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Abstract

We consider a general framework where each agent has an outside option of privately
known value. First, we show that if a designer seeks to (weakly) Pareto-improve an in-
dividually rational and participation-maximal benchmark mechanism, there is at most
one strategy-proof candidate. Consequently, we show that many known mechanisms
are on the Pareto frontier of strategy-proof mechanisms. Second, we characterize
the Pareto-improvement relation over strategy-proof and individually rational mech-
anisms: one of these mechanisms Pareto-improves another if and only if it (weakly)
expands the set of participants. Third, when utility is transferable, we provide a char-
acterization of the pivotal mechanism and a revenue equivalence theorem.
Keywords: strategy-proofness, participation-maximality, Pareto-improvement, school choice,
matching with contracts, revenue equivalence
JEL Codes: C78; D47; D71; D82

1 Introduction

Mechanism design has been successful in providing desirable alternatives to alloca-

tion mechanisms used in the real world.1 If a particular mechanism is a status quo or has

*We thank Inácio Bó, Alexander Brown, Rossella Calvi, Lars Ehlers, Ben Golub, Guillaume Haeringer,
Patrick Harless, Eun Jeong Heo, Sean Horan, Fuhito Kojima, Scott Kominers, Silvana Krasteva, Timo
Mennle, Debasis Mishra, Thayer Morrill, Mallesh Pai, William Phan, Santanu Roy, Erling Skancke, Tay-
fun Sönmez, Alexander Teytelboym, William Thomson, Guoqiang Tian, Ryan Tierney, Juuso Toikka, Utku
Ünver, Rodrigo Velez, Dan Walton, Alexander Westkamp, Alexander Wolitzky, and Bumin Yenmez for
helpful comments and discussions. We also thank seminar audiences at the University of Rochester, the
University of Cologne, the University of Bonn, Southern Methodist University, the University of Windsor,
Harvard/MIT, the University of Ottawa, North Carolina State University, Carleton University, Université
de Montréal, and participants at numerous conferences for their feedback.

1 The placement of medical students to residencies [Roth and Peranson, 1999], assignment of students
to schools [Abdulkadiroğlu et al., 2005, Abdulkadiroğlu et al., 2005], exchange of kidney donors amongst
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been identified based on normative considerations, then it forms a benchmark for agents’

welfare. When designing a new mechanism, a natural requirement is that no agent be

worse off than he would be under the benchmark. Otherwise, an agent who is made

worse off has reason to oppose such a change.

We study strategy-proof Pareto-improvements of a benchmark mechanism in a gen-

eral framework that unifies several standard models, from object allocation [Hylland and

Zeckhauser, 1979], to school choice [Abdulkadiroğlu and Sönmez, 2003], to matching

with contracts [Hatfield and Milgrom, 2005], to the provision of excludable public goods

[Jackson and Nicolò, 2004], and more. While many mechanisms may (weakly) Pareto-

improve a given benchmark,2 our main contribution is to show that, under some prefer-

ence restrictions, at most one of them is strategy-proof if the benchmark is individually
rational and participation-maximal (Theorem 1). In our framework, each allocation in-

volves the presence of a certain subset of agents. We call them the participants at that

allocation. The remaining agents are non-participants, and consume their outside op-

tion. Individual rationality says that no agent is asked to participate in an allocation that

he finds worse than his outside option. Participation-maximality says that bringing a

non-participating agent into the fold would make someone worse off. The uniqueness of

the strategy-proof Pareto-improvement, should one exist, is in terms of welfare since we

do not assume strict preferences. A corollary is that participation-maximality and indi-

vidual rationality are jointly sufficient for a strategy-proof mechanism to be on the Pareto

frontier of strategy-proof mechanisms.

When the benchmark mechanism is not participation-maximal, there may exist many

strategy-proof Pareto-improvements. Nevertheless, considering the sets of participants

in the allocations chosen by mechanisms, maximal or not, sheds light on the structure

of the set of strategy-proof and individually rational mechanisms. Our second contri-

bution is to characterize the Pareto-improvement relation over such mechanisms on the

basis of comparing these sets of participants: one strategy-proof and individually rational

mechanism Pareto-improves another if and only if it weakly expands, in the sense of set

inclusion, the set of participants at each profile of preferences (Theorem 2). This means

that the requirements of strategy-proofness and individual rationality contain enough

information about preferences to ensure that a comparison that makes no reference to

preferences (expansion of the set of participants) is equivalent to one that does (Pareto-

improvement).

patients [Roth et al., 2004, 2005], and allocation of the electromagnetic spectrum [Cramton, 1995, McAfee
and McMillan, 1996, Milgrom, 2000] are just a few examples of success stories.

2 By this we mean each agent is at least as well off.
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Our framework also accommodates problems with transferable utility. In such set-

tings, a mechanism can be decomposed into a pair consisting of a decision rule and a

payment rule, and the participants are determined by the decision rule. Our third contri-

bution is to relate our results to revenue equivalence. Suppose a decision rule can be im-

plemented in an individually rational way.3 Every pair of payment rules that implement

it differ, for each agent, only by a function of other agents’ preferences (Proposition 2).4

The generality of the framework permits myriad applications, which we discuss below.

However, to help fix ideas, consider the school choice problem. Each student has strict pref-

erences over the schools, and each school has its own priority ranking over the students.

An allocation assigns each student to a school or leaves him unassigned, subject to capac-

ity constraints. It is individually rational if each assigned student prefers his assignment

to being unassigned. In this context, an allocation is participation-maximal if it is impos-

sible to place an unassigned student without exceeding capacities or making someone

worse off.5 Many normatively appealing requirements on allocations imply individual

rationality and participation-maximality. For instance, the most widely considered re-

quirement in school choice is stability: if student i is assigned to school s, no student with

higher priority than i at s envies i.6 An ideal list of desiderata for a mechanism would

include strategy-proofness, stability, and Pareto-efficiency. However, stability is typically

incompatible with Pareto-efficiency [Balinski and Sönmez, 1999]. A weaker normative

criterion than stability is the following: an allocation is stable-dominating [Alva and Man-

junath, 2017] if it Pareto-improves some stable allocation—no student has a reason to

object to a violation of his priority if doing so would result in a move to this Pareto-

inferior stable allocation.7 Theorem 1 implies that the student-optimal stable mechanism8

is the only stable-dominating and strategy-proof mechanism.9,10 We can draw similar

novel conclusions for other normative concepts as well. Consider, for instance, the re-

3 A decision rule is implementable (in an individually rational way) if there is a payment rule with
which it forms a strategy-proof (and individually rational) mechanism.

4 Revenue equivalence results are valuable because they simplify the mechanism design problem. There
is an extensive literature on revenue (also known as payoff) equivalence [Holmström, 1979, Myerson, 1981,
Krishna and Maenner, 2001, Chung and Olszewski, 2007, Heydenreich et al., 2009].

5 This is weaker than the standard criterion of non-wastefulness [Balinski and Sönmez, 1999].
6 Stability additionally requires an allocation to be non-wasteful and individually rational.
7 This is similar in spirit to the proposal of obtaining consent for priority violations that would not affect

a consenting student’s welfare but improve another’s [Kesten, 2010].
8 The student-optimal stable mechanism selects the allocation determined by the student-proposing

deferred acceptance algorithm [Gale and Shapley, 1962], and is strategy-proof [Dubins and Freedman,
1981].

9 This follows from Theorem 1 with the student-pessimal stable mechanism as the benchmark.
10 This is stronger than the existing result that there is no strategy-proof mechanism that strictly Pareto-

improves the student-optimal stable mechanism [Abdulkadiroğlu et al., 2009].
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cently proposed notion of legality [Morrill, 2016]. The legal set contains a Pareto-worst

allocation that is individually rational and participation-maximal. Furthermore, this set

contains every stable allocation. Consequently, Theorem 1 says that the student-optimal

stable mechanism is the unique legal and strategy-proof mechanism.11

To demonstrate the value of Theorem 2, consider its implications for a specific prob-

lem: the assignment of doctors to residency positions at hospitals. A long standing con-

cern has been the shortage of doctors in rural areas [Roth, 1986]. One way of mitigating

the shortage is to cap the number of doctors matched to other regions. Given caps, the

flexible deferred acceptance mechanism [Kamada and Kojima, 2015] is strategy-proof for

the doctors and, subject to the caps, Pareto-efficient. Loosening the caps leads to a Pareto-

improvement, from the doctors’ point of view. Thus, Theorem 2 says that loosening the

caps for some or all of the regions without tightening those at others affects the sets of

matched doctors: for every profile of preferences, a doctor matched at the tighter caps

is matched at the looser caps and there are profiles of preferences where a strictly larger

(by inclusion) set of doctors is matched under the looser caps. This has implications for

the proportion of doctors who are assigned to hospitals, the match rate, which is a simple

yet policy-relevant measure of a mechanism’s performance. When designing a mecha-

nism, the relevant statistic is the expected match rate with regards to a distribution over

preference profiles. The implication of Theorem 2 is that changing the caps to obtain a

Pareto-improvement leads to a strict increase in the expected match rate.12 Conversely, to

increase (or leave unchanged) the likelihood that each doctor is matched, the caps ought

to be loosened so that there is a Pareto-improvement. Thus, while it is possible to in-

crease the match rate for rural hospitals by tightening caps on other regions, Theorem 2

provides a cautionary message: an expected increase of one doctor matched to a rural

hospital leads to an expected decrease of more than one doctor matched to other areas.

We make certain assumptions on agents’ preferences. Throughout the paper we as-

sume that there are no externalities on non-participants. That is, each agent is indiffer-

ent between any pair of allocations that he does not participate in. So the welfare of a

non-participant is completely determined by his outside option. We make two further

assumptions on each agent’s preferences vis-à-vis his outside option. The first is an as-

sumption of richness: the (upward) movement of the agent’s outside option in his prefer-

ence ranking is essentially unrestricted. The second is that he is not indifferent between

11 In general, if a normative property refines individual rationality and participation-maximality, and
the set of allocations satisfying this property contains a Pareto-best or Pareto-worst allocation for every
preference profile, then there is at most one strategy-proof selection from it, by Proposition 1.

12 The conclusion that the increase is strict holds if the distribution has full support.
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his outside option and an allocation in which he participates. Each of the two steps in

proving Theorem 1 relies on one of these.

Like other information about preferences, how an agent compares his outside option

to the various alternatives that the mechanism designer may offer him is often private

information. Richness of outside options says that the range of values that an agent’s out-

side option may take are on the order of what the mechanism designer may offer him,

which is natural in many real-world applications. It is enough to prove a striking lemma

about strategy-proof and individually rational mechanisms. For each profile of prefer-

ences, by selecting an allocation, a mechanism selects a list of participants as well—those

agents who participate in the allocation that it selects. Pinning down who participates

at each profile, per a strategy-proof and individually rational mechanism, pins down the

entire mechanism in terms of welfare (Lemma 1). Our results for transferable utility

problems rely on this lemma since richness of outside options is compatible with quasi-

linearity.

No indifference with the outside option requires that an agent is never indifferent

between participating and not participating. It rules out quasilinear preferences, but

is commonly assumed in many settings, such as those with discrete goods. With this

assumption alone, the set of individually rational and participation-maximal allocations

has a very particular structure. There is a unique finest partition of this set so that no two

allocations in separate components can be compared in the Pareto sense. Every pair of

allocations in the same component have the same participants (Lemma 2). This is much

like the Rural Hospitals Theorem [Roth, 1986], which draws the same conclusion for every

pair of stable allocations in matching models. In fact, the Rural Hospitals Theorem is

a consequence of the entire stable set residing within a single component of the above

described partition [Alva and Manjunath, 2017].

Applications Since the framework is very general, our results are best appreciated

through their corollaries for various special cases.

Many of the salient applications of Theorem 1 fall under market design. Consider first

an object allocation model with strict preferences, augmented with a choice correspon-

dence for each object. A choice correspondence conveys exogenous information about

how to prioritize the different ways the object can be allocated, a generalization of pri-

orities in the school choice problem. Under certain conditions,13 each stable allocation

13 These are size monotonicity (we use the terminology of Alkan and Gale [2003], whereas Hatfield and
Milgrom [2005] refer to it as the law of aggregate demand) and idempotence (this is weaker than irrelevance
of rejected contracts [Aygün and Sönmez, 2013]).
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is participation-maximal (Lemma 3).14 Thus, a corollary of Theorem 1 is that at most

one strategy-proof mechanism Pareto-improves a stable benchmark. Consequently, if a

stable mechanism is strategy-proof, it is strategy-proofness-constrained Pareto-efficient.

As described above, for the school choice model with strict priorities, the agent-optimal

stable mechanism is the unique strategy-proof mechanism to Pareto-improve a stable

mechanism. For matching with contracts settings like the matching of military cadets to

branches of the US Army [Sönmez and Switzer, 2013, Sönmez, 2013], medical residents

to hospitals [Roth, 1984, Hatfield and Milgrom, 2005], or students to schools with di-

versity considerations [Kominers and Sönmez, 2016], the cumulative offer mechanism15

is stable and strategy-proof. Even if stability does not imply participation-maximality,

this mechanism is typically participation-maximal. Hence, Theorem 1 implies that it is

strategy-proofness-constrained Pareto-efficient.

Going beyond matching problems, our results apply to the provision of excludable

public goods. For expositional simplicity, we restrict attention to a simple model of lo-

cating an excludable public facility along an interval. Suppose that agents are located

at either end of the interval and the only private information is how far each is willing

to travel. An allocation here consists of a location along the interval and a set of users.

If we insist on Pareto-efficiency alongside strategy-proofness and individual rationality,

only dictatorial mechanisms remain: no compromise is possible. However, there are non-

dictatorial strategy-proof mechanisms that are individually rational and participation-

maximal. Theorem 1 tells us that these Pareto-inefficient mechanisms are all strategy-

proofness-constrained Pareto-efficient.

For transferable utility problems, Lemma 1 implies that a given decision rule can be

implemented by at most one payment rule in an individually rational way. If we consider

an (utilitarian) efficient decision rule, Groves schemes implement it [Groves, 1973]. Piv-

otal payment rules [Vickrey, 1961, Clarke, 1971] are the most well known members of

this family—they amount to the second price auction in the allocation of a single object.

Lemma 1 implies a characterization of pivotal payment rules as the only ones to imple-

ment efficient decision rules in an individually rational way. Our framework requires that

non-participants receive no payments. Relaxing this, we are able to adapt the argument

of Lemma 1 to prove a revenue equivalence theorem. It says that if a decision rule can

be implemented in an individually rational way, then any two payment rules that imple-

ment it, individually rationally or not, differ for each agent only by a function of others’

preferences (Proposition 2). This illuminates a bridge between mechanism design with

14 In fact, given these choice conditions, stability implies the stronger property of non-wastefulness.
15 This mechanism generalizes the agent-proposing deferred acceptance mechanism.
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and without transfers: that the sets of participants at each profile determine a strategy-

proof mechanism up to welfare equivalence (Lemma 1) is a revenue equivalence theorem

for models with non-transferable utility.

Related Literature The uniqueness of a strategy-proof Pareto-improvement over a

participation-maximal and individually rational benchmark (Theorem 1) is a novel re-

sult. Previous results have only dealt with Pareto-improvements over an already strategy-

proof benchmark. The first one along these lines shows, for the school choice prob-

lem, that the student-optimal stable mechanism has no strategy-proof strict Pareto-

improvement [Abdulkadiroğlu et al., 2009].16 A more recent result of this sort is for

the matching with contracts setting with choice functions. A strategy-proof, individually

rational, and non-wasteful benchmark mechanism has no strategy-proof strict Pareto-

improvement [Hirata and Kasuya, 2017].17 This is also true for the probabilistic alloca-

tion of indivisible goods [Erdil, 2014]. The more general question of Pareto-improving a

benchmark that may not, itself, be strategy-proof has not been asked, to the best of our

knowledge.

In addition to the above-mentioned results, there have been others that add to our

understanding of the Pareto frontier of strategy-proof mechanisms for various problems.

These include the allocation with transfers of a single object [Sprumont, 2013] or multiple

identical objects [Ohseto, 2006], the division of multiple perfectly divisible goods with

single-peaked preferences [Anno and Sasaki, 2013], and the allocation of multiple types

of objects [Anno and Kurino, 2016]. Our results tell us that for the general framework that

we work in, individual rationality and participation-maximality are sufficient conditions

for a mechanism to be on this frontier.

The generality of our framework and our assumptions on preferences are reminis-

cent of Sönmez [1999], who shows that single-valuedness of the core (in welfare terms)

is a necessary condition for a strategy-proof, individually rational, and Pareto-efficient

mechanism to exist. In his model, the individual rationality constraint is with regards

to an endowment rather than an outside option. Nonetheless, his assumptions on the

preference domain play a similar role in showing essential uniqueness as in our proofs.

16 While outside options are crucial in our analysis, this particular result can be shown without it when
school seats exceed the number of students [Kesten, 2010, Kesten and Kurino, 2015]. Indeed, if the bench-
mark mechanism is student-optimal stable, then each student has similar “rights” to an “under-demanded”
school as he might have to an outside option. Intuitively, the under-demanded school serves as a pseudo-
outside option, and so the logic behind the result remains the same. Nevertheless, the identification of
under-demanded schools requires care.

17 This result requires choice functions satisfy irrelevance of rejected contracts [Aygün and Sönmez,
2013].
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We are heretofore aware of only one existing result that is related to Theorem 2. For

the probabilistic allocation of indivisible goods when each agent has unit demand and

strict preferences, where the no indifference with the outside option is also satisfied, strict

Pareto-improvement in the stochastic dominance sense implies a strict participation-

expansion [Erdil, 2014]. However, the important fact that the Pareto-improvement and

participation-expansion relations are equivalent is, to the best of our knowledge, a novel

result.

The pivotal payment rule has been characterized for both indivisible private goods

[Chew and Serizawa, 2007] and pure public goods [Moulin, 1986]. We provide a new

characterization for the provision of excludable public goods (Corollary 9). Characteriza-

tions of the pivotal payment rule are closely related to revenue equivalence [Holmström,

1979]. Proposition 2 demonstrates that revenue equivalence holds for every decision rule

that can be implemented in an individually rational way as long as our richness assump-

tion is met. Since Heydenreich et al. [2009] jointly characterize the decision rules and

valuation spaces where revenue equivalence holds, our contribution is to provide easily

verifiable conditions (individual rationality and richness of outside options) to ensure

that their theorem applies.

Our results also contribute to the large literature on mechanism design with transfers

and voluntary participation.18 Our analysis differs from this literature by focusing on

dominant strategy, rather than Bayesian, incentive compatibility, where ex post individ-

ual rationality is natural. Moreover, we provide insights into problems without quasilin-

earity in transfers.

The remainder of the paper is organized as follows. We introduce our framework in

Section 2. We define several properties of allocations and mechanisms in Section 3. Our

main results are in Section 4. Applications are in Section 5. We conclude in Section 6. All

proofs are in Appendix A.

2 The Framework

We first consider the general framework in which we prove our results. We then add

structure to show how to accommodate the problem of object allocation in Sections 5.1

and 5.2. We illustrate in Section 5.3 how to model excludable public goods, and in Sec-

tion 5.4 how to work with transferable utility. We embolden notation only when first

introduced.
18 See, for instance, Jullien [2000], Jackson and Palfrey [2001], and Compte and Jehiel [2007, 2009].
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LetN be a finite and nonempty set of agents. LetF be the nonempty set of allocations.

Given α ∈ F , let N (α) ⊆ N be the participants at α. For each i ∈ N , let Fi ⊆ F be

the nonempty set of allocations that i participates in. If α ∈ F is chosen and i is not

a participant in α, then i consumes his outside option. We denote consumption of the

outside option by ∅. For each α ∈ F , we denote by α(i) either α if i ∈N (α) or ∅ otherwise.

Note that the participation of each i ∈ N (α) is a part of the definition of α. That is, α

requires the participation of i. Thus, participation is anterior to i’s preferences—it is not

a choice that i makes.

For each i ∈N , his preferences are a complete, reflexive, and transitive binary relation

on Fi ∪ {∅}. We denote it by Ri. Since i’s preferences are over Fi ∪ {∅} rather than F ,

we have assumed that i is indifferent between any pair of allocations that he does not

participate in. Consequently, his welfare from such allocations is fully determined by his

outside option. This rules out externalities on non-participants.

For each pair α,β ∈ F , we write α(i) Ri β(i) to mean that i finds α(i) to be at least

as good as β(i). We use Pi to denote strict preference and Ii to denote indifference, the

asymmetric and symmetric components of Ri , respectively. LetRi be a set of preference

relations for i. A preference domain isR ≡ ×i∈NRi .
Our analysis is for fixed N , F , and R. Thus, an economy is entirely described by

R ∈ R. A (direct) mechanism, ϕ : R → F , associates each economy with an allocation.

For each R ∈ R and each i ∈N , instead of ϕ(R)(i), we write ϕi(R).

3 Properties of Allocations and Mechanisms

Individual rationality An allocation is individually rational if each agent finds it to

be at least as good as not participating. That is, for each R ∈ R and each α ∈ F , α is

individually rational at R if, for each i ∈ N , α(i) Ri ∅.19 A mechanism, ϕ, is individually
rational if, for eachR ∈ R, ϕ(R) is individually rational atR. Individual rationality ensures

that no such agent has an incentive to exercise his outside option when the allocation

chosen by the mechanism relies on his presence.

Participation-expansion An allocation participation-expands another if participation

in the latter entails participation in the former. That is, for each pair α,β ∈ F , α

participation-expands β if N (α) ⊇ N (β). If they have the same participants, then they

are participation-equivalent. That is, α is participation-equivalent to β if N (α) = N (β).

Given a pair of mechanisms ϕ and ϕ′, ϕ participation-expands ϕ′ if for each R ∈ R, ϕ(R)

19 Since each i <N (α) consumes ∅, it suffices to verify that for each i ∈N (α),α(i) Ri ∅.
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participation-expands ϕ′(R). They are participation-equivalent if for each R ∈ R, ϕ(R) and

ϕ′(R) are participation-equivalent.

Participation-maximality An allocation is participation-maximal at a given R ∈ R if

there is no other allocation that strictly expands the set of participants without harming

anyone. That is, for each R ∈ R, α ∈ F is participation-maximal at R if there is no β ∈ F
such that (1)N (α) (N (β), so that at least one additional agent participates in β compared

to α and (2) there is no i ∈ N , such that α(i) Pi β(i), so that nobody is worse off at β than

at α. A mechanism, ϕ, is participation-maximal if, for each R ∈ R, ϕ(R) is participation-

maximal at R.20

Pareto-improvement One allocation Pareto-improves another if each agent finds the

first to be at least as desirable as the second. That is, for each R ∈ R, and each pair

α,β ∈ F , α Pareto-improves β at R if for each i ∈ N , α(i) Ri β(i).21 If α Pareto-improves

β at R and there is i ∈ N such that α(i) Pi β(i), then α strictly Pareto-improves β at R. If

α ∈ F is such that no allocation strictly Pareto-improves it at R, then α is Pareto-efficient
at R. Every Pareto-efficient allocation is participation-maximal, but the converse is not

true.

The Pareto-improvement relation is reflexive and transitive but not complete. Two

allocations are Pareto-comparable if one Pareto-improves the other. Two individually

rational and participation-maximal allocations are Pareto-connected (within the indi-

vidually rational and participation-maximal set) if there is a sequence of individually

rational and participation-maximal allocations starting at one and ending at the other

such that successive allocations are Pareto-comparable. That is, two individually rational

and participation-maximal allocations, α,β ∈ F , are Pareto-connected if there is a se-

quence (αk)
K
k=0, with α0 ≡ α and αK ≡ β, such that for each k ∈ {1, . . . ,K}, αk is individually

rational and participation-maximal and Pareto-comparable to αk−1.

For each pair of mechanisms ϕ and ϕ′, ϕ Pareto-improves ϕ′ if, for each R ∈ R, ϕ(R)

Pareto-improves ϕ′(R) at R. If ϕ Pareto-improves ϕ′ and for some R ∈ R, ϕ(R) strictly

Pareto-improves ϕ′(R) at R, then ϕ strictly Pareto-improves ϕ′. If they are both individ-

ually rational and participation-maximal, then ϕ and ϕ′ are Pareto-connected if, for each

R ∈ R, ϕ(R) and ϕ′(R) are Pareto-connected at R. If, for each R ∈ R and each i ∈ N ,

20 In the special case of the object allocation model with strict preferences (see Section 5.1), where non-
wastefulness is defined, it is stronger than participation-maximality.

21 In this case, some authors say that α weakly Pareto-improves β. However, since this is the main form
of Pareto-improvement that we consider, we drop the qualifier.
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ϕi(R) Ii ϕ′i(R), then ϕ and ϕ′ are welfare-equivalent. If, for each R ∈ R, ϕ(R) is Pareto-

efficient at R, then ϕ is Pareto-efficient.

Strategy-proofness A mechanism, ϕ, is strategy-proof if no agent can benefit by mis-

reporting his preferences, no matter what other agents do. That is, for each R ∈ R, each

i ∈N , and each R′i ∈ Ri , ϕi(R) Ri ϕi(R′i ,R−i).

Extending this concept to groups of agents, ϕ is group strategy-proof if no group

of agents can misreport their preferences in a way that at least one member is better

off while each member is at least as well off. That is, for each R ∈ R and each S ⊆ N ,

there is no R′S ∈ ×i∈SRi , such that for each i ∈ S, ϕi(R′S ,R−S) Ri ϕi(R) and for some i ∈ S,

ϕi(R′S ,R−S) Pi ϕi(R).

4 Strategy-proof Pareto-improvement

We present here our fundamental results, which we obtain under varying combina-

tions of two assumptions on preferences.

The first assumption is richness of outside options: for each i ∈ N , each Ri ∈ Ri , and

each pair α,β ∈ Fi such that α(i) Pi β(i) Ri ∅, there is R′i ∈ Ri such that (1) α(i) P ′i ∅ P
′
i β(i),

and (2) for each γ ∈ Fi , if γ(i) R′i ∅ then γ(i) Pi β(i). All of our results, except for Lemma 2,

rely on this assumption. Our second assumption is no indifference with ∅: for each i ∈N
and each Ri ∈ Ri , there is no α ∈ Fi such that α(i) Ii ∅. We rely on it for all but Lemma 1

and its applications to transferable utility problems.22

Remark 1. In many private goods applications, it is natural to consider an agent’s pref-

erence domain that consists of all strict preference relations over own outcomes. This,

however, is far more than what is implied by our assumptions. The no indifference with

∅ assumption only states that ties with ∅ are broken, but other indifferences may exist.

More importantly, richness of outside options is a great deal weaker than the assumption

that all orderings are available. To see this, consider the fact that Ri and R′i in the defi-

nition of richness need not preserve, entirely, the relative orderings of alternatives other

than α, β, and ∅. This makes it even weaker than the analogous assumption in Sönmez

[1999]. We discuss the necessity of these assumptions in Online Appendix B.

First, given an individually rational and participation-maximal benchmark mecha-

nism, we are interested in strategy-proof mechanisms that Pareto-improve it. When a

22 Sönmez [1999] makes two similar assumptions, where an agent’s endowment plays the role that ∅

plays here. Also see Erdil and Ergin [2017] for an instance of no indifference with ∅ in a matching setting
with weak preferences.
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designer’s choice of a strategy-proof mechanism is constrained in this way, Theorem 1

says that his problem has a unique solution (in terms of welfare) if it has one at all.

Theorem 1. Let the preference domain satisfy richness of outside options and no indifference
with ∅. Consider an individually rational and participation-maximal benchmark mechanism.
In welfare terms, there is at most one strategy-proof mechanism that Pareto-improves it.

We prove Theorem 1 by way of two lemmas of independent interest. The first is the

Participation-equivalence Lemma, which implies that two welfare-distinct individually

rational mechanisms that are participation-equivalent cannot both be strategy-proof.

Lemma 1 (Participation-equivalence Lemma). Let the preference domain satisfy richness
of outside options. If a pair of strategy-proof and individually rational mechanisms are
participation-equivalent, then they are welfare-equivalent.

The Participation-equivalence Lemma is interesting in its own right. By selecting an

allocation for each profile of preferences, a mechanism selects a list of participants as

well—those agents who participate in the allocation that it selects. The lemma says that

pinning down who participates in each profile pins down, in welfare terms, the entire

mechanism. It does not require R to satisfy no indifference with ∅, and so is relevant for

problems with transferable utility. We return to this fact in Section 5.4.

The second lemma is the Structure Lemma. It says that the set of individually ratio-

nal and participation-maximal allocations has a particularly nice structure. The Pareto-

connectedness relation over this set is reflexive and symmetric. Moreover, since it is tran-

sitive, it is an equivalence relation. Therefore, it partitions the set of individually rational

and participation-maximal allocations into Pareto-connected components. The following

lemma says that every allocation in the same component involves the same participants.

Since the statement of the lemma is specific to a fixed profile of preferences, it does not

rely on richness of outside options.23

Lemma 2 (Structure Lemma). Let the preference domain satisfy no indifference with ∅. For
each profile of preferences, if a pair of individually rational and participation-maximal alloca-
tions are Pareto-connected, then they are also participation-equivalent.

In fact, these lemmas actually deliver more than Theorem 1. The next proposi-

tion, a consequence of these lemmas, states that among a set of individually rational,

participation-maximal, and Pareto-connected mechanisms, at most one can be strategy-

proof.
23 In Alva and Manjunath [2017], we draw stronger conclusions by adding structure to the model. Indeed,

we show that the Structure Lemma is closely related to the Rural Hospitals Theorem for matching problems
[Roth, 1986].
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Proposition 1. Let the preference domain satisfy richness of outside options and no indifference
with ∅. If a pair of distinct strategy-proof, individually rational, and participation-maximal
mechanisms are Pareto-connected, then they are welfare-equivalent.

Theorem 1 does not generally hold for benchmark mechanisms that are not

participation-maximal. If, for instance, the trivial mechanism that assigns ∅ to each agent

is the benchmark, then each individually rational mechanism Pareto-improves it. De-

pending on the structure of F , many of these may be strategy-proof: in object allocation

problems, for instance, each serial dictatorship is a strategy-proof Pareto-improvement.

Nevertheless, we can say something about Pareto-comparisons among strategy-proof

and individually rational mechanisms. By Theorem 2, the participation-expansion rela-

tion over these mechanisms is equivalent to the Pareto-improvement relation. Since the

two relations are equivalent, this means that a strategy-proof mechanism strictly Pareto-

improves another if and only if it strictly expands participation.

Theorem 2. Consider the Pareto-improvement and the participation-expansion relations on
the set of strategy-proof and individually rational mechanisms.

(A) If the preference domain satisfies no indifference with ∅, then Pareto-improvement implies
participation-expansion.

(B) If the preference domain satisfies richness of outside options, then participation-expansion
implies Pareto-improvement.

If the preference domain satisfies both assumptions, Theorem 2 says that on the set
of strategy-proof and individually rational mechanisms, the Pareto-improvement relation coin-
cides with the participation-expansion relation.

For individually rational mechanisms, it is clear that no indifference with ∅ ensures

that Pareto-improvement implies participation-expansion. The more novel and com-

pelling aspect of Theorem 2 is Part (B). A proof similar to that of the Participation-

equivalence Lemma shows that for mechanisms that are both strategy-proof and individ-

ually rational, participation-expansion implies Pareto-improvement even if agents may

be indifferent between participating and not participating, given richness of outside op-

tions.24 The equivalence of the two relations allows us, for instance, to understand how

24 Erdil [2014] proves an analog of the statement that strict Pareto-improvement implies strict
participation-expansion, for a stochastic object allocation model with strict preferences. While this says
a little more for his setting than the analog of Part (A) of Theorem 2, it does not address the question of
whether strict participation-expansion implies strict Pareto-improvement, as Part (B) of Theorem 2 does.
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Pareto-improvements can affect match rates, and vice versa, in market design applications

(see Section 5.1.2).

The strategy-proofness-constrained Pareto frontier consists of each strategy-proof

mechanism that is not strictly Pareto-improved by another strategy-proof mechanism.

Theorem 1 tells us that a strategy-proof mechanism is on this frontier if it is individually

rational and participation-maximal.

Corollary 1. Let the preference domain satisfy richness of outside options and no indifference
with ∅. A strategy-proof mechanism is strategy-proofness-constrained Pareto-efficient if it is
participation-maximal and individually rational.

Theorem 2 says that each strategy-proof mechanism below this frontier is strictly

participation-expanded by some mechanism on the frontier. We might ask whether a

mechanism on the frontier must be participation-maximal. This is not so. Depending on

the structure of F , there may be mechanisms on this frontier that are not participation-

maximal.

Remark 2. Strategy-proofness-constrained Pareto-efficiency does not imply participation-
maximality.

We provide an example, in Appendix A.1, of a strategy-proof and individually rational

mechanism not on the strategy-proofness-constrained frontier that has no participation-

maximal and strategy-proof Pareto-improvement. It is noteworthy that the setting is

not particularly special. It is the classical object allocation problem with strict pref-

erences. The example actually demonstrates more than Remark 2: there is a group
strategy-proof mechanism that is not Pareto-improved by a strategy-proof mechanism,

yet is not participation-maximal. Thus, even among group strategy-proof mechanisms,

participation-maximality is not a necessary condition for a mechanism to be strategy-

proofness-constrained Pareto-efficient.

5 Applications

We consider several applications to demonstrate the usefulness of our main results.

We start, in Section 5.1, with the object allocation model, augmented with choice cor-

respondences, which generalizes the matching with contracts model. We specialize the

model to school choice in Section 5.1.1. We discuss their implications for recent devel-

opments in market design in Section 5.1.2. We consider the reallocation of objects from
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an endowment in Section 5.2, and a model of excludable public goods in Section 5.3. We

apply Participation-equivalence Lemma to transferable utility problems in Section 5.4.

5.1 Object Allocation and Matching: Non-transferable utility

The object allocation model The object allocation model, in addition to a set of agents

N , consists of a finite and nonempty set O of objects, a nonempty set T of terms under

which an agent may be assigned an object, and a nonempty set X ⊆ N ×O × T of possible

triples. The triple (i,o, t) ∈ N ×O × T represents “i consumes o under the terms t.”25 For

each x ∈ X, let N (x) be the agent associated with x. For each Y ⊆ X, let N (Y ) be the set

of agents associated with triples in Y , let Y (i) be the triples in Y associated with i ∈ N ,

and let Y (o) be the triples in Y associated with o ∈ O. Each object may only be allocated

in certain ways. These constraints define, for each o ∈ O, the feasible sets for o, which is

a collection of subsets of X(o). We denote it by Fo. In an allocation, each agent has one

triple from X(i) or consumes his outside option, ∅. One only cares about one’s own triple,

so i has a preference relation over X(i)∪ {∅}. We also assume that these preferences are

strict—that is, linear orders over X(i)∪ {∅}—as is typical in the much of this literature.26

This object allocation model can be embedded into the general framework as follows.

An allocation is a subset µ of X such that no two triples name the same agent and each

object’s assignment is a feasible set. If µ(i) is empty for agent i, he consumes his outside

option, ∅. That is, F is a subset of 2X such that for each µ ∈ F , each i ∈N , and each o ∈O,

|µ(i)| ≤ 1 and µ(o) ∈ Fo. Thus, the participants in µ, N (µ), are the agents associated with

some triple in µ. Each agent’s preference relation in the object allocation model defines a

preference relation over F .

Given the object allocation model with strict preferences, let P ≡ ×i∈NPi , where Pi⊆
Ri is the set of preferences of i over Fi that represent the strict preferences over X(i)∪{∅}.
For each Ri ∈ Pi , Ii is trivial, so Pi completely identifies Ri , so we refer to Pi ∈ Pi . Notice

that P necessarily satisfies no indifference with ∅. The richness assumption is much

weaker than requiring Pi to contain all strict preferences, which is a standard assumption

in such contexts.

When T is a singleton, each x ∈ X is fully identified by the associated agent and object.

In such cases, for each i ∈N , each triple in X(i) is identified by an element of O, while for

each o ∈O, each triple in X(o) is identified by an element ofN . Also, each object’s feasible

set is identified by a collection of subsets of N , while each agent’s preference relation is

25 These are contracts in Hatfield and Milgrom [2005].
26 See Bogomolnaia et al. [2005] and Erdil and Ergin [2017] for more on the problems that arise when

modeling indifference in such contexts.
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identified by an ordering of O∪ {∅}.
As an example, consider the classical object allocation model, where each o ∈ O is an

object with capacity qo ∈ Z+. In this model, there is only one term under which an agent

can be assigned to an object. For each o ∈ O, Fo consists of all subsets of X(o) containing

no more than qo elements. In such cases, where for each o ∈ O, there is qo ∈ R+ such that

for each Y ⊆ X(o), Y ∈ Fo if and only if |Y | ≤ qo, we say that Fo is capacity-based.

Our framework accommodates problems with cross-object constraints: F can be any

subset of 2X so long as each allocation contains at most one triple associated with each

agent. In the absence of such cross-object constraints, the only constraints are that the

triples chosen for each object ought to be feasible. That is, for each µ ⊆ X, µ ∈ F if and

only if (1) for each i ∈ N , |µ(i)| ≤ 1, and (2) for each o ∈ O, µ(o) ∈ Fo. In such cases,

we say that F is Cartesian. If, in addition to F being Cartesian, for each o ∈ O, Fo is

capacity-based, then we say that F is capacity based.

Non-wastefulness For the classical object allocation model, where feasibility is

capacity-based, a natural requirement is that an agent ought not to prefer an object that

has remaining capacity to his assignment. If he were to, we could allow him to consume

this available resource at no expense to the other agents.

We define non-wastefulness for our general object allocation model as follows: Given

P ∈ P , µ ∈ F is wasteful if there are o ∈ O, i ∈ N , and ν ∈ F , such that (1) |ν(o)| > |µ(o)|,
so that ν allocates o to more agents than µ does, (2) ν(i) Pi µ(i), so that i prefers his

assignment at ν to that at µ, and (3) for each j ∈ N \ {i}, ν(j) Ri µ(j), so that no agent is

worse off at ν compared to µ. If it is not wasteful, then µ is non-wasteful. A mechanism,

ϕ, is non-wasteful if, for each P ∈ P , ϕ(P ) is non-wasteful. Non-wastefulness is a stronger

requirement on an allocation than participation-maximality.

Remark 3. If an allocation is non-wasteful, then it is participation-maximal. The converse is
not true, even for the classical object allocation model.

For the classical object allocation model, Balinski and Sönmez [1999] define non-

wastefulness as follows: µ ∈ F is non-wasteful at P ∈ P if there is no o ∈ O such that

|µ(o)| < qo and i ∈ N such that o Pi µ(i). For this narrower setting, our definition of non-

wastefulness is equivalent to this.27,28

27 For capacity-based F and singleton T , Ehlers and Klaus [2014] define an even weaker property that
they call weak non-wastefulness. However, even in that specific setting, a result like the Structure Lemma
does not hold for such a weak version of non-wastefulness.

28For more on non-wastefulness, see Online Appendix E.
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In many applications, there is more information available about each object than just

the feasible sets. These might be priorities over agents as in school choice, objectives of the

army in cadet-branching, and so on. We model the extra information about how feasible

sets are prioritized by associating each o ∈O with a choice correspondence, Co : 2X(o)⇒

2X(o), such that (1) for each Y ⊆ X(o),Co(Y ) ⊆ 2Y , and (2) range(Co) = Fo.29 Condition (1)

says that from any set, Co picks only subsets of it. Condition (2) says that the feasible sets

are exactly those that are chosen from some set. To satisfy Condition (2), it would suffice,

for instance, to select each feasible set from itself.30 Let C ≡ (Co)o∈O.

Our model is more general than the matching with contracts model [Hatfield and

Milgrom, 2005] since we associate each object with a choice correspondence rather than

a choice function. Since applications like school choice with weak priorities [Erdil and Er-

gin, 2008, Abdulkadiroğlu et al., 2009] are better modeled with choice correspondences,

we adopt this more general approach.31 Furthermore, since we do not require F to be

Cartesian, our results are applicable even where there are distributional constraints [Ka-

mada and Kojima, 2015, Goto et al., 2017].

Stability An allocation is stable if no set of agents prefer to drop their assignments in

favor of being assigned to a new object under some terms that the object would “choose.”

That is, for each µ ∈ F and P ∈ P , µ is stable at P if it is individually rational32 and

there are no o ∈ O and Y ⊆ X(o) \ µ(o) such that (1) for each i ∈ N, |Y (i)| ≤ 1, (2) for

each y ∈ Y ,y PN (y) µ(N (y)), (3) µ(o) < Co(µ(o)∪ Y ), (4) there is Z ∈ Co(µ(o)∪ Y ) such that

Y ⊆ Z, and (5) (µ \ (µ(o)∪ µ(N (Y ))))∪Z ∈ F . Condition (1) says that Y contains at most

one triple per agent. Condition (2) says that every agent associated with a triple in Y

finds it preferable to his triple in µ. These are familiar conditions from the definition

of stability for choice functions. Since we are concerned with choice correspondences,

the next part of the definition needs to be broken into two parts. The first, Condition

(3), says that µ(o) is not among what is chosen by o when Y is available. The second,

Condition (4), says that there is some chosen set, Z, that contains Y . That is, Condition

(3) and Condition (4) together say that Y is contained in some Z that is revealed by Co to

have a higher priority than µ(o). The standard definition of stability typically does not

include Condition (3) since it is implied by Condition (4) when choice correspondences

29 The range of Co : 2X(o)⇒ 2X(o) is
⋃
Y⊆X(o)Co(Y ).

30 An alternative approach is to start with Co as the primitive and define Fo to be its range.
31 To our knowledge, the first and only other analysis of matching to consider general choice correspon-

dences as a primitive is by Erdil and Kumano [2014].
32 Individual rationality accounts for agents’ preferences while feasibility, along with the requirement

that, for each o ∈O, Fo be the range of Co, accounts for objects’ choice correspondences.
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are single-valued. Condition (5) is only relevant if F is not Cartesian. It requires that

replacing the assignments of o and N (Y ) at µ with Z is feasible. A mechanism, ϕ, is stable
if, for each P ∈ P , ϕ(P ) is stable.33

Given a profile of preferences P , if an allocation µ Pareto-improves every stable alloca-

tion and is stable at P , then it is the agent-optimal stable allocation. If an allocation µ is

Pareto-improved by every stable allocation and is stable at P , then it is the agent-pessimal
stable allocation. If C is such that an agent-optimal (agent-pessimal) stable allocation ex-

ists for each profile of preferences, then we denote by ϕAOS (ϕAP S) the mechanism that

selects this allocation.

Stability is relevant if the choice correspondences represent more than feasibility con-

straints: they may represent the rights of agents with regards to the objects or particular

design goals of the policy maker. The constraints imposed by this information some-

times keep the benchmark mechanism below the Pareto frontier. A stable mechanism

is thus a natural candidate for a benchmark that the mechanism designer may need to

Pareto-improve. The designer’s choice of mechanism might then be constrained to those

that select, at every preference profile, an allocation that Pareto-improves some stable

allocation. Such a mechanism is stable-dominating.34 Since we do not insist on strict

Pareto-improvement, every stable mechanism is stable-dominating.

Since Theorem 1 only applies to participation-maximal benchmark mechanisms, we

need stability to imply participation-maximality to invoke it here. In many applica-

tions, like school choice, where priority rankings define the choice correspondences, it

is easy to see that stability implies non-wastefulness, and so, by Remark 3, participation-

maximality. However, this may not be the case without any restrictions on choice corre-

spondences, even if they are single-valued (Example 1 in Appendix A.2).

We place two restrictions on choice correspondences to address this. The first says

that the choices from each set should be at least as large as each choice from each of

its subsets. That is, C is size monotonic if, for each o ∈ O, each Y ⊆ X(o), each finite

Y ′ ⊆ Y , each Z ∈ Co(Y ), and each Z ′ ∈ Co(Y ′), |Z | ≥ |Z ′ |.35,36 The second restriction is a

mild consistency requirement. It says that if a set is among those chosen from a larger

set, it ought to be among what is chosen from itself. That is, C is idempotent if, for each

o ∈ O, and each Y ∈ range(Co), Y ∈ Co(Y ).37 Unlike most of the literature on matching
33 If, for each o ∈O, Co is single-valued, this definition is equivalent to the standard definition of stability.
34 We define this property for allocations as well: µ ∈ F is stable-dominating if there is ν ∈ F such that ν

is stable and µ Pareto-improves ν.
35 This is an extension to correspondences of a condition defined for choice functions [Alkan, 2002, Alkan

and Gale, 2003, Fleiner, 2003, Hatfield and Milgrom, 2005].
36 For finite Y , setting Y ′ = Y , size monotonicity implies that for each pair Z,Z ′ ∈ Co(Y ), |Z | = |Z ′ |.
37 This rules out, for instance, Co such that Co({x,y,z}) = {{x,y}} but Co({x,y}) = {{x}}.
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with contracts, we do not assume that choice correspondences satisfy a condition like

irrelevance of rejected contracts (IRC) [Aygün and Sönmez, 2013].38

The assumptions that preferences are strict and that choice correspondences are size

monotonic and idempotent ensure that every stable allocation is non-wasteful. The non-

triviality of the proof, in Appendix A.2, is because we have not assumed IRC.

Lemma 3. Let C be size monotonic and idempotent. For each profile of preferences, if an
allocation is stable, then it is non-wasteful.

Lemma 3 allows us to link our foundational results to the matching with contracts

setting. The assumptions of size monotonicity and idempotence make this possible but

are not necessary. It bears emphasizing that to apply Theorem 1, one only needs to en-

sure that the benchmark mechanism is participation-maximal. In particular, we have the

following corollary of Theorem 1, Lemma 3, and Remark 3, that there is at most one

strategy-proof Pareto-improvement from a stable benchmark mechanism.

Corollary 2. Let C be size monotonic and idempotent. For each stable-dominating benchmark
mechanism, there is at most one strategy-proof mechanism that Pareto-improves it.

An implication of Corollary 2 is that if a stable-dominating mechanism is also

strategy-proof, then it is not Pareto-improved by any other strategy-proof mechanism.

Hirata and Kasuya [2017] show that for single-valued choice functions that satisfy

IRC, every non-wasteful and strategy-proof mechanism is strategy-proofness-constrained

Pareto-efficient. In fact, they show that for such choice functions, there is at most one

stable and strategy-proof mechanism. In Online Appendix C, we show that under our

assumptions, there may be more than one such mechanism.39 This highlights the differ-

ence between their approach and ours. We demonstrate below the uniqueness of a stable

and strategy-proof mechanism under further conditions.

Kamada and Kojima [2015], in a matching model with distributional constraints, de-

fine a strategy-proof mechanism that Pareto-improves on a deferred acceptance mecha-

nism. This does not contradict the corollary, which takes F as fixed. By making flexible

the constraints that define F , these authors obtain a strategy-proof Pareto-improvement

38 Aygün and Sönmez [2013] define IRC for choice functions. Alva [2018] extends the definition to choice
correspondences and shows its equivalence to the weak axiom of revealed preference.

39 The example in Online Appendix C consists of an object associated with a choice function that endoge-
nously selects a “tie breaker” over the agents. Consequently, it violates IRC. While this may appear strange,
for the school choice model with weak priorities, Ehlers and Erdil [2010] provide an example where fixed
tie-breaking entails a loss of efficiency while there is a mechanism with endogenous tie-breaking that does
not. Hatfield and Kominers [2014] show that in a slot-specific priorities setting, if the order of precedence in
which slots are filled depends on the set of agents that are being considered, then the choice function may
violate IRC. Thus, it may be worthwhile to consider such choice functions.
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on a benchmark that is no longer participation-maximal under the redefined F .40 In a

similar setting with more general constraints, Goto et al. [2017] show that an adaptation

of the deferred acceptance mechanism is strategy-proofness-constrained Pareto-efficient.

5.1.1 School Choice

We consider here the more specialized school choice model, which is the classical object

allocation model augmented with weak priorities. In this model, T is a singleton and F
is capacity-based. Additionally, each o ∈ O is associated with a priority over N , denoted

by %o, which is a complete, transitive, and reflexive relation. Let % ≡ (%o)o∈O.

Given priorities, %, for each o ∈O, we define C%o as follows. For each Y ⊆N ,

C%o (Y ) ≡

 {Y } if |Y | ≤ qo,
{Z ⊆ Y : |Z | = qo and for each i ∈ Z and each j ∈ Y \Z,i %o j} otherwise.

That is, for each subset of agents, if it contains no more than qo elements, then the entire

set is the only one that is chosen. If not, then all subsets that contain exactly qo elements

are chosen, except for ones that include agents of strictly lower priority than an excluded

agent. This C%o is size monotonic and idempotent.

Suppose that an agent prefers a particular object o to the one that he is assigned. Under

the interpretation of priorities as consumption “rights”, if o is assigned to someone else

who has strictly lower priority, then he has the right to protest this allocation. For each

µ ∈ F , µ respects priorities if no agent can protest on such grounds. That is, there is no

pair i, j ∈N and o ∈O such that o Pj µ(j), µ(i) = o, and j �o i.

Stability and dominating stable allocations as fairness Interpreting respect for the

priorities as a fairness constraint [Balinski and Sönmez, 1999, Abdulkadiroğlu and

Sönmez, 2003], we are interested in mechanisms that are individually rational, non-

wasteful, and fair. Respect for priorities alongside individual rationality and non-

wastefulness is equivalent to stability with respect the choice correspondence for each

object defined from these priorities.

Remark 4. For each profile of preferences, an allocation is stable with respect to C% if and only
if it is individually rational, non-wasteful, and respects %.

40 In particular, the benchmark mechanism in their study is the deferred acceptance mechanism where
objects have target capacities that satisfy distributional constraints. Taking these targets as given, this
benchmark has no strategy-proof Pareto-improvement. However, by allowing a mechanism the flexibility
to exceed these targets while satisfying the distributional constraints, which changes the set of feasible
allocations F , Kamada and Kojima [2015] manage to obtain a strategy-proof Pareto-improvement.
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Remark 4 says that, among individually rational and non-wasteful mechanisms, the

requirement that a mechanism or allocation respect priorities is equivalent to the require-

ment that it be stable. Since they are equivalent, we speak of an allocation being stable

rather than it respecting priorities and being individually rational and non-wasteful.

When priorities are strict (that is, they contain no ties between agents), ϕAOS exists

[Gale and Shapley, 1962]. However, when priorities contain ties, there may not exist a

single stable allocation that Pareto-improves every other stable allocation. Since ϕAOS

may not exist, a common approach to handling weak priorities is to use tie breakers to

form strict priorities. Let τ ≡ (τo)o∈O be a profile of linear orders over N , one for each

object. For each such τ , let %τ be the priorities tie broken by τ. That is, for each distinct

pair i, j ∈N , i �τo j if either (1) i �o j or (2) i ∼o j and i τo j. Let T be the set of all profiles of

tie breakers. Since there is an agent-optimal stable mechanism for strict priorities, given

% and τ ∈ T , we define the agent-optimal stable mechanism for the priorities tie broken

by τ as ϕAOSτ . These are the mechanisms studied by Abdulkadiroğlu et al. [2009].41

Ergin [2002] shows that, for strict priorities, unless they satisfy a restrictive condition

that he calls acyclicity, stability and efficiency are at odds. That is, unless priorities are

acyclic, ϕAOS is not Pareto-efficient. When priorities are weak, it is therefore clear that

arbitrarily breaking ties could cause Pareto-inefficiency. In fact, no matter how ties are

broken, the agent-optimal stable mechanism with tie broken priorities may select an al-

location that is Pareto-improvable by another stable allocation [Erdil and Ergin, 2008].

Furthermore, for certain priorities that permit a stable, group strategy-proof, and Pareto-

efficient mechanism, while for no τ ∈ T is ϕAOSτ Pareto-efficient [Ehlers and Erdil, 2010].

Since ϕAOSτ may not be Pareto-efficient, Abdulkadiroğlu et al. [2009] consider the

following question: for each τ ∈ T , is it possible to find a strategy-proof mechanism that

Pareto-improves ϕAOSτ? They show that the answer is negative. However, even if the

answer were positive, the allocations chosen by the Pareto-improving mechanism would

not be stable. The reason such a mechanism would pass muster here is that it Pareto-

improves a stable mechanism: ϕAOSτ . But as we have explained above, there is nothing

special about ϕAOSτ , other than strategy-proofness, when priorities are weak. In fact,

they may even select allocations that are Pareto-improved by other stable allocations.

In Alva and Manjunath [2017], we suggest justifying the choice of a mechanism on the

grounds that it Pareto-improves some stable allocation at each profile of preferences. Then

if an agent were to protest the violation of his priority at some object, we offer a move to

the Pareto-improved stable allocation so this protest would be moot: the agent would not

41 These ϕAOSτ correspond to what Abdulkadiroğlu et al. [2009] call deferred acceptance with multiple
tie-breaking.
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better off at this stable allocation.42 That is, by requiring the chosen mechanism to just

be stable-dominating rather than stable, we may enlarge the options for a strategy-proof

Pareto-improvement.

For strict priorities, since ϕAP S exists [Gale and Shapley, 1962], Corollary 2 implies

the following, which is stronger than the known result that ϕAOS is the only stable and

strategy-proof mechanism [Alcalde and Barberà, 1994].

Corollary 3. If % consists of strict priorities, then ϕAOS is the unique stable-dominating and
strategy-proof mechanism.

On the other hand, for weak priorities, there may be more than one stable-dominating

and strategy-proof mechanism. Nevertheless, Proposition 1 yields the following corol-

lary.

Corollary 4. Each stable-dominating and strategy-proof mechanism, including, for each
τ ∈ T , ϕAOSτ , is strategy-proofness-constrained Pareto-efficient. Furthermore, no two stable-
dominating and strategy-proof mechanisms are Pareto-connected.

While, for each τ ∈ T , ϕAOSτ is strategy-proofness-constrained Pareto-efficient,

ϕAOSτs are not the only stable and strategy-proof mechanisms, as Ehlers and Erdil [2010]

have shown. Corollary 4 extends the result of Abdulkadiroğlu et al. [2009] to all of these.

Beyond stability as fairness While we have focused on stability and stable-domination

as notions of fairness, our results allow us to draw conclusions about other fairness con-

cepts as well. Take for instance the legal set of allocations under strict priorities [Morrill,

2016], where only harmful and redressable priority violations are ruled out.43 The legal

set includes the stable set and always has a Pareto-worst member. Consequently, Theo-

rem 1 implies that ϕAOS is the unique strategy-proof selection from the legal set.

Corollary 5. If % consists solely of strict priorities, then ϕAOS is the unique strategy-proof
mechanism selecting from the legal set.

5.1.2 Recent Developments in Market Design

Having developed our main results in the general setting of Section 5.1, we consider

their application to some recent developments in the literature on market design.

42 See Dur et al. [2015] for recent work on algorithms that select from the stable-dominating set in a way
that only certain priorities are violated.

43 We refer the reader to Morrill [2016] for a formal definition.
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School choice with diversity constraints Public school districts are often concerned

not only about parental preferences but also about the composition of the student body

at each school, which they typically express using quotas and reserves. One can encode

“soft” quotas and reserves in size monotonic and substitutable choice functions [Hafalir

et al., 2013, Ehlers et al., 2014]. Since the student-proposing deferred acceptance mecha-

nism is actually the agent-optimal stable mechanism, our results from Section 5.1 apply.

The school-proposing deferred acceptance mechanism with these constructed choice func-

tions, which is actually the agent-pessimal stable mechanism, always picks the stable

matching that is closest to satisfying the diversity constraints amongst all stable alloca-

tions [Ehlers et al., 2014, Bó, 2016]. For some profiles, it violates strictly fewer constraints

than ϕAOS , but at the cost of strategy-proofness. Corollary 2 answers a natural question:

If we are willing to give up on stability in order to obtain fewer diversity constraint vi-

olations than ϕAOS , is there a strategy-proof mechanism that does at least as well as the

benchmark of ϕAP S in terms of student welfare? Since ϕAOS is strategy-proof and Pareto-

improves ϕAP S , by Corollary 2 it is the only candidate. The conclusion is that any attempt

to maintain the incentives of students without increasing diversity constraint violations

requires a redesign of the diversity objectives themselves.

Slot-specific priorities The slot-specific priorities framework [Kominers and Sönmez,

2016] is one way to handle applications where there are multiple policy objectives to

reconcile.44 In this framework, for capacity-based feasibility, each unit of an object can

be thought of as a slot and these slots can be apportioned among the various objectives

(or priorities). These priorities along with the precedence order over the slots—the order

in which the slots are filled—generate choice functions. These do not always permit an

agent-optimal stable mechanism, nor are they necessarily size monotonic. Nonetheless,

Kominers and Sönmez [2016] show that the cumulative offer mechanism is stable and

strategy-proof. Since the choice functions are not necessarily size monotonic, stability

need not imply non-wastefulness. So Corollary 2 does not apply immediately. Yet, the

proof technique that the authors use can be adapted to show that their mechanism is,

indeed, non-wasteful. So Theorem 1 applies.45 Therefore, the cumulative offer mech-

44 Take, for instance, the US Army’s problem of assigning cadets to branches [Sönmez and Switzer, 2013,
Sönmez, 2013]. There are two objectives to balance: prioritizing cadets on the basis of an “order-of-merit”
list on one hand, and increasing the years of service by prioritizing cadets willing to serve longer terms on
the other.

45 Their proof associates each instance of their model with a representative instance of the matching with
contracts model satisfying substitutability and size monotonicity. Since the cumulative offer mechanism
corresponds to a stable mechanism in the representation, and the representation preserves the feasible set
F , the cumulative offer mechanism is non-wasteful in the original economy.
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anism of Kominers and Sönmez [2016] is non-wasteful and is thus strategy-proofness-

constrained Pareto-efficient.46

Dynamic reserves Quotas and reserves discussed above are one way of accounting for

policy objectives—in particular, diversity—in matching problems. An alternative ap-

proach is to target a specific distribution of the various types of agents among the objects,

while specifying how to redistribute unused type-specific capacity when it is left over

[Westkamp, 2013, Aygün and Turhan, 2016]. These models are similar to the model with

slot-specific priorities, except that each slot’s capacity is endogenous. If there is only one

term under which an agent may be matched, under certain conditions on how slots’s ca-

pacities are redistributed, the choice function associated with each object is substitutable

and size monotonic [Westkamp, 2013]. Since this ensures existence of ϕAOS , Corollary 2

says that it is the unique stable-dominating and strategy-proof mechanism. If there are

multiple terms, under similar conditions on capacity redistribution, the cumulative offer

mechanism is stable and strategy-proof [Aygün and Turhan, 2016], even though ϕAOS

need not exist. As with the discussion of slot-specific priorities, Theorem 1 implies that

it is strategy-proofness-constrained Pareto-efficient.

Distributional constraints In some applications, there are distributional constraints

on allocations that are across objects, in addition to object specific constraints. An exam-

ple of such constraints features prominently in the way graduating medical students are

matched to residencies in Japan [Kamada and Kojima, 2015]: the country is divided into

various regions and the number of residents that can be matched to hospitals in each re-

gion is capped independently of the actual number of positions at each hospital. Kamada

and Kojima define a new strategy-proof and individually rational mechanism called flex-
ible deferred acceptance and show that it Pareto-improves the strategy-proof mechanism

that is currently in use, without violating the caps. They also consider the consequences

of varying the regional caps: tightening the cap for at least one region without loosen-

ing any of the others leads to a Pareto-worsening in the allocation made by the flexible

deferred acceptance mechanism. Thinking of flexible deferred acceptance with different

profiles of caps as different mechanisms, Theorem 2 thus tells us that such a tightening

of the caps leads, for every profile of preferences, to an expansion (in terms of set inclu-

sion) of the set of unmatched residents. Indeed, it tells us that this expansion is strict

46 Hatfield and Kominers [2014] provide completability conditions on choice functions that ensure that
the cumulative offer mechanism is stable and strategy-proof. Their proof technique is similar to that of
Kominers and Sönmez [2016]. By an argument similar to the one above, with substitutable and size mono-
tonic completability, the cumulative offer mechanism is strategy-proofness-constrained Pareto-efficient.
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for some profiles. This has an important implication for the match rate: the proportion

of medical students matched to some hospital. If the prior distribution over preference

profiles, from a policy maker’s point of view, has full support, then Theorem 2 allows us

to conclude that tightening the caps leads to a strict reduction in the expected match rate.

The purpose of these caps is to increase the number of residents matched to rural areas

by tightening the caps on other regions. So the above reasoning says that tightening the

caps in a way that increases the expected number of residents matched to a rural area is

accompanied by a greater decrease in the overall expected number of residents matched.

5.2 Reallocating Objects From an Endowment

Consider the model of Shapley and Scarf [1974]. Theirs is a classical object allocation

model where |O| = |N | and for each o ∈ O, qo = 1. Additionally, there is a reference

allocation ω, where ω(i) is agent i’s endowment.
The literature following Shapley and Scarf [1974] focuses on the subdomain of strict

preferences profiles such that each agent ranks each object above ∅. We denote this sub-

domain by P . It also takes individual rationality to mean that each agent receives an

object that he finds at least as desirable as his endowment. In this model, for each P ∈ P ,

the core consists of a single allocation [Roth and Postlewaite, 1977]. The core mechanism,

which selects this unique allocation, is actually the only mechanism that is strategy-proof,

Pareto-efficient, and individually rational in the sense of Pareto-improving ω [Ma, 1994,

Sönmez, 1999].

On the subdomain P , since ∅ is at the bottom of each preference relation, individ-

ual rationality according to our definition is vacuous: every allocation Pareto-improves

∅. Since |O| = |N |, the set of all permutations of the endowment across agents is non-

wasteful. Thus, on P , the no-trade mechanism, which always selects ω, is strategy-proof,

non-wasteful, and individually rational yet the strategy-proof core mechanism strictly

Pareto-improves it. This does not contradict Theorem 1 because P violates the richness

of outside options.

We expand our focus to a domain with rich outside options. That is, where an agent

may rank ∅ above any of the other objects, including his own endowment. On this

larger domain, Pareto-efficiency implies that each agent considers his assignment at least

as good as ∅—otherwise, disposing of the object leads to a Pareto-improvement. For

this domain, there are many strategy-proof and Pareto-efficient mechanism that Pareto-

improve ω.47 For the remainder of this section, we take individual rationality to mean

47 For instance, consider the hierarchical exchange mechanisms [Pápai, 2000] where each agent is at the
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Pareto-improving both ∅ as well as ω. As we show below, there are many rules that are

strategy-proof, individually rational, and participation-maximal, and therefore strategy-

proofness-constrained Pareto-efficient, but not fully Pareto-efficient.

Because the no-trade benchmark may not Pareto-improve ∅ on P , it is not individu-

ally rational. A better benchmark would allow an agent to discard his endowment. Of

course, this could be wasteful: i’s trash may be j’s treasure. Often, in such situations,

there are institutional rules that determine how these discarded resources are distributed

among other agents. For instance, fantasy sports leagues have “waivers”48 systems where

a waiver order over the “fantasy owners” is fixed beforehand and any players that the

owners discard (or “waive”) can be picked up by the remaining owners in this order. In

other situations—for instance, in the workplace—seniority serves such a purpose.

Suppose that we have a linear order over the agents, B, along with an endowment, ω.

The process described above can be formalized as Algorithm 1 in Online Appendix D. It

takes the endowment, preference profile, and order as arguments and returns an individ-

ually rational and non-wasteful allocation that Pareto-improves the endowment. If the

status quo is to use such a procedure, then any change to a new mechanism would have

to Pareto-improve it. Thus, we have a benchmark mechanism ϕω,B.

It turns out that there is a strategy-proof mechanism, ϕ, that Pareto-improves this

benchmark mechanism. We define it as follows. For each o ∈ O, let �̃o be a linear order

over N that agrees with B on all agents but ω(o) and ranks ω(o) above all other agents.

Consider the school choice problem associated with �̃. For each P ∈ P , let ϕ(P ) be the

agent-optimal stable allocation with regards to �̃.

Since ϕω,B can be computed using the object-proposing deferred acceptance algorithm

with regards to �̃, ϕ Pareto-improves it. However, ϕω,B is individually rational and non-

wasteful. So Theorem 1 says that ϕ is actually the only strategy-proof mechanism that

Pareto-improves ϕω,B. But these �̃ do not satisfy acyclicity [Ergin, 2002], so ϕ is not

Pareto-efficient. From this and Theorem 1, we have the following corollary.

Corollary 6. No Pareto-efficient and strategy-proof mechanism Pareto-improves ϕω,B.

Having extended the lower bound on agents’ welfare from the no-trade mechanism to

ϕω,B, we ended up with an impossibility result on P , which is in contrast with the results

on Pareto-improving ω for P .

Corollary 6 shows a novel type of application of Theorem 1: by showing the existence

of a strategy-proof but Pareto-inefficient mechanism that Pareto-improves the benchmark,

root of his endowment’s inheritance tree, modified by including branches labeled by ∅, and where agents
are allowed to point to ∅. See Pycia and Ünver [2016] for a more detailed discussion.

48 See, for instance, http://www.espn.com/fantasy/football/ffl/story?page=fflruleswaiverwalk.
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we establish the impossibility of a Pareto-efficient strategy-proof improvement.

5.3 Excludable Public Goods

In this section, we illustrate how to model excludable public goods in our framework.

We focus on a simple setting for expositional clarity, since our purpose is to highlight how

to apply our results to obtain novel insights. A thorough analysis of the efficient frontier

of strategy-proof mechanisms for a general excludable public goods model would use the

full power of our theorems, but would take us too far afield in the present study.

The following model is similar to that of Jackson and Nicolò [2004] and Cantala

[2004]. Suppose a public facility is to be located on the interval [0,1] and a set of users

chosen. The set of agents is partitioned into two sets: agents in NL live at 0 and agents

in NR live at 1. Each i ∈ N prefers to have the facility located as close to his own home

as possible. Furthermore, he is unwilling to travel beyond a certain threshold ti ∈ [0,1].

That is, if i lives at 0, then he is unwilling to travel to the right of ti and if he lives at 1,

then he is unwilling to travel to the left of ti . Since we know exactly how each agent ranks

the locations, the only private information for i is ti . So a preference profile is identified

by the threshold profile t. To satisfy no indifference with ∅, each i ∈ N prefers to travel

to ti and enjoy the facility over opting out. However, he prefers to opt out rather than

travel beyond ti . An allocation consists of two parts: the location of a public facility in the

interval [0,1] and the set of users. That is, F ≡ [0,1]× 2N . A mechanism maps threshold

profiles to allocations. It is dictatorial if it ignores the thresholds and always locates the

facility at 0 or always locates the facility at 1.

Even in this stark model, if we insist on strategy-proofness, individually rationality,

and Pareto-efficiency, then the only two options are the dictatorial mechanisms. Thus, the

requirement of Pareto-efficiency alongside strategy-proofness and individual rationality

precludes the possibility that any compromise is ever reached.

Remark 5. If a mechanism is strategy-proof, individually rational, and Pareto-efficient, then
it is dictatorial.49

Are there attractive mechanisms that compromise if we give up Pareto-efficiency?

Consider the following family of mechanisms that select a compromise location at some

threshold profiles. A one-sided unanimous compromise mechanism is defined by a compro-

mise x ∈ (0,1) and a side J ∈ {L,R}. If agents in J unanimously find x acceptable, then the

mechanism selects the location x. Otherwise, it selects the home location of the other side,

denoted K . The set of users is the set of agents willing to travel to the chosen location.

49See Appendix A.3 for a proof.
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Each one-sided unanimous compromise mechanism is individually rational by defi-

nition. It is also strategy-proof: only threshold reports of J are used to determine the

location, and it is clear that misreports can only hurt an agent in J , independently of oth-

ers’ reports. However, it is not Pareto-efficient: if every agent in K finds compromise x

unacceptable yet every agent in J finds it acceptable, then x is chosen by the mechanism,

even though the home location of agents in J would lead to a Pareto-improvement.

Note that when the chosen location is x, every agent in NJ participates. An agent in

NK who does not participate would do so only if the location were moved some distance

towards his home location. But this would make every member of NJ worse off. On the

other hand, if the chosen location is the home location of K , then any other location would

make members of NK worse off. Therefore, every one-sided compromise mechanism is

participation-maximal, so by Theorem 1, it is on the Pareto-frontier of strategy-proof

mechanisms.

Corollary 7. Each one-sided unanimous compromise mechanism is strategy-proofness-
constrained Pareto-efficient.

5.4 Transferable Utility

Here we consider the problem of making a social decision and assigning payments to

agents when preferences are quasilinear in payments. Consequently, there is indifference

with ∅. Nonetheless, the Participation-equivalence Lemma applies. Below we study its

implications.

SupposeD is a set of social decisions. At each δ ∈ D, the agents participating in δ are

N (δ). Let T ⊆R
N be the set of possible payment profiles. At each τ ∈ T , for each i ∈N ,

τi is the payment that i makes. Like Fi , letDi be the set of decisions that i participates in.

To fit this into our general model, an allocation in F is a pair (δ,τ) ∈ D × T . Further-

more, N (δ,τ) = N (δ). Since a non-participant consumes his outside option, we require

that for each i <N (δ), τi = 0—we relax this later.

We assume that each agent’s preferences are quasilinear in the payment that he makes.

Thus, for each i ∈ N , each Ri ∈ Ri is identified by a valuation vi ∈ RDi∪{∅}. Let i’s valu-
ation space Vi be the set of all possible valuations for i. Thus, i’s preference relation is

represented by vi(δ) − τi , where vi(δ) is the δth coordinate of vi if i ∈ N (δ) and the ∅th

coordinate otherwise. The set of all valuation profiles is V ≡ ×i∈NVi .
A mechanism in this context consists of two parts: a decision rule, d : V → D, and a

payment rule, t : V → T . If (d, t) is strategy-proof, we say that t implements d. If there is

a payment rule that implements d, then d is implementable. As defined, implementation
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says nothing about individual rationality. We define parallel concepts with this require-

ment added: t IR-implements d if (d, t) is not only strategy-proof but also individually

rational. In this case, we say that d is IR-implementable. If there is a unique payment

rule that IR-implements d, we say that d is uniquely IR-implementable.

Richness of outside options The richness condition that we described in Section 2 was

for preference relations over Fi ∪ {∅}. This condition would be met if, for instance, Vi
were such that for each vi ∈ Vi there were v′i ∈ Vi , such that the valuations of each of the

decisions were unchanged, but the valuation of the outside option were increased. That

is, for each κ > vi(∅), there is v′i such that v′i(∅) = κ and for each δ ∈ Di , v′i(δ) = vi(δ).50

With these concepts in hand, we have the following corollary of the Participation-

equivalence Lemma:

Corollary 8. Every IR-implementable decision rule is uniquely IR-implementable.

In fact we can say more than Corollary 8. For any pair of decision rules d and d′ that

are participation-equivalent, if t IR-implements d and t′ IR-implements d′, then (d, t) and

(d′, t′) are welfare-equivalent.

The decisions in D, since they may exclude some of the agents, may be thought of

as excludable public goods. An efficient decision rule maximizes the relative value of

the decision to its participants. Given v ∈ V , denote, for each i ∈ N and each δ ∈ D,

by uvi (δ) value of δ to i relative to being excluded. That is, uvi (δ) ≡ vi(δ) − vi(∅). Of

course, if i < N (δ), this means that uvi (δ) = 0. Interpreting vi(∅) as i’s opportunity cost of

participating, uvi (δ) is i’s valuation of δ net of this cost.

A decision rule d is efficient if, for each v ∈ V ,

d(v) ∈ argmax
δ∈D

∑
i∈N

uvi (δ).

In a context where the status quo is that each agent enjoys his outside option, an efficient

decision maximizes the total surplus over the status quo.

A pivotal payment rule is one that assigns a payment to each agent equal to the ex-

ternality that his participation imposes on the other agents. That is, given an efficient

50 We could state this with a bound on κ if there were a bound on valuations of the decisions in Di and
on the payments that i may make in T .
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decision rule d, t is a pivotal payment rule if, for each v ∈ V and each i ∈N ,

ti(v) ≡ max
δ∈D\Di


∑
j,i

uvj (δ)

−
∑
j,i

uvj (d(v)).

A pivotal payment rule is a particular instance of a Groves scheme [Groves, 1973]. So,

if d is an efficient decision rule and t is a corresponding pivotal payment rule, then (d, t)

is strategy-proof. For each v ∈ V and each i ∈ N , if i < N (d(v)), then t prescribes a zero

payment for i. Therefore, (d, t) is feasible. Finally, the efficiency of d ensures that (d, t) is

also individually rational. Thus, we have the following corollary.

Corollary 9. If d is efficient, then t IR-implements d if and only if it is a pivotal payment rule.

When we have neither the restriction that non-participants receive zero payments nor

the requirement of individual rationality, Groves schemes are the only ones to implement

efficient decision rules [Green and Laffont, 1977, Holmström, 1979]. For private goods

problems, pivotal rules are the only Groves schemes that are individually rational with-

out making payments to non-participants [Chew and Serizawa, 2007]. For pure public

goods, the counterpart of individual rationality requires that agents have no incentive

to free-ride. Substituting this property for individual rationality similarly characterizes

pivot rules [Moulin, 1986]. Corollary 9 neither implies nor is implied by existing char-

acterizations of the pivotal rule since our assumption that V satisfy richness of outside

options is logically independent from the domain assumptions made in existing results.

Corollary 8 is similar to revenue equivalence results which pin down the payment

rule for each agent, up to a function of others’ reported valuations [Holmström, 1979,

Chung and Olszewski, 2007, Heydenreich et al., 2009]. Unlike these results, it pins down

a unique payment rule. This uniqueness is driven by individual rationality and the re-

quirement that no payments be assigned to non-participants. We make this assumption

here in order to invoke the Participation-equivalence Lemma. While the assumption is

reasonable for many practical settings, we next relax it and show a revenue equivalence

result.

Allowing payments to non-participants Even if a non-participant may make a pay-

ment, the requirement that agents must participate voluntarily rather than exercising

their outside option is unchanged. So the definition of individual rationality is un-

changed: (δ,τ) ∈ F is individually rational if for each i ∈ N , vi(δ)− τi ≥ vi(∅). Of course,
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this implies that a non-participant never make a positive payment. That is, if (δ,τ) is

individually rational, then for each i <N (δ), τi ≤ 0.

We now define revenue equivalence as a property of a decision rule. Revenue equiv-
alence holds for d if two payment rules that both implement d (individually rationally

or not) differ, for each agent, by a function of others’ valuations. That is, if t and t′ both

implement d, then for each i ∈N there is a function hi : V−i →R such that for each v ∈ V ,

ti(v)− t′i(v) = hi(v−i).

Revenue equivalence is not guaranteed for every implementable decision rule. How-

ever, Proposition 2 states that it does hold for every IR-implementable decision rule.

Proposition 2. Revenue equivalence holds for every IR-implementable decision rule.

Chung and Olszewski [2007] provide a sufficient (and in some cases necessary) con-

dition on the valuation space to ensure revenue equivalence for every implementable de-

cision rule. Even when their condition is violated, V may still satisfy richness of outside

options. Thus, Proposition 2, by strengthening the hypothesis to IR-implementability,

still ensures revenue equivalence. On the other hand, Heydenreich et al. [2009] provide

a joint condition on the decision rule and the valuation space that is necessary and suffi-

cient for revenue equivalence to hold. Proposition 2 says that individual rationality and

richness of outside options, which are easy to check, are sufficient for their condition to

hold.

6 Conclusion

We proposed a general framework where agents have rich outside options and each

allocation relies on the participation of a particular set of agents. An individually rational

allocation is one where no participant has an incentive to walk away when it is chosen.

We introduced the property of participation-maximality, an important consideration in

many applications. If an allocation with this property admits an enlargement of the set

of participants, this is at the cost of harming some agent.

Taking individual rationality and participation-maximality as baseline requirements,

we considered the set of strategy-proof mechanisms. Our first result (Theorem 1) was

that there is at most one strategy-proof mechanism that meets or exceeds, in the Pareto

sense, the welfare level provided by a given individually rational and participation-

maximal benchmark mechanism. Thus, given such a benchmark, the requirement of

Pareto-improving it in a strategy-proof way eliminates all degrees of freedom from the

design problem.
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Digging deeper into the relationship between participation and welfare, we showed

that a Pareto comparison between two strategy-proof and individually rational mech-

anisms amounts to comparing the sets of participants (Theorem 2). One mechanism

strictly Pareto-improves another if and only if it strictly expands the set of participants

at some preference profiles and leaves them unchanged at the others. By connecting

the welfare ordering of strategy-proof and individually rational mechanisms with the

participation-expansion ordering, we identified that participation-maximality, with indi-

vidual rationality, is a sufficient condition for such a mechanism to be second best.

To show these results, we relied on the Participation-equivalence Lemma, which says

that the only freedom a designer has is in the selection of the participants at each profile

of preferences when choosing a strategy-proof and individually rational mechanism—

once that is done, the entire mechanism is pinned down in welfare terms. This has

consequences for the problem of making a social decision in the presence of transfers

and quasilinear preferences. For such problems, where a mechanism can be decomposed

into an decision rule and a payment rule, the decision rule determines the set of partic-

ipants. Adapting the argument of the lemma, we proved the following revenue equiv-

alence result: if a payment rule implements a decision rule in an individually rational

way, then any other payment rule that implements it—individually rationally or not—is

identical up to the payments of non-participants (Proposition 2). The take-away is that

the Participation-equivalence Lemma is a conceptual and technical analogue of revenue

equivalence for non-transferable utility settings.

As noted by Compte and Jehiel [2007, 2009], ex post voluntary participation has

strong implications even when strategy-proofness is weakened to Bayesian incentive com-

patibility. We leave for future research an extension of the ideas in this paper to stochastic

mechanisms and Bayesian implementation.

Appendices

A Proofs

A.1 Proofs from Section 4

Proof of Participation-equivalence Lemma . Let ϕ and ϕ′ be a pair of strategy-proof and in-

dividually rational mechanisms that are participation-equivalent. If they are not welfare-

equivalent, then there are R ∈ R and i ∈ N such that ϕi(R) Pi ϕ′i(R). Let α ≡ ϕ(R) and

32



β ≡ ϕ′(R).

Since both ϕ and ϕ′ are individually rational, we have α(i) Ri ∅ and β(i) Ri ∅. Since

α(i) Pi β(i) Ri ∅, we deduce that i ∈ N (α). By participation-equivalence of α and β,

i ∈N (β).

Since α(i) Pi β(i) Ri ∅, by richness of outside options, there is R′i ∈ Ri such that

(1) α(i) P ′i ∅ P
′
i β(i), and (2) for each γ ∈ Fi , if γ(i) R′i ∅ then γ(i) Pi β(i). Let γ ≡ ϕ(R′i ,R−i)

and γ ′ ≡ ϕ(R′i ,R−i).

Since ϕ is strategy-proof, γ(i) R′i α(i). Otherwise, i would have an incentive to misre-

port Ri if his true preferences relation were R′i . Thus, by definition of R′i , γ(i) P ′i ∅. So

i ∈ N (γ). Again, since ϕ and ϕ′ participation-equivalent, i ∈ N (γ ′). Since ϕ′ is individ-

ually rational, γ ′(i) R′i ∅. By definition of R′i , we know that γ ′(i) Pi β(i). This contradicts

the strategy-proofness of ϕ′ since i has an incentive to misreport his preference as R′i if

his true preference were Ri . Thus, ϕ and ϕ′ are welfare-equivalent.

It is noteworthy that the proof of the Participation-equivalence Lemma is at the level

of a single agent.

Proof of the Structure Lemma . We begin with the following claim.

Claim: For each pair α,β ∈ F , if α is individually rational and participation-

maximal and β Pareto-improves α, then N (α) = N (β) and β is individually rational and

participation-maximal as well.

Proof of claim: Since β Pareto-improves α, which is individually rational, for each

i ∈N , β(i) Ri α(i) Ri ∅. Thus β is individually rational.

For each i ∈ N (α), by no indifference with ∅, α(i) Pi ∅. Since β(i) Ri α(i), β(i) Pi ∅,

and so i ∈ N (β). Thus, N (α) ⊆ N (β). If N (α) ( N (β), then we contradict the assumption

that α is participation-maximal, since for each i ∈N (β) \N (α), by no indifference with ∅,

β(i) Pi α(i) = ∅. Therefore, N (β) =N (α).

Next, we show that β is participation-maximal. If it is not, there is γ ∈ F such

(1) N (β) ( N (γ) and (2) there is no i ∈ N , such that β(i) Pi γ(i). Since N (β) = N (α),

N (α) ( N (γ). Since preferences are transitive and β Pareto-improves α, there is no i ∈ N
such that α(i) Pi γ(i). This contradicts the participation-maximality of α. �

Suppose α,β ∈ F are individually rational, participation-maximal, and Pareto-

connected allocations. Then, there is a sequence of individually rational and

participation-maximal allocations,
(
αk

)K
k=0

, with α0 = α and αK = β, such that for each

k ∈ {1, . . . ,K}, either αk Pareto-improves αk−1 or vice versa. In either case, by the claim,

N (αk) =N (αk−1).
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Proof of Proposition 1. Consider a pair, ϕ and ϕ′, of strategy-proof, individually rational,

and participation-maximal mechanisms. If they are Pareto-connected, then by the Struc-

ture Lemma, they are participation-equivalent. Thus, by the Participation-equivalence

Lemma, they are welfare-equivalent.

Proof of Theorem 1. Follows from Proposition 1.

Proof of Theorem 2. We start with a pair of individually rational mechanisms ϕ and ϕ′

such that ϕ′ Pareto-improves ϕ. Thus, for each R ∈ R, and each i ∈ N , ϕ′i(R) Ri ϕi(R).

By individual rationality of ϕ and no indifference with ∅, if i ∈ N (ϕ(R)), then ϕi(R) Pi ∅,

so ϕ′i(R) Pi ∅. Thus, i ∈ N (ϕ′(R)). Since this holds at each R for each i ∈ N (ϕ(R)), ϕ′

participation-expands ϕ.

We now prove the converse for strategy-proof and individually rational mechanisms

even if there is indifference with ∅. If ϕ′ participation-expands ϕ but does not Pareto-

improve it, then there are i ∈ N and R ∈ R such that α(i) ≡ ϕi(R) Pi ϕ′i(R) ≡ β(i). By

individual rationality of ϕ′, β(i) Ri ∅.

By richness of outside options, there is R′i ∈ Ri such that (1) α(i) P ′i ∅ P ′i β(i), and

(2) for each γ ∈ Fi , if γ(i) R′i ∅ then γ(i) Pi β(i). Let γ ≡ ϕ(R′i ,R−i) and γ ′ ≡ ϕ′(R′i ,R−i).
The reasoning from the proof of the Participation-equivalence Lemma shows that i ∈

N (γ). Since N (γ ′) ⊇ N (γ), i ∈ N (γ ′). The remainder of the proof proceeds just as that of

the Participation-equivalence Lemma.

Example demonstrating Remark 2. Consider an object allocation problem with N ≡
{i1, i2, i3, . . . } and O ≡ {a,b,c, . . . }. Suppose that T is a singleton, |N | ≥ 3, |O| ≥ 3, for each

o ∈O, Fo = {{i} : i ∈N } ∪ {∅}, F is Cartesian, and the preferences are strict.

Consider the benchmark mechanism, ϕ, defined by setting, for each P ∈ P ,

ϕ
i1

(P ) = Pi1-max(O \ {a}).51

ϕ
i2

(P ) =

 Pi2-max(O \ϕ
i1

(P )) if ϕ
i1

(P ) , c or

Pi2-max(O \ (ϕ
i1

(P )∪ϕ
i3

(P ))) otherwise

ϕ
i3

(P ) =

 Pi3-max(O \ (ϕ
i1

(P )∪ϕ
i2

(P ))) if ϕ
i1

(P ) = c or

Pi3-max(O \ϕ
i1

(P )) otherwise

and for k > 3,

ϕ
ik

(P ) = Pik-max(O \ (ϕ
i1

(P )∪ · · · ∪ϕ
ik−1

(P )))
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In words, this mechanism assigns to i1 his most preferred object except for a. The re-

maining objects are distributed among the remaining agents sequentially in the order i2,

i3, i4, . . . if i1 is not assigned c. The places of i2 and i3 are swapped if i1 is assigned c. Since

i1 is barred from receiving a, this mechanism is not participation-maximal: at each P ∈ P
such that, for each i ∈N \ {i1},∅ Pi a and, for each o ∈O \ {a}, a Pi1 ∅ Pi1 o, ϕ

i1
(P ) = ∅ and a

is not assigned to anyone, so ϕ is not participation-maximal.

While it may be possible to find a strategy-proof mechanism that Pareto-improves ϕ,

we show that no such mechanism is participation-maximal. Thus, there is a strategy-

proof mechanism that cannot be Pareto-improved by another strategy-proof mechanism

but is not participation-maximal.

To prove this claim, suppose that ϕ is participation-maximal and Pareto-improves ϕ.

Consider P ∈ P as follows:

Pi1 Pi2 Pi3 and for k > 3, Pik
a b b ∅

∅ a ∅

...

By definition of ϕ, we have ϕ
i2

(P ) = b, and for each i ∈ N \ {i2}, ϕi(P ) = ∅. Since ϕ

Pareto-improves ϕ and ϕ is participation-maximal, ϕi1(P ) = a, ϕi2(P ) = b, and, for each

i ∈N \ {i1, i2}, ϕi(P ) = ∅.

Now consider P ′i1 ∈ Pi1 as follows:

P ′i1
a

c
...

By definition of ϕ, we have ϕ
i1

(P ′i1 , P−i1) = c, ϕ
i2

(P ′i1 , P−i1) = a, ϕ
i3

(P ′i1 , P−i1) = b, and for each

i ∈N \{i1, i2, i3}, ϕi(P
′
i1
, P−i1)) = ∅. Since this allocation is Pareto-efficient at (P ′i1 , P−i1) and ϕ

Pareto-improves ϕ, ϕ(P ′i1 , P−i1) = ϕ(P ′i1 , P−i1). But then ϕi1(Pi1 , P−i1) = a P ′i1 c = ϕi1(P ′i1 , P−i1),

so ϕ is not strategy-proof.

We conclude that no strategy-proof mechanism that Pareto-improves ϕ is

participation-maximal.

Actually, ϕ in the above example is group strategy-proof. Since no participation-

maximal strategy-proof mechanism Pareto-improves it, there is a group strategy-

51 Given Pi ∈ Pi and A ⊆O, we denote the best element of A according to Pi by Pi-max(A).
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proof mechanism on the strategy-proofness-constrained Pareto frontier that is not

participation-maximal.

While ϕ does not satisfy participation-maximality, it does satisfy a range-based non-

wastefulness condition: there is no allocation in its range that Pareto-improves on the

chosen allocation in a way that assigns an object to more agents. However, this is a very

weak property—even the constant mechanism that always selects ∅ satisfies it—that does

not guarantee that a mechanism is strategy-proofness-constrained Pareto-efficient.

A.2 Proofs from Section 5.1

Proof of first statement in Remark 3. If µ ∈ F is non-wasteful but not participation-

maximal, then there is ν ∈ F such that N (ν) )N (µ) and for each i ∈N , ν(i) Ri µ(i). By no

indifference with ∅, for each i ∈N (ν) \N (µ), ν(i) Pi µ(i) = ∅. Finally, since |N (ν)| > |N (µ)|,
there is o ∈O such that |ν(o)| > |µ(o)|. Thus, µ is wasteful.

Example demonstrating second statement in Remark 3. Let T be a singleton, O =

{o1, o2},N = {i1}, Fo1
= Fo2

= {∅, {i1}}, and F be Cartesian. Consider R ∈ R such that

o1 Ri1 o2 Ri2 ∅. Let µ ∈ F be such that µ(i1) = o2. Since N (µ) = N , it is participation-

maximal. However, consider ν ∈ F such that ν(i1) = o1. Since ν(i1) Pi1 µ(i1) and

1 = |ν(o1)| > |µ(o1)| = 0, µ is wasteful.

We now provide an example showing that without any assumptions on choice corre-

spondences, even if they are single-valued, stability may not imply non-wastefulness.

Example 1. There may be a stable allocation that is not participation-maximal.
Let N ≡ {i1, i2}, T ≡ {t1, t2}, O ≡ {o}, and X(o) ≡ {(i1, o, t1), (i1, o, t2), (i2, o, t1)}. Let Co

be such that for each Y ⊆ X(o), if (i1, o, t1) ∈ Y then Co(Y ) = {(i1, o, t1)} and otherwise

Co(Y ) = {Y }. Let R ∈ R be such that (i1, o, t2) Pi1 (i1, o, t1) Pi1 ∅ while (i2, o, t1) Pi2 ∅. Let

µ ≡ {(i1, o, t1)} ∈ F . Then µ is stable at R. However, it is not participation-maximal as there

is ν ≡ {(i1, o, t2), (i2, o, t1)} ∈ F , which makes every agent better off and i2 <N (ν) \N (µ).

Notice that Co in Example 1 is not size monotonic, though it satisfies IRC and substi-

tutability.

Before showing that stability implies non-wastefulness under the assumptions of size

monotonicity and idempotence, we start with a definition and a lemma. For each P ∈ P ,

each µ ∈ F , and each o ∈ O, let Y
µ
o (P ) be the triples in X(o) that are associated with

an agent who prefers it to what he is assigned at µ. That is, Y
µ
o (P ) ≡ {x ∈ X(o) : x PN (x)

µ(N (x))}.
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Lemma 4. Let C be size monotonic and idempotent. For each P ∈ P , each stable µ ∈ F , each
o ∈O, each finite Y ⊆ Y µo (P ), and each Z ∈ Co(µ(o)∪Y ), |Z | = |µ(o)|.

Proof. We proceed by induction over subsets of Y
µ
o (P ). Let Y ⊆ Y µo (P ).

For the base case, where Y = ∅, since µ(o) ∈ range(Co), by idempotence of C, µ(o) ∈
C0(µ(o)∪Y ) and by size monotonicity of C, for each Z ∈ Co(µ(o)), |Z | = |µ(o)|.

As an induction hypothesis, assume that for each Y ′ ( Y and each Z ∈ Co(µ(o)∪ Y ′),
|Z | = |µ(o)|. Equivalently, for each T ⊆ µ(o)∪Y such that Y * T , for each Z ∈ Co(µ(o)∪ T ),

|Z | = |µ(o)|.
The induction step is to show that, for each Z ∈ Co(µ(o) ∪ Y ), |Z | = |µ(o)|. Let

Z ∈ Co(µ(o) ∪ Y ). By idempotence of C, Z ∈ Co(Z). Thus, since Z ⊆ µ(o) ∪ Z, by size

monotonicity of C,

for each Z ′ ∈ Co(µ(o)∪Z), |Z | ≤ |Z ′ |. (1)

By stability of µ, either Y * Z or µ(o) ∈ Co(µ(o)∪ Y ). If µ(o) ∈ Co(µ(o)∪ Y ), then by size

monotonicity of C, for each Z ∈ Co(µ(o)∪Y ), |Z | = |µ(o)|, concluding the proof.

Thus, we consider the case where Y * Z. By the induction hypothesis, since Y * Z,

for each Z ′ ∈ Co(µ(o)∪Z), |Z ′ | = |µ(o)|. (2)

By (1) and (2), |Z | ≤ |µ(o)|. Since µ ∈ F , by idempotence of C, µ(o) ∈ Co(µ(o)). Thus,

since Z ∈ Co(µ(o) ∪ Y ), by size monotonicity of C, |µ(o)| ≤ |Z |. Then, we conclude that

|Z | = |µ(o)|.

Proof of Lemma 3. Suppose that µ is wasteful. Then there are o ∈ O and ν ∈ F such that

|ν(o)| > |µ(o)| and, for each y ∈ ν(o) \ µ(o), y PN (y) µ(N (y)). Let Y ≡ ν(o) \ µ(o). Since Y ⊆
Y
µ
o (P ) and Y is finite, by Lemma 4, for each Z ′ ∈ Co(µ(o)∪Y ), |Z ′ | = |µ(o)|. However, ν(o) ⊆
µ(o)∪ Y . So by size monotonicity of C, for each Z ∈ Co(ν(o)) and each Z ′ ∈ Co(µ(o)∪ Y ),

|Z | ≤ |Z ′ | = |µ(o)|. Since ν ∈ F , ν ∈ Fo = range(Co). So by idempotence of C, ν(o) ∈ Co(ν(o)).

Thus, |ν(o)| ≤ |µ(o)|. This contradicts the definition of ν.

Proof of Remark 4. Let µ be stable with respect to C. By definition of stability it is individ-

ually rational. Since C is size monotonic and idempotent, by Lemma 3, µ is non-wasteful.

If it violates priorities, there are a pair i, j ∈ N and o ∈ O such that µ(i) = o, o Pj µ(j), and

j �o i. Since µ is non-wasteful, |µ(o)| = qo. Since j �o i, Co(µ(o)∪ {j}) = {(µ(o) \ {i})∪ {j}}.
This contradicts the stability of µ.

Suppose that µ is individually rational, non-wasteful, and respects priorities. If it is

not stable, then there are o ∈ O and Y ⊆ N \ µ(o) such that for each i ∈ Y , o Pi µ(i) and

(1) Y ⊆ Z for some Z ∈ Co(µ(o) ∪ Y ) and (2) µ(o) < Co(µ(o) ∪ Y ). Since, for each i ∈ Y ,
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o Pi µ(i), and µ is non-wasteful, |µ(o)| = qo. Thus, for each Z ∈ Co(µ(o) ∪ Y ), |Z | = |µ(o)|.
Since µ(o) < Co(µ(o)∪Y ), there are i ∈ Y and j ∈ µ(o) such that i �o j. This contradicts the

assumption that µ respects priorities.

A.3 Proofs from Section 5.3

Proof. If the highest threshold for an agent in NL is strictly lower than the lowest thresh-

old for an agent in NR, no compromise is possible. Let l1, . . . , lk be the agents in NL and let

r1, . . . , rn−k be the agents in NR.

Suppose that ϕ is strategy-proof, individually rational, and Pareto-efficient. If no

compromise is possible at t, then Pareto-efficiency and individual rationality require that

ϕ(t) is either (0,NL) or (1,NR). Suppose that it is (0,NL). The argument is symmetric if it

is (1,NR).

Step 1: For every t′ such that no compromise is possible, ϕ(t′) = (0,NL).
For each i ∈NL, let ti = 0. Since ϕ(t) = (0,NL), by strategy-proofness, Pareto-efficiency,

and individual rationality, ϕ(tl1 , t−l1) = (0,NL). Otherwise, if ϕ(tl1 , t−l1) = (x,S) for some

x > 0 or if l1 < S, then l1 benefits by reporting t1 when his true threshold is tl1 . Fur-

thermore, by Pareto-efficiency, NL ⊆ S and by individual rationality, since 0 is below the

threshold for each member of NR, S = NL. Repeating the argument, we replace, for each

member of NL, his threshold by 0 to conclude that ϕ(tNL , tNR) = (0,NL). By a similar argu-

ment we replace, one at a time, the threshold of each agent in NR at the profile (tNL , tNR)

by his threshold at t′ to see that ϕ(tNL , t
′
NR

) = (0,NL). Again, by a similar argument we

replace, one at a time, the threshold of each agent in NL at the profile (tNL , t
′
NR

) by his

threshold at t′ to conclude that ϕ(t′) = (0,NL).

Step 2: If t is such that the threshold of each member of NL is 0, then ϕ(t) = (0,S) where
NL ⊆ S.

By Step 1, if t̂NR is such that the threshold of each agent in NR is greater than 0, then

ϕ(tNL , t̂NR) = (0,NL).

Let tNR be such that the threshold of each agent in NR is 0. We will first show

that that replacing, one by one, the threshold of each member of NR at the profile

(tNL , t̂NR) with his threshold at tNR does not move the chosen location from 0. Starting

with r1, we claim that by strategy-proofness, individual rationality, and Pareto-efficiency,

ϕ(tNL , tr1 , t̂NR\{r1}) = (0,NL ∪ {r1}). Suppose that ϕ(tNL , tr1 , t̂NR\{r1}) = (x,S). By Pareto-

efficiency, r1 ∈ S. If x > 0, let txr1 ∈ (0,x). Then, by Step 1, ϕ(tNL , t
x
r1 , t̂NR\{r1}) = (0,NL)

since there is there is no compromise. Then, when r1’s true threshold is txr1 , he gains by

reporting tr1 instead, contradicting strategy-proofness. Thus, x = 0. By individual ratio-
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nality and Pareto-efficiency, S = NL ∪ {r1}. Repeating this argument for each agent in NR,

we reach the desired conclusion of this step of the proof.

Step 3: For every t, ϕ(t) = (0,NL ∪ {i ∈NR : ti = 0})
Let tNL be such that the threshold of each agent inNL is 0. By Step 2, ϕ(tNL , tNR) = (0,S)

where NL ⊆ S. Replacing, one by one, the thresholds of each agent in NL at (tNL , tNR) with

his threshold at t as in the argument of Step 1, we reach the desired conclusion.

A.4 Proofs from Section 5.4

We start with a piece of notation: Given vi ∈ Vi and κ > vi(∅), let χ(vi ,κ) ∈ Vi be

such that it increases the valuation of ∅ from vi(∅) to κ, leaving the other valuations

unchanged. By the richness of outside options, χ(vi ,κ) exists in Vi .
Our first lemma is to show that if an implementable decision rule is IR-implementable,

then regardless of other agents’ valuations, there is a report for each agent that ensures

his non-participation.

Lemma 5. If d is IR-implementable, then for each v ∈ V and each i ∈ N there is v′i ∈ Vi such
that i <N (d(v′i ,v−i)).

Proof. Suppose that t IR-implements d. If i < N (d(v)), we are done. Otherwise, let κ >

vi(d(v))−ti(v). Let v′i ≡ χ(vi ,κ). By individual rationality, v′i(d(v′i ,v−i))−ti(v
′
i ,v−i) ≥ κ. If i ∈

N (d(v′i ,v−i)), then by definition of v′i , v
′
i(d(v′i ,v−i)) = vi(d(v′i ,v−i)). This violates strategy-

proofness since vi(d(v′i ,v−i))− ti(v
′
i ,v−i) ≥ κ > vi(d(v))− ti(v). Thus, i <N (d(v′i ,v−i)).

The next lemma states that if t implements d then, given the valuations of other

agents, then t assigns an agent the same payment for each of his possible reports that

result in his non-participation. Note that this is vacuously true if every agent partic-

ipates at every profile of valuations, in which case the decision rule would not be IR-

implementable.

Lemma 6. If t implements d, then for each v ∈ V , each i ∈ N , and each v′i ∈ Vi , such that
i <N (d(v)) and i <N (d(v′i ,v−i)), we have ti(v′i ,v−i) = ti(v).

Proof. Suppose that ti(v′i ,v−i) , ti(v). Without loss of generality, say ti(v′i ,v−i) < ti(v).

Combining this with vi(d(v)) = vi(∅) = vi(d(v′i ,v−i)), we have vi(d(v))−ti(v) < vi(d(v′i ,v−i))−
ti(v′i ,v−i). This contradicts the strategy-proofness of (d, t).

The remainder of the proof is similar to the proof of the Participation-equivalence

Lemma. The main difference is that we do not directly appeal to individual rational-

ity. Instead, we appeal to the above stated lemmas. The first step is to prove that if
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we pin down the payments of non-participants at a strategy-proof mechanism, then we

have pinned down the payment rule entirely. The logic is very similar to Participation-

equivalence Lemma.

Lemma 7. If both t and t′ implement d and for each v ∈ V and each i < N (d(v)), ti(v) = t′i(v),
then t = t′.

Proof. If t , t′ then there are v ∈ V and i ∈ N (d(v)) such that ti(v) , t′i(v). Without

loss of generality, suppose that ti(v) < t′i(v). By Lemma 5, there is v̂i ∈ vi such that

i < N (d(v̂i ,v−i)). Let t̂i ≡ ti(v̂i ,v−i) = t′i(v̂i ,v−i). Define κ ≡ vi(d(v)) − ti(v)+t′i (v)
2 + t̂i and let

v′i ≡ χ(vi ,κ).

Consider d(v′i ,v−i). If i <N (d(v′i ,v−i)) then by Lemma 6, ti(v′i ,v−i) = t̂i . So v′i(d(v′i ,v−i))−
ti(v′i ,v−i) = κ−t̂i . However, by definition of κ and v′i , κ−t̂i < v

′
i(d(v))−ti(v). This contradicts

strategy-proofness of (d, t), since v′i(d(v′i ,v−i)) − ti(v
′
i ,v−i) = κ − t̂i < v′i(d(v)) − ti(v). Thus,

i ∈N (d(v′i ,v−i)).

By strategy-proofness of (d, t′), we have v′i(d(v′i ,v−i))− t
′
i(v
′
i ,v−i) ≥ κ− t̂i = v′i(d(v̂i ,v−i))−

t′i(v̂i ,v−i). By definition of κ and v′i , vi(d(v′i ,v−i)) − t
′
i(v
′
i ,v−i) = v′i(d(v′i ,v−i)) − t

′
i(v
′
i ,v−i) =

κ − t̂i > vi(d(v)) − t′i(v). This violates the strategy-proofness of (d, t′). Thus, t′ does not

implement d.

Finally, we show that adding a function of others’ payments to each agent’s payment

does not compromise strategy-proofness.

Lemma 8. Suppose that t implements d. For each i ∈ N , let hi : V−i → R. If t′ is such that for
each v ∈ V and i ∈N , t′i(v) = ti(v) + hi(v−i), then t′ also implements d.

Proof. If (d, t′) is not strategy-proof, then there are v ∈ V , i ∈ N , and v′i ∈ Vi such that

vi(d(v)) − t′i(v) < vi(d(v′i ,v−i)) − t
′
i(v
′
i ,v−i). Adding hi(v−i) to either side of this inequality,

vi(d(v)) − ti(v) < vi(d(v′i ,v−i)) − ti(v
′
i ,v−i). This contradicts the strategy-proofness of (d, t).

Proof of Proposition 2. Let t be the payment rule that IR-implements d with the least pay-

ment to non-participants. By Lemmas 7 and 8, for any other t that implements d, the

difference in payments to the non-participants is a function of others’ valuations and is

the difference between ti and ti .

B On the Preference Domain Assumptions

The two assumptions, no indifference with ∅ and richness of outside options, are

required for different parts of our results. The following table summarizes where each
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plays a role.

Theorem 1
Theorem 2 (A)

Pareto⇒ Participation

Theorem 2 (B)

Pareto⇐ Participation

Richness Required Not required Required

No indifference Required Required Not required

We present below counterexamples demonstrating a failure of the result without the

corresponding assumption.

Example 2. Failure of Theorem 1 and Theorem 2 (A) without the no indifference with ∅

assumption.
Let N ≡ {i1, i2} and F ≡ {α,β} such that N (α) = {i1} and N (β) = {i2}. Then, i2 identifies

α with ∅, and i1 identifies β with ∅. Let Ri1 consist only of Ri1 and let Ri2 consist of Ri2
and R′i2 , defined below.

Ri1 Ri2 R′i2
α β β,∅

∅ ∅

These preference domains trivially satisfy richness of outside options.

Consider ϕ that always selects β. That is, ϕ(Ri1 ,Ri2) = ϕ(Ri1 ,R
′
i2

) = β. It is strategy-

proof, individually rational, and participation-maximal. Let ϕ′ be the mechanism that

selects β if i2 prefers it to ∅, but α when i2 is indifferent. That is, ϕ(Ri1 ,Ri2) = β and

ϕ(Ri1 ,R
′
i2

) = α. Not only is ϕ′ strategy-proof and individually rational, but it also strictly
Pareto-improves ϕ.

Thus, in contrast to Theorem 1, we have a strategy-proof, individually rational, and

participation-maximal mechanism (ϕ) that is strictly Pareto-improved by a strategy-

proof mechanism (ϕ′). Furthermore, in contrast to Theorem 2 (A), we have that,

without the no indifference with ∅ assumption, Pareto-improvement does not imply

participation-expansion.

The failure of Theorem 1 without the richness of outside options assumption is easy to

see by considering the model of Shapley and Scarf [1974], where richness fails because not

receiving an object is always ranked at the bottom. The core mechanism strictly Pareto-

improves the no-trade mechanism but both are strategy-proof, individually rational, and

participation-equivalent.

We provide a simple example showing the failure of Theorem 2 (B).

Example 3. Failure of Theorem 2 (B) without richness of outside options.
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Let N ≡ {i1, i2} and F ≡ {α,β,γ} such that N (α) = {i1, i2}, N (β) = {i1}, and N (γ) = ∅.
Then, i2 identifies both β and γ with ∅ and i1 identifies only γ with ∅. Let Ri1 consist of

Ri1 , R′i1 , and R′′i1 and Ri2 consist of Ri2 and R′i2 , defined below.

Ri1 R′i1 R′′i1 Ri2 R′i2
α β α α ∅

β α ∅ ∅ α

∅ ∅ β

Let ϕ1 and ϕ2 be such that for each R ∈ R,

ϕ1(R) =


α if α Pi2 ∅

β if ∅ Pi2 α and β Pi1 ∅

γ otherwise

and

ϕ2(R) =


β if β Pi1 α

α otherwise if α Pi1 ∅ and α Pi2 ∅

γ otherwise.

Both ϕ1 and ϕ2 are strategy-proof, individually rational, and Pareto-efficient. Nonethe-

less, ϕ1 participation-expands ϕ2, so Theorem 2 (B) does not hold. Notice that both

agents’ preferences satisfy no indifference with ∅, but i1’s preferences fail the require-

ment of rich outside options: conditional on i1 preferring β to α, he prefers α to ∅.

C Multiple Strategy-proof and Stable Mechanisms with-

out IRC

We provide an example of a capacity-based setting where the ranking according to

which agents are chosen depends upon the agents being compared.

Consider a situation where there are two positions for teachers at one school o. There

are four candidates N ≡ {m1,m2,p1,p2}. There is only one term each teacher can be hired

under, so T is a singleton. Let Co be a single-valued choice correspondence described by

the following process. Two of the teachers, m1 and m2, specialize in math and the other

two, p1 and p2, specialize in physics. The math teachers are able to teach physics but

not as well as the physics teachers and vice versa. As overall teachers, m2 is the best,

followed by p1, m1, and p2, in that order. If more math specialists are being considered
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than physics specialists, then the math faculty are more likely to weigh in, so the positions

are filled according to how good the candidates are as math teachers. Vice versa if there

are more physics specialists. If there are equal numbers of math and physics specialists,

the candidates are compared based on their overall teaching ability.

Below, the boxed elements show the choices from each set of candidates.

{m1, m2,p1 ,p2}

{ m1,m2 ,p1} { m1,m2 ,p2} {m1, p1,p2 } {m2, p1,p2 }

{ m1,m2 } { m1,p1 } { m2,p1 } { m1,p2 } { m2,p2 } { p1,p2 }

{ m1 } { m2 } { p1 } { p2 }

Though C satisfies our assumptions of size monotonicity and idempotence, it violates

IRC.

For each S ⊆N such that |S | ≤ 2, let µS ∈ F be such that it assigns agents in S to o and

leaves the others unassigned. That is, µS(o) = S and for each i ∈N \ S,µS(i) = ∅. For each

P ∈ P , let G(P ) ≡ {i ∈N : o Pi ∅}.
Consider the mechanism ϕ defined by setting, for each P ∈ P ,

ϕ(P ) ≡


µ{m1,m2} if {m1,m2} ⊆ G(P ),

µ{p1,p2} if {p1,p2} ⊆ G(P ) and {m1,m2} * G(P ),

µG(P ) otherwise.

Claim 1. ϕ is strategy-proof and stable.

Proof. We first establish that ϕ is stable by considering four cases.

Case 1: m1,m2 ∈ G(P ). Then ϕ(P ) = µ{m1,m2}. Regardless of whether p1,p2 ∈ G(P ), there is

no Y ⊆ G(P ) \ {m1,m2} such that Y ⊆ Co(µ{m1,m2} ∪Y ). Thus, ϕ(P ) is stable.

Case 2: m1 < G(P ) but m2 ∈ G(P ). If p1,p2 ∈ G(P ), then ϕ(P ) = µ{p1,p2}. Since

Co({m2,p1,p2}) = {p1,p2}, ϕ(P ) is stable. Otherwise, ϕ(P ) = µG(P ) and each agent receives

his top choice. Thus ϕ(P ) is stable.

Case 3: m1 ∈ G(P ) but m2 < G(P ). This is symmetric to Case 2.

Case 4: m1,m2 < G(P ). Since, ϕ(P ) = µG(P ) and each agent receives his top choice, ϕ(P ) is

stable.

To show that ϕ is strategy-proof, we again consider the same four cases.
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Case 1: m1,m2 ∈ G(P ). Then ϕ(P ) = µ{m1,m2} and neither m1 nor m2 can benefit by mis-

reporting his preferences. Regardless P{p1,p2}, ϕ selects µ{m1,m2} so neither of p1 or p2 can

benefit by misreporting his preference either.

Case 2: m1 < G(P ) but m2 ∈ G(P ). If p1,p2 ∈ G(P ), then ϕ(P ) = µ{p1,p2}, so neither p1 nor

p2 benefits by misreporting and since ϕ selects µ{p1,p2} regardless of m2’s preference, he

has no incentive to misreport either. Otherwise, ϕ(P ) = µG(P ) and no agent can benefit by

misreporting since he receives his top choice.

Case 3: m1 ∈ G(P ) but m2 < G(P ). This is symmetric to Case 2.

Case 4: m1,m2 < G(P ). Since ϕ(P ) = µG(P ), no agent can benefit by misreporting since he

receives his top choice.

Now, consider the mechanism ϕ′ defined by setting, for each P ∈ P ,

ϕ′(P ) ≡


µ{p1,p2} if {p1,p2} ⊆ G(P ),

µ{m1,m2} if {m1,m2} ⊆ G(P ) and {p1,p2} * G(P ),

µG(P ) otherwise.

Since it is symmetric to ϕ, ϕ′ is also strategy-proof and stable. In fact, both of these

mechanisms are group strategy-proof. Neither of these mechanisms is generated by a

cumulative offer algorithm [Hatfield and Milgrom, 2005], which, regardless of the order,

outputs the unstable allocation µ{m2,p1} for each P ∈ P such that G(P ) =N .

D Waiver Algorithm

The procedure “WaiverOrder” (Algorithm 1) takes as input an endowment, ω, a pref-

erence profile, P , and a linear order (the waiver order) over the agents, D. The output is

a non-wasteful allocation where agents drop and pick up available objects in the order of

D, starting from ω.

E On Non-wastefulness

Extending non-wastefulness We present two examples that illustrate challenges to ex-

tending the non-wastefulness definition of Balinski and Sönmez [1999] beyond the school

choice model, even within object allocation.

Example 4. Feasibility not capacity-based.
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Algorithm 1 Procedure to waive and pick up objects on waivers

1: procedure WaiverOrder(ω,P ,D)
2: µ = ∅

3: for i ∈N do

4: µ(i) =
{
ω(i) if ω(i) Pi ∅
∅ otherwise

5: A = {o ∈O : µ(o) = ∅} . Set of unassigned objects.
6: while µ is wasteful at P do
7: for i = first in D to i = last in D do
8: for a ∈ A do
9: if a Pi µ(i) then

10: A = (A \ a)∪µ(i) . Remove a from and add µ(i) to A.
11: µ(i) = a . Assign a to i.
12: go to 7
13: return µ

Let T be a singleton, O ≡ {o}, N ≡ {i1, i2, i3}, and Fo ≡ {∅, {i1}, {i2}, {i3}, {i2, i3}}. Consider

P ∈ P as follows:
Pi1 Pi2 Pi3
o o o

∅ ∅ ∅

What is the “capacity” of o? The largest set of agents that may consume o contains two

elements while the smallest non-trivial set contains only one. If we naı̈vely extend non-

wastefulness by setting the capacity of o to be two, then allocating it to i1 would be waste-

ful, even though this is the only allocation where i1 receives his top choice. On the other

hand if we set the capacity of o to be one, then allocating it to i2 alone would not be

wasteful even though o could be assigned to i3 as well. Neither of these is sensible. Thus,

non-wastefulness cannot be extended in a way that relies on a fixed capacity for each

object.

Example 5. Complementarities in feasibility.
Let T be a singleton, O ≡ {o1, o2}, N ≡ {i1, i2}, Fo1

≡ {∅, {i1, i2}}, Fo2
≡ {∅, {i1}, {i2}}, and F

be Cartesian (though not capacity-based). Consider P ∈ P as follows:

Pi1 Pi2
o1 o2

o2 o1

∅ ∅
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There are two allocations of interest. The first assigns o1 to both agents. This is the only

allocation where i1 receives his top choice. The second assigns ∅ to i1 and o2 to i2. This

is the only allocation where i2 receives his top choice. At either of these allocations there

is an agent who prefers the unallocated object to what he receives. However, the only

way he can be assigned this unallocated object is by making the other agent worse off. A

sensible definition of non-wastefulness, in the general setting, should not rule either of

these allocations out.

Though there is no fixed notion of capacity, as demonstrated by Example 4, non-

wastefulness should seek to ensure that each object is utilized to the greatest extent pos-

sible. Yet, as demonstrated by Example 5, it should take care to ensure that increasing the

utilization of an object by allocating it to agents who prefer it does not harm other agents.

Our definition of wastefulness summarizes the discussion above. Given P ∈ P , µ ∈ F
is wasteful if there are o ∈ O, i ∈ N , and ν ∈ F , such that (1) |ν(o)| > |µ(o)|, so that ν

allocates o to more agents than µ does, (2) ν(i) Pi µ(i), so that i prefers his assignment at

ν to that at µ, and (3) for each j ∈ N \ {i}, ν(j) Ri µ(j), so that no agent is worse off at ν

compared to µ. As we now demonstrate, this definition is an extension of the definition

of that by Balinski and Sönmez [1999] to our more general setting.

Claim 2. Suppose that T is a singleton and F is capacity-based. An allocation µ is non-
wasteful by the definition of Balinski and Sönmez [1999] if and only if it is non-wasteful.

Proof. Suppose that µ is wasteful by the definition of Balinski and Sönmez [1999]. Then

there are o ∈O and i ∈N such that o Pi µ(i) and |µ(i)| < qo. Let ν ≡ (µ∪ {(i,o)}) \µ(i). Then

|ν(o)| = |µ(o)|+ 1 ≤ qo and, for each o′ ∈O \ {o}, |µ(o′)| −1 ≤ |ν(o′)| ≤ |µ(o′)| ≤ qo′ . Thus, ν ∈ F
and |ν(o)| > |µ(o)|. Furthermore, ν(i) Pi µ(i) while for each j ∈N \ {i},ν(i) = µ(i). Thus, µ is

wasteful.

Suppose that µ is non-wasteful by the definition of Balinski and Sönmez [1999]. Con-

sider ν ∈ F such that, for each i ∈N , ν(i) Ri µ(i) and for some i ∈N , ν(i) Pi µ(i). Let o ∈O.

If |µ(o)| < qo, by the Balinski and Sönmez definition of non-wastefulness, there is no i ∈N
such that o Pi µ(i). So |ν(o)| ≤ |µ(o)|. If |µ(o)| = qo, by feasibility of ν, |ν(o)| ≤ qo = |µ(o)|.
Thus, µ is non-wasteful.
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