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tation of an SCC. r-monotonicity is strictly weaker than Maskin monotonicity, a condi-

tion introduced by Maskin (1999). If an SCC satisfies a no worst alternative condition
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is also sufficient for rationalizable implementation. We discuss the strength of these

additional conditions. In particular, we find that a social choice correspondence which

always selects at least two alternatives is rationalizably implementable if and only if it
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1. Introduction

The goal of implementation theory is to design a game form such that, for every

preference profile, all the “equilibrium outcomes” of the game coincide with those rec-

ommended by the social choice rule. A central ingredient in this exercise is the choice

of the solution concept. An extensive literature, starting from Maskin (1999), assumes

Nash equilibrium as the solution concept. As is well known, the assumption of Nash

equilibrium relies on the ability of the agents to correctly predict the strategy choice

of their opponents. This can be problematic from the point of view of implementation

theory. To see why consider the following example:

Example 1.1. Let X = {a, b, c} be the set of alternatives, N = {1, 2} be the set of

agents and {θ, θ′} be the set of states. The preference profile for each state is given in

the table below. Numbers in the parentheses specify the vNM utilities.

Table 1. Preferences

θ θ′

1 2 1 2

a(3) b(3) a(3) a(3)

b(2) a(2) b(2) c(2)

c(1) c(1) c(1) b(1)

Suppose the planner wants to select all the Pareto optimal alternatives in X. This

objective can be represented by the following social choice correspondence, F (θ) = {a, b}
and F (θ′) = {a}.

Let us consider the following game form which implements the SCC F in Nash equi-

librium

h l

H a c

L a b

When the state of the world is θ we have a game of complete information among the

agents. The Nash equilibria of this game are (H, h) and (L, l) with a and b as the equi-

librium outcomes. This is consistent with the outcomes prescribed by F at θ. However,
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suppose agents fail to coordinate on which equilibrium to play. This coordination failure

may lead to the strategy profile (H, l) with an undesirable outcome c.

To avoid the potential of miscoordination, we assume (correlated) rationalizability as

our solution concept (Brandenburger and Dekel (1987)). A mechanism specifies a list

of messages, one for each agent, and an outcome function. For each message profile,

the outcome function specifies a lottery over alternatives. We say a social choice rule

is rationalizably implementable if there exists a mechanism such that for every state of

the world θ, (i) for every a ∈ F (θ) there exists a rationalizable strategy profile m such

that a is selected with a strictly positive probability under m and; (ii) the support of

the outcome of any rationalizable strategy profile is contained in F (θ).

The goal of this paper is to study which social choice correspondences are rationalizably

implementable in the above sense. We provide a condition, which we call r-monotonicity

and prove that it is necessary for rationalizable implementation of a SCC (Proposition

3.1). We show by example (see Example 3.2 and Remark 3.1) that r-monotonicity is

strictly weaker than Maskin monotonicity, a condition central in the theory of Nash im-

plementation. For social choice functions, r-monotonicity coincides with Maskin mono-

tonicity. In general r-monotonicity is closely related to the ‘set monotonicity’ condition

(Mezzetti and Renou (2012)) and ‘extended monotonicity with respect to support F ’

condition (Bochet and Maniquet (2010)).

Under two additional conditions, no worst alternative (NWA) and ΘF -distinguishability,

we show that r-monotonicity is also sufficient for rationalizable implementation. The no

worst alternative (NWA) condition requires that for every state θ, no full support lot-

tery over F (θ) is worst for some agent. Assuming strict preferences, the NWA property

places no restrictions at states where the SCC selects more than one alternative. ΘF -

distinguishability, a monotonicity type condition, applies only for the states where the

SCC is single valued. In particular, if we consider an SCC F which always selects more

than one alternative, then the conditions NWA and ΘF -distinguishability place no re-

strictions.

Our main theorem (Theorem 5.1) states that for a society with atleast 3 agents if

an SCC satisfies NWA, ΘF -distinguishability and r-monotonicity then there exists a

mechanism which rationalizably implements it.1An important corollary (Corollary 5.1) of

1To prove Theorem 5.1 we construct a canonical mechanism.
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Theorem 5.1 is that an SCC which always selects at least two alternatives is rationalizably

implementable if and only if it satisfies r-monotonicity.

The current work is motivated by a recent paper of Bergemann et al. (2011), who study

the problem of rationalizable implementation of social choice functions2. We argue that

focusing attention on social choice functions is restrictive for several reasons. First,

there are important social choice correspondences within economics, such as the Pareto

correspondence and the Walrasian correspondence, which have received considerable at-

tention in the theory of implementation. Second, as shown by Bergemann et al. (2011),

a stronger version of Maskin monotonicity is necessary for the rationalizable implemen-

tation of a social choice function.3 However, sometimes Maskin monotonicity itself can

be very restrictive for social choice functions.4 In contrast, Maskin monotonicity is less

restrictive for SCC’s . This makes the study of SCC’s very different than SCF’s.

The results found in this paper are sharp in contrast to the case of social choice func-

tions in two aspects. First, r-monotonicity is strictly weaker than Maskin monotonicity.

Second, the “responsiveness” type of condition, which appears as a sufficient condition

in Bergemann et al. (2011), is no longer required for states of the world where an SCC

selects more than one alternative. This point can be seen clearly by Corollary 5.1 as de-

scribed above. This paper, therefore, complements Bergemann et al. (2011) by extending

their analysis to the important case of social choice correspondences.5

In a closely related paper Kunimoto and Serrano (2016) also study rationalizable im-

plementation of correspondences. The key distinguishing feature between their work and

the current work is in the notion of implementation. While our notion of implementation

is based on Mezzetti and Renou (2012), the notion of implementation used in Kunimoto

2The main point where Bergemann et al. (2011) departs from the earlier literature is studying ra-

tionalizable implementation (i) without any domain restriction or allowing the use of transfers and (ii)

allowing mechanisms which use integer games. Recently, Oury and Tercieux (2012) extend Bergemann

et al. (2011) to environments with incomplete information.
3They show that a stronger version of Maskin monotonicity, strict Maskin monotonicity∗, is necessary

for the rationalizable implementation. In the Appendix 2, we present an example of an SCF which

violates strict Maskin monotonicity∗ but satisfies Maskin monotonicity.
4See Muller and Satterthwaite (1977) and Saijo (1987). For example, Saijo (1987) shows that if

the domain of an SCF includes the complete indifference profile then any Maskin monotonic SCF is

constant.
5Unlike Nash implementation, rationalizable implementation of SCC’s is not a trivial extension of

that of SCF’s.
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and Serrano (2016) is based on Maskin (1999). Specifically, their definition of imple-

mentation requires that a social choice correspondence is rationalizably implementable if

there exists a mechanism such that for every state of the world θ, (i) for every a ∈ F (θ)

there exists a rationalizable strategy profile m such that g(m) = a and; (ii) the outcome

at any rationalizable strategy profile belongs to F (θ).

Even though the notion of implementation is different, the necessary condition is same

in both the papers. There are however important differences in the sufficiency part of

our results. First, the NWA condition we require is weaker than the one required in

Kunimoto and Serrano (2016). Second, Kunimoto and Serrano (2016) do not require

ΘF - distinguishability which we require. Finally, the canonical mechanism constructed

to prove sufficiency is different in both the papers. Therefore we consider that both the

papers complement each other.

For social choice functions, rationalizable implementation has also been studied under

a variety of settings. Abreu and Matsushima (1992) study virtual implementation as

opposed to exact implementation. They show that in a complete information setting,

any social choice function is virtually implementable in iterative elimination of strictly

dominated strategies. Abreu and Matsushima (1994) strengthen virtual implementation

to exact implementation but assume iterated elimination of weakly dominated strategies

as the solution concept. By allowing small transfers they show that any SCF can be

exactly implemented in iterated elimination of weakly dominated strategies. In economic

environments, Sjöström (1994) studies a production economy and shows that any SCF

can be exactly implemented in iterated elimination of weakly dominated strategies.

The rest of the paper is organized as follows. Section 2 presents the notation and

definitions. In Section 3, we define r-monotonicity and prove that this is a necessary

condition for rationalizable implementation (Proposition 3.1). In Section 4, we define

two additional conditions. We state and prove our main theorem (Theorem 5.1) in

Section 5. As an application of Theorem 5.1, in Section 6 we show that in a society

with more than 3 agents Pareto correspondence can be rationalizably implementable.

In Section 7, we study rationalizable implementation when a partially honest agent is

present in the society. A partially honest agent strictly prefers to tell the truth if he is

indifferent between lying and telling the truth. Finally, in Section 8 we discuss stronger

notions of implementation.
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2. Notation and Definitions

There is a set N = {1, 2, . . . , n} of n ≥ 2 agents and a finite set of alternatives

X = {a, b, . . . , w}. Let ∆(X) denote the set of all lotteries over X with a generic element

α. αx denotes the probability assigned to alternative x under the lottery α ∈ ∆(X).

For every α ∈ ∆(X), supp (α) denotes the set of alternatives which receive positive

probability in α. Formally, supp (α) = {x ∈ X s.t. αx > 0}. We assume that there

is a finite set of states of the world which we denote by Θ. We assume that the state

of the world is not known to the planner but is common knowledge among the agents.

Thus we are in the setting of complete information as in e.g. Maskin (1999). State

θ ∈ Θ specifies the preferences of the players. Specifically, a state of the world θ ∈ Θ

specifies the vNM utility function ui : X × θ 7→ R for every agent i. We further assume

that agents are expected utility maximizers. This allows us to extend the vNM utility

function over X to ∆(X). With some abuse of notation we write ui(α, θ) =
∑
αxui(x, θ).

For agent i denote by Li(α, θ) = {α′ ∈ ∆(X) s.t. ui(α, θ) ≥ ui(α
′, θ)} and SLi(α, θ) =

{α′ ∈ ∆(X) s.t. ui(α, θ) > ui(α
′, θ)} the lower contour set and strict lower contour set

of lottery α at state θ respectively. For any set X ′ ⊆ X, let U [X ′] ∈ ∆(X ′) denote

the uniform lottery over the set X ′. Furthermore, we assume that agents have strict

preferences over pure outcomes. Formally, for any two distinct pure alternatives x and

y, ui(x, θ) 6= ui(y, θ) for every i ∈ N and every θ ∈ Θ. We discuss this assumption in

Section 9.

A mechanism is a game form Γ = (M1, ...Mn; g), where Mi is a countable strategy set

for agent i and g : M 7→ ∆(X) is the outcome function. For every strategy profile, the

outcome function specifies a lottery over X.

Given a state of the world θ, a mechanism Γ induces a game of complete information

among the agents. In this paper we assume (correlated) rationalizability as our solution

concept in the sense of Brandenburger and Dekel (1987) (also see Chen et al. (2016),

Bernheim (1984) and Pearce (1984)). Given a mechanism Γ and a state of the world

θ, we denote by Ri(Γ, θ) the set of rationalizable strategies for agent i. Let R(Γ, θ) =

R1(Γ, θ)×R2(Γ, θ) . . .×Rn(Γ, θ) denote the set of rationalizable strategy profiles. R(Γ, θ)

can be described as an outcome of an iterative procedure. Each round in this iterative

process eliminates strategies which are never best responses.

Let us now formally define the iterative process. Fix an agent i, let R0
i (Γ, θ) = Mi and

R0
−i(Γ, θ) = ×

j 6=i
R0
j (Γ, θ) = ×

j 6=i
Mj.
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R1
i (Γ, θ) =

mi ∈ R0
i (Γ, θ)

∣∣∣∣∣∣∣∣
∃λ ∈ ∆(R0

−i(Γ, θ)) s.t.

mi ∈ argmax
m′i∈Mi

∑
m−i∈R0

−i(Γ,θ)

λi(m−i)ui(g(mi,m−i), θ)


For any k ≥ 1, for every i ∈ N we can recursively define Rk

i (Γ, θ) as follows.

Rk
i (Γ, θ) =

mi ∈ Rk−1
i (Γ, θ)

∣∣∣∣∣∣∣∣
∃λ ∈ ∆(Rk−1

−i (Γ, θ)) s.t.

mi ∈ argmax
m′i∈Mi

∑
m−i∈Rk−1

−i (Γ,θ)

λi(m−i)ui(g(mi,m−i), θ)


In the mechanism Γ and a state of the world θ, the set of rationalizable strategies

for player i is the limit of the iterative process defined above. Formally, Ri(Γ, θ) =

∩
k≥1

Rk
i (Γ, θ). We denote the set of rationalizable strategy profiles byR(Γ, θ) = ×

i∈N
Ri(Γ, θ).

6

Finally, we say that in a mechanism Γ a set of strategy profiles T (θ) ⊆ M satisfies

the best response property at state θ, if for every i ∈ N and for every mi ∈ Ti(θ), there

exists a belief λi(mi) ∈ ∆(T−i(θ)) such that mi is a best response to λi(mi). It is easy to

see that if a set T (θ) satisfies the best response property at state θ then T (θ) ⊆ R(Γ, θ).

The goal of the social planner is summarized by a social choice correspondence F :

Θ 7→ 2X \ {∅}. A special case of an SCC is a social choice function which is a mapping

from the set of states to the set of pure alternatives i.e. f : Θ 7→ X. To achieve these

goals, the planner needs to know the information about the true state of the world. The

problem of the planner is to design a mechanism Γ such that when players are using

rationalizable strategies, every alternative in F (θ) gets a positive chance to be selected

and any alternative outside of F (θ) receives no chance of being selected7. The following

definition captures this notion.

Definition 2.1. We say a mechanism Γ(M ; g) rationalizably implements an SCC F if

for every θ ∈ Θ,

(1) For every a ∈ F (θ), there exists m ∈ R(Γ, θ) s.t. a ∈ supp (g(m)).

(2) For every m′ ∈ R(Γ, θ), supp (g(m′)) ⊆ F (θ).

6If the game is infinite, transfinite induction is required to reach the fixed point of the iteration (see

Lipman (1994) for a more formal treatment).
7In section 8 we discuss stronger notions of implementation. We demand that every alternative in

F (θ) gets atleast an ε chance to be selected and any alternative outside of F (θ) receives no chance of

being selected.
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3. Necessary condition

In this section, we present a necessary condition for an SCC to be rationalizably

implementable.

In a related model, using an implementability notion based on Maskin (1999), Kuni-

moto and Serrano (2016), working paper dated May 2016, independently prove a neces-

sity result that is close to my result in this section. Furthermore, they come close in that

draft to close the gap between necessity and sufficiency in their model. An earlier draft

of my paper, dated June 2016, contained that necessity result, and also a sufficiency

result that was far from closing the gap between the necessary and sufficient conditions.

The current draft produces a sufficiency result that comes closer to closing that gap in

my framework.

Definition 3.1. For any pair (θ, θ′), we say that a lottery α ∈ ∆(X) maintains posi-

tion if Li(α, θ) ⊆ Li(α, θ
′) for every i ∈ N .

In words, while moving from state θ to θ′, a lottery α maintains position if it does not

fall in any agent’s preference ordering relative to any other lottery. Alternatively, while

moving from state θ to θ′, we say that a lottery α does not maintain position if there

exists an agent i and a lottery β such that β ∈ Li(α, θ) and β /∈ Li(α, θ′).

Definition 3.2. We say that an SCC F is r-monotonic if for any pair (θ, θ′) ∈ Θ × Θ

if every lottery α ∈ ∆(F (θ)) maintains position, then F (θ) ⊆ F (θ′).

r-monotonicity requires that while moving from state θ to θ′, if every lottery over F (θ)

maintains position, then the set of socially optimal alternatives in state θ as prescribed

by F remain socially optimal in state θ′ i.e. F (θ) ⊆ F (θ′).

To illustrate r-monotonicity, below we give an example of an SCC F which violates

r-monotonicity. Then we study its relation with Maskin monotonicity (Maskin (1999)).

Example 3.1. Let X = {a, b, c} and N = {1, 2} be the set of agents. The preference

profile for each state is given in the table below. Numbers in the parentheses specify the

vNM utilities. Suppose the planner wants to implement the social choice correspondence

F (θ) = {b, c} and F (θ′) = {a, b}.

We claim that for the pair (θ, θ′) every lottery α ∈ ∆(F (θ)) = ∆({b, c}) maintains

position. To see this notice that for any α ∈ ∆(X), L2(α, θ) = L2(α, θ′) and for any
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Table 2. Preferences

θ θ′

1 2 1 2

a(3) b(3) b(3) b(3)

b(2) a(2) c(2) a(2)

c(1) c(1) a(1) c(1)

α ∈ ∆(F (θ) = {b, c}), L1(α, θ) ⊆ L1(α, θ′). Therefore for the pair (θ, θ′), the hypothesis

of r-monotonicity is satisfied. However F (θ) * F (θ′). Thus F violates r-monotonicity.

Definition 3.3. We say that an SCC F is Maskin monotonic if for any pair (θ, θ′) ∈
Θ×Θ, if a ∈ F (θ) maintains position, then a ∈ F (θ′).

Maskin monotonicity states that when moving from state θ to θ′, if a socially optimal

alternative maintains position, then it must remain socially optimal at state θ′.

Remark 3.1. If an SCC satisfies Maskin monotonicity then it satisfies r-monotonicity.

Proof. Consider a Maskin monotonic SCC F and assume that for the pair (θ, θ′) every

lottery α ∈ ∆(F (θ)) maintains position. In particular, every degenerate lottery α ∈
∆(F (θ)) maintains position. Therefore, for the pair (θ, θ′) every alternative a ∈ F (θ)

maintains position. Since F satisfies Maskin monotonicity therefore F (θ) ⊆ F (θ′). �

r-monotonicity is strictly weaker than Maskin monotonicity. To see why, consider the

following example.

Example 3.2. Let X = {a, b, c, d} and N = {1, 2} be the set of agents. The preference

profile for each state is given in the table below. Numbers in the parentheses specify

the vNM utilities. Suppose the planner wants to implement the following social choice

correspondence F (θ) = {a, b, c, d} and F (θ′) = {a}.

Consider the pair (θ, θ′). For every i ∈ N , Li(b, θ) ⊆ Li(b, θ
′) is true. Therefore b

maintains position. Since b ∈ F (θ) Maskin monotonicity would require that b ∈ F (θ′).

However b /∈ F (θ′), thus F violates Maskin monotonicity at b. A similar argument holds

for alternatives c and d. In contrast, F does not violate r-monotonicity. In fact, r-

monotonicity is vacuously satisfied. To see this, note that while alternatives b, c and d

maintain position, every lottery α ∈ ∆(F (θ)) does not maintain position. In particular
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Table 3. Preferences

θ θ′

1 2 1 2

a(4) a(4) b(4) a(4)

b(3) d(3) c(3) d(3)

c(2) b(2) d(2) b(2)

d(1) c(1) a(1) c(1)

consider alternative a ∈ F (θ). For agent 1, L1(a, θ) * L1(a, θ′) and thus a does not

maintain position. Therefore for the pair (θ, θ′), r-monotonicity imposes no restriction

on F . For pair (θ′, θ), F (θ′) ⊆ F (θ) thus the SCC F satisfies r-monotonicity.

Proposition 3.1. If a social choice correspondence F is rationalizably implementable

then it satisfies r-monotonicity.

Proof. Consider a mechanism Γ = ((Mi)
n
i , g) which rationalizably implements the SCC

F . Recall that under the mechanism Γ, the set of rationalizable strategies at state θ is

denoted by R(Γ, θ) = (R1(Γ, θ), . . . , Rn(Γ, θ)). We will assume that the hypothesis of

r-monotonicity is true. For any pair (θ, θ′), Li(α, θ) ⊆ Li(α, θ
′) is true for every i and

every α ∈ ∆(F (θ)). To prove proposition 3.1 we need to show that F (θ) ⊆ F (θ′).

Select an arbitrary agent i. For every rationalizable strategy mi ∈ Ri(Γ, θ), there exists

a belief λi(mi, θ) ∈ ∆(R−i(Γ, θ)) such that mi is a best response to λi(mi, θ) in Mi. Select

an arbitrary strategy mi ∈ Ri(Γ, θ) with the associated belief λi(mi, θ) ∈ ∆(R−i(Γ, θ)).

For any strategy m′i ∈ Mi we denote by αi(m
′
i,mi) the lottery an agent gets when he

selects strategy m′i ∈Mi under the belief λi(mi, θ).
8

(1) αi(m
′
i,mi) =

∑
m−i∈R−i(Γ,θ)

λi(mi, θ)(m−i)g(m′i,m−i)

Claim 3.1. For mi ∈ Ri(Γ, θ), supp (αi(mi,mi)) ⊆ F (θ).

Proof. Consider supp (αi(mi,mi)). Denote the set of strategy profiles which can occur

when agent i plays mi having a belief λi(mi, θ) by R(mi).

(2) supp (αi(mi,mi)) = ∪
m∈R(mi)

supp (g(m)).

8Notice that for every strategy m′i ∈Mi, αi(m
′
i,mi) is a lottery under a fixed belief λi(mi, θ).
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Notice that by construction R(mi) ⊆ R(Γ, θ). Therefore

(3) supp (αi(mi,mi)) = ∪
m∈R(mi)

supp (g(m)) ⊆ ∪
m∈R(Γ,θ)

supp (g(m)).

Since Γ = ((Mi)
n
i , g) rationalizably implements F we can conclude that

(4) ∪
m∈R(Γ,θ)

supp (g(m)) = F (θ).

Therefore,

(5) supp (αi(mi,mi)) = ∪
m∈R(mi)

supp (g(m)) ⊆ ∪
m∈R(Γ,θ)

supp (g(m)) = F (θ).

Hence,

(6) supp (αi(mi,mi)) ⊆ F (θ).

�

We will use Claim 3.1 to show that the set R(Γ, θ) has the best response property at

state θ′. Since mi ∈ Ri(Γ, θ) is a best response to λi(mi, θ) ∈ ∆(R−i(Γ, θ)) for every

m′i ∈Mi,

(7) ui(αi(mi,mi), θ) ≥ ui(αi(m
′
i,mi), θ).

Thus for every m′i ∈ Mi, αi(m
′
i,mi) ∈ Li(αi(mi,mi), θ). By Claim 3.1 αi(mi,mi) ∈

∆(F (θ)). Since the hypothesis of r-monotonicity is assumed to be true i.e. for any

pair (θ, θ′), Li(α, θ) ⊆ Li(α, θ
′) for every i and every α ∈ ∆(F (θ)). In particular,

Li(αi(mi,mi), θ) ⊆ Li(αi(mi,mi), θ
′) for every i.

(8) ui(αi(mi,mi), θ
′) ≥ ui(αi(m

′
i,mi), θ

′), for every m′i ∈Mi.

This means that at state θ′, mi is a best response to the belief λi(mi, θ) ∈ ∆(R−i(Γ, θ)).

Since i ∈ N and mi ∈ Ri(Γ, θ) were chosen arbitrarily, we can conclude that R(Γ, θ) has

the best response property in state θ′. Thus, R(Γ, θ) ⊆ R(Γ, θ′).

To complete the proof we need to show that F (θ) ⊆ F (θ′). To proceed notice that the

fact R(Γ, θ) ⊆ R(Γ, θ′) implies
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(9) ∪
m∈R(Γ,θ)

supp (g(m)) ⊆ ∪
m∈R(Γ,θ′)

supp (g(m)).

Since Γ rationalizably implements F , we can conclude that ∪
m∈R(Γ,θ)

supp (g(m)) = F (θ)

and ∪
m∈R(Γ,θ′)

supp (g(m)) = F (θ′). This together with equation (9) implies that F (θ) ⊆

F (θ′).

�

4. Sufficient Conditions

In this section we present two additional conditions under which r-monotonicity also

becomes sufficient for rationalizable implementation. For any X ′ ⊆ X, let ∆o(X ′) =

{α ∈ ∆(X ′)|supp (α) = X ′} denote the set of lotteries which assigns a positive probabil-

ity to every alternative in X ′.

4.1. No Worst Alternative.

Definition 4.1. An SCC F satisfies the no worst alternative condition if for every i ∈ N ,

every θ ∈ Θ, and every α ∈ ∆o(F (θ)) there exist yi(θ) ∈ ∆(X) s.t. ui(α, θ)>ui(yi(θ), θ).

In our setting the NWA property is a natural extension of the NWA property used by

Bergemann et al. (2011). Under the assumption of strict preferences, the NWA property

places restrictions only for states where the SCC F is single valued.9

In implementation theory, the NWA property appears in various contexts. For exam-

ple, see Cabrales and Serrano (2009) to guarantee full implementation in best response

dynamics and in Tumennasan (2013) for guaranteeing full implementation in quantal

response equilibrium. In many environments, this condition is easily satisfied. Below we

give some examples.

Example 4.1. (Environments with money). Consider an environment where the mech-

anism designer is allowed to use arbitrarily small transfers. This allows the mecha-

nism designer to select the alternatives from an extended outcome space ∆(X) × Rn
+.

In this setting a typical outcome is a (n + 1) tuple (α, t1, . . . , tn), where α ∈ ∆(X)

and (t1, . . . , tn) ∈ Rn
+ s.t.

∑
i∈N ti = 0. Furthermore, for every agent and every θ,

ui(α, ti; θ) is strictly decreasing in ti. In this setting, every SCC F satisfies NWA. To

9Let θ be such that |F (θ)| ≥ 2. For every agent i, let yi(θ) = argmin
y∈F (θ)

ui(y, θ).
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see why this is true, for every α ∈ ∆(F (θ)) we can define yi(θ) = (α, εi) such that

ui(α, θ) > ui((α, εi), θ).

Example 4.2. (Environments with time). Our second example is an environment where

the mechanism designer is allowed to deliver the outcome with a delay. These type of

environments are studied in Artemov (2015). This allows the mechanism designer to

select the alternatives from an extended outcome space ∆(X) × R+. In this setting a

typical outcome is (α, t), where α ∈ ∆(X) and t ∈ R+. Furthermore, every agent has

a preference for early delivery of outcome as opposed to late. Formally, ui(α, t; θ) is

strictly decreasing in t. Similar to the example above, for every α ∈ ∆(F (θ)), we can

define yi(θ) = (α, ε) such that ui(α, θ) > ui((α, ε), θ). In this setting, therefore, every

SCC F satisfies NWA. Notice the distinction in environments with time and transfers is

one between public outcomes and private outcomes.

The NWA property guarantees the existence of a set of allocations {yi(θ)}i,θ. A typical

allocation, yi(θ), may depend both on the agent and the state. In the construction of

our canonical mechanism we require the existence two kinds of allocations. First, a state

independent allocation which we call y
i
. Second, a state and agent independent allocation

which we call y. Furthermore, we require that at any state θ these allocations are not

best for any agent. The NWA property guarantees the existence of such allocations. To

see this consider the following average allocations:

y
i

=
1

#Θ

∑
θ∈Θ

yi(θ)

y =
1

N

∑
i∈N

yi

Lemma 4.1. For every i ∈ N and every θ ∈ Θ, there exists a pair of allocation y∗i (θ)

and y∗∗i s.t.

(1) ui(y
∗
i (θ), θ) > ui(yi, θ)

(2) ui(y
∗∗
i (θ), θ) > ui(y, θ)

Proof. First we prove (1) and show for any i and θ ui(y
∗
i (θ), θ) > ui(yi, θ). Define y∗i (θ)

as
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y∗i (θ) =
1

#Θ

∑
θ′∈Θ\{θ}

yi(θ
′) +

1

#Θ
α(θ), where α(θ) ∈ ∆o(F (θ)).

Consider the utility from lottery y∗i (θ) at state θ,

ui(y
∗
i (θ), θ) =

1

#Θ

∑
θ′∈Θ\{θ}

ui(yi(θ
′), θ) +

1

#Θ
ui(α(θ), θ).

By the NWA property we know that ui(α(θ), θ) > ui(yi(θ), θ). Therefore

ui(y
∗
i (θ), θ) >

1

#Θ

∑
θ′∈Θ\{θ}

ui(yi(θ
′), θ) +

1

#Θ
ui(yi(θ), θ) = ui(yi, θ).

Second we prove (2) and show that for any i and θ, ui(y
∗∗
i (θ), θ) > ui(y, θ). Define

y∗∗i (θ) as

y∗∗i (θ) =
1

N

∑
j∈N\{i}

yi +
1

N
y∗i (θ).

Consider the utility from lottery y∗∗i (θ) at state θ,

ui(y
∗∗
i (θ), θ) =

1

N

∑
j∈N\{i}

ui(yi, θ) +
1

N
ui(y

∗
i (θ), θ).(10)

We have already proved that ui(y
∗
i (θ), θ) > ui(yi, θ) therefore

ui(y
∗∗
i (θ), θ) >

1

N

∑
j∈N\{i}

ui(yi, θ) +
1

N
ui(yi, θ) = ui(y, θ).

�

The allocation y appears directly in the construction of our canonical mechanism.

Allocations yi and y∗i (θ) allows us to construct a set of allocations10 {zi(θ, θ′)}θ,θ′ for

each agent i. We would like to think of a situation where agent i is playing a game with

a group of people who always announce the same state. {zi(θ, θ′)}θ,θ′ is the outcome

function of this game. The following lemma establishes that for every agent i we can

find allocations {zi(θ, θ′)}θ,θ′ such that if the true state is θ then zi(θ, θ
′) is better than

10Here a typical allocation zi(θ, θ
′) is a lottery over X.
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zi(θ
′, θ′) and if the true state is θ′ then zi(θ, θ

′) is not better than any α(θ′) ∈ ∆o(F (θ′)).

This generalizes Lemma 2 in Bergemann et al. (2011) for social choice correspondences.

Lemma 4.2. If an SCC F satisfies the NWA property then for every i ∈ N and every

θ, θ′ there exists allocations zi{(θ, θ′)}{θ,θ′} for every α ∈ ∆o(F (θ)) such that

ui(α(θ′), θ′) > ui(zi(θ, θ
′), θ′)

and for θ 6= θ′, ui(zi(θ, θ
′), θ) > ui(zi(θ

′, θ′), θ)

Proof. Define zi(θ, θ
′) as below

zi(θ
′, θ′) = (1− ε)yi(θ′) + εyi

and for θ 6= θ′, zi(θ, θ
′) = (1− ε)yi(θ′) + εy∗i (θ).

To prove the two conditions in the lemma above, first consider the utility of agent i

from zi(θ, θ
′) at state θ assuming that θ′ 6= θ.

ui(zi(θ, θ
′), θ) = (1− ε)ui(yi(θ′), θ) + εui(y

∗
i (θ), θ)(11)

From Lemma 4.1 we know that ui(y
∗
i (θ), θ) > ui(yi, θ) therefore

ui(zi(θ, θ
′), θ) > (1− ε)ui(yi(θ′), θ) + εui(yi, θ) = ui(zi(θ

′, θ′), θ).(12)

Notice that this is true irrespective of the value of ε.

Now by NWA we know that for every α(θ′) ∈ ∆o(F (θ′)), ui(α(θ′), θ′) > u(yi(θ
′), θ′).

Assume ε = 0, then zi(θ, θ
′) = yi(θ

′). Therefore for ε = 0, ui(α(θ′), θ′) > u(zi(θ, θ
′), θ′)

for every α(θ′) ∈ ∆o(F (θ′)). By continuity this should also be true for some ε > 0. Thus

we can always choose a positive ε however small such that ui(α(θ′), θ′) > u(zi(θ, θ
′), θ′)

is true for every α(θ′) ∈ ∆o(F (θ′)) . �

In addition to the NWA condition, we require an additional condition which we call

ΘF - distinguishability.
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4.2. ΘF - Distinguishability.

Definition 4.2 (Distinguishability). We say that an SCC is distinguishable on a set

Θ̂ ⊆ Θ, if for every ordered pair (θ, θ′) ∈ Θ̂×Θ there exists a lottery α ∈ ∆(F (θ)) which

does not maintain position.

Our sufficient condition requires F to be distinguishable on the set of states where F

is single valued. Define ΘF = {θ ∈ Θ s.t. |F (θ)| = 1}.

Definition 4.3. We say that an SCC F is ΘF - distinguishable if it is distinguishable

on ΘF ⊆ Θ.

ΘF -distinguishability requires that whenever we move from a state θ where F (θ) is sin-

gle valued to any other state θ′, there exists an agent i and a lottery β ∈ ∆(X) such that

β ∈ Li(F (θ), θ) and β /∈ Li(F (θ), θ′). For SCF’s ΘF -distinguishability is strictly stronger

than Maskin monotonicity but for SCC’s both the conditions are logically independent.

5. Main Theorem

In this section we present our main theorem. To prove this we construct a “canonical

mechanism.” We will show that, for a society with atleast 3 agents, our canonical mech-

anism rationalizably implements any SCC which satisfies r-monotonicity, NWA and ΘF

-distinguishability. The canonical mechanism we construct shares many basic features

with the mechanism constructed by Maskin (1999) with important differences and mod-

ifications. In particular, our canonical mechanism is very closely related to the one used

by Bergemann et al. (2011) and differs, non trivially, from theirs to accommodate the

case of correspondences.

Theorem 5.1. Assume n ≥ 3. If an SCC F satisfies NWA, r-monotonicity and is ΘF

-distinguishable then it is rationalizably implementable .

Proof. Below we describe the canonical mechanism which will be used to prove our main

result. For each state of the world θ, a mechanism induces a game of complete information

among the agents. We study the set of rationalizable strategy profiles for each θ which

we denote by R(Γ, θ).

Message Space. M1 = Θ, M2 = Z+,M3 = {∆(X)Θ| for every m3 ∈ ∆(X)Θ, m4(θ) ∈
∆(F (θ))}, M4 = {∆(X)Θ}, M5 = ∆(X).
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A typical message for a player i, mi = (m1
i ,m

2
i ,m

3
i ,m

4
i ,m

5
i ), can be described as

follows:

• m1
i ∈M1 : State of the world.

• m2
i ∈M2 : An integer.

• m3
i ∈M3 : A state contingent allocation plan such that m3

i (θ) ∈ ∆(F (θ)).

• m4
i ∈M4 : A state contingent allocation plan such that m4

i (θ) ∈ ∆(X).

• m5
i ∈M5 : A lottery over X.

Outcome Function.

(1) Universal Agreement: For every i, m1
i = θ′ , m2

i = 1.

g(m) = U [F (θ′)]

(2) Unilateral Deviation: There is an agent i ∈ N s.t. (m1
i ,m

2
i ) 6= (m1

j ,m
2
j) and

for every j 6= {i},(m1
j ,m

2
j) = (θ′, 1). Let b(θ′) ∈ argmin

y∈F (θ′)

ui(y, θ
′).

I Coordination Failure: |F (θ′)| ≥ 2 and m2
i = 1.

g(m) =

{
U [F (θ′)] with probability 1

2

b(θ′) with probability 1
2

}

II Other Cases: |F (θ′)| = 1 or m2
i > 1

(i) ui(U [F (θ′)], θ′) ≥ ui(m
4
i (θ
′), θ′),

g(m) =

{
m4
i (θ
′) with probability (1− 1

m2
i +1

)

zi(θ
′, θ′) with probability 1

m2
i +1

}

(ii) ui(U [F (θ′)], θ′) < ui(m
4
i (θ
′), θ′)

g(m) = zi(θ
′, θ′)

(3) Disagreement:
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I Coordination Failure: For every i ∈ N,m2
i = 1 and |F (mi)| ≥ 2. Select

an agent i at random.

g(m) =

{
m3
i (m

1
i ) with probability

1
2

U [F (m1
i )] with probability

1
2

}
II Other Cases: Select an agent i announcing the highest integer m2

i and ties

are broken arbitrarily.

g(m) =

{
m5
i with probability (1− 1

m3
i +1

)

y with probability 1
m3

i +1

}

In Appendix A we show that the above mechanism rationalizably implements a SCC

which satisfies NWA, r-monotonicity and ΘF -Distinguishability. �

Remark 5.1. For SCF’s our canonical mechanism is identical to the one constructed

in Bergemann et al. (2011). Bergemann et al. (2011) show that a SCF is rationaliz-

ably implementable if it satisfies responsiveness11, Maskin Monotonicity and NWA (See

Proposition 2, Pg 1261). It can be easily checked that for SCF’s responsiveness and

Maskin monotoncity together imply ΘF -distinguishability. For non-responsive SCF’s

Bergemann et al. (2011) discover a condition which they call strict Maskin monotonicity∗.

Under a weak restriction on the class of mechanisms, they prove that it is necessary for

rationalizable implementation of an SCF. In Appendix 2 we show that strict Maskin

monotonicity∗ is strictly stronger than Maskin monotonicity.

An important implication of Theorem 5 is that for states where F is multi-valued,

NWA and ΘF -distinguishability place no restrictions. This is sharp in contrast with

respect to functions. To see this contrast clearly, consider an SCC F which always

selects more than one alternative. Within this class we can use Theorem 5 to completely

characterize the set of rationalizably implementable SCC’s.

Corollary 5.1. Assume N ≥ 3 and |F (θ)| ≥ 2, for every θ. An SCC F is rationalizably

implementable if and only if it satisfies r-monotonicity.

11A social function is responsive if θ 6= θ′ ⇒ f(θ) 6= f(θ′).
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6. Application-Pareto Correspondence

In this section, using our main theorem we show that Pareto correspondences can is

rationalizable implementable.

Example 6.1. Consider the Pareto correspondence

F (θ) =
{
a ∈ X|@ an alternative b ∈ X such that for every i ∈ N , ui(b, θ) > ui(a, θ)

}

Corollary 6.1. Pareto correspondence is rationalizably implementable.

Proof. Let us partition the set of states by the following partition, {ΘF ,Θ \ ΘF}. For

every θ ∈ ΘF , F (θ) is singleton. This implies that for every θ ∈ ΘF , F (θ) is the top

alternative for every agent. Let us further partition ΘF based on the alternatives which

are top ranked in state θ. Let us denote this partition by {Θa
F}a∈X . For example,

if θ ∈ Θa
F then F (θ) = a. Informationally the mechanism designer cares about the

partition Θa
F rather than the actual state within this partition. Next we claim that the

Pareto correspondence is distinguishable w.r.t. the partition {Θa
F}a∈X of ΘF .

Claim 6.1. Pareto Correspondence is distinguishable w.r.t. {Θa
F}a∈X , i.e. for every pair

(θ, θ′) such that θ ∈ Θa
F , F (θ) 6= F (θ′), there exists an agent i ∈ N and an alternative b

ui(a, θ) > ui(b, θ) for every θ ∈ Θa
F

ui(b, θ
′) > ui(a, θ

′)

Proof. Let us select a state θ ∈ Θa
F . By definition we know that F (θ) = a. Now consider

a θ′ ∈ Θ such that F (θ) 6= F (θ′). This implies that there exists an alternative b such that

b ∈ F (θ′) and b 6= a. By the definition of Pareto correspondence we know that for every

i ∈ Nand for every θ ∈ Θa
F , ui(a, θ) > ui(b, θ). Also b ∈ F (θ′), now let us assume that

there is no i such that ui(b, θ
′) > ui(a, θ

′) is true. But this would mean that b /∈ F (θ′).

Hence we arrive at a contradiction. �

Claim 6.2. Pareto correspondence satisfies r-monotonicity.

Proof. We can indeed prove that Pareto correspondence is Maskin monotonic. To see

this consider an alternative and a state θ such that a ∈ F (θ). By the definition of Pareto

correspondence there does not exists an alternative b ∈ X such that for every i ∈ N ,

ui(b, θ) > ui(a, θ). Thus for every b ∈ X there exists an agent i such that ui(a, θ) >
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ui(b, θ). Consider a θ′ such that for every i ∈ N , Li(a, θ) ⊆ Li(a, θ
′). Therefore at state

θ′ we can say that for every b ∈ X there exists an agent i such that ui(a, θ
′) > ui(b, θ

′).

By the definition of Pareto correspondence, a ∈ F (θ′). Since a was arbitrary we have

shown that Pareto correspondence satisfies Maskin monotonicity. Finally we complete

the proof by the fact that Maskin monotonicity implies r-monotonicity. �

Claim 6.3. Pareto correspondence satisfies NWA property.

Proof. First consider θ ∈ ΘF . In these states, F (θ) is singleton and also the top al-

ternative for everyone. Therefore any Pareto dominated alternative serves as a worst

alternative. For states of the world θ′ where F is multi-valued, for every i ∈ N select

yi(θ
′) ∈ argmin

y∈F (θ′)

ui(y, θ
′). Now for any lottery on F (θ′) such that α ∈ ∆o(F (θ′)), yi(θ

′)

serves as a worst alternative for agent i. �

Using Claim 6.1, 6.2, 6.3 along with Theorem 5.1 we can now conclude that the Pareto

correspondence is rationalizably implementable. �

7. Implementation with Partially Honest agents

Recently there has been a growing literature which allows for the possibility that

there exists at least one agent who is partially honest. A partially honest agent, strictly

prefers to tell the truth over lying, conditional on receiving the same outcome. Therefore

this agent has a lexicographic preference for honesty. Moreover, the designer knows the

existence of such an agent but need not necessarily know the identity of the agent. In

this section we show that the set of implementable SCC’s expand drastically, a result

which is consistent with the existing literature on Nash implementation (see for example

Matsushima (2008), Dutta and Sen (2012)). In this setting, the mechanism designer can

ask everyone to announce a state of the world as “evidence”. The utility of an agent now

depends on the alternative chosen and also the evidence he/she announces i.e. utility

from alternative a at state θ by announcing θ′ is given by ui((a, θ
′); θ).

Definition 7.1. An agent i is partially honest if for every θ ∈ Θ, ui((a, θ); θ) >

ui((a, θ
′); θ).

The following claim follows immediately from the definition of partial honesty. The

existential quantifier in the claim emphasizes that we just need the existence of at least

one partially honest agent.
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Claim 7.1. Consider θ 6= θ′ then there exists an agent i such that for every a ∈ X.

ui((a, θ); θ) > ui((a, θ
′); θ) and ui((a, θ

′); θ′) > ui((a, θ); θ
′).

ui((a, θ
′); θ′) > ui((a, θ); θ

′) and ui((a, θ); θ) > ui((a, θ
′); θ).

Theorem 7.1. If there exists an agent i who is partially honest then an SCC which

satisfies NWA is rationalizably implementable.

Proof. To prove the above theorem we show that in the presence of a partially honest

agent, every SCC satisfies the conditions of our main theorem. Interpreting an outcome

as (a, θ), from Claim 7.1, it follows that the SCC is ΘF -distinguishable and is also r

monotonic. Since we have assumed that SCC satisfies NWA, the result follows directly

from our main theorem (Theorem 5.1). �

8. Stronger Notions of Implementation

The notion of implementation studied in this paper is the most conservative. In partic-

ular, we assume that for any rationalizable strategy profile, at each state, the mechanism

designer is completely agnostic about the probability received by each alternative. In

this section, we relax this assumption and allow the mechanism designer to demand a

minimal probability for each socially optimal alternative. More formally, we call this

notion ε-rationalizable implementation.

Definition 8.1. Let ε ∈ [0, 1]. We say a mechanism Γ(M ; g) ε-rationalizably implements

an SCC F if for every θ ∈ Θ

(1) For every a ∈ F (θ) there exists m ∈ R(Γ, θ) such that g(m)(a) > ε.

(2) For every m′ ∈ R(Γ, θ), supp (g(m′)) ⊆ F (θ).

Proposition 8.1. Let ε ∈ [0, 1]. If a social choice correspondence F is ε-rationalizably

implementable then it satisfies r-monotonicity.

Proof. Let us assume that F is ε-rationalizably implementable for any fixed ε ∈ [0, 1].

This implies that there exists a mechanism, say Γ(M, g), which implements it. From the

definition of ε-rationalizable implementation it follows that Γ(M, g) also ε-rationalizably

implements F for ε = 0. Therefore by Proposition 3.1 we can conclude that F satisfies

r-monotonicity. �
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The necessity of r-monotonicity for ε-rationalizable implementation for any ε ∈ [0, 1]

is not surprising. What is surprising is that our main theorem (Theorem 5.1) remains

true for any ε ∈ [0, 1).

Theorem 8.1. Let ε ∈ [0, 1) and n ≥ 3. If an SCC F satisfies NWA, r-monotonicity

and is ΘF -distinguishable then it is ε-rationalizably implementable.

Proof. See Appendix 3 �

For ε = 1 the above theorem is no longer valid. In particular we provide an example

of an SCC (example 8.1) which cannot be ε = 1-rationalizably implemented (Claim 8.1)

but satisfies all the conditions of the above theorem and hence can be ε-rationalizably

implemented for any ε ∈ [0, 1) (Claim 8.2). Before moving to the example let us remind

ourselves the definition of ε = 1-rationalizably implementation.

Definition 8.2. We say a mechanism Γ(M ; g), ε = 1-rationalizably implements an SCC

F if for every θ ∈ Θ

(1) For every a ∈ F (θ) there exists m ∈ R(Γ, θ) such that a = g(m).

(2) For every m′ ∈ R(Γ, θ), supp (g(m′)) ⊆ F (θ).

Example 8.1. Let X = {a, b, c, d} be the set of alternatives and N = {1, 2, 3} be the

set of agents. There are two states of the world, θ and θ′. The preference profile for each

state is given in the table below. Numbers in the parentheses specify the vNM utilities.

Table 4. Preferences

θ θ′

1 2 3 1 2 3

d(3) d(3) d(3) d(3) d(3) d(3)

a(2) b(2) a(2) a(2) a(2) a(2)

c(1) c(1) c(1) c(1) b(1) c(1)

b(0) a(0) b(0) b(0) c(0) b(0)

Suppose the planner’s objective is described by the following social choice correspon-

dence, F (θ) = {a, b, c, d} and F (θ′) = {a}.

Claim 8.1. There is no mechanism which ε = 1-rationalizably implements F.
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Proof. Let us assume by the way of contradiction that there exists a mechanism say Γ =

(M, g) which rationalizably implements F . Since we have assumed that Γ rationalizably

implements F at state θ there exists a m ∈ R(Γ, θ) such that g(m) = d. For every agent

d is the top alternative at state θ and θ′. Therefore m is a Nash equilibrium at state θ

and θ′. This implies that m ∈ R(Γ, θ′). Finally since Γ implements F , d ∈ F (θ′) which

is a contradiction. �

Claim 8.2. For ε ∈ [0, 1), SCC F can be ε -rationalizably implemented.

Proof. To prove the above claim we will check the conditions of Theorem 8.1. First con-

sider r-monotonicity. For the pair (θ, θ′), we know that for b ∈ F (θ), a ∈ L2(b, θ)

and a /∈ L2(b, θ′). This means that r-monotonicity is vacuously satisfied. For the

pair (θ′, θ) we know that F (θ′) ⊆ F (θ). Thus we have established that F satisfies r-

monotonicity. Now consider ΘF -distinguishability. We need to consider pair (θ′, θ).

From the preferences we know that b ∈ L2(a, θ′) and b /∈ L2(a, θ). Hence F satisfies ΘF

-distinguishability. Finally it is easy to see that the NWA property is satisfied. Again

we only need to check NWA at state θ′. Since alternative a = F (θ′) is second in ranking

for everyone, we can find a lottery which is strictly lower than a for every agent. Since F

satisfies all the conditions of Theorem 8.1 we can conclude that F can be ε -rationalizably

implemented for any ε ∈ [0, 1).

�

9. Discussion

The canonical mechanism used to prove Theorem 5.1 has the property that it also

implements the SCC in mixed Nash equilibrium, a notion of implementation introduced

and studied in Mezzetti and Renou (2012).

Recently there is a growing literature which allows the agents to provide some costly

evidence (See for e.g. Ben-Porath and Lipman (2012) and Kartik and Tercieux (2012)).

This is in contrast to the standard literature where all the messages in a mechanism are

cheap talk. We touched upon a specific case of this literature by studying the presence of

a partially honest agent. A general study of rationalizable implementation with evidence

is an interesting topic left for future research.

The assumption of strict preferences plays a crucial role in the proof of Theorem

5.1. However, the necessary condition still holds even if we allow for indifference. This

centrality of strict preferences is reminiscent of the recent literature on dropping no veto
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power in characterizing Nash implementable SCC’s. (See for e.g. Benôıt and Ok (2008),

Bochet (2007)).

Recently Artemov (2015) adds the possibility of a delay to the theory of Nash imple-

mentation. This allows a planner to deliver the F -optimal alternate with some delay.

Furthermore, every agent discounts future. Therefore early delivery of outcome is better

than the later one. If we allow for some ε delay, then we can always define the SCC

such that it selects F -optimal alternatives along with an ε delay. This means that the

modified SCC is never single-valued and, as a result, responsiveness or distinguishabil-

ity type of conditions can be dropped altogether. A thorough study of rationalizable

implementation with delay is an interesting topic which we leave for future research.
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Appendix

Appendix A. Proof of Theorem 5

Message Space. M1 = Θ, M2 = Z+,M3 = {∆(X)Θ| for every m3 ∈ ∆(X)Θ, m4(θ) ∈
∆(F (θ))}, M4 = {∆(X)Θ}, M5 = ∆(X).

A typical message for a player i, mi = (m1
i ,m

2
i ,m

3
i ,m

4
i ,m

5
i ), can be described as

follows:

• m1
i ∈M1 : State of the world.

• m2
i ∈M2 : An integer.

• m3
i ∈M3 : A state contingent allocation plan such that m3

i (θ) ∈ ∆(F (θ)).

• m4
i ∈M4 : A state contingent allocation plan such that m4

i (θ) ∈ ∆(X).

• m5
i ∈M5 : A lottery over X.

Outcome Function.

(1) Universal Agreement: For every i, m1
i = θ′ , m2

i = 1.

g(m) = U [F (θ′)]

(2) Unilateral Deviation: There is an agent i ∈ N s.t. (m1
i ,m

2
i ) 6= (m1

j ,m
2
j) and

for every j 6= {i},(m1
j ,m

2
j) = (θ′, 1). Let b(θ′) ∈ argmin

y∈F (θ′)

ui(y, θ
′).

I Coordination Failure: |F (θ′)| ≥ 2 and m2
i = 1.

g(m) =

{
U [F (θ′)] with probability 1

2

b(θ′) with probability 1
2

}

II Other Cases: |F (θ′)| = 1 or m2
i > 1.

(i) ui(U [F (θ′)], θ′) ≥ ui(m
4
i (θ
′), θ′),

g(m) =

{
m4
i (θ
′) with probability (1− 1

m2
i +1

)

zi(θ
′, θ′) with probability 1

m2
i +1

}
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(ii) ui(U [F (θ′)], θ′) < ui(m
4
i (θ
′), θ′)

g(m) = zi(θ
′, θ′)

(3) Disagreement:

I Coordination Failure: For every i ∈ N,m2
i = 1 and |F (mi)| ≥ 2. Select

an agent i at random.

g(m) =

{
m3
i (m

1
i ) with probability

1
2

U [F (m1
i )] with probability

1
2

}
II Other Cases: Select an agent i announcing the highest integer m2

i and ties

are broken arbitrarily.

g(m) =

{
m5
i with probability (1− 1

m2
i +1

)

y with probability 1
m2

i +1

}

Throughout the proof we will assume that the true state of the world is θ ∈ Θ.

Lemma 1.1. If an SCC F satisfies NWA, then for any i ∈ N , if mi ∈ Ri(Γ, θ) then

m2
i = 1.

Proof. Assume by the way of contradiction that there exists an i ∈ N such that mi ∈
Ri(Γ, θ) and m2

i > 1. In the mechanism, the outcome is decided by either Rule 2(II)

or Rule 3(II). For a strategy mi, let us denote the set of strategy profiles of opponents

which will lead to Rule 2(II) and Rule 3(II) as follows.

M
2(II)
−i = {m−i ∈M−i|m1

j = θ′ and m2
j = 1 for some θ′, for every j 6= i}

M
3(II)
−i = M−i \M2

−i

We will construct a strategy m∗i for agent i and show that at state θ, for any belief

λi ∈ ∆(M2
−i∪M3

−i) strategy m∗i is better than strategy mi. Notice that m4
i is relevant for

Rule 2(II) and m5
i is relevant for Rule 3(II). This will allow us to break the argument

into two separate cases. First case is λi ∈ ∆(M
2(II)
−i ) and second case λi ∈ ∆(M

3(II)
−i ).
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Claim 1.1. If there exists an i ∈ N with a strategy mi ∈ Ri(Γ, θ) with m2
i > 1 and

beliefs such that λi ∈ ∆(M2
−i), then

(1) At strategy profiles where rule 2(II)(ii) is applied, mi is not a best response.

(2) mi is not a best response at rule 2(II)(i) either.

Proof. Let mi ∈ Ri(Γ, θ) be a strategy of agent i with m2
i > 1 and consider that (mi,m−i)

is a strategy profile such that rule 2(II)(ii) applies. This implies that m1
j = θ′ for all

j 6= i and ui(U [F (m1
−i)],m

1
−i) < ui(m

4
i (m

1
−i),m

1
−i) and g(mi,m−i) = zi(m

1
−i,m

1
−i). By

Lemma 4.2 we know that for m1
−i 6= θ there exist allocations {zi(θ′, θ)}θ,θ′∈Θ such that

ui(zi(θ,m
1
−i), θ) > ui(zi(m

1
−i,m

1
−i), θ)

ui(U [F (m1
−i)],m

1
−i) > ui(zi(θ,m

1
−i),m

1
−i)

Therefore by announcing

m∗4i (θ̂) =

{
U [F (θ)] if θ̂ = θ

zi(θ, θ̂) if θ̂ 6= θ

}

agent i is better off by inducing Rule 2(II)(i) as compared to Rule 2(II)(ii). Since

the choice of strategy profile which induces Rule 2(II)(ii) was arbitrary, the claim holds

for any such strategy profile.

Now consider the belief such that λi ∈ ∆(M2
−i), utility from strategy m∗i , where m4

i is

replaced in mi by m∗4i , is given by:

∑
m−i∈M2

−i

λi(m−i)[(
m2
i

m2
i + 1

)ui(m
∗4
i (m1

−i), θ) + (
1

m2
i + 1

)ui(zi(m
1
−i,m

1
−i), θ)].

Since ui(m
∗4
i (m1

−i), θ) > ui(zi(m
1
−i,m

1
−i), θ) this utility is increasing in the choice of

integer m2
i . Therefore mi is not a best response for any beliefs. �

Claim 1.2. If there exists an i ∈ N with a strategy mi ∈ Ri(Γ, θ) with m2
i > 1 and a

belief such that λi ∈ ∆(M
3(II)
−i ) then mi is not a best response.

Proof. Now define m∗5i = Max
y∈∆(X)

ui(y, θ) and a very high integer m∗2i such that agent i

wins the integer game. Replace mi by changing m5
i to m∗5i . Now consider the belief such

that λi(m−i ∈ M3(II)
−i ) = 1, the utility from strategy m∗i , where m5

i is replaced in mi by

m∗5i and m2
i by m∗2i , is given by:
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∑
m−i∈M

3(II)
−i

λi(m−i)[(
m∗2i

m∗2i + 1
)ui(m

∗5
i , θ) + (

1

m∗2i + 1
)ui(y, θ)].

Since ui(m
∗5
i , θ) > ui(y, θ), this utility is increasing in the choice of integer m2

i . There-

fore mi is not a best response to any beliefs such that λi ∈ ∆(M3
−i). �

Now consider the strategy mi such that m2
i > 1 with any belief such that λi ∈

∆(M
2(II)
−i ∪M

3(II)
−i ). We use Claim 1.1 and 1.2 to show that the strategym∗i = (m1

i ,m
∗2
i ,m

3
i ,m

∗4
i ,m

∗5
i )

is better than strategy mi. Consider the utility from m∗i . From Claim 1.1 (1) we know

that conditional on Rule 2, the outcome is determined by Rule 2(II)(i).

∑
m−i∈M

2(II)(i)
−i

λi(m−i)[(
m∗2i

m∗2i + 1
)ui(m

∗4
i (m1

−i), θ) + (
1

m∗2i + 1
)ui(zi(m

1
−i,m

1
−i), θ)]

+
∑

m−i∈M
3(II)
−i

λi(m−i)[(
m∗2i

m∗2 + 1
)ui(m

∗5
i , θ) + (

1

mm∗2
i + 1

)ui(y, θ)]

�

This is greater than the utility from the strategy mi with m2
i > 1 under any beliefs

such that λi ∈ ∆(M2
−i ∪M3

−i).

∑
m−i∈M

2(II)
−i

λi(m−i)[(
m2
i

m2
i + 1

)ui(m
4
i (m

1
−i), θ) + (

1

m2
i + 1

)ui(zi(m
1
−i,m

1
−i), θ)]

+
∑

m−i∈M
3(II)
−i

λi(m−i)[(
m2
i

m2
i + 1

)ui(m
5
i , θ) + (

1

m2
i + 1

)ui(y, θ)]

This immediately follows from Claim 1.1 and Claim 1.2, hence our assumption that

mi ∈ R(Γ, θ) together with m2
i > 1 leads to a contradiction. We have thus established

that if mi is a rationalizable strategy for agent i in state θ, then m2
i = 1.

Lemma 1.2. If mi = (θ′, 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ) then

(1) mj = (θ′, 1,m3
j ,m

4
j ,m

5
j) ∈ Rj(Γ, θ) for every j ∈ N .

(2) mi is a best response to beliefs λi(m−i ∈M1
−i) = 1.
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where

M1
−i = {m−i ∈M−i|∀j ∈ N \ {i}, mj = (θ′, 1,m3

j ,m
4
j ,m

5
j)}

Proof. First we show that if mi = (θ′, 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ) then for every j ∈ N ,

mj = (θ′, 1,m3
j ,m

4
j ,m

5
j) ∈ Rj(Γ, θ). Let us assume that there exists a j ∈ N s.t.

mj /∈ Rj(Γ, θ). We will show that mi is not a best response to any belief λi ∈
∆(R−i(Γ, θ)). To show this we construct a strategy m̂i which is better than mi for

any belief λi ∈ ∆(R−i(Γ, θ)). We replace m4
i in mi with m̂4

i and m5
i in mi by m∗5i

12.

m̂4
i (θ̂) =


U [F (θ′)] if θ̂ = θ′.

U [F (θ̂)] if θ̂ s.t. |F (θ̂)| ≥ 2 and ui(U [F (θ̂)], θ) > ui(b(θ̂), θ).

b(θ̂) if θ̂ s.t. |F (θ̂)| ≥ 2 and ui(U [F (θ̂)], θ) < ui(b(θ̂), θ).

m∗4i (θ̂) if Otherwise


Under our assumption, that there exists a j ∈ N such that mj /∈ Rj(Γ, θ), we know

that the outcome is not decided by Rule (1). The strategy m̂i is designed in such a way

that for any m−i ∈ R−i(Γ, θ), m̂i is better than mi. There are four cases to be considered.

Case 1: m−i ∈ R−i(Γ, θ): Rule 2(I) is applied.

In this case everyone but i agrees. Let mj = (θ̃, 1,m3
i ,m

4
j ,m

5
j) for j 6= i. Under strategy

mi, i gets a uniform lottery over U(F (θ̃)) and b(θ̃). Under m̂i, i can ensure lottery U(θ̃)

or lottery b(θ̃) by announcing a very high integer m̂2
i .

Case 2: m−i ∈ R−i(Γ, θ): Rule 2(II)(i) is applied.

As in the previous case, in this case everyone but i agrees. Let mj = (θ̃, 1,m3
i ,m

4
j ,m

5
j)

for j 6= i. Under strategy mi, i gets a uniform lottery over m∗4i (θ̃) and zi(θ̃, θ̃). Under

m̂i, i can ensure lottery m4
i (θ̃) by announcing a very high integer m̂2

i .

Case 3: m−i ∈ R−i(Γ, θ): Rule 3(I) is applied.

In this case i can choose m5
i = m∗5i . This allocation can be achieved with an arbitrarily

high probability. This is better than a uniform lottery over m̂3
i (θ
′) and U(F (θ′)).

Case 4: m−i ∈ R−i(Γ, θ): Rule 3(II) is applied.

In this case i can choose m5
i = m∗5i and achieve this allocation with a arbitrarily high

probability.

Thus we have shown that if mi = (θ′, 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ) then, for every j ∈ N ,

mj = (θ′, 1,m3
j ,m

4
j ,m

5
j) ∈ Rj(Γ, θ).

12Where m∗5i = Max
y∈∆(X)

ui(y, θ).
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Now we will show that if mi = (θ′, 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ) then, mi is a best response

to only beliefs such that λi(m−i ∈M1
−i) = 1.

Let us assume that mi is a best response to beliefs λi(m−i ∈M1
−i) 6= 1. There are two

cases to be considered.

Case 1: λi(m−i ∈M1
−i) = 0.

In this case by assumption the outcome is not decided by Rule 1. This case then becomes

similar to part (1) of this Lemma. The interesting case is then the following.

Case 2: 0 < λi(m−i ∈M1
−i) ≤ 1.

In this case we can show that m̂i is better than mi. The argument is simple. When

every agrees with i, i can ensure the lottery U [F (θ′)] with a very high probability. There

is however some loss as compared to the U [F (θ′)] with probability one probability. In all

other cases agent i strictly gains by ensuring a lottery m̂4
i (θ̂) and m∗5i with an arbitrarily

high probability. By a suitable choice of integer the loss in the event where everyone

agrees is overcome by the gain in all other events. �

Now we are ready to characterize the set R(Γ, θ). Let the set of Nash equilibrium at

state θ be denoted by NE(Γ, θ)

Lemma 1.3. If mi = (θ′, 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ) then the strategy profile m = (m1, . . . ,mn)

where m1 = ... = mn = (θ′, 1,m3
i ,m

4
i ,m

5
i ) is a Nash equilibrium.

Proof. Let mi = (θ′, 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ) then by Lemma 1.2 mi is a best re-

sponse to λi(m−i ∈ M1
−i, θ) = 1. This is true for everyone since by part (1), mj =

(θ′, 1,m3
j ,m

4
j ,m

5
j) ∈ Rj(Γ, θ) for every j ∈ N and i was chosen arbitrarily in the proof of

Lemma 1.2. Hence m1 = ... = mn = (θ′, 1,m3
i ,m

4
i ,m

5
i ) is a Nash equilibrium of Γ. �

With some abuse of notation let us denote a Nash equilibrium at state θ by θ′. That is if

m1 = ... = mn = (θ′, 1,m3
i ,m

4
i ,m

5
i ) is a Nash equilibrium of Γ at state θ then we write θ′.

Let NE(Γ, θ) = {θ′ ∈ Θ|m1 = ... = mn = (θ′, 1,m3
i ,m

4
i ,m

5
i ) is a Nash equilibrium}.

Lemma 1.4. If θ′ ∈ NE(Γ, θ) then F (θ′) ⊆ F (θ).

Proof. Let us assume that θ′ ∈ NE(Γ, θ) but there exists an alternative ‘a’ such that a ∈
F (θ′) and a /∈ F (θ). Since θ′ ∈ NE(Γ, θ), for every i ∈ N , mi = (θ′, 1, ., ., .) ∈ Ri(Γ, θ).

Since a ∈ F (θ′) and a /∈ F (θ), by the assumption that F satisfies r-monotonicity there

exists an agent i ∈ N and a pair of lotteries α ∈ ∆(F (θ′)) and α′ ∈ ∆(X) such that
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ui(α, θ
′) ≥ ui(α

′, θ′) and ui(α
′, θ)>ui(α, θ).

Under the assumption of expected utility theory for agent i we can say that for lottery

U [F (θ′)] there exists a lottery γ ∈ ∆(X) such that

ui(U([F (θ′)], θ′) ≥ ui(γ, θ
′) and ui(γ, θ) > ui(U([F (θ′)], θ).

To see why this true, we can always express U [F (θ′)] as a linear combination of two

lotteries with support in F (θ′). Formally, we say that for every β ∈ ∆(F (θ′)) there exists

a δ ∈ ∆(F (θ′)) and p ∈ (0, 1) such that

U([F (θ′)] = pβ + (1− p)δ

In particular we can express the uniform lottery as a linear combination of α and δ.

Therefore ui(U([F (θ′)], θ′) can be written as

ui(U([F (θ′)], θ′) = pui(α, θ
′) + (1− p)ui(δ, θ′)

Define γ = pα′ + (1− p)δ, we know that ui(α, θ
′) ≥ ui(α

′, θ′) and ui(α
′, θ) > ui(α, θ).

Therefore it follows that

ui(U([F (θ′)], θ′) = pui(α, θ
′) + (1− p)ui(δ, θ′) ≥ pui(α

′, θ′) + (1− p)ui(δ, θ′) = ui(γ, θ
′)

ui(γ, θ) = pui(α
′, θ) + (1− p)ui(δ, θ) > pui(α, θ) + (1− p)ui(δ, θ) = ui(U([F (θ′)], θ)

Now consider a deviation of this agent to a strategy m∗i = (m1
i ,m

2
i ,m

3
i ,m

∗4
i ,m

∗5
i ) where

m∗2i > 1 and m∗4i (θ̂) is γ if θ̂ = θ′ and m4
i otherwise. In this case the agent is sure that

Rule 2(II) is triggered. Utility of i with strategy m∗i is given by

(
m∗2i

m∗2i + 1
)ui(γ, θ) + (

1

m∗2i + 1
)ui(zi(θ

′, θ′), θ)(21)

Since we know that ui(γ, θ) > ui(U [F (θ′)], θ), strategy m∗i can be made better than

mi by a choice of very high integer m∗2i . This however contradicts the assumption that

θ′ ∈ NE(Γ, θ). �

Lemma 1.5. If θ′ ∈ NE(Γ, θ) then either θ′ = θ or|F (θ′)| ≥ 2.
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Proof. Let us assume that θ′ ∈ NE(Γ, θ), θ′ 6= θ and |F (θ′)| = 1. Let us F (θ′) = a.

Since |F (θ)|, by the assumption of ΘF - distinguishability, we know that there exists an

agent i ∈ N and a lottery α ∈ ∆(X) such that

ui(a, θ
′) ≥ ui(α, θ

′) and ui(α, θ)>ui(a, θ).

By a very similar argument as in Lemma 1.4 we can show that θ′ /∈ NE(Γ, θ). This

leads to contradiction. Hence either θ′ = θ or|F (θ′)| ≥ 2 must be true. �

Lemma 1.6. For every θ ∈ Θ and m ∈ R(Γ, θ), g(m) ∈ ∆(F (θ)).

Proof. Let R(Γ, θ) be the set of rationalizable strategies at state θ, and select an arbi-

trary strategy profile m ∈ R(Γ, θ). By Lemma 1.1 we know that for every i ∈ N,mi is

of the following form mi = (θ′, 1,m3
i ,m

4
i ,m

5
i ).

First consider the case where the true state θ ∈ ΘF . In this case, the set R(Γ, θ)

can be described by a strategy profile where for every i ∈ N , mi = (θ, 1,m3
i ,m

4
i ,m

5
i )

which also forms a Nash equilibrium. To see why this is true, consider a strategy profile

m ∈ R(Γ, θ) such that there exists an agent i ∈ N with mi = (θ′, 1,m3
i ,m

4
i ,m

5
i ) and

θ′ 6= θ. By Lemma 1.3 we know that θ′ ∈ NE(Γ, θ). By Lemma 1.4 we know that

F (θ′) ⊆ F (θ). Since F (θ) is singleton, F (θ′) must be singleton. Furthermore we have

assumed that θ 6= θ′. The fact that θ 6= θ′ and F (θ′) is singleton together contradict

Lemma 1.5.

Now consider the case where the true state θ ∈ Θ \ ΘF . Notice that in this case

|F (θ)| ≥ 2 . Select an arbitrary rationalizable strategy profile m ∈ R(Γ, θ). Using

Lemma 1.3 we know that for every i ∈ N , m1
i is a Nash equilibrium at state θ and

Lemma 1.4 F (m1
i ) ⊆ F (θ). Finally using Lemma 1.5 we know that |F (m1

i )| ≥ 2.

We have thus established that for any rationalizable strategy profile m, |F (m1
i )| ≥ 2.

This means that the outcome is decided by Rule 1, 2(I) or 3(I). In all these cases

g(m) ∈ ∆(F (θ)). This completes the proof.

�

Lemma 1.7. For every θ ∈ Θ, for every i, mi = (θ, 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ).

Proof. This follows from the fact that θ ∈ NE(Γ, θ). To see this, by the construction of

the mechanism the payoff from any unilateral deviation is bounded above by U [F (θ)].

This verifies part (1) of the definition of rationalizable implementation. �
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2. Example

Bergemann et al. (2011) introduce a condition which they call strict Maskin mono-

tonicity* and show that, under a weak restriction on the class of mechanisms, is also

necessary for the rationalizable implementation of an SCF f . The goal of this section

is to provide an example demonstrating that strict Maskin monotonicity* is strictly

stronger than Maskin monotonicity. Since we assume strict preferences, our example

does not rely on the indifference in the preferences of the agents. To the best of our

knowledge this is the first example in the literature. Before going to the example we

define Strict Maskin monotonicity*.

Given a SCF f , let us consider the unique partition of Θ : Pf = {Θz}z=f(θ). In other

words, Θz = {θ ∈ Θ|f(θ) = z}. We are now ready to define the notion of strict Maskin

monotonicity∗

Definition 2.1. A social choice function f satisfies strict Maskin monotonicity∗ if there

exists a partition P of Θ which is finer than Pf such that for any θ:

θ′ ∈ P (θ) whenever for all i and y,

[∀θ̂ ∈ P (θ) : ui(f(θ), θ̂) > ui(y, θ̂)]⇒ [ui(f(θ), θ′) ≥ ui(y, θ
′)].

Example 2.1. Let X = {a, b, c, d}, N = {1, 2, 3} and Θ = {θ, θ′, θ′′, θ′′′}. The preference

profile for each state is given in the table below. Numbers in the parentheses specify the

vNM utilities. Consider the following SCF f(θ) = f(θ′) = f(θ′) = a and f(θ′′′) = b.

Table 5. Preferences

θ θ′ θ′′ θ′′′

1 2 3 1 2 3 1 2 3 1 2 3

a(3) a(3) a(3) b(3) c(3) b(3) c(3) b(3) c(3) b(3) c(3) c(3)

b(2) c(2) b(2) a(2) a(2) a(2) a(2) a(2) a(2) a(2) a(2) a(2)

c(1) b(1) c(1) c(1) d(1) c(1) d(1) c(1) b(1) c(1) b(1) b(1)

d(0) d(0) d(0) d(0) b(0) d(0) b(0) d(0) d(0) d(0) d(0) d(0)

f(θ) = a f(θ′) = a f(θ′′) = a f(θ′′′) = b

Claim 2.1. The SCF f violates strict Maskin monotonicity*.
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Proof. Let us consider the partition Pf = {{θ, θ′, θ′′}, {θ′′′}}. Let us assume that the SCF

f satisfies strict Maskin monotonicity* with respect to Pf . With the help of following

claim we will show that this will lead to a contradiction.

Claim 2.2. For every i ∈ N, ∩
θ̂∈Pf (θ)

Li(a, θ̂) ⊆ Li(a, θ
′′′).

Proof. Consider agent 1. Let α ∈ ∩
θ̂∈Pf (θ)

L1(a, θ̂). This implies α ∈ L1(a, θ′). Since

L1(a, θ′) = L1(a, θ′′′) therefore α ∈ L1(a, θ′′′). Now consider agent 2. Let α ∈ ∩
θ̂∈Pf (θ)

L3(a, θ̂).

This implies α ∈ L2(a, θ′). Since L2(a, θ′) = L2(a, θ′′′) therefore α ∈ L2(a, θ′′′). Fi-

nally consider agent 3. Let α ∈ ∩
θ̂∈Pf (θ)

L3(a, θ̂). This implies α ∈ L3(a, θ′′). Since

L3(a, θ′′) = L2(a, θ′′′) therefore α ∈ L2(a, θ′′′). �

Using the above claim and the definition of strict Maskin monotonicity* we can con-

clude that θ′′′ ∈ P (θ), which is a contradiction. With the help of following remark we

can show a similar argument holds true for any partition of Θ which is finer than Pf .

Remark 2.1. For every i, Li(a, θ
′) ⊆ Li(a, θ) and Li(a, θ

′′
) ⊆ Li(a, θ).

Let us assume that this SCF f satisfies strict Maskin monotonicity* with a possibly

finer partition than Pf . Consider an arbitrary partition P of Θ. Since this partition is

finer than Pf , there exists θ
′

or θ
′′

such that θ /∈ P (θ′) or θ /∈ P (θ
′′
). There are four

mutually exclusive and exhaustive cases which we need to consider

First, consider the partition P = {{θ}, {θ′}, {θ′′}, {θ′′′}}. Remark 2.1 together with

the assumption that SCF f satisfies strict Maskin monotonicity* implies that θ ∈ P (θ
′′
),

which is a contradiction since P (θ
′′
) = {θ′′}. We can use a similar argument for

partition P = {{θ, θ′}, {θ′′}, {θ′′′}} and P = {{θ, θ′′}, {θ′}, {θ′′′}}. Finally consider

P = {{θ′′ , θ′}, {θ}, {θ′′′}}. Remark 2.1 together with the assumption that SCF f satis-

fies strict Maskin monotonicity* implies that θ ∈ P (θ
′′
), which is a contradiction since

P (θ
′′
) = {θ′′ , θ′}

�

Claim 2.3. SCF f , satisfies Maskin monotonicity.

Proof. To prove that f satisfies Maskin monotonicity we need to show that for ev-

ery (θ, θ′) pair such that f(θ) 6= f(θ′), there exists i, j ∈ N such that Li(f(θ), θ) *
Li(f(θ), θ′) and Lj(f(θ′), θ′) * Lj(f(θ′), θ). There are three pairs to be considered,

(θ, θ′′′), (θ′, θ′′′) and (θ′′, θ′′′).
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• (θ, θ′′′): b ∈ L1(f(θ), θ) and b /∈ L1(f(θ), θ′′′).

• (θ′, θ′′′): c ∈ L3(f(θ′), θ′) and c /∈ L3(f(θ′), θ′′′).

• (θ′′, θ′′′): b ∈ L1(f(θ′′), θ′′) and b /∈ L1(f(θ′′), θ′′′).

• (θ′′′, θ): a ∈ L1(f(θ′′′), θ′′′) and a /∈ L1(f(θ′′′), θ).

• (θ′′′, θ′): d ∈ L2(f(θ′′′), θ′′′) and d /∈ L2(f(θ′′′), θ′).

• (θ′′′, θ′′): a ∈ L1(f(θ′′′), θ′′′) and a /∈ L1(f(θ′′′), θ′′).

�

3. Proof of Theorem 8.1

Theorem 3.1. Theorem 8.1 Let ε ∈ [0, 1) and n ≥ 3. If an SCC F satisfies NWA,

r-monotonicity and is ΘF -distinguishable then it is ε-rationalizably implementable.

The proof of Theorem 8.1 follows very closely the proof of Theorem 5. This extension

is reminiscent of the extension of Maskin’s theorem from SCF’s to SCC’s. Before we de-

scribe the canonical mechanism we denote by α(θ, a) a lottery which assigns ε probability

to an alternative a ∈ F (θ) and rest of the probability to U [F (θ)]. Formally,

α(θ′, a) = εa+ (1− ε)U [F (θ′)]

Message Space. M1(i) = Θ, M1(ii) = {XΘ| for every m1(ii) ∈ XΘ, m1(ii)(θ) ∈ F (θ)},
M2 = Z+, M3 = {∆(X)Θ| for every m3 ∈ ∆(X)Θ, m3(θ) ∈ ∆(F (θ))}, M4 = {∆(X)Θ×X},
M5 = ∆(X).

A typical message for a player i, mi = (m1
i ,m

2
i ,m

3
i ,m

4
i ,m

5
i ), can be described as

follows:

• m1
i = (m

1(i)
i ,m

1(ii)
i ), where

– m
1(i)
i ∈M1(i) : State of the world.

– m
1(ii)
i ∈ M1(ii): A state contingent recommendation such that m

1(ii)
i (θ) ∈

F (θ).

• m2
i ∈M2 : An integer.

• m3
i ∈M3 : A state contingent allocation plan such that m3

i (θ) ∈ ∆(F (θ)).

• m4
i ∈ M4 : A state and an alternative contingent allocation plan such that

m4
i (θ, a) ∈ ∆(X).

• m5
i ∈M5 : A lottery over X.
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Outcome Function.

(1) Universal Agreement: For every i, m1
i = (m

1(i)
i ,m

1(i)
i ) = (θ′, a′), and m2

i = 1.

g(m) = α(θ′, a′)

(2) Unilateral Deviation: There is an agent i ∈ N s.t. (m1
i ,m

2
i ) 6= (m1

j ,m
2
j) and

for every j 6= {i},(m1
j ,m

2
j) = ((θ′, a′), 1). Let b(θ′) ∈ argmin

y∈F (θ′)

ui(y, θ
′).

I Coordination Failure: |F (θ′)| ≥ 2 and m2
i = 1.

g(m) =

{
α(θ′, a′) with probability 1

2

b(θ′) with probability 1
2

}

II Other Cases: |F (θ′)| = 1 or m2
i > 1

(i) ui(α(θ′, a′), θ′) ≥ ui(m
4
i (θ
′, a′), θ′),

g(m) =

{
m4
i (θ
′, a′) with probability (1− 1

m2
i +1

)

zi(θ
′, θ′) with probability 1

m2
i +1

}

(ii) ui(α(θ′, a′), θ′) < ui(m
4
i (θ
′, a′), θ′)

g(m) = zi(θ
′, θ′)

(3) Disagreement:

I Coordination Failure: For every i ∈ N,m2
i = 1 and |F (mi)| ≥ 2. Select

an agent i at random.

g(m) =

{
m3
i (m

1
i ) with probability

1
2

U [F (m1
i )] with probability

1
2

}
II Other Cases: Select an agent i announcing the highest integer m2

i and ties

are broken arbitrarily.

g(m) =

{
m5
i with probability (1− 1

m3
i +1

)

y with probability 1
m3

i +1

}
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Throughout the proof we will assume that the true state of the world is θ ∈ Θ.

Lemma 3.1. If an SCC F satisfies NWA, then for any i ∈ N , if mi ∈ Ri(Γ, θ) then

m2
i = 1.

Proof. Assume by the way of contradiction that there exists an i ∈ N such that mi ∈
Ri(Γ, θ) and m2

i > 1. Given the outcome function, the outcome is decided by either

Rule 2(II) or Rule 3(II). For a strategy mi, let us denote the set of strategy profiles of

opponents which will lead to Rule 2(II) and Rule 3(II) as follows.

M
2(II)
−i = {m−i ∈M−i|m1

j = (θ′, a) and m2
j = 1 for some (θ′, a), for every j 6= i}

M
3(II)
−i = M−i \M2

−i

We will construct a strategy m∗i for agent i and show that at state θ, for any belief

λi ∈ ∆(M2
−i∪M3

−i) strategy m∗i is better than strategy mi. Notice that m4
i is relevant for

Rule 2(II) and m5
i is relevant for Rule 3(II). This will allow us to break the argument

into two separate cases. First case is λi ∈ ∆(M
2(II)
−i ) and second case λi ∈ ∆(M

3(II)
−i ).

Claim 3.1. If there exists an i ∈ N with a strategy mi ∈ Ri(Γ, θ) with m2
i > 1 and

beliefs such that λi ∈ ∆(M2
−i), then

(1) At strategy profiles where rule 2(II)(ii) is applied, mi is not a best response.

(2) mi is not a best response at rule 2(II)(i) either.

Proof. Let mi ∈ Ri(Γ, θ) be a strategy of agent i with m2
i > 1 and consider that (mi,m−i)

is a strategy profile such that rule 2(II)(ii) applies. This implies that m1
j = (θ′, a)

for all j 6= i and ui(α(θ′, a),m
1(i)
−i ) < ui(m

4
i (m

1(i)
−i ,m

1(ii)
−i ),m

1(i)
−i ) and g(mi,m−i) =

zi(m
1
−i,m

1
−i). By Lemma 4.2 we know that for θ 6= m1

−i there exist allocations zi(θ
′, θ)

such that

ui(zi(θ,m
1
−i), θ) > ui(zi(m

1
−i,m

1
−i), θ)

ui(α(a, θ′),m1
−i) > ui(zi(θ,m

1
−i),m

1
−i)
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Therefore by announcing

m∗4i (θ̂, x) =

{
α(θ, x) if θ̂ = θ

zi(θ, θ̂) if θ̂ 6= θ

}

agent i is better off by inducing Rule 2(II)(i) as compared to Rule 2(II)(ii). Since

the choice of strategy profile which induces Rule 2(II)(ii) was arbitrary, the claim holds

for any such strategy profile.

Now consider the belief such that λi ∈ ∆(M2
−i), utility from strategy m∗i , where m4

i is

replaced in mi by m∗4i , is given by:

∑
m−i∈M2

−i

λi(m−i)[(
m2
i

m2
i + 1

)ui(m
∗4
i (m1

−i), θ) + (
1

m2
i + 1

)ui(zi(m
1
−i,m

1
−i), θ)].

Since ui(m
∗4
i (m1

−i), θ) > ui(zi(m
1
−i,m

1
−i), θ) this utility is increasing in the choice of

integer m2
i . Therefore mi is not a best response for any beliefs. �

Claim 3.2. If there exists an i ∈ N with a strategy mi ∈ Ri(Γ, θ) with m2
i > 1 and a

belief such that λi ∈ ∆(M
3(II)
−i ) then mi is not a best response.

Proof. Now define m∗5i = Max
y∈∆(X)

ui(y, θ) and a very high integer m∗2i such that agent i

wins the integer game. Replace mi by changing m5
i to m∗5i . Now consider the belief such

that λi(m−i ∈ M3(II)
−i ) = 1, the utility from strategy m∗i , where m5

i is replaced in mi by

m∗5i and m2
i by m∗2i , is given by:

∑
m−i∈M

3(II)
−i

λi(m−i)[(
m∗2i

m∗2i + 1
)ui(m

∗5
i , θ) + (

1

m∗2i + 1
)ui(y, θ)].

Since ui(m
∗5
i , θ) > ui(y, θ), this utility is increasing in the choice of integer m2

i . There-

fore mi is not a best response to any beliefs such that λi ∈ ∆(M3
−i). �

Now consider the strategy mi such that m2
i > 1 with any belief such that λi ∈

∆(M
2(II)
−i ∪M

3(II)
−i ). We use Claim 3.1 and 3.2 to show that the strategym∗i = (m1

i ,m
∗2
i ,m

3
i ,m

∗4
i ,m

∗5
i )

is better than strategy mi. Consider the utility from m∗i . From Claim 3.1 (1) we know

that conditional on Rule 2, the outcome is determined by Rule 2(II)(i).
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∑
m−i∈M

2(II)(i)
−i

λi(m−i)[(
m∗2i

m∗2i + 1
)ui(m

∗4
i (m1

−i), θ) + (
1

m∗2i + 1
)ui(zi(m

1
−i,m

1
−i), θ)]

+
∑

m−i∈M
3(II)
−i

λi(m−i)[(
m∗2i

m∗2 + 1
)ui(m

∗5
i , θ) + (

1

mm∗2
i + 1

)ui(y, θ)]

�

This is greater than the utility from the strategy mi such that m2
i > 1 with beliefs

such that λi ∈ ∆(M2
−i ∪M3

−i)

∑
m−i∈M

2(II)
−i

λi(m−i)[(
m2
i

m2
i + 1

)ui(m
4
i (m

1
−i), θ) + (

1

m2
i + 1

)ui(zi(m
1
−i,m

1
−i), θ)]

+
∑

m−i∈M
3(II)
−i

λi(m−i)[(
m2
i

m2
i + 1

)ui(m
5
i , θ) + (

1

m2
i + 1

)ui(y, θ)]

This immediately follows from Claim 3.1 and Claim 3.2, hence our assumption that

mi ∈ R(Γ, θ) together with m2
i > 1 leads to a contradiction. We have thus established

that if mi is a rationalizable strategy for agent i in state θ, then m2
i = 1.

Lemma 3.2. If mi = ((θ′, a), 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ) then

(1) mj = (θ′, 1,m3
j ,m

4
j ,m

5
j) ∈ Rj(Γ, θ) for every j ∈ N .

(2) mi is a best response to beliefs λi(m−i ∈M1
−i) = 1.

where

M1
−i = {m−i ∈M−i|∀j ∈ N \ {i}, mj = ((θ′, a), 1,m3

j ,m
4
j ,m

5
j)}

Proof. First we show that if mi = ((θ′, a), 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ) then for every

j ∈ N , mj = ((θ′, a), 1,m3
j ,m

4
j ,m

5
j) ∈ Rj(Γ, θ). Let us assume that there exists a

j ∈ N s.t. mj /∈ Rj(Γ, θ). We will show that mi is not a best response to any belief

λi ∈ ∆(R−i(Γ, θ)). To show this we construct a strategy m̂i which is better than mi for

any belief λi ∈ ∆(R−i(Γ, θ)). We replace m4
i in mi with m̂4

i and m5
i in mi by m∗5i .
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m̂4
i (θ̂, x) =


α(θ′, a) if θ̂ = θ′ and x = a.

α(θ̂, a) if θ̂ s.t. |F (θ̂)| ≥ 2 and ui(α(θ̂, x), θ) > ui(b(θ̂), θ).

b(θ̂) if θ̂ s.t. |F (θ̂)| ≥ 2 and ui(α(θ̂, x), θ) < ui(b(θ̂), θ).

m∗4i (θ̂, x) if Otherwise


Under our assumption, that there exists a j ∈ N such that mj /∈ Rj(Γ, θ), we know

that the outcome is not decided by Rule (1). The strategy m̂i is designed in such a way

that for any m−i ∈ R−i(Γ, θ), m̂i is better than mi. There are four cases to be considered.

Case 1: m−i ∈ R−i(Γ, θ): Rule 2(I) is applied.

In this case everyone but i agrees. Let mj = ((θ̃, ã), 1,m3
i ,m

4
j ,m

5
j) for j 6= i. Under

strategy mi, i gets a uniform lottery over α(θ̃, ã) and b(θ̃). Under m̂i, i can ensure

lottery α(θ̃, ã) or lottery b(θ̃) by announcing a very high integer m̂2
i .

Case 2: m−i ∈ R−i(Γ, θ): Rule 2(II)(i) is applied.

As in the previous case, in this case everyone but i agrees. Let mj = ((θ̃, ã), 1,m3
i ,m

4
j ,m

5
j)

for j 6= i. Under strategy mi, i gets a uniform lottery over m∗4i (θ̃, ã) and zi(θ̃, θ̃). Under

m̂i, i can ensure lottery m4
i (θ̃, ã) by announcing a very high integer m̂2

i .

Case 3: m−i ∈ R−i(Γ, θ): Rule 3(I) is applied.

In this case i can choose m5
i = m∗5i . This allocation can be achieved with an arbitrarily

high probability. This is better than a uniform lottery over m̂3
i (θ
′) and U(F (θ′)).

Case 4: m−i ∈ R−i(Γ, θ): Rule 3(II) is applied.

In this case i can choose m5
i = m∗5i and achieve this allocation with a arbitrarily high

probability.

Thus we have shown that if mi = ((θ′, a), 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ) then, for every

j ∈ N , mj = ((θ′, a), 1,m3
j ,m

4
j ,m

5
j) ∈ Rj(Γ, θ).

Now we will show that if mi = ((θ′, a), 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ) then, mi is a best

response to only beliefs such that λi(m−i ∈M1
−i) = 1.

Let us assume that mi is a best response to beliefs λi(m−i ∈M1
−i) 6= 1. There are two

cases to be considered.

Case 1: λi(m−i ∈M1
−i) = 0.

In this case by assumption the outcome is not decided by Rule 1. This case then becomes

similar to part (1) of this Lemma. The interesting case is then the following.

Case 2: 0 < λi(m−i ∈M1
−i) ≤ 1.
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In this case we can show that m̂i is better than mi. The argument is simple. When

every agrees with i, i can ensure the lottery α(θ′, a) with a very high probability. There

is however some loss as compared to the α(θ′, a) with probability one probability. In

all other cases agent i strictly gains by ensuring a lottery m̂4
i (θ̂, x) and m∗5i with an

arbitrarily high probability. By a suitable choice of integer, m2
i , the loss in the event

where everyone agrees is overcome by the gain in all other events. �

Now we are ready to characterize the set R(Γ, θ). Let the set of Nash equilibrium at

state θ be denoted by NE(Γ, θ)

Now we are ready to characterize the set R(Γ, θ). Let the set of Nash equilibrium at

state θ be denoted by NE(Γ, θ)

Lemma 3.3. If mi = ((θ′, a′), 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ) then the strategy profile m =

(m1, . . . ,mn) where m1 = ... = mn = ((θ′, a′), 1,m3
i ,m

4
i ,m

5
i ) is a Nash equilibrium.

Proof. Let mi = ((θ′, a′), 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ) then by Lemma 3.2 mi is a best

response to λi(m−i ∈ M1
−i, θ) = 1. This is true for everyone since by part (1), mj =

((θ′, a′), 1,m3
j ,m

4
j ,m

5
j) ∈ Rj(Γ, θ) for every j ∈ N and i was chosen arbitrarily in the

proof of Lemma 3.2. Hence m1 = ... = mn = ((θ′, a′), 1,m3
i ,m

4
i ,m

5
i ) is a Nash equilibrium

of Γ. �

With some abuse of notation let us denote a Nash equilibrium at a state θ by (θ′, a′).

That is if m1 = ... = mn = ((θ′, a′), 1,m3
i ,m

4
i ,m

5
i ) is a Nash equilibrium of Γ at state θ

then we write (θ′, a′).

Let NE(Γ, θ) = {(θ′, a′) ∈ Θ × X|m1 = ... = mn = ((θ′, a′), 1,m3
i ,m

4
i ,m

5
i ) is a Nash

equilibrium}.

Lemma 3.4. If (θ′, a′) ∈ NE(Γ, θ) then F (θ′) ⊆ F (θ).

Proof. Let us assume that (θ′, a′) ∈ NE(Γ, θ) but there exists an alternative ‘a’ such that

a ∈ F (θ′) and a /∈ F (θ). Using the assumption that F satisfies r-monotonicity there

exists an agent i ∈ N and a pair of lotteries α ∈ ∆(F (θ′)) and α′ ∈ ∆(X) such that

ui(α, θ
′) ≥ ui(α

′, θ′) and ui(α
′, θ)>ui(α, θ).

Under the assumption of expected utility theory, for agent i we can say that for lottery

α(θ′, a′) there exists a lottery γ ∈ ∆(X) such that
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ui(α(θ′, a′), θ′) ≥ ui(γ, θ
′) and ui(γ, θ) > ui(α(θ′, a′), θ)

To see why this true, we can always express U [α(θ′, a′)] as a linear combination of two

lotteries with support in F (θ′). Formally, we say that for every β ∈ ∆(F (θ′)) there exists

a δ ∈ ∆(F (θ′)) and p ∈ (0, 1) such that

α(θ′, a′) = pβ + (1− p)δ

In particular we can express the lottery α(θ′, a′) as a linear combination of α and δ.

Therefore ui(U(α(θ′, a′), θ′) can be written as

ui(α(θ′, a′), θ′) = pui(α, θ
′) + (1− p)ui(δ, θ′)

Define γ = pα′ + (1− p)δ, we know that ui(α, θ
′) ≥ ui(α

′, θ′) and ui(α
′, θ) > ui(α, θ).

Therefore it follows that

ui(α(θ′, a′), θ′) = pui(α, θ
′) + (1− p)ui(δ, θ′) ≥ pui(α

′, θ′) + (1− p)ui(δ, θ′) = ui(γ, θ
′)

ui(γ, θ) = pui(α
′, θ) + (1− p)ui(δ, θ) > pui(α, θ) + (1− p)ui(δ, θ) = ui(α(θ′, a′), θ)

Now consider a deviation of this agent to a strategy m∗i = (m1
i ,m

2
i ,m

∗3
i ,m

4
i ,m

∗5
i ) where

m∗2i > 1 and m∗4i (θ̂) is γ if θ̂ = θ′ and m4
i otherwise. In this case the agent is sure that

Rule 2(II) is triggered. Utility of i with strategy m∗i is given by

(
m∗2i

m∗2i + 1
)ui(γ, θ) + (

1

m∗2i + 1
)ui(zi(θ

′, θ′), θ)(26)

Since we know that ui(γ, θ) > ui(α(θ′, a′), θ), strategy m∗i can be made better than

mi by a choice of very high integer m∗2i . This however contradicts the assumption that

(θ′, a′) ∈ NE(Γ, θ). �

Lemma 3.5. If (θ′, a′) ∈ NE(Γ, θ) then either θ′ = θ or|F (θ′)| ≥ 2.

Proof. Let us assume that (θ′, a′) ∈ NE(Γ, θ), θ′ 6= θ and |F (θ′)| = 1. Let us denote

F (θ′) = a. By the assumption of ΘF - distinguishability, we know that there exists an

agent i ∈ N and a lottery α ∈ ∆(X) such that



RATIONALIZABLE IMPLEMENTATION OF SOCIAL CHOICE CORRESPONDENCES 43

ui(a, θ
′) ≥ ui(α, θ

′) and ui(α, θ)>ui(a, θ)

By a very similar argument as in Lemma 3.4 we can show that (θ′, a′) /∈ NE(Γ, θ).

This leads to contradiction. Hence either θ′ = θ or|F (θ′)| ≥ 2 must be true. �

Lemma 3.6. For every θ ∈ Θ and m ∈ R(Γ, θ), g(m) ∈ ∆(F (θ)).

Proof. Let R(Γ, θ) be the set of rationalizable strategies at state θ, and select an arbi-

trary m ∈ R(Γ, θ). By Lemma 1.1 we know that for every i ∈ N,mi is of the following

form mi = ((θ′, a′), 1,m3
i ,m

4
i ,m

5
i ).

First consider the case where θ ∈ ΘF . In this case, the set R(Γ, θ) can be described by

a strategy profile where for every i ∈ N , mi = ((θ′, a′), 1,m3
i ,m

4
i ,m

5
i ), which also forms

a Nash equilibrium. To see why this is true, consider a strategy profile m ∈ R(Γ, θ) such

that there exists an agent i ∈ N with mi = ((θ′, a′), 1,m3
i ,m

4
i ,m

5
i ) and θ′ 6= θ. By Lemma

3.3 we know that (θ′, a′) ∈ NE(Γ, θ). By Lemma 3.4 we know that F (θ′) ⊆ F (θ). Since

F (θ) is singleton, F (θ′) must be singleton. Furthermore we have assumed that θ 6= θ′.

The fact that θ 6= θ′ and F (θ′) is singleton together contradict Lemma 3.5.

Now consider the case where θ ∈ Θ \ΘF . Notice that in this case |F (θ)| > 1 . Select

an arbitrary rationalizable strategy profile m ∈ R(Γ, θ). Using Lemma 3.3 we know that

for every i ∈ N , m1
i is a Nash equilibrium at state θ and Lemma 3.4 F (m1

i ) ⊆ F (θ).

Finally using Lemma 3.5 we know that |F (m1
i )| ≥ 2.

We have thus established that for any rationalizable strategy profile m, |F (m1
i )| ≥ 2.

This means that the outcome is decided by Rule 1, 2(I) or 3(I). In all these cases

g(m) ∈ ∆(F (θ)). This completes the proof.

�

Lemma 3.7. For every θ ∈ Θ and every a ∈ F (θ), mi = ((θ, a), 1,m3
i ,m

4
i ,m

5
i ) ∈ Ri(Γ, θ)

for every i.

Proof. This follows from the fact that (θ, a) ∈ NE(Γ, θ). To see this, by the construction

of the mechanism the payoff from any unilateral deviation is bounded above by α(θ, a).

This verifies part (1) of the definition of ε rationalizable implementation. �
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