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Abstract

A divisible resource needs to be divided amongst the agents in a society
who are connected in a network. Agents care about the amount of money
they receive as well as the amounts that their neighbors receive. The
existence (or non-existence) of a link between a pair of agents is private
information of these two agents. We introduce and characterize the class
of strategy-proof mechanisms for different shapes in the utility function.
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1 Introduction

The study of externalities in social networks has found prolific applications in
many disciplines ranging across Economics, Sociology and Computer Sciences.
An entire field of network economics is devoted to the study of externalities in
networks. In the presence of externalities the structure of the network becomes
very crucial for a planner who wants to allocate some resources to the agents
and has a goal of, say, maximizing the total sum of the welfare of the society.
We study the case where each agent cares not only about the resources he is
allocated, but also about the resources allocated to his immediate neighbors.1

We can think of the example of a charitable organization distributing books,
computers, or other resources to poor students. If two students are connected
(friends, families, neighbors, etc.), they may share the resources. Similarly, one
can think of the allocation of research funds to various universities or labo-
ratories when scientists and researchers have collaboration across laboratories
and universities. Other examples include the allocation of money to different
groups where there are spillover effects or the allocation of houses where people
care about neighbors. The positive network externalities in groups have been
successfully utilized in microfinance where one of the main mechanisms for the
delivery of financial services requires enterpreneurs to come together to apply
for loans and other services as a group. There may also be negative externalities
where people care about their relative allocation in the neighborhood, e.g., the
allocation of salaries in a department where people care about the salary of their
peers.
When the network is known, the planner may have objectives for the allocation
of resources, such as welfare efficiency or a fairness criteria like no-envy, equal
treatments of equals, maximizing the welfare of least happy agent, etc. Sharing
the cost of the network goods ( see, e.g., Hougaard and Moulin[17]) and injec-
tion points for resources or information for distribution on a network (see, e.g.,
Banerjee et al.[4]) are other avenues for the planner when the network is known.
However, the problem for the planner becomes more difficult if the structure of
the network is not known to the planner and is known only to the agents. In
such a scenario the planner might want to extract the information about the
network from the agents. The goal of this project is to study the allocation
of resources when the planner lacks information about the connections of the
agents.
Extracting information about the network might come at a cost for the plan-
ner’s objectives. In particular, given an allocation rule, it may not be in the
best interest of the agents to reveal their true connections to the planner. To see
this, suppose that the planner objective is to allocate more resources to agents
with the highest degree. If the agents report their connections to the planner,
then agents have the incentive to over-report the number of connection in order
to increase their share of the resource.2 Therefore, in order for the planner to

1This can be extended to neighbors of neighbors and longer chains but we stick to imme-
diate neighbors for simplicity.

2This is true assuming that the marginal utility of receiving a good is higher than giving
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achieve his objective more effectively, he needs to find an incentive compatible
mechanism. In particular, incentive compatibility of the mechanism is inter-
preted as strategy-proofness, which requires truthful reporting of each agents
connections to be a dominant strategy.

1.1 Overview of the results

1.1.1 Strategyproof mechanisms

We study the problem when the planner has a fixed amount of a divisible re-
source that will be fully distributed to the agents. Agents have preferences for
the distribution of resources to them and their neighbors. These preferences
can be represented by a utility function, which depends on both the agents con-
nections as well as their intensities. Thus, for instance, two agents might be
connected to the same group of agents but might care differently about them.3

The planner does not know the agents, and thus lacks information about the
agent’s connections and their intensities.
We study the case where the planner has the ability to elicit the connections
of the agents but not their intensities. That is, every agent will report to the
planner who they are connected to in a network but may not necessarily report
the degree of their externalities (intensity).4 The goal of the planner is to
characterize the entire class of strategy-proof mechanisms for a wide range of
utility functions.5

The first difficulty of the problem comes from a simple observation: A mech-
anism is strategyproof for any type of utility function if and only if it is a fix
sharing mechanisms, where the allocation of the agents is independent on their
reports (Lemma 1). Thus, in the absence of information about the preference of
the agents, the planner has no choice but to use a highly restrictive fix sharing
mechanism.6

it to your neighbors, which is a standard assumption in the paper. One can also find similar
issues of misrepresentation in everyday life, for instance, when filing income taxes in the USA.
The government allocation policy may require to charge different amount of taxes if a couple
is filing their taxes jointly (i.e., they are connected) or independently (not connected). These
two cases mostly end up with different amount of taxes and the couple may choose the one
where they end up paying less tax in total.

3We focus in the most simplistic model, where the intensities are symmetric among their
connections, although the non-symmetric intensities is also an interesting example that is
studied in our companion paper.

4Our work also different with the more traditional approach in the literature to require
agents to report their entire utility profile. Simple reporting of the preferences is desirable, and
even in such a model, our results already show the robustness of the characterized mechanisms.
The case when agents report their intensities is address in our companion paper, mainly
characterizing impossibilities.

5Every strategy-proof mechanism that we characterize is also Pareto efficient. As we try to
be as general as possible, we do not use more simplistic measure of efficiency, like utilitarian,
which will greatly limit our mechanisms. Depending on the specific application, future studies
should focus on selecting the appropriate mechanism among the class of mechanisms that we
introduce.

6Fix sharing mechanisms are highly restrictive, for instance in terms of efficiency.
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Therefore, in order for the planner to find non-trivial mechanisms, it is crucial
for him to have more information about the agents’ preferences. Our work as-
sumes that the planner has some minimal information about the shape of the
externality that agents receive about their friends, but not about the intensity.
For instance, the planner knows whether agents care about the aggregate re-
sources send to their friends (additive externality), the least-well off (minimum),
or a more general quasi-concave utility function.
The classes of mechanisms that are strategyproof will vary widely depending
on the shape of the externality factor. To overcome this difficulty, we introduce
a key lemma that will greatly simplify the analysis and proofs for a general
function. This lemma will provide the classes of mechanisms that are strategy-
proof in the absence of externalities, that is, when agents care only about their
own allocation. All the mechanisms that will be studied for different externality
factors will be a subset of the ones provided by this lemma. This lemma states
that in order to construct a mechanism that is strategy-proof in the absence
of externalties, we can just assign budgets to every coalition of agents, and let
them send money to people outside of this coalition in an arbitrary way. Since
every coalitions send the money outside the coalition, then they cannot influence
their own share, thus, making the mechanism strategyproof. We call this result
the inverse revelation Lemma.
In the case of externalities, only a subset of the mechanisms provided by the
inverse revelation Lemma will be strategy-proof for different functions. Our two
main results, characterize the class of strategy-proof mechanisms depending on
the curvature of the externality of the agents.
When at least one agent have an an externality factor that is quasi-concave
(e.g., when agents care about the least well off individual among their friends),
the class of strategy-proof and symmetric mechanisms resemble a fix-sharing
mechanism, except when agents receive connections from everyone else.
This contrast with the case where all agents have additive externality, for in-
stance, when agents care about the average, or the sum of the allocation of
their friends. In such as case, a large class of strategy-proof mechanisms, where
every coalition of the same size is assigned a budget to re-distribute to others
outside the coalition. The redistribution depend on whether the intersection
of the reports of the agents is non-empty. When non-empty, all the agents in
the intersection are assigned an equal share. On the other hand, if the inter-
section is empty, then the distribution is equal among the agents outside this
coalition.7 The second main result of the paper shows that the class of strategy-
proof mechanisms when all the agents have an externality factor that is additive
only contains these mechanisms. (Theorem 2)

7This can be interpreted as the case where a coalition agrees on the distribution or not.
When there is an agreement, these agents get an equal share. However, when there is no
agreement, everyone outside the coalition get an equal share.
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1.2 Related literature

The strategyproof mechanisms for resource allocation has been widely studied
in literature. The main fucus of this literature has been on the allocation of
indivisible goods because of the existence of mechanisms that implement de-
sirable Social Choice Functions (SCF), see e.g., Bogomolnaia and Moulin [6],
Bogomolnaia et al. [7], Dutta et al. [12], etc. Although there are specific do-
mains with divisible goods where desirable SCFs can be implemented even by
stronger notions than strategyproofness (see, e.g., Kumar [23]), not much study
has been done for allocation of divisible goods because of its dependence on the
specific form of utility functions. Studies of allocation mechanisms in divisible
goods framework include de Clippel et al. [11], Tideman and Plassmann [26],
Juarez and Kumar [18], Juarez, Nitta and Vargas [19], Han and Juarez [15],
Hougaard and Moulin [17] among others.
There is also a large literature looking at varios network effects. Bourlès and
Bramoullé [8] studying the rule of altruism in networks. Bramoullé and Kran-
ton [9] study public goods under network effects. Bramoullé and Kranton [10]
looking at strategic interactions in networks. The model of local externalities
introduced by Farrell and Saloner [13], and Katz and Shapiro [21] has been used
for identifying influential agents in a network and pricing by the firms in various
market set up. The local externality has been used by Jullien [20] and Banerji
and Dutta [3] to analyze competition between two price setting firms. Sundara-
jan [25] studies monololy pricing on a network in a model where consumers make
a deterministic choice between adopting a new product or not. Saaskilahti [24]
studies uniform monopoly pricing on social networks whereas Ghinglino and
Goyal [14] focus on a model of conspicuous consumption with negative exter-
nalies from neighbors consumption. Hartline et al. [16] and Arthur et al. [1]
compute optimal pricing strategies by identifying influential agents in a network.
Our work is the first to study the allocation of a divisible resource to agents
under network effects when the planner has imperfect information about the
network.

2 Preliminaries

One unit of a divisible resource (e.g. money) should be divided among the
agents N = {1, 2, ..., n}. Let ∆(N) = {x ∈ RN+ |

∑
xi = 1} be the simplex for

the agents in N. An allocation x ∈ ∆(N) is a vector where xk is the amount
received by agent k.
Agent might or might not be connected to other agents in the network. Let
V the network of connections. Let Ni(V ) (or simply Ni) the set of agents
connected to agent i in the network V .
Given the network V , let

gij =

{
1, if there is a link between agent i and agent j
0, otherwise.
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Let xNi = [xjgij ]j∈N\{i} the projection of the allocation x over the space of
neighbors of agent i.
The utility of agent i is denoted by

Ufi (x) = ui(xi, fi(xNi
))

where the function fi : Rn−1 → R is an increasing function in every coordinate,
the function ui : R2 → R+ is also an increasing function on each coordinate,

differentiable and such that ∂ui(x,y)
∂x > ∂ui(x,y)

∂y .
Thus, the utility of agent i is a separable function that depends in his own
allocation of money and the allocation of money of his neighbors.
Agents may vary on the externality factor fi as well as the intensity in which
they care for others (ui). We assume that agents care more about their own

allocation instead of the allocation of others, thus ∂ui(x,y)
∂x > ∂ui(x,y)

∂y . We focus
first in the case of positive externalities, thus the function ui is increasing in
both coordinates.

Example 1 The following are examples of utility functions incorporated by our
model:

• The sum of the money received by the neighbors

Usumi (x) = ui(xi,
∑
j 6=i

xjgij)

The sum utility functions appear when there is substitutability on the al-
location of the resources allocated to the neighbors.

• The average of the amount received by the neighbors

Uavgi (x) = ui(xi, (
∑
j 6=i

xjgij)/
∑
j 6=i

gij))

The average utility depicts the substitutability of resources, but also takes
into account the number of neighbors.

• The minimum of the amount received by the neighbors

Umin
i (x) = ui(xi, min

j 6=i,gij=1
{xj})

The minimum utility function includes situations of extreme complemen-
taries among individuals, where agents care about the worst-off individual
in your social network.

• The Cobb-Douglas of the amount received by the neighbors

U c−di (x) = ui(xi,
∏
j∈Ni

xαj )

The Cobb-Douglas utility is a concave utility function that shows some
extent of complementarity and substitutability.
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3 Mechanisms and desirable properties

We study mechanisms where agents report their connections to other agents.
Agents do not report the intensity of their connection.

Definition 1 A mechanism is a function F : Πi2
N\i → ∆(N).

To implement an allocation satisfying desirable properties e.g., the one max-
imizing the sum of utilities (welfarist) or the one maximizing the minimum
utility (egalitarian), it is important to know the exact network. However, the
knowledge of links being private information, the allocation rule must induce
the agents to reveal their links. Strategyproofness of the allocation rule re-
quires that it be in the interest of the agents to report their connections wihout
worrying about the report of other agents.

Definition 2 A mechanism is strategy-proof if for any utility functions (U1, . . . , Un),
for any network V and any agent i:

Ui(F (Ni(V ),M−i)) ≥ Ui(F (S̃,M−i))

for any S̃ ⊂ N \ {i} and any report of the other agents M−i.

A mechanism is strategyproof if every agent i has no incentive to report any
subset S̃ that is different than their neighbors Ni((V ).
A necessary condition for strategyproofness is that agent i has no way to in-
fluence his own payment. This condition is necessary but not sufficient, since
agents might also benefit in the way in which the resource is allocated to other
agents. The goal of this paper is to find the class of strategyproof mechanisms.

Definition 3 (Fix-sharing mechanism) Let x ∈ ∆(N). The fix sharing
mechanism FIX allocates x regardless of the reports of the other agents. That
is, FIX(N) = x for any N .

The fix sharing mechanism is clearly strategyproof for any utility of the agents,
since the report of the agents will not influence the allocation of money of them
or anyone else.
As seen in footnote above, the class of fix sharing mechanisms are the only
mechanisms that belong to the intersection of all the strategyproof mechanisms
for arbitrary utility functions.

Definition 4 (S-sharing mechanism) Given S ( N , consider a function
fS : Πj∈S2N\j → ∆(N \ S). The S-sharing mechanism allocates:

FS(S1, . . . , Sn) = fS([Sj ]j∈S).

An S-sharing mechanism, the reports of the agents in S do not influence their
payoff. Therefore, it meets a necessary condition for strategyproofness. If S = ∅,
the ∅-sharing mechanism is defined as the FIX mechanism.
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Definition 5 (Separable mechanism) Given a collection of S-sharing mech-
anisms {FS}S∈2N\N and a vector of allocation of the resource to every coalition

y ∈ ∆(2N \ {N}), a separable mechanisms SEP is defined as:

SEP (T ) =
∑

S∈2N\N

ySf
S(TS)

A separable mechanism allocates to every coalition S a share of the resource
yS that will be split to the agents in N \ S according to the reports of the
agents in S. Thus, a separable mechanism is a convex combination of S-sharing
mechanisms with vector of weights y.

Example 2 • If x∅ = 1, then the full resource will be split to the agents in
N in a fix way and we get the fix-sharing mechanism.

• If xi = 1
n , then every agent will have a share of 1

n to split to the other
agents.

In general the separable mechanisms are not strategyproof for all utility func-
tions. However, as we will see below, they will be the core of our characteriza-
tions for additive utility functions such as sum and average.

4 Main Results

4.1 Strategyproofness under minimal information

The following negative result shows that in the absence of information about the
utility function of the agents, the planner is forced to implement a fix sharing
mechanism.

Lemma 1 A mechanism F is strategyproof for any common externality and
any utility function if and only if it is a fix-sharing mechanism.

In light of this result, the planner is forced to acquire more information about
the utility function of the agents in order for him to get a larger class of strategy-
proof mechanisms.
The following sections deals with this problem, when the planner is informed
about the statistic of the agents, but not about thei utility function.

4.2 Inverse Revelation Lemma

The classes of strategyproof mechanisms will be very different depending on the
externality factor, however, the following Lemma provides a subset of mecha-
nisms that contain all the mechanisms discussed for particular utility functions.

Lemma 2 Suppose that every agent has utility a function without externality,
Ui(x) = xi for all i. A mechanism is strategyproof if and only if it is separable.

The proof of this result is a consequence of Farkas’ lemma.
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4.3 Strictly quasi-concave statistic

We study the case where there exists at least one agent with a strictly quasi-
concave statistic. For instance, an agent might care about the less worse-off
individual (min) or might evaluate the allocation of his friends using a Cobb-
Douglass statistic. The rest of the agents may have quasi-concave statistics,
some of which might not be strict, like Sum or Average statistics.
Given a profile T = (T1, . . . , Tn), let Ci(T ) = |{k|i ∈ Tk, Tk ∈ T}| be the
number of agents who point to agent i in the profile T . Let S = {(x, y) ∈
N2|x ≤ n − 2, y ≤ n − 2} represent the possible cardinality of the reports that
n − 2 agents have over the remaining two agents. Thus, at the pair (x, y), the
number x represents the number of agents who are connected to the first agent
and y represents the number of agents who are connected to the second.
Let T = {(x, 0), (0, x) ∈ N2|2 ≤ x ≤ n− 2} be a subset from S where one of the
agents receive no connections and another receive at least two.

Definition 6 Given a function g : S → ∆2
+ such that g1(x, y) = g2(y, x) for

any (y, x) ∈ S, the scoring mechanism ϕg allocates to agent i:

ϕgi (S1, . . . , Sn) =
2

n(n− 1)

∑
j 6=i

g(Ci(S−ij), C
j(S−ij))

A scoring mechanism is a particular case of a separable mechanism, where every

coalition of size n − 2 is given the budget n(n−1)
2 . The payment of agent i in

the scoring mechanism takes into account his number of connections in relation
to every other agent. This division is given by the function g. Note that the
scoring mechanism is symmetric since the function g is symmetric.
When, g(x, y) is a constant function equal to ( 1

2 ,
1
2 ), the scoring mechanism

determines the fix sharing mechanism. The flexibility on the function g, for
instance by dividing based on proportion, provides a rich class of mechanisms.
Most of these mechanism are omitted in the following class of mechanisms.

Definition 7 The almost-fixed mechanism is a scoring mechanism generated
by the function g such that:

i. g(x, y) = (1
2 ,

1
2 ) for (x, y) 6∈ T ,

ii. g1(x, 0) ≥ g1(x− 1, 0) for n− 1 ≥ x ≥ 1

Under the almost-fixed mechanism generated the function g, the relative pay-
ments for a pair of agents is constant when both agents are pointed by at least
one agent (condition i). Thus, an almost-fixed mechanism is determined by
exactly n− 3 variables,

g(2, 0), g(3, 0), . . . , g(n− 2, 0).

Furthermore, the relative share of an agent in relation with an agent who receives
no connection does not decrease as more agents point to him (condition ii).

9



The contrast on the allocations of almost-fixed mechanisms can be seen in the
star networks shown in figures 1 and 2. In the first figure, there is no distinction
in the allocation between the center and periphery agents. In the second picture,
the center agent is pointed by every other agent, thus beating every periphery
agent in pairwise comparisons. Anything in between these two extremes can be
feasible.
While we do not consider any efficiency measures, we want to highlight than
an allocation rewarding an agent with the larger number of connections may be
more desirable than say an equal allocation, especially for utilitarian measures
of efficiency.

Figure 1: The fix-sharing mechanism generated by g(x, 0) = (1/2, 1/2) for x ≥ 2.

Figure 2: An almost-fixed mechanism generated by g(x, 0) = (1, 0), x ≥ 2.

Theorem 1 Suppose that at least one agent has a strictly quasi-concave statis-
tic, while the rest have quasi-concave statistic. A mechanism is strategy-proof
and symmetric if and only if such mechanism is almost-fixed.
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4.4 Additive statistic

In this section, we consider the case of a utility function with externality factor
that is additive. That is, f(xT ) = γT

∑
i∈N xi. For instance, the sum or average

utility functions discussed above.

Definition 8 (S-sharing monotonic mechanism) Given S ( N , consider
a function fS : Πj∈S2N\j → ∆(N \ S) such that, for any reports T i and T̃ i of
the agent i, and reports T−i of the agents in S \ i:∑

j∈T i

fSj (T i, T−i) ≥
∑
j∈T i

fSj (T̃ i, T−i).

The S-sharing monotonic mechanism allocates

F (S1, . . . , Sn) = fS([Sj ]j∈S).

An S-sharing monotonic mechanism is an S-sharing mechanism such that when
an agent report to be connected to T , this coalition received the largest overall
transfer relative to any other reported coalition.
If the externality factor is additive, then the S-sharing monotonic mechanisms
are strategyproof. This is because the payment of the agents in T

Example 3 • The following is an i-sharing monotonic mechanism: Assign
one unit of the good to i and divide it equally between his neighbors.

• The following is an S-sharing monotonic mechanism: Assign one unit of
the good to the agents in S and divide it equally to the agents from N \ S
who are in the interesection of the reports of the agents in S (or equally
to N \ S if the intersection is empty).

Definition 9 (Cross-monotonic mechanism) Given a collection of S-sharing
monotonic mechanisms {FS}S∈2N\N and a vector of allocation of the resource

to every coalition y ∈ ∆(2N \ {N}), a cross-monotonic mechanisms SEP is
defined as:

SEP (T ) =
∑

S∈2N\N

ySf
S(TS)

Note that, for additive utility functions, strategyproofness is preserved under
convex combinations of strategyproof mechanisms. Since cross-monotonic mech-
anisms are convex combinations of S-sharing mechanisms, then they are strat-
egyproof.

Theorem 2 Suppose that all of the agents have an additive statistic. A mecha-
nism is strategyproof for any utility function if and only if it is cross-monotonic.

Example 4 (Symmetric cross-monotonic mechanisms) Let an S-sharing
symmetric mechanism divides one unit of the good among the agents outside S

11



who are in the intersection of the reports of the agents in S. If the intersection
in empty then we divide equally among the agents in N \ S.
For instance, the i-sharing symmetric mechanism will divide one unit of the
good amoung the neighbors of i. Clearly, an S-sharing symmetric mechanism is
an S-monotonic mechanism.
The symmetric cross-mononotic mechanisms can be found by taking convex com-
bination of S-sharing symmetric mechanisms if adding over all coalitions of the
same size, and coalitions of the same size get the same weight.

Corollary 3 Consider a fix externality factor f that is additive. A mechanism
is strategyproof and symmetric for any utility function with externality factor f
if and only if it is a convex combination of S-sharing symmetric mechanisms
with the same weight over coalitions of the same size.
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[7] Bogomolnaia, Anna, Hervé Moulin, and Richard Strong (2005), “Collective
choice underdichotomous preferences.” Journal of Economic Theory, 122,
165–184.
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