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shows how the inability to commit to a retention policy severely limits the

principal’s welfare. We find that adding a two-period term limit for agents

helps the principal considerably. It allows the principal to enforce a random
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stakes are high.
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1 Introduction

Consider the problem of inducing an agent to choose, when appropriate, a risky action

over a safe one, when dismissal is the only way the principal can incentivize. The

action may reveal the agent’s lack of competence, making his dismissal preferable

to the principal. It turns out that the incentive problem is difficult to overcome if

the principal cannot commit to keep the agent. We study this incentive provision

problem in the presence of two-period term limits.

We find that two-period term limits can benefit the principal considerably. In

particular, the term limit structure allows the principal to mimic the ability to make

commitments and enforce a random dismissal rule if the agent chooses the safe action.

This in turn incentivizes the agent to take the risky action appropriately more often.

The incentive problem becomes even less severe if the agent knows about her own

competence a lot better than the principal.

As observed in Holmstrom (1999), inducing the “appropriate” choice of risky

actions can be as important as providing incentives for greater effort in the so-called

managerial incentive problem. More generally, in a variety of economic environments,

ranging from the choice of appropriate public policy to selecting the best research

project to fund, it is not so much the level of effort that matters but the correct use

of discretion.1 The presence of risky actions, that bring a reward when appropriate

and a loss when not, make competent agents who can perceive the appropriateness

of said actions, desirable. The principal would prefer to take a chance on a new

hire than retain an incompetent agent. An agent, uncertain of his own competence

and wanting solely to remain in office, would then want to avoid actions that could

reveal incompetence. Furthermore, as is typical in public office, the principal may

be unable to vary monetary rewards, needing to rely solely on a credible threat of

dismissal. This is the strategic environment studied in Aghion and Jackson (2017)

(henceforth AJ).

AJ obtain the remarkable result that for low replacement costs if the principal

cannot commit to a retention policy in advance and if there is no term limit, then

in any Markov perfect equilibrium the principal can do no better than if she were to

replace the agent every period. They then study whether the limited commitment

ability implicit in term limits can help. In a cursory discussion of two-period term

1Consider, for instance, the task of drug approval by the FDA in the US.
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limits they mention that for low replacement costs the principal would not do better

than with a one-period term limit. By doing a careful and focused analysis of two-

period term limits we find this to be inaccurate.

Our analysis deals squarely with agents facing two-period term limits. We obtain

a rich set of results. Even with the commitment implicit in a two-period term limit,

the highest equilibrium payoff achievable by the principal depends on whether the

principal can further commit to a second term retention policy (before the first term)

or not. We explicitly characterize these optimal commitment retention policies for

different levels of replacement costs (Proposition 1). It turns out that committing to

a one-period term limit is never optimal and for low replacement costs the optimal

policy involves probabilistic replacement following the safe action. Without commit-

ment ability, we always find the equilibrium alluded to in AJ, in which the agent

always picks the safe action and is not replaced (Proposition 2). As AJ observe, for

low replacement costs, this equilibrium indeed does worse for the principal than a one-

period term limit. For low replacement costs, however, there exists an equilibrium

that does significantly better for the principal. It features a random replacement rule

following the safe action and the agent chooses the risky action appropriately more

often (Proposition 3). The construction relies on a key aspect of two-period term

limits, the fact that an agent about whom the principal has learnt nothing from a first

term may nevertheless be valued less than a replacement who in expectation is of equal

competence.

Continuing with two-period term limits and without commitment ability for the

principal, we check if the agent having superior information about his own type helps

the principal in equilibrium. The asymmetric information environment presents a

technical difficulty in that the existence of an equilibrium, in which the principal’s

retention policy is solely driven by her belief and the first term action, is not guaran-

teed. Banks and Sundaram (1998) and Duggan (2017) deal with essentially the same

problem, albeit in a different asymmetric information environment.2 Indeed the most

immediate candidate strategy profile, in which the principal never replaces a first

term agent and the incompetent agent always plays the safe action, is an equilibrium

only for high replacement costs (Proposition 4). Nevertheless, relying on a fixed point

argument we establish that for lower replacement costs, an equilibrium satisfying our

criteria does exist (Proposition 5) with intuitive comparative statics (Proposition 6).

2We discuss the relationship in greater detail in Section 2.3.
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Finally we show that when the stakes associated with the risky action are comparable

and high then the principal does even better in the asymmetric information setting

than the symmetric information one (Proposition 7).

The rest of the paper is as follows. Section 2.1 describes the formal framework of

the incentive problem. Section 2.2 deals with the setting of symmetric uncertainty,

with commitment ability for the principal in 2.2.1 and without in 2.2.2. Section 2.3

deals with the asymmetric information setting. In section 3.1 we discuss how our

infinite horizon model with two-period term limits compares to both a two-period

model and the infinite horizon model without term limits. Finally in section 3.2 we

discuss a few implications of our findings on the issue of incumbency advantage.

2 Incentives for Risk Taking

2.1 Framework

Ours is an infinite horizon principal agent model, in which time proceeds in discrete

periods t ∈ {1, 2, . . .}. In each period there are two equally probable states of the

world, X, Y and two feasible actions x, y. The payoff in a given period to the principal

are as below

X Y

x 0 0

y −d g

with

g − d < 0 and g, d > 0

The choice between x and y is made by the agent, who is either competent or

incompetent. Agents live for two periods while the principal is infinitely-lived. Fol-

lowing an agent’s first term (period), the principal must decide whether to keep or

replace him at some cost, c (he is always replaced at the end of his second term).

A choice of y yields a success if the state of the world is Y and failure if it is X.

If the agent chooses y the principal observes if it is a success or a failure. If instead

he chooses x, the principal receives no further information about the state of the
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world. The principal and agent discount the future with a factor, δ ∈ (0, 1). If the

principal’s payoff in period t is given by ut then her total discounted payoff at period

1 is
∑∞

t=1 δ
t−1ut. We use the variable W for the principal’s total discounted payoff

and assign appropriate superscripts to denote different cases. We use the notion of

average discounted payoff when discussing the principal’s welfare. Recall that for a

given W the average discounted payoff is simply the constant utility that the principal

needs in each period and in perpetuity to get a total discounted payoff of W . This is

simply (1− δ)W .

Newly hired agents are competent with probability λ0. In each term, the agent

receives a signal about the state before he makes his choice. The signal is correct

with probability 1/2 (and therefore uninformative) if the agent is incompetent. A

competent agent always receives the correct signal.3

The agent only cares about being in office. This can be modelled as the agent

receiving some positive payoff in a given period if he is in office and 0 otherwise. The

principal’s preferences each period are as stated in the table above.

Notice that since g > 0 if a competent agent were to follow his signal Y by

playing y the payoff to society would be positive. On the other hand, the assumption

of g−d < 0 ensures that if an incompetent agent were to follow his signal Y by playing

y, the payoff to society would be negative. We now make the following assumption.

λ0g + (1− λ0)
g − d

2
> 0,

so that it is better for society that a newly hired agent who does not know his type

follows the signal.

Solution Concept : We study a refinement of perfect Bayesian equilibria of the

principal agent game. Given the repeated game structure of our setting, the principal

could sustain a high payoff in equilibria with history dependent strategies where the

principal forces herself to take a suboptimal action today for fear of reverting to

suboptimal equilibria tomorrow onwards. We do not find such equilibria plausible in

our setting. The leading example of the principal both in our study and AJ is that

of voters electing public officials. The ability of voters to self-discipline themselves

using such history-dependent strategies, we believe, is limited.

3This assumption makes the analysis significantly cleaner. Our results continue to hold if the
competent agent receives the correct signal with a sufficiently high probability.
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We focus on perfect Bayesian equilibria in which both the principal and the agents

use stationary strategies. In particular, the principal’s choice between keeping and

replacing an agent following a first term depends solely on her belief about his com-

petence and the outcome of his first term. Likewise, all first term agents employ the

same strategy. All second term agents use the same strategy which could depend

upon the first term choices and outcomes.

Since the agent simply wants to remain in office, upon re-election into a second

term, he is necessarily indifferent across all his actions. We focus on equilibria in

which the agent in the second term does what is in the best interest of society. This

allows us to focus on the key incentive problem which has to do with inducing a

first term agent, motivated solely by re-election concerns, to take the risky action

appropriately.

A few remarks are due. First, while we are studying a refinement of perfect

Bayesian equilibria we are not imposing any restriction on the strategy space of either

the principal or the agent. Indeed either could choose to deviate to complex history-

dependent strategies. Second, it is by no means obvious, to the best of our knowledge,

that such perfect Bayesian equilibria always exists. Indeed, showing their existence in

our setting is a key contribution of our paper. Finally, perfect Bayesian equilibria that

satisfy our criteria have the feature of anonymity in that all incumbents conditional

on achieving the same outcome are treated alike. This makes transparent the way in

which the two-period term limit breaks the symmetry between an incumbent and a

challenger with identical expected competence.

In all that follows all mention of equilibrium correspond to perfect Bayesian equi-

libria that satisfy the aforementioned properties.

2.2 Symmetric Information

In this section we assume that the principal and the agent share the same uncertainty

about the agent’s type, captured by the prior, λ0. The signal received by the agent

is nevertheless private.

Consider the following first term strategy for the agent. He plays x upon observing

X.4 Let β be the probability that the agent plays y after observing the signal Y .

Given this agent strategy, the principal Bayesian updates the type of the agent to

4This is without loss of generality for the purpose of our analysis, as we explain subsequently.
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arrive at posteriors λs, λx and λf , upon observing a success, a choice of x and a failure,

respectively:

λs =
λ0

1
2
β

λ0
1
2
β + (1− λ0)14β

=
λ0

λ0 + (1− λ0)12
=

2λ0
1 + λ0

,

λx =
λ0
(
1− 1

2
β
)

λ0
(
1− 1

2
β
)

+ (1− λ0)
(
1− 1

2
β
) = λ0,

λf = 0.

Let us define the principal’s expected payoff from an agent’s first term when his type

is λ and his strategy is β:

u (λ, β) ≡ β

2

[
λg + (1− λ)

g − d
2

]
.

It turns out that the optimal first term agent behaviour for society (and the prin-

cipal) involves the agent following his signal. The benefit is two-fold. It generates the

highest first term expected payoff for society. Additionally, with positive probability,

it reveals if the agent is competent. This revelation allows the principal to replace an

incompetent agent and retain a competent one. This possible revelation, of course, is

what generates the incentive problem. A first term agent, caring solely about staying

in office, may disregard his signal and choose the safe action x, thereby avoiding the

possibility of being revealed incompetent and facing an ouster.

To induce the agent to follow his signal more closely and therefore take the risky

action more appropriately, the principal needs to make the safe action less palatable

or the risky action more attractive (or a combination of the two) for the agent. Her

ability to do so depends greatly on whether or not she can commit to a second term

retention policy before observing the first term outcomes. We consider the two cases

in turn.

2.2.1 Commitment

The principal, in this section, can commit to a second term retention policy before the

agent makes his first term choice. We continue to require that the decision to fire or

retain must only be made conditional on the principal’s belief about the agent’s type
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and the outcome of his first term. This boils down to a mechanism design problem in

which the principal maximizes her infinite horizon discounted payoff by choosing an

appropriate retention policy that applies to all agents at the end of their first term.

We call this the optimal commitment retention policy.

It turns out that the optimal commitment retention policy induces the agent to

follow his signal (i.e. playing x after observing X and y after Y ) in the first term.

Consider the following retention policies, which we refer to by their assigned labels.

• Passive: The agent is always retained.

• Moderate: The agent is replaced after a failure, retained after a success and

retained with probability 1+λ0
2

after x.

• Aggressive: The agent is replaced after a failure, retained after a success and

retained with probability 1−λ0
2

after x.

Each of these retention policies induce the agent to follow his signal. Nevertheless,

they differ in how any information revealed in the first term is utilized. The passive

policy does not directly use such information. However, it does allow the agent, by

retaining him, to use this information about himself and make a better informed

second term decision that best serves society. For instance, upon discovering that

he is incompetent the agent would simply choose the safe action in the second term.

The moderate and aggressive policies go further and with positive probability replace

agents discovered to be incompetent.

To see where the specific numbers for the retention probability following x come

from, consider the following. Suppose an agent is replaced after a failure and retained

after a success, both with certainty. Then, after observing Y , the probability of

obtaining a success (and being retained) upon playing y is λ0(1) + (1 − λ0)(1/2) =

(1 + λ0)/2. After observing X, the probability of the same is λ0(0) + (1− λ0)(1/2) =

(1−λ0)/2. Therefore, the probability of retaining an agent after x has to be between

these two bounds to incentivize the agent to follow his signal.

Let

c̃ =
δ

4

(1− λ0)λ0
2

g + d

2
.

We then have the following characterization.
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Proposition 1. The optimal commitment retention policy is

Passive if c > c̃+
2 + δ + δλ0

4
u(λ0, 1)

Moderate if c̃ < c < c̃+
2 + δ + δλ0

4
u(λ0, 1)

Aggressive if c < c̃

It should not be surprising that the threat of replacement cannot be profitably

used in incentivizing appropriate behaviour if replacement is very costly. Indeed, we

are mostly interested in settings where the replacement cost is small but nevertheless

positive. Consider then, the average discounted payoff to society from the aggressive

retention policy, which is optimal for c < c̃,

(1− δ)WAgg = u(λ0, 1) +
c̃− c
1 + δ

2

.

It is instructive to compare this to the average discounted payoff to society from a

one-term limit, which is never optimal,

(1− δ)WOneterm = u(λ0, 1)− c.

2.2.2 No Commitment

Without commitment ability, for low replacement costs, the principal would end up

replacing an agent who followed his signal in the first term and failed. At the same

time, with positive replacement cost, the principal would rather retain an agent she

has learnt nothing about, than replace him with an identical agent. Of course, this

would make the agent choose to ignore his signal and simply take the safe action. This

unraveling of incentives ensures the existence of a particularly inefficient equilibrium.

Proposition 2. There is an equilibrium in which the agent always plays x in the

first period and what is optimal for society in the second period. Society’s average

discounted payoff is (1− δ)W = δu(λ0,1)−c
1+δ

.

Notice that society does worse in this equilibrium than if it could commit to

a one-term limit, an inefficient outcome already. The question is whether society

can do any better. If the cost of replacement is high enough then society would
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retain an agent irrespective of the first term outcome. The result is identical to what

happens if the principal commits to never replace an agent. For smaller values of

the replacement cost it would seem that we cannot do better than the inefficient

outcome in Proposition 2. This is indeed the suggestion in AJ. It turns out, as the

next proposition shows, we can do better.

Proposition 3. If c ≤ c̃, then the following is an equilibrium. The agent follows

the signal Y with probability β∗1 ≡
u(λ0,1)+c
u(λ0,1)+c̃

and plays x otherwise and follows his

signal in the second period. The principal replaces the agent after f , keeps him after

s and retains him with probability 1+λ0
2

after x. Society’s average discounted payoff is

(1− δ)W = u(λ0, 1).

The principal’s ability to randomize without commitment ability rests on her

indifference in equilibrium between keeping and replacing an agent who took the safe

action in the first term. But recall that the principal’s belief about the competence

of an agent who takes the safe action is identical to that of a potential replacement.

Given that replacement is costly, how could the principal be indifferent? This leads

to the key insight of this model of term limits.

Remark 1. In our construction a first term agent plays the risky action with positive

probability thereby allowing the principal to learn his type and replace if need be.

It is this option value of a first term agent that makes him more valuable than a

second term agent who in expectation has the same competence. As a result, for

an appropriate level of randomization by such a first term agent, the principal could

in fact be indifferent, following a safe action, between allowing a second term and

replacing with a higher valued first term agent at a cost.

Consider the difference in average discounted payoff to the principal from the

equilibria in propositions 3 and 2, u(λ0,1)+c
1+δ

where c < c̃. Recall that the payoff from

proposition 2 is even worse than that from a one-term limit. The (average discounted)

gain from the equilibrium in proposition 3 compared to the payoff from a one-term

limit is c. This latter value, at first glance, may not seem substantial. Notice, however,

that c could be as high as c̃. So, when c̃ = δ
4
(1−λ0)λ0

2
g+d
2

takes a high value, as (for

instance) when the stakes (g and d) are high, the gain can be substantial. Finally,

observe that none of the assumptions we have made impose any bound on how high
g+d
2

can be.
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2.3 Asymmetric Information

Holmstrom (1999) suggests that inadequate risk-taking behaviour in a standard signal-

jamming model may be countered if the agent were better informed about his type

than the principal. We verify this conjecture in our information setting.

While the principal continues to believe a new agent to be competent with proba-

bility λ0, we now assume that the agent knows his own type. We leave all remaining

assumptions about the timing of actions and preferences unchanged.

As before, we are interested in perfect Bayesian equilibria in which (a) the prin-

cipal’s choice between keeping and replacing an agent following a first term depends

solely on his inferred competence following the outcome of his first term, (b) condi-

tional on their type all first term agents behave alike and (c) the agent in the second

term, given his type, does what is in the best interest of society. Furthermore, since

we wish to verify if the introduction of such information asymmetry can improve the

risk taking behaviour of agents, we focus on perfect Bayesian equilibria in which the

competent type follows his signal. Of course, such an equilibrium may not exist. In-

deed, a key contribution of our paper is to show that such an equilibrium does indeed

exist.

Banks and Sundaram (1998) establish a similar existence result. Their framework

entails the more standard mix of adverse selection and moral hazard. The relevant

choice for the agent is akin to effort, the higher the better for the principal. Also

standard are the agent types, with better types finding it cheaper to pick a given

effort level. Duggan (2017) does a more complete analysis of a similar setting, while

correcting an error in the existence proof of Banks and Sundaram (1998).

We denote by α the probability that the incompetent agent plays y (we do not

condition the strategy on the signal because it is uninformative for him). If the

competent agent follows his signal, Bayesian updating by the principal results in

λs(α) =
λ0

1
2

λ0
1
2

+ (1− λ0)12α
=

1

1 + (1−λ0)
λ0

α
,

λx(α) =
λ0

1
2

λ0
1
2

+ (1− λ0)(1− α)
=

1

1 + (1−λ0)
λ0

2(1− α)
,

λf (α) = 0.
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The principal’s expected payoff from a given first term when her belief about the

agent’s type is λ and the incompetent type’s strategy is α is

uA(λ, α) ≡ λ

2
g + (1− λ)α

g − d
2

.

Observe that following a choice of x, the principal’s belief about the agent’s type no

longer remains constant. Whether it improves or gets worse depends on whether the

probability with which the incompetent type plays the risky action is greater or less

than 1/2, the unconditional probability with which the risky action is appropriate. So,

if the incompetent agent were to play the safe action with certainty in the first term,

the principal upon observing the safe action would believe the agent to be competent

with a lower probability than a replacement. While the replacement, if he turned out

to be incompetent, would behave identically to an incompetent type in his second

term, it is simply the higher probability of the replacement being competent that

makes him more valuable than the incumbent to the principal. Such a replacement,

therefore, would be profitable as long as the cost of replacement were not too high.

This intuition is captured in the following proposition that shows how the incompetent

agent choosing the safe action for sure can be supported in equilibrium if and only if

the cost of replacement is sufficiently high.

The relevant replacement cost threshold is the following,

ĉ = (1 + δ)
λ0(1− λ0)

2− λ0
g

2
.

Proposition 4. There exists an equilibrium in which the competent agent always

follows his signal and the incompetent agent plays the safe action with certainty if

and only if c ≥ ĉ.

In this equilibrium we can obtain a closed form solution for society’s average

discounted payoff, (1−δ)W = uA(λ0, 0)− c
1+δ

, which is bounded above by uA(λx(0), 0).

As discussed above, when it is cheaper to replace the agent, the principal may be

compelled to replace following a choice of the safe action in the first term. Duggan

(2017) refers to this as the commitment problem of voters. In particular, the principal

wishes an incompetent agent to always choose the safe action. But such a strategy

would necessarily make the principal infer the incumbent’s competence to be less

probable than the challenger’s, resulting in replacement. The principal’s (voters)
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inability to commit to a retention rule can thus frustrate a simple way to get the

incompetent type to not select the risky action.

Given that this rules out a natural candidate for stationary equilibrium, the lat-

ter’s existence is no longer assured. It turns out, however, that a stationary equilib-

rium does indeed exist and entails randomization on the part of both the incompetent

agent and the principal.

Proposition 5. When c < ĉ, there exists an equilibrium in which the competent

agent always follows the signal, the incompetent one mixes with α∗ ∈ (0, 1) and the

principal replaces the agent upon observing f and with probability 1
2

after x. Society’s

average discounted payoff is (1− δ)W (α∗) = uA(λx(α∗), 0).

The probability with which the incompetent type plays the risky action in the

equilibrium above, α∗, solves the following equation.

1

1 + 1−λ0
λ0

2(1− α)

g

2
=
uA(λ0, α)− c+ δλ0

3
4
g
2

1 + 2+λ0
4
δ

.

Equilibrium changes as a result of increases in the replacement cost, the loss d, the

gain g or the prior probability of competence λ0 can be described by the following

figures.

Figure 1: Increase in c, d Figure 2: Increase in g, λ

We collect these comparative statics in the following proposition.

Proposition 6. An increase in the replacement cost (c) or the loss d, leads to a lower

α∗ and average discounted payoff, (1 − δ)W (α∗). An increase in the gain g or the

prior probability of competence, λ0, leads to a higher average discounted payoff.
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Finally we compare the principal’s payoff from the equilibria we have studied in

the symmetric and asymmetric information settings. Let W S and WA denote the

principal’s infinite horizon discounted utility from the equilibrium in Proposition 3

and Proposition 5, respectively. We focus on c < min{ĉ, c̃} as required by these

propositions.

Proposition 7. If d−g
g+d

< λ0
2

then WA > W S.

The condition requires the stakes, the gain and loss from the risky action, to be

comparable and high. So, despite the possibility of excessive risk taking, the prin-

cipal indeed benefits from the signalling incentive that the asymmetric information

environment brings.5

3 Discussion

3.1 Two Period Model

Why do we not analyze a (seemingly simpler) two-period model instead of our infinite

horizon model with two-period term limits? The two-period model is in fact closer

to the infinite horizon model without term limits.6 The intuition for this is simple.

Return to the symmetric information setting and consider an agent who chooses the

safe action in the first period. Neither he nor the principal has learnt anything further

about his type. His expected level of competence is identical to that of the second

period challenger. In a two-period model, there is no reason to expect that such an

agent would behave any differently from a challenger in the second period. Both need

to choose an action in this final period, which would have no further bearing on their

payoff. In an infinite horizon model the situation is much the same. An agent who

has learnt nothing about himself after his first period (having taken the safe action)

is indistinguishable from a challenger. They both face identical future incentives. Of

course, it makes little sense then to replace such an agent with the challenger at a

cost.

By contrast, the key feature of term limits is the following. From the principal’s

perspective in a two-term limit infinite horizon model, an agent who has completed

5Chen (2015) shows that introducing asymmetric information in the Holmstrom (1999) two-period
model leads to excessive risk taking.

6Duggan (2017) makes a similar observation apropos information settings featuring moral hazard
and adverse selection. See also Duggan and Martinelli (2017).
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one term can be fundamentally different from a challenger with two possible terms to

serve, even if the latter’s first term action revealed no information about him. This

is because if first term agents pick the risky action with positive probability then

the principal could learn his type and replace if incompetent. So even though the

incumbent and the challenger are both equally competent in expected terms, more

can be usefully learnt from the challenger. It is this asymmetry between the challenger

and the incumbent that can be appropriately leveraged by the principal to provide

the agent adequate incentives to take the appropriate risk.

3.2 Incumbency Advantage

Our model suggests that the issue of incumbency advantage depends on whether

the uncertainty about the agent’s competence is shared or one-sided. In the sym-

metric information setting, incumbency advantage does indeed exist. An incumbent

who had taken the safe action, and is therefore of same expected competence as the

challenger, is replaced with probability strictly less than 1/2. In the asymmetric in-

formation setting the replacement probability following the safe action is exactly 1/2.

Note, however, that following a choice of the safe action in the asymmetric informa-

tion setting, the incumbent’s expected competence may be greater or less than the

challenger’s and in particular depends on the value of α∗.

A Appendix

Proof of Proposition 1. In what follows we use the following notation, stated formally

below. u(λ,X) and u(λ, Y ) capture the expected payoff to the principal in one period

if an agent of type λ were to choose y following signals X and Y , respectively. λaB is

the updated probability assigned by the agent to his own competence after observing

the result a of his first term action when the signal was B. For instance, λsY is the

probability assigned by the agent to his own competence after observing his first term

choice of y following a signal Y lead to success. A choice of x results in no learning

and therefore, λxY = λxX = λ0. Finally Pr(s|X) = 1 − Pr(f |X) is the probability

with which a first term choice of y following a signal X leads to success. Similarly

Pr(s|Y ) = 1−Pr(f |Y ) is the probability with which a first term choice of y following

a signal Y leads to success.
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The principal’s problem is

W (λ0) = −c+

max
βX ,βY ,
ps,px,pf



+βY
2



u (λ0, Y )

+ Pr (s|Y )

 ps
(
δ
max{u(λsY ,Y ),0}+max{u(λsY ,X),0}

2
+ δ2W (λ0)

)
+ (1− ps) δW (λ0)


+ Pr (f |Y )

 pf
(
δ
max{u(λfY ,Y ),0}+max{u(λfY ,X),0}

2
+ δ2W (λ0)

)
+
(
1− pf

)
δW (λ0)





+βX
2



u (λ0, X)

+ Pr (s|X)

 ps
(
δ
max{u(λsX ,Y ),0}+max{u(λsX ,X),0}

2
+ δ2W (λ0)

)
+ (1− ps) δW (λ0)


+ Pr (f |X)

 pf
(
δ
max{u(λfX ,Y ),0}+max{u(λfX ,X),0}

2
+ δ2W (λ0)

)
+
(
1− pf

)
δW (λ0)




+1−βY

2

(
px
(
δ
max{u(λxY ,Y ),0}+max{u(λxY ,X),0}

2
+ δ2W (λ0)

)
+ (1− px) δW (λ0)

)
+1−βX

2

(
px
(
δ
max{u(λxX ,Y ),0}+max{u(λxX ,X),0}

2
+ δ2W (λ0)

)
+ (1− px) δW (λ0)

)


s.t.

Pr (s|Y ) ps + Pr (f |Y ) pf ≥ px if βY > 0 ICY

Pr (s|X) ps + Pr (f |X) pf ≥ px if βX > 0 ICX

where

Pr (s|Y ) = λ0 + (1− λ0)
1

2
= 1− Pr (f |Y )

Pr (s|X) = (1− λ0)
1

2
= 1− Pr (f |X)

u (λ,X) = λ (−d) + (1− λ)
g − d

2

u (λ, Y ) = λg + (1− λ)
g − d

2

16



λsY =
λ0

λ0 + (1− λ0) 1
2

= λfX > λ0

λfY = 0 = λsX < λ0

λxY = λxX = λ0

We know that u (λ0, Y ) > 0 (by assumption) and u (λ,X) < 0 (because d > g) for all

λ. Therefore

W (λ0) = −c+

max
βX ,βY ,
ps,px,pf



+βY
2



u (λ0, Y )

+ Pr (s|Y )

(
ps
(
δ
u(λsY ,Y )

2
+ δ2W (λ0)

)
+ (1− ps) δW (λ0)

)
+ (1− Pr (s|Y ))

(
pf
(
δ
max{u(λfY ,Y ),0}

2
+ δ2W (λ0)

)
+
(
1− pf

)
δW (λ0)

)
−px

(
δ u(λ0,Y )

2
+ δ2W (λ0)

)
− (1− px) δW (λ0)



+βX
2



u (λ0, X)

+ Pr (s|X)

(
ps
(
δ
max{u(λfY ,Y ),0}

2
+ δ2W (λ0)

)
+ (1− ps) δW (λ0)

)
+ (1− Pr (s|X))

(
pf
(
δ
u(λsY ,Y )

2
+ δ2W (λ0)

)
+
(
1− pf

)
δW (λ0)

)
−px

(
δ u(λ0,Y )

2
+ δ2W (λ0)

)
− (1− px) δW (λ0)


+px

(
δ u(λ0,Y )

2
+ δ2W (λ0)

)
+ (1− px) δW (λ0)



.

Next, we show that the expression multiplied by βX is negative, so that βX = 0 is

17



optimal.

u (λ0, X) + Pr (s|X) ps
(
δ

max {u (λsX , Y ) , 0}
2

− (1− δ) δW (λ0)

)

+ (1− Pr (s|X)) pf

δu
(
λfX , Y

)
2

− (1− δ) δW (λ0)


−px

((
δ
u (λ0, Y )

2
− (1− δ) δW (λ0)

))

= u (λ0, X) + δ

Pr (s|X) ps
max {u (λsX , Y ) , 0}

2
+ Pr (f |X) pf

u
(
λfX , Y

)
2

− pxu (λ0, Y )

2


+
(
px − Pr (s|X) ps − Pr (f |X) pf

)
(1− δ) δW (λ0)

≤ u (λ0, X) + δ

Pr (f |X) pf
u
(
λfX , Y

)
2

− pxu (λ0, Y )

2


< u (λ0, X) + Pr (f |X)

u
(
λfX , Y

)
2

= −λ0d+ (1− λ0)
g − d

2
+

1 + λ0
4

(
2λ0

1 + λ0
g +

1− λ0
1 + λ0

g − d
2

)
< 0

since d > g. The first (weak) inequality is due to (ICX) and u (λsX , Y ) = 0. The

second inequality results from δ < 1 and setting pf = 1 and px = 0 (the terms they

multiply are all non-negative). We have

W (λ0) = −c+ (1)

max
βY ,p

s,
px,pf


+βY

2



u (λ0, Y )

+ Pr (s|Y )

(
ps
(
δ
u(λsY ,Y )

2
+ δ2W (λ0)

)
+ (1− ps) δW (λ0)

)
+ Pr (f |Y )

(
pf
(
δ
max{u(λfY ,Y ),0}

2
+ δ2W (λ0)

)
+
(
1− pf

)
δW (λ0)

)
−px

(
δ u(λ0,Y )

2
+ δ2W (λ0)

)
− (1− px) δW (λ0)


+px

(
δ u(λ0,Y )

2
+ δ2W (λ0)

)
+ (1− px) δW (λ0)


.

To show that βY = 1 is optimal, we first demonstrate that for any px, the expression
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in front of βY is strictly positive if 0 < βY < 1. But this means that 0 < βY < 1

cannot be optimal as it is always better to increase βY . So if at the optimum βY > 0

it must be βY = 1. Finally, when we characterize the principal’s payoff from the

optimal commitment retention policy with βY = 1 it is directly seen to be higher

than that achieved with βY = 0.

max
ps,pf



u (λ0, Y )

+ Pr (s|Y )

(
ps
(
δ
u(λsY ,Y )

2
+ δ2W (λ0)

)
+ (1− ps) δW (λ0)

)
+ Pr (f |Y )

(
pf
(
δ
max{u(λfY ,Y ),0}

2
+ δ2W (λ0)

)
+
(
1− pf

)
δW (λ0)

)
−px

(
δ u(λ0,Y )

2
+ δ2W (λ0)

)
− (1− px) δW (λ0)


= max

ps,pf


u (λ0, Y )

+ δ
2

(
Pr (s|Y ) psu (λsY , Y ) + Pr (f |Y ) pf max

{
u
(
λfY , Y

)
, 0
}
− pxu (λ0, Y )

)
+
(
px − Pr (s|Y ) ps − Pr (f |Y ) pf

)
δ (1− δ)W (λ0)


= u (λ0, Y ) +

δ

2
max
ps,pf

{
Pr (s|Y ) psu (λsY , Y ) + Pr (f |Y ) pf max

{
u
(
λfY , Y

)
, 0
}
− pxu (λ0, Y )

}
= u (λ0, Y ) +

δ

2
max
ps,pf

(
Pr (s|Y ) psu (λsY , Y ) + Pr (f |Y ) pf max

{
u
(
λfY , Y

)
, 0
}
− pxu (λ0, Y )

)
>

(
1− px δ

2

)
u (λ0, Y ) > 0

The second equality comes from requiring the ICY condition to hold with equality.

The first inequality comes from u (λsY , Y ) > 0 and max
{
u
(
λfY , Y

)
, 0
}
≥ 0 (and

the fact that we can always find ps and pf such that the ICY condition holds with

equality).

We have already established that βX = 0 and βY = 1. In order to show that ps = 1,

it suffices to notice that

W (λ0) <

u(λsY ,Y )
2

1− δ
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because c ≥ 0 and λsY > λ0. Then, it is clear from

W (λ0) = −c+

max
ps,px,pf


+1

2



u (λ0, Y )

+ Pr (s|Y )

(
psδ

(
u(λsY ,Y )

2
− (1− δ)W (λ0)

)
+ δW (λ0)

)
+ Pr (f |Y )

(
pf
(
δ
max{u(λfY ,Y ),0}

2
+ δ2W (λ0)

)
+
(
1− pf

)
δW (λ0)

)
−px

(
δ u(λ0,Y )

2
+ δ2W (λ0)

)
− (1− px) δW (λ0)


+px

(
δ u(λ0,Y )

2
+ δ2W (λ0)

)
+ (1− px) δW (λ0)


s.t

Pr (s|Y ) ps + Pr (f |Y ) pf ≥ px ICY ,

that ps = 1 is optimal since ps multiplies a positive term and relaxes the ICY con-

straint.

Then we have,

W (λ0) = −c+

max
px,pf


+1

2


u (λ0, Y )

+ Pr (s|Y )

(
δ
u(λsY ,Y )

2
+ δ2W (λ0)

)
+ Pr (f |Y )

(
pf (0 + δ2W (λ0)) +

(
1− pf

)
δW (λ0)

)
−px

(
δ u(λ0,Y )

2
+ δ2W (λ0)

)
− (1− px) δW (λ0)


+px

(
δ u(λ0,Y )

2
+ δ2W (λ0)

)
+ (1− px) δW (λ0)


.

This expression is decreasing in pf . Now since ICY must be satisfied, then in the

optimal contract pf must satisfy

pf = max

{
px − Pr(s|Y )

Pr(f |Y )
, 0

}
So if in the optimal contract px > Pr(s|Y ), then ICY must bind. Otherwise, pf = 0.

In general we have

(1− δ)W (λ0)

{
1 + pxδ − δ

2

(
px − Pr (s|Y ) ps − Pr (f |Y ) pf

)}
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= −c+
1

2

{
u(λ0, Y ) + δPr(s|Y )

u(λSY , Y )

2
+ δpx

u(λ0, Y )

2

}
Now if in the optimal contract px > Pr(s|Y ), then ICY binds. So it must be that

(1− δ)W (λ0) =
−c+ 1

2

{
u(λ0,Y )

2
+ δPr(s|Y )

u(λSY ,Y )

2

}
1 + pxδ

+
u(λ0, Y )

4

On the other hand if in the optimal contract px ≤ Pr(s|Y ), then pf = 0. So we get

(1− δ)W (λ0) =
u(λ0, Y )

2
+

1
2
δPr(s|Y )

[
u(λSY ,Y )

2
− u(λ0,Y )

2

]
− c

1 + px δ
2

+ δ
2
Pr(s|Y )

Notice that if c is higher than 1
2

{
u(λ0,Y )

2
+ δPr(s|Y )

u(λSY ,Y )

2

}
then the optimal contract

must set the highest possible px in other words 1. This would mean that pf = 1 too. If

c is smaller than that but larger than 1
2
δPr(s|Y )

[
u(λSY ,Y )

2
− u(λ0,Y )

2

]
then the optimal

contract must set px = Pr(s|Y ). If c is smaller than that too then the px must be as

small as possible. Since we must satisfy the weak opposite of the ICX inequality this

must mean px = Pr(s|X).

Proof of Proposition 2. The present discounted payoff to the principal from this strat-

egy profile at the start of a first term is

W = −c+ 0 + δu(λ0, 1) + δ2W

which gives

(1− δ)W =
δu(λ0, 1)− c

1 + δ
.

First term agents have no incentive to deviate from choosing x since they are retained

with probability 1. Following a first term choice of x, by retaining the agent as the

strategy specifies the principal gets a present discounted payoff of u(λ0, 1) + δW ;

replacing the agent brings −c + W . For replacement to be a profitable deviation it

must be that (1− δ)W > u(λ0, 1) + c, which is false since (1− δ)W = δu(λ0,1)−c
1+δ

.

Proof of Proposition 3. Given that he is replaced with probability 1−λ0
2

after x and

fails with probability 1−λ0
2

when he follows the signal Y , the agent is indifferent be-
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tween x and y when the signal is Y . Recall that β∗1 ≡
u(λ0,1)+c
u(λ0,1)+c̃

, where c̃ = δ
4
(1−λ0)λ0

2
g+d
2

.

Given that the agent plays y with probability β∗1 after the signal Y , the principal’s

discounted payoff at the start of a first term is

W = u (λ0, β
∗
1)− c+

(
1

2
+

1− β∗1
2

)
1 + λ0

2

(
δu (λ0, 1) + δ2W

)
+
β∗1
2

(
λ0 +

1− λ0
2

)(
δu

(
2λ0

1 + λ0
, 1

)
+ δ2W

)
+

((
1

2
+

1− β∗1
2

)
1− λ0

2
+
β∗1
2

1− λ0
2

)
δW

= β∗1u (λ0, 1)− c+

(
1− β∗1

2

)
1 + λ0

2
δu (λ0, 1)

+
β∗1
2

1 + λ0
2

δu

(
2λ0

1 + λ0
, 1

)
+

1− λ0
2

δW +
1 + λ0

2
δ2W

=
β∗1u (λ0, 1)− c+

(
1− β∗

1

2

)
1+λ0
2
δu (λ0, 1) +

β∗
1

2
1+λ0
2
δu
(

2λ0
1+λ0

, 1
)

(1− δ)
(
1 + 1+λ0

2
δ
)

=
u (λ0, 1)

1− δ

The principal is indifferent between replacing and keeping the agent after observing

x in the first term since

u (λ0, 1) + δW = u (λ0, 1) + δ
u (λ0, 1)

1− δ
=
u (λ0, 1)

1− δ
= W .

Proof of Proposition 4. The principal’s present discounted payoff from the stated

strategy profile is

W = (1 + δ)uA (λ0, 0)− c+ δ2W ⇒ W =
(1 + δ)uA (λ0, 0)− c

1− δ2
.

It is easy to see that the given the principal’s strategy the agent of either type has

no incentive to deviate.

Following a first term choice of x if the principal were to follow her strategy as

stated she gets a present discounted payoff of uA (λx (0) , 0) + δW ; instead, replacing

the agent brings W . So for the principal to not have an incentive to deviate we must
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have

uA (λx (0) , 0) + δW ≥ W

⇔ uA (λx (0) , 0) ≥ uA (λ0, 0)− c

1 + δ

⇔ c ≥ (1 + δ)
(
uA (λ0, 0)− uA (λx (0) , 0)

)
= (1 + δ)

λ0 (1− λ0)
2− λ0

g

2
.

Proof of Proposition 5. Given the principal’s strategy, it is optimal for the competent

agent to follow her signal. When she observes Y , she obtains s and is kept with

probability 1. When she observes X, she plays x and is kept with probability 1
2

instead of being replaced with probability one if she plays y (and obtains f). The

incompetent agent is indifferent between x and y since in both cases she is replaced

with probability 1
2
.

Next, we show that there exists a probability α∗ ∈ (0, 1) for the incompetent agent

to play y (which does not depend on the signal since it is uninformative for him) such

that the principal is indifferent between keeping or replacing the agent after observing

x. Denote by Ŵ the present discounted value for the principal if the players follow

the strategy described above, with incompetent agent playing y with probability α.

This value for the principal is given by

Ŵ (α) = u (λ0, α)− c+ δλ0
3

4

g

2

+

[(
λ0
2

+ (1− λ0) (1− α)

)
1

2
+

(
λ0
2

+ (1− λ0)
α

2

)]
δ2Ŵ (α)

+

[(
λ0
2

+ (1− λ0) (1− α)

)
1

2
+ (1− λ0)

α

2

]
δŴ (α)

=
u (λ0, α)− c+ δλ0

3
4
g
2

(1− δ)
(
1 + 2+λ0

4
δ
) . (2)
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Then

(1− δ) Ŵ (0) =
u (λ0, 0)− c+ δλ0

3
8
g

1 + 2+λ0
4
δ

=
u (λ0, 0)− c+ 3

4
δu (λ0, 0)

1 + 2+λ0
4
δ

>
u (λ0, 0) + 3

4
δu (λ0, 0)− (1 + δ) (u (λ0, 0)− u (λx (0) , 0))

1 + 2+λ0
4
δ

=
−1
4
δu (λ0, 0) + (1 + δ)u (λx (0) , 0)

1 + 2+λ0
4
δ

=
−1
4
δλ0

1
2
g + (1 + δ) λ0

2−λ0
1
2
g

1 + 2+λ0
4
δ

=
λ0

2− λ0
g

2
= u (λx (0) , 0)

since c < (1 + δ) (u (λ0, 0)− u (λx (0) , 0)). Moreover,

(1− δ)Ŵ (2/3) =
λ0
2
g + (1− λ0)23

g−d
2
− c+ δλ0

3
4
g
2

1 + 2+λ0
4
δ

<
λ0
2
g + δλ0

3
4
g
2

1 + 2+λ0
4
δ

=
λ0g

2

1 + 3
4
δ

1 + 2+λ0
4
δ
≤ λ0g

2

3

λ0 + 2
= u(λx(2/3), 0).

Given that u (λx (α) , 0) and Ŵ (α) are continuous and respectively strictly in-

creasing and decreasing in α, there exists a unique α∗ ∈ (0, 2/3) that solves

u (λx (α) , 0) + δŴ (α) = Ŵ (α) . (3)

Since α∗ satisfies Equation 3, the principal must be indifferent between retaining and

replacing an agent after observing a first term choice of x, as required for our strategy

profile to constitute an equilibrium. Since α∗ < 2/3 we know that λx(α∗) < λs(α∗).

This in turn ensures that following a successful first term voters optimally choose

to retain the agent. Finally since u(λx(α∗),0)
1−δ = Ŵ (α∗) > 0, the principal’s choice to

replace the agent after a failure is indeed optimal.

Proof of Proposition 7. To keep the two information settings distinct we adopt the

following notation. The principal’s expected payoff in a given period in the symmetric

information setting, when the agent’s expected type is λ and he plays x after X and
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y with probability β upon observing Y , is given by

uS(λ, β) ≡ β

2

[
λg + (1− λ)

g − d
2

]
.

In the asymmetric information setting the principal’s expected payoff in a given pe-

riod, if the agent’s competent type follows his signal and the incompetent type plays

y with probability α, is given by

uA(λ, α) ≡ λ

2
g + (1− λ)α

g − d
2

where λ is the agent’s expected type. Let W S denote the present discounted value

to the principal from the equilibrium described in Proposition 3. Recall that W S =
uS(λ0,1)

1−δ . Similarly let WA(α∗) denote the present discounted value to the principal

from the equilibrium described in Proposition 5. So, WA(α∗) = uA(λx(α∗),0)
1−δ .

As per the proposition we focus on c ≤ min{ĉ, c̃}. Recall that

λx(α) ≡ 1

1 + 1−λ0
λ0

2(1− α)
.

Define ᾱ such that uA (λx (ᾱ) , 0) = uS (λ0, 1):

1

1 + 1−λ0
λ0

2 (1− ᾱ)

g

2
=

1

2

(
λ0g + (1− λ0)

g − d
2

)

⇒ ᾱ =
1

2

(
1− d− g

4uS (λ0, 1)

)
=

1

2

(
1− d− g

2
(
λ0g + (1− λ0) g−d

2

)) .

Our assumption of d−g
g+d

< λ0
2

ensures that ᾱ ∈ (0, 1
2
). Now, α∗ from Proposition 5 is

defined by Ŵ (α∗) = uA (λx (α∗) , 0) + δŴ (α∗) where Ŵ (α) is defined in Equation 2.
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We have

(1− δ) Ŵ (ᾱ)− uA (λx (ᾱ) , 0)

=
uA (λ0, ᾱ)− c+ δλ0

3
4
g
2

1 + 2+λ0
4
δ

− uS (λ0, 1) ≥
uS (λ0, 1)− c+ δλ0

3
4
g
2

1 + 2+λ0
4
δ

− uS (λ0, 1)

=
1
2

(
λ0g + (1− λ0) g−d

2

)
− c+ δλ0

3
4
g
2

1 + 2+λ0
4
δ

− 1

2

(
λ0g + (1− λ0)

g − d
2

)
≥

1
2

(
λ0g + (1− λ0) g−d

2

)
− 1

8
δ (1− λ0)λ0 g+d2 + δλ0

3
4
g
2

1 + 2+λ0
4
δ

− 1

2

(
λ0g + (1− λ0)

g − d
2

)
=

1

2
δ (1− λ0)

d− g
2δ + δλ0 + 4

> 0.

The first inequality follows from ᾱ < 1
2
. Since uA (λx (α) , 0) increases in α and W (α)

is decreasing it must be that α∗ > ᾱ. This finally gives us

WA (α∗) =
uA (λx (α∗) , 0)

1− δ
>
uA (λx (ᾱ) , 0)

1− δ
=
uS (λ0, 1)

1− δ
= W S.
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