had 90% of rice planted to MVs. The large infant
health gains due to MV di�usion may therefore have already happened by the time our data begin.

[Insert Table 3: The impact of modern varieties on infant mortality by region]

5.1 Robustness Tests

Our empirical strategy provides a substantial improvement over inference based on country level
variation. Using sub-national data on MV di�usion and IM allows us to �exibly control for all un-
observables occurring at the country level (through the inclusion of interacted country × year �xed
e�ects). Still, variation in MV di�usion is clearly not purely exogenous, making it impossible for us
to eliminate all possible sources of bias.

One threat to identi�cation is that individual level characteristics could be confounding the e�ects
of MVDI and those are really the characteristics driving the decline in infant mortality. Our results
are robust to inclusion of birth order �xed e�ects and mother �xed e�ects. To be clear, the inclusion
of the latter allow us to compare children born to the same mother with di�erent exposure to MVDI.
Table 5 show that the qualitative story of the paper’s main �nding still holds.

[Insert Table 4 and 5: Robustness of the impact of modern varieties on infant mortality to birth
order and mother �xed e�ects]

Another principal potential threat to causal inference lies with the possibility that localized (sub-
national) improvements in both MV di�usion and IM are in fact driven by localized variation in
economic growth rates. If incomes increase at higher rates in certain sub-national regions, one may
be concerned that they lead to both declines in IM as well as higher ability to invest in improved seeds
and associated inputs, leading us to wrongly infer a causal connection between the two variables.
While we do not observe local incomes at the required spatial and temporal resolution, and therefore
are unable to fully account for this possibility, we subject our model to few robustness tests in which
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we �exibly control for interaction between regional �exible time trends and geographical attributes
of each location that are often predictive of economic growth: distance to the coast and distance to
cities. In other words, we estimate

yivct = γMVDIvct + uv + Zct +Xivct +W
()
R,t ×DCoast

vc +W
()
R,t ×DCity

vc + eivct (3)

where all terms are as above, and we add interactions between region × year �xed e�ects W (i)
R,t and

the distance of each village from both the coast and the nearest major city (DCoast and DCity). This
model isolates the e�ect of MV di�usion from any region speci�c �exible time trends that di�er-
entiate locations on the basis of their distance to coast or urban centers, and should therefore be
able to capture �exibly much of the local patterns of economic growth within countries. Results are
reported in column (4) of Table 2 and show that these controls have little e�ect on our estimates.

A third type of potential concern has to do with the possibility that the local crop mix itself has an
impact on declines in IM that is not driven by the di�usion of MVs, but by some other attribute of
the crop mix, or its correlate. For example, one might imagine that di�ering trends in the prices of
speci�c crops are creating di�erent trends in incomes for some locations. If these price trends are
correlated with MV di�usion rates across crops, the e�ect on IM might be driven by price changes
rather than by MV di�usion. To address this possibility, we test the robustness of our estimates to
the inclusion of interactions between �exible region speci�c time trends of each crop and the local
crop mix (observed in 1965). In other words, we estimate:

yivct = γMVDIvct + uv + Zct +Xivct +
∑
j

αjW
(j)
R,t × CropAreajvc + eivct (4)

where all terns are as above, and we add interactions between crop speci�c region year �xed e�ects
W

(j)
R,t and the cropped area of each crop j in the location in question, for all crops in the data. Results

are reported in column (5) of Table 2 and show that these controls have little e�ect on our estimates.

Finally, critics may argue that it’s possible that there are some other factors other than MV di�usion
such as the global spread of Maternal, Neonatal and Child Health (MNCH) Interventions that are
responsible for our �ndings. While data constraints do not explicitly allow us to control for these
variables (because such questions were not asked for children with respect to their birth year), we are
able to construct averages of proxies of health interventions at the village level for survey year and
test for correlation between our MVDI variable and these interventions. We �nd weak correlation
between MVDI and health interventions and no evidence for any correlation with vaccination or
breastfeeding (see Table 10 and Table 11).

6 Discussion

In the year 2000, around 114 million baby boys were born in the developing world (UN Population
Division World Population Prospects 2015). The population-weighted average of crops planted to
modern varieties by country was 63%. Our estimates suggest that this level of MV di�usion reduced
the mortality rate of male infants by 5-6 percentage points, which translates into 15-18 million infant
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deaths averted per year by the year 2000. The region-speci�c results suggest that of Latin America’s
29 million male infants in 2000, the 61% coverage of MVs for major crops averts 3.8 million infant
deaths; in the Middle East & North Africa, the MV di�usion of 40% reduces infant risk by 12 percent-
age points, averting 2.9 million male infant deaths. The estimate for sub-Saharan Africa suggests
that the MV di�usion in 2000 of 32% reduced infant mortality risk by 2 percentage points, averting
1.4 million male infant deaths.

Our results suggest that the di�usion of MVs contributed to improvements in infant health, partic-
ularly in poorer households/regions (see Figure 3-Figure 6) Although recent discussions on malnu-
trition rightly put great emphasis on micro-nutrient supplementation and production (DeFries et al.,
2015), our results suggest that the health bene�ts from broad-based increases in agricultural yields
should not be forgotten. Our results indicate that the health e�ects of MV di�usion di�ered based
on the sex of the infant. The greater reduction in infant mortality seen for infant boys than infant
girls may result from discrimination among parents in allocating scarce resources to children. Alter-
natively, infant boys may bene�t more than girls from improved maternal and infant nutrition due
to biological characteristics that contribute to underlying di�erences in IM rates between the sexes.
Identifying which of these mechanisms is at work remains an avenue of future research to inform
policy decisions and public investments in agricultural regions of the developing world.

The aggressive non-parametric controls in our estimation signi�cantly reduce the assumptions re-
quired to interpret results as the causal e�ect of MV di�usion on infant mortality. Potentially con-
founding factors would have to be correlated with crop distribution patterns as well as changes in
mortality, and vary in time at the village level in ways that are distinct from changes in national av-
erages over time. For instance, improvements in road access may correlate both with MV adoption
(say, through the availability of seeds and other inputs and information) and with infant mortality
(for instance, through greater income opportunities to generate income through trade, or better ac-
cess to vaccines). However, since we use crop distribution to proxy for MV adoption at the village
level, in order to confound our estimate the increased access to roads would have to coincide with a
national-level increase in modern variety use for a particular crop, be connecting villages growing
that particular crop back in 1965, and coincide with a reduction in those villages’ infant mortal-
ity rate. While these assumptions are not benign, they are signi�cantly weaker than study designs
which look simply at the association over time of MV di�usion and other outcomes.

Our results provide striking evidence for the human welfare bene�ts of agricultural productivity
growth via the mechanism of reducing infant mortality. Continued investments in agricultural re-
search and development could therefore lead to substantial human welfare bene�ts in areas where
rates of MV di�usion (Evenson and Gollin, 2003a; Walker and Alwang, 2015) (Evenson 2003, Walker
et al. - DIIVA book chapter 19), input intensity (Mueller et al., 2012; Lassaletta et al., 2014), and crop
productivity Mueller et al. (2012); van Ittersum et al. (2013); Mueller and Binder (2015) (Mueller et al.
2012, van Ittersum et al. 2012, Mueller et al. 2015) remain low. These health gains, coupled with evi-
dence of the e�ect of agricultural intensi�cation on reducing cropland expansion and greenhouse gas
emissions (Burney et al., 2010; Lobell et al., 2013; Hertel et al., 2014), furthers the case for continued
investment in development and di�usion of technologies to raise agricultural productivity.
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A Figures

Figure 1: The locations of rural Demographic and Health Survey (DHS) clusters

Note: The sample covers 18,382 total villages

Figure 2: Construction of MVDI (EarthStat 2000): A Country Example
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Figure 3: Heterogeneous impacts of MVs on IM, by irrigation
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Figure 4: Di�erential impacts of MVs on IM, by market access
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Figure 5: Di�erential impacts of MVs on IM, by mother’s education
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Figure 6: Di�erential impacts of MVs on IM, by DHS asset index
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B Tables

Table 1: Summary statistics

Around 1980s Around 2000s
Mean Std.Dev. Obs Mean Std.Dev. Obs

Outcome

Infant Mortality: All 0.13 0.33 73.659 0.08 0.27 73.925

Infant Mortality: Girls 0.12 0.32 35.652 0.08 0.26 36.315

Infant Mortality: Boys 0.13 0.34 38.007 0.09 0.28 37.610

Treatment (MVDI)

Earthstat (circa 2000) 0.07 0.09 71.939 0.21 0.17 71.357

SPAM (circa 2000) 0.06 0.09 69.635 0.20 0.19 69.391

Earthstat (1961-65) 0.09 0.14 70.131 0.28 0.24 70.353

Controls

Sex ratio 0.52 0.50 73.659 0.51 0.50 73.925

Mother’s age at birth 22.40 5.02 73.659 26.26 6.91 73.925
Note: Around 1980s refers to 1978-82 and around 2000s refers to 1998-2000
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Table 2: Impact on infant mortality

(1) (2) (3) (4) (5)

Panel A: All
MV × 2000 area −0.0633 −0.0467

(0.0266)** (0.0174)***
MV × 1961-65 area −0.0542 −0.0553 −0.0413

(0.0165)*** (0.0172)*** (0.0155)***

N 580,805 562,003 567,941 518,179 384,786
Mean .1 .1 .1 .11 .1

Panel B: Girls
MV × 2000 area −0.0212 −0.0298

(0.0365) (0.0237)
MV × 1961-65 area −0.0238 −0.0291 −0.0122

(0.0228) (0.0248) (0.0253)

N 282,395 273,335 276,160 251,790 187,111
Mean .098 .097 .098 .1 .098

Panel C: Boys
MV × 2000 area −0.0939 −0.0556

(0.0309)*** (0.0247)**
MV × 1961-65 area −0.0859 −0.0797 −0.0658

(0.0185)*** (0.0175)*** (0.0176)***

N 297,083 287,411 290,475 265,271 196,906
Mean .11 .11 .11 .11 .11
Geog controls No No No Yes No
Area controls No No No No Yes

Note: Each estimate in Table 2 represents γ from the following estimating equation: yivct = γMDV Ivct +
uv+Zct+Xivct+eivct where, yivct is a binary indicator of infant mortality (death in the �rst year of life) i.e.
whether child i in village v in country c died in its birth year t; uv are village �xed e�ects and Zct are country
× year FE; Xivct includes quadratic in mother’s age (at birth of child) and sex of child; and eivct clustered
at subnational (admin) level. The sample is restricted to rural villages and mothers who report to have never
migrated. Geographic controls include distance to coast × region × year FE and distance to cities × region
× year FE as noted in Equation 3. Area controls include cropped area × region × year FE as described in
Equation 4.
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Table 3: Impact of MV (Crop area in 1961-65 x MV) on infant mor-
tality, by region

(1) (2) (3) (4)
LAC MENA SSA SSEA

All −0.1493 −0.2367 −0.0280 0.1360
(0.0643)** (0.0663)*** (0.0125)** (0.1173)

N 76,224 119,047 316,728 55,942
Mean .075 .095 .12 .097

Girls −0.1074 −0.1953 0.0023 −0.0386
(0.0764) (0.0891)** (0.0209) (0.1618)

N 37,044 57,469 154,458 27,189
Mean .069 .094 .11 .09

Boys −0.2156 −0.2873 −0.0571 0.2084
(0.0884)** (0.0621)*** (0.0141)*** (0.1757)

N 38,770 61,520 161,675 28,510
Mean .081 .097 .12 .11

Note: Table 3 presents estimates of γ when the following estimating equa-
tion is run for each region k separately: ykivct = γ(MVDI( −
Area))kvct+uv+Zct+Xivct+eivct where, yivct is a binary indicator of
infant mortality (death in the �rst year of life) i.e. whether child i in village
v in country c died in its birth year t; uv are village �xed e�ects and Zct

are country × year FE; Xivct includes quadratic in mother’s age (at birth
of child) and sex of child; and eivct clustered at subnational (admin) level.
The sample is restricted to rural villages and mothers who report to have
never migrated. LAC includes 5 countries (Bolivia, Columbia, Dominican
Republic, Haiti and Peru), North Africa 2 countries (Egypt and Morocco),
SSA 25 countries (Benin, BurkinaFaso, CAR, Cameroon, CongoDRC, Cote-
dIvoire, Ethiopia, Ghana, Guinea, Kenya, Liberia, Malawi, Mali, Namibia,
Niger, Nigeria, Rwanda, Senegal, SierraLeone, Swaziland, Tanzania, Togo,
Uganda, Zambia and Zimbabwe) and SSEA 4 countries (Bangladesh, Cam-
bodia, Nepal and Philippines).
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Table 4: Robustness: Birth order FE

(1) (2) (3)
EARTHSTAT
(circa 2000)

SPAM
(circa 2000)

EARTHSTAT
(1961-1965)

Panel A: All
MVDI -0.0628 -0.0488 -0.0550

(0.0265)** (0.0176)*** (0.0161)***

N 580,805 562,003 567,941
Mean .1 .1 .1

Panel B: Girls
MVDI -0.0200 -0.0331 -0.0245

(0.0359) (0.0239) (0.0220)

N 282,395 273,335 276,160
Mean .098 .097 .098

Panel C: Boys
MVDI -0.0944 -0.0574 -0.0870

(0.0313)*** (0.0248)** (0.0186)***

N 297,083 287,411 290,475
Mean .11 .11 .11

Note: Each estimate in Table 4 represents γ from the following estimating
equation: yivct = γMDV Ivct + uv + Zct +Xivct + eivct where, yivct
is a binary indicator of infant mortality (death in the �rst year of life) i.e.
whether child i in village v in country c died in its birth year t; uv are vil-
lage �xed e�ects and Zct are country× year FE;Xivct includes quadratic
in mother’s age (at birth of child), sex of child and birth order �xed e�ects;
and eivct clustered at subnational (admin) level. The sample is restricted
to rural villages and mothers who report to have never migrated.
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Table 5: Robustness: Mother FE

(1) (2) (3)
EARTHSTAT
(circa 2000)

SPAM
(circa 2000)

EARTHSTAT
(1961-1965)

Panel A: All
MVDI -0.0768 -0.0429 -0.0478

(0.0262)*** (0.0231)* (0.0184)***

N 557,561 539,508 545,210
Mean .11 .1 .11

Panel B: Girls
MVDI -0.0313 -0.0340 -0.0070

(0.0380) (0.0332) (0.0309)

N 242,963 235,130 237,550
Mean .1 .1 .1

Panel C: Boys
MVDI -0.1253 -0.0515 -0.0753

(0.0318)*** (0.0302)* (0.0206)***

N 258,741 250,279 252,932
Mean .11 .11 .11

Note: Each estimate in Table 5 represents γ from the following estimating
equation: yivct = γMDV Ivct + uv + Zct +Xivct + eivct where, yivct
is a binary indicator of infant mortality (death in the �rst year of life)
i.e. whether child i in village v in country c died in its birth year t; uv

are village �xed e�ects and Zct are country × year FE; Xivct includes
quadratic in mother’s age (at birth of child), sex of child and mother �xed
e�ects; and eivct clustered at subnational (admin) level. The sample is
restricted to rural villages and mothers who report to have never migrated.
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C Supplementary tables and �gures

Figure 7: Construction of MVDI (SPAM 2000) for Nigeria

Figure 8: Construction of MVDI (EarthStat 1961-65) for Nigeria
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Figure 9: Validation of MV Di�usion Variable using Subnational Data from India
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Note: Figure 9 illustrates the correlation between the MVDI indicator calculated using alternative cropped area datasets.

Table 6: Validation of MV Di�usion Variable using
Subnational Data from India

(1) (2)

MVDI (2000 area) 0.2978
(0.0953)***

MVDI (1961-65 area) 0.4272
(0.1130)***

N 2,408 2,408

Note: Table 6 presents results for: yjdt = βMVDIjdt +
ud + vt + edt where, ydt is the MVDI in district d at time t
(constructed using actual district-level data from ICRISAT,
2013); (MVDIj)dt is the constructed MVDI variable us-
ing Equation 1 in district d at time t [j =  (Rice, Wheat,
Maize) or j =  (Rice, Wheat, Maize, Sorghum, Millet)]; ud

are district �xed e�ects and vt are year FE; and edt is the
idiosyncratic error term that is clustered at district level.
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Table 7: Country-Level Association of MV Di�usion and Infant
Mortality

(1) (2) (3) (4)

MV (11 crops) 52.99 10.80
(18.36)*** (40.04)

MV (cereals) 29.06 −31.20
(13.78)** (34.71)

N 700 700 700 700
Countries 86 86 86 86
Region × year FE Yes Yes No No
Country speci�c trends No No Yes Yes

Note: Table 7 presents results for the following estimating equation: yct =
γ(WeightedMV )ct + uc + f(t) + ect where, yct is the infant mor-
tality in country c at time t (number of infants dying per 1,000 births);
(WeightedMV )ct ∈ {crops, cereals} is the crop area weighted MV
adoption in country c at time t for 11 crops (Barley, Cassava, Groundnut,
Lentil, Maize, Bean, Millet, Rice, Sorghum, Wheat and Potato) or 5 cereals
(Maize, Millet, Rice, Sorghum and Wheat); uc are country �xed e�ects and
f(t) are region-year FE or country speci�c linear time trends; and ect is the
idiosyncratic error term that is clustered at country level. The data is sourced
from Evenson and Gollin (2003b).
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Table 8: Summary of number of surveys and infants in estimating sample, by country

Country Nsurveys Girls Boys Total

LAC-BOL 1 2,699 2,742 5,441
LAC-COL 1 3,623 3,757 7,380
LAC-DOM 1 6,418 6,848 13,266
LAC-HTI 2 8,670 9,000 17,670
LAC-PER 2 16,158 16,949 33,107
MENA-EGY 6 54,729 58,534 113,263
MENA-MAR 1 2,814 3,030 5,844
SSA-BEN 2 5,484 5,835 11,319
SSA-BFA 3 11,252 11,910 23,162
SSA-CAF 1 2,359 2,439 4,798
SSA-CIV 1 2,199 2,181 4,380
SSA-CMR 2 2,729 2,806 5,535
SSA-COD 1 1,546 1,718 3,264
SSA-ETH 2 18,735 20,233 38,968
SSA-GHA 4 4,872 5,185 10,057
SSA-GIN 1 4,962 5,367 10,329
SSA-KEN 2 2,440 2,717 5,157
SSA-LBR 2 1,969 2,184 4,153
SSA-MLI 3 20,828 21,862 42,690
SSA-MWI 3 20,781 21,177 41,958
SSA-NAM 2 2,724 2,663 5,387
SSA-NER 2 8,495 8,850 17,345
SSA-NGA 3 17,714 18,711 36,425
SSA-RWA 1 1,884 1,899 3,783
SSA-SEN 4 13,571 14,174 27,745
SSA-SLE 1 1,469 1,609 3,078
SSA-SWZ 1 538 506 1,044
SSA-TGO 2 3,318 3,419 6,737
SSA-TZA 2 2,672 2,625 5,297
SSA-UGA 2 3,050 3,086 6,136
SSA-ZMB 1 1,404 1,350 2,754
SSA-ZWE 2 3,379 3,434 6,813
SSEA-BGD 3 4,657 4,826 9,483
SSEA-KHM 2 16,584 17,277 33,861
SSEA-NPL 2 2,633 2,731 5,364
SSEA-PHL 2 3,726 4,086 7,812

Total 73 283,085 297,720 580,805
Note: Table 8 shows the number of surveys and infants (boys and
girls) in the estimating sample.
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Table 9: Impact of MV on sex ratio

(1) (2) (3)

MV × 2000 area 0.0640
(0.0351)*

MV × 1961-65 area −0.0079 0.0016
(0.0192) (0.0202)

N 580,805 567,941 518,179
Mean .51 .51 .51
Geog controls No No Yes

Note: Table 9 presents results for the following estimating equation:
yivct = γMDV Ivct + uv + Zct + Xivct + eivct where, yivct is a bi-
nary indicator that measures sex ratio (boys to girls) i.e. whether child i
in village v in country c at birth year t is a boy or not; uv are village �xed
e�ects andZct are country× year FE;Xivct includes quadratic in mother’s
age (at birth of child); and eivct clustered at subnational (admin) level. The
sample is restricted to rural villages and mothers who report to have never
migrated. Geographic controls include distance to coast × region × year
FE and distance to cities × region × year FE.
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Table 10: Association between MVDI and Maternal, Neonatal and Child Health
Interventions at the village level

(1) (2) (3)
EARTHSTAT
(circa 2000)

SPAM
(circa 2000)

EARTHSTAT
(1961-1965)

Panel A: Access to health care
MVDI 0.0117 0.0781 0.2520

(0.1392) (0.0753) (0.1474)*

N 1,738 1,718 1,724
Mean .43 .42 .43

Panel B: ANC visits
MVDI 0.9870 0.5897 0.1792

(0.5357)* (0.3510)* (0.3750)

N 5,391 5,272 5,255
Mean 2.2 2.2 2.2

Panel C: Institutional delivery
MVDI −0.0142 −0.0125 −0.1603

(0.1044) (0.0633) (0.0783)**

N 5,426 5,303 5,290
Mean .26 .26 .26

Panel D: Breastfeeding
MVDI −0.0098 −0.0175 0.0587

(0.0544) (0.0303) (0.0374)

N 5,654 5,521 5,511
Mean .3 .3 .3

Panel E: Vaccination
MVDI −0.0240 0.0219 −0.0442

(0.0622) (0.0254) (0.0570)

N 5,209 5,093 5,114
Mean .8 .81 .8

Note: Table 10 presents results for the following estimating equation: yvct = γMDV Ivct +
ua +Zct + evct where, yvt is a measure of Maternal, Neonatal and Child Interventions (MNCH)
in village v in country c in survey year t; ua are subnational (admin) level �xed e�ects and Zct

are country × year FE; and evct are clustered at subnational (admin) level. In Panel A, access
to health care is determined by the fraction of women who reported that distance was not an
obstacle in the use of medical care; in panel B, antenatal care is de�ned as the fraction of average
number of antenatal visits reported by women; in panel C: institutional delivery was de�ned as
fraction of children who were reported to have been delivered in any kind of health facility; in
panel D breastfeeding is calculated as the fraction of women who reported to be breastfeeding at
the time of survey; and in panel E vaccination rates are calculated as the the fraction of children
who received any vaccination (BCG, TB, DPT, Polio, Measles, etc.). The estimating sample is
consists only of rural villages and the proportions are always calculating after restricting sample
to mothers who reported to have never migrated.
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Table 11: Association between area weighted MV and vaccination rates at the country level, 1980-2000

(1) (2) (3) (4) (5) (6)
BCG DPT1 DPT3 MCV1 PAB POL3

Area Weighted MV 51.9826 26.7861 57.9179 94.6554 36.3919 34.5495
(54.3660) (43.6261) (39.3719) (28.2277)*** (46.2926) (44.4590)

N 659 653 653 647 649 654

Note: Table 11 presents results for the following estimating equation: yct = γMVct+uc+vt+ect where, yvt is the vaccination
rate in country c in year t; MVct is the area weighted MV; uc are country �xed e�ects and vt year FE; and ect are clustered at
country level. Note: BCG refers to percentage of live births who received bacille Calmette-Guerin (vaccine against tuberculosis);
DTP1 refers to percentage of surviving infants who received the �rst dose of DTP containing vaccine; DTP3 refers to percentage
of surviving infants who received the �rst dose of DTP containing vaccine; MCV1 refers to percentage of surviving infants who
received the �rst dose of measles containing vaccine; PAB refers to percentage of newborns protected at birth against tetanus
and Pol3 refers to percentage of surviving infants who received the third dose of polio vaccine. The immunization data comes
from UNICEF (Source: https://data.unicef.org/topic/child-health/immunization/).

https://data.unicef.org/topic/child-health/immunization/)
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