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Extended Abstract

A celebrated result in random mechanism design theory is Gibbard (1977). It characterizes
the structure of random strategy-proof social choice functions in voting environments. The
main result shows that such social choice functions that satisfy an additional (mild) efficiency
condition must be random dictatorships. The result rests on expected utility (or stochastic
dominance) comparisons of lotteries. Much of the subsequent literature on this issue uses
this criterion. However there is strong empirical evidence that shows that decision makers
are not typically expected utility maximizers. In this paper we examine the same question
with behavioral agents who have either “extreme liking” (Top-Lex) or “extreme disliking”
(Bottom-Lex) preferences over lotteries. These may be regarded as expressing extreme risk
loving and extreme risk aversion behaviors respectively.

We completely characterize efficient and strategy proof rules for Bottom-Lex rules and
show that Gibbard’s random dictatorship result continues to hold. However this is not true
for Top-Lex preferences. We have shown that under Top-Lex preference any rule which is
efficient and strategy proof has to be Top-Support only i.e. it gives positive probability only
to the alternatives which are on the top of some agent’s ordering. Moreover, the support of
the lottery (alternatives which gets the positive probability) remain same if tops are same,
but the magnitude of probabilities can (potentially) change with a change in any ordering.
For 2 agents, we have completely characterized efficient and strategic proof rules. Also, we
provide a class of rules, Top-Weight-Quota-Priority rules, satisfying these two conditions
that depends on more than best alternatives, in-spite of the fact that such alternatives are the
highest-valued under (Top) lexicographic preference, interestingly this shows that these rules
are not Top-only rules. A much richer class of random social choice functions are therefore
strategy-proof with Top-Lex preferences.
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1 Introduction

In the recent world political incidents, like result of U.S. election, Brexit event and strong
religious sentiments on issues like the Hijab controversy, Cow Vigilante, Triple Talaq etc., it
was observed that there are sections of the society which have very strong views in favour as
well as against the agenda in question. But the true spirit of democracy lies in the freedom
of expression, no matter how extreme the views maybe. To put it more eloquently, we quote
an editorial article titled ‘Democracy thrives on free speech’ in The Age which reads

“The common oil of great and resilient democracies is the free flow of debate, the
proposition and contest of ideas, both good and bad, from all and by all. The right for any
person to express their ideas and their opinions freely is an abiding universal human right,
one that has been enshrined within the International Covenant on Civil and Political Rights

and made glorious within the constitutional documents of great modern states...”

The above para captures the importance of listening to every voice in the society, no matter
how different it is. So while dealing with any collective decision problem, which has wide
applications in political-economy environments, we need to consider all opinions and behav-
ior, their biases and extremes. In the standard social choice theory framework, the agents
are assumed to be expected utility maximizers, but in real life usually it’s not the case.
There are many empirical evidences which go against expected utility maximization (see
[1], [2], [8], [11] and [12]). Humans have peculiar behavior dimension to their decision mak-
ing process and it cannot be simplified by the abstraction of expected utility maximization.
This motivates us to introduce the extreme behavior in a collective decision problem and
analyse its ramifications. To capture such extreme behavior the lexicographic preferences
are best suited and lotteries are used to bring fairness property in the allocation of different
alternatives. Therefore, this paper will analyse what happens when agents are behavioral
and have lexicographic ordering in the random social choice framework.

The lexicographic ordering over lotteries on alternatives can be of two types. The extreme
liking behavior is captured by Top-Lex (T-Lex) preferences and extreme disliking by Bottom-
Lex (B-Lex) preferences. Out of two lotteries an agent with T-Lex preference will choose the
lottery which has higher probability of the top alternative (irrespective of the probabilities to
other alternatives). But, if probabilities are the same for top rank, then he will choose the one
which gives higher probability to second rank alternative (irrespective of the probabilities
to other alternatives). The same will go till the last rank. So, as the name goes in the
T-Lex preference agents care only for the top ranked alternatives. Analogously, in B-Lex
preferences agents want to minimize the probability of the worst alternative. Out of two
lotteries an agent with B-Lex preference will choose the lottery which has lower probability
of the worst (last ranked) alternative (irrespective of the probabilities to other alternatives).
The economic interpretation of T-Lex and B-Lex are infinitely risk loving and infinitely
risk averse individuals. They exactly capture the extreme behavioral parameter we want to
capture in our model. The rest of the paper is organized as follows. section 2 highlights the
contribution of the paper. Section 3 and 4 provide the literature review and preliminaries.
Section 5 has main theorems. Last three sections give conclusion, references and appendix
with detailed proofs.
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2 Our Contribution

To the best of our knowledge this is the first attempt to characterize the efficient and strategy
proof rules with lexicographic preferences. There are two main findings of this paper. First,
if agents have B-Lex preferences then we completely characterize the efficient and strategy
proof rules and show that Gibbard’s Random Dictatorship result continues to hold. The other
findings are on T-Lex. First we have shown that under Top-Lex preference any rule which
is efficient and strategy proof has to be Top-Support only i.e. it gives positive probability to
only alternatives which are on the top of some agent’s ordering. Moreover, the alternatives
which gets the positive probabilities remain same if tops are same, but the quantum of
probabilities can (potentially) change with a change in any ordering. It means that for T-Lex
preferences Gibbard’s result does not hold, and we have a much larger class of rules are now
possible, this is kind of possibility result. For 2 agents, we have completely characterized
efficient and strategic proof rules. But for more than two agents it is difficult to exactly
characterize the entire class of rules so we have provided a class of rules, Top-Weight-Quota-
Priority Rule (TWQP rule), which is fairly general, it provides probability only to the top
alternatives of agents and continue to do so if tops remain same, but exact probability an
alternative gets, it depends on the full preference ordering of all agents. It includes random
dictatorship as a very case. Because, the rule does not depend just on the top, so we have
found a rule which is not a Tops-Only rule but falls under category of Top-Support rules.
This rule is interesting because Top-support rules are rare in the literature and the fact that
it is true in Top-Lex where tops are highly valued. We will explain the rule in detail later.

3 Literature Review

The seminal work in Deterministic Strategic Social Choice Theory is from Gibbard (1973),
Satherwette (1975). Then, Gibbard (1997) provides the characterization in Random en-
vironment. Then, there are work on finding the dictatorial domains in deterministic and
random social choice theory. Here the question is to find the structure of the domain for
which strategy proofness along with some desirable properties like efficiency or unanimity
give rise the dictatorial rule (see [3], [4]&[5]. But all such work is confined to stochastic
dominance. The literature on lexicographic is limited and the closest paper to our work is
by Cho (2016) where he provides the equivalence of different conditions of strategy-proof
in T-Lex and B-Lex preferences. Cho(2012) is a good reference to understand properties of
different lottery extensions.

4 Preliminaries

Let A be a finite set of m ≥ 3 possible alternatives. The generic elements of this set will be
shown by a, b, x, y. N = {1, 2, ..., n} is the finite set of n individuals. The typical element
is shown by 1, 2, i, j. P is the set of all linear orders over A i.e. set of complete, transitive
and anti-symmetric relations over A. We will write P, P̂ , P̄ with and without subscript i to
write its generic element. Some time we will write P ab

i to highlight the fact that the first
and second most preferred alternative are a and b respectively according to Pi. For any Pi
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and a natural number k, k(Pi) gives the rank k alternative in the ordering i.e. k(Pi) = a
iff |{b ∈ A | bPia}| = k − 1. Also B(a, Pi) = {b ∈ A | b = a or bPia} i.e. B(a, Pi) is set of
(weakly) better alternatives than a in the ordering Pi.

PN = (P1, P2, ..., Pn) = (Pi, P−i) = (Pi, Pj, P−ij) shows a preference profile, a preference
ordering for each individual, i.e. PN ∈ Pn. 4A shows set of all probability distributions
over A i.e. 4A = {L ∈ Rm

+ |
∑m

i=1 Li = 1}. It is a simplex over m points. A typical element
of 4A is called lottery and if shown by L then La is the probability of alternative a assigned
by the lottery L.

A random social choice function (RSCF) F is a mapping from a preference profile to a
lottery i.e. F : P → 4A. We will write F (PN) for the lottery assigned by RSCF F for
profile PN and Fa(P

N) for the probability of alternative a. A RSCF F is ex-post efficient
if there is any Pareto dominated alternative for any preference profile PN then it should be
given zero probability at that profile i.e. if ∃a ∈ A for which all i ∈ N there is b ∈ A such
that bPia then Fa(P

N) = 0. A RSCF F : Pn →4A is a random dictatorship if there exists

weights β1, ..., βn ∈ [0, 1] with
n∑

i=1

βi = 1 such that for all PN ∈ Pn,

Fa(P
N) =

∑
i∈N : Pi(1)=a

βi

A social choice function being strategic proof means that telling truth is always (weakly)
better. It simply means that no agent can ever manipulate his true preference (opinion). So
a RSCF F : Pn → 4A is strategy-proof if for all i ∈ N , all P−i ∈ Pn−1, for all Pi ∈ P, we
have

F (Pi, P−i) �4A
Pi

F (P ′i , P−i) ∀ P ′i ∈ P

where �4A
Pi

is some lottery extension over 4A w.r.t. Pi.

For any lottery L and L′ and an agent i with preference ordering Pi the lottery ex-
tension “Stochastic Dominance” compares as follows L �SD

Pi
L′ iff for all a ∈ A we have∑

b∈B(a,Pi)

Lb ≥
∑

b∈B(a,Pi)

L′b. Note that stochastic dominance is incomplete ordering over lot-

teries. Gibbard provides a characterization of strategic proof random rules which in turn
gives characterization of random dictatorial rules. The result is as follows, Gibbard (1977):
Suppose |A| ≥ 3 . A RSCF is ex-post efficient and strategy-proof if and only if it is a
random dictatorship. Our paper is on lexicographic lottery extension. A lexicographic
ordering over lotteries can be of two types, Top and Bottom. We have explained them
in the introduction, the formal definition as follows. Top-Lex (T-Lex): For each P and
each pair L,L′ ∈ 4A, L �TL L′ if either (i) there is k ∈ {1, 2, ...,m} such that for each
h ≤ k − 1, Lh(P ) = L′h(P ) and Lk(P ) > L′k(P ) or (ii) L = L′. The other one is Bottom-Lex(B-

Lex): For each P and each pair L,L′ ∈ 4A, L �BL L′ if either (i) there is k ∈ {1, 2, ...,m}
such that for each h ≥ k + 1, Lh(P ) = L′h(P ) and Lk(P ) < L′k(P ) or (ii) L = L′.
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A graphical depiction of inclusion relation among SD, B-Lex and T-Lex.

Note both B-Lex and T-Lex are complete orderings and include SD(stochastic Dominance)
which is an incomplete ordering. But B-lex and T-lex can give opposite results which is easy
to see with a simple example suppose x1 � x2 � x3 and lottery over three alternatives are
L = (1

2
, 0, 1

2
) & L′ = (0, 1, 0). So we have L �T−Lex L′, L′ �B−Lex L and according to SD

they are not comparable. A figure above gives overall structure.

5 Main Result

We have two main results each on different types of lexicographic preference. The first
theorem which is the main result of this paper is on Bottom-Lex preferences as follows.

Theorem 1: Suppose |A| ≥ 3 and �4A=�B−Lex . A RSCF is unanimous and strategy-proof
if and only if it is a random dictatorship.

A graphical depiction of lotteries dominated under SD and B-Lex

This theorem provides the full characterization of efficient and non-manipulable rules under
B-Lex preferences. This result is in conformity with Gibbard’s finding. The details of proof
is referred to the appendix, here we give a intuitive explanation to highlight the importance
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of our result. Note that by replacing B-Lex with Stochastic Dominance(SD) and to get
the same class of rules is non-trival infact it is actually a strong result4 because B-Lex is a
complete ordering and a super set of SD.

To explain it further we will take an example. Suppose there are only three alternatives
and first agent has an ordering x1 � x2 � x3 and RSCF f picks the lotter f(P ) = (1

2
, 1
2
, 0)

for some profile P , obviously, which includes the agent 1’s ordering. Now we want to bring
attention to the question, what will happen if agent 1 manipulates and reports a different or-
dering then his true preference as above. When we have SD extension for lottery comparison,
for the rule to be strategy proof (for player 1), it should pick lotteries which are dominated
by (1

2
, 1
2
, 0). See the diagram above. The RSCF has to pick a lottery in green region else

agent 1 will manipulate but if we use B-Lex extension then RSCF can pick anything from
green or red (excluding blue line). So you can see SD constrains the range of RSCF to a
great extent which ultimately leads to random dictator along with efficiency. But B-Lex is a
complete ordering so it doesn’t restrict the range of RSCF and allows it to pick more lotteries
which are dominated. This allows a much larger class of RSCF which can potentially satisfy
these two conditions. But our result shows that finally we end up at the same class of rules,
random dictator, which Gibbard had arrived but with much restriction.

The next few results is related to Top-Lex preferences. First we will show that strategy
proofness and ex-post efficiency under T-lex imply that the only possible rules are Top-
Support rules which we have explained earlier. Next theorem states the same.

Theorem 2: If agents have Top-Lex lottery extension then any rule which is efficient and
strategy proof has to be Top-Support only rule.

The above result is departure from the existing standard results. Now the possible rules
are much larger than random dictatorship, Top-Support rules include it a special case. The
next result gives the complete characterization for two agents. The proof is in appendix.

Theorem 3: If N = {1, 2}, |A| ≥ 3 then a RSCF f is efficient and strategy proof iff it is of
the following form

1. ∀ (P1, P2), f(P1, P2) ∈ 4{1(P1), 1(P2)}

2. For any i, any (P ′i , P
′
j) if we have f1(P ′

i )
((P ′i , P

′
j)) = 1 then for all

(Pi, Pj), f1(Pi)((Pi, Pj)) > 0. Moreover if 1(Pi) = 1(P ′i ) then f1(Pi)((Pi, Pj)) = 1.

The above theorem states that for two agents case, the rule if it satisfies the above condi-
tions then it has to pick a lottery over the tops of both agents. Along with the extra condition
that if for a profile it pick a degenerate lottery where one agent gets the full probability then
at all profiles he should get positive probability and if the top is also then he should get the
full probability again.

If there are more than two agents then the complete characterization is hard particularly
because of the case when some agents get zero probability. But if avoid those cases then then

4But we want to emphasis that neither of result imply the other. Both results seem to be independent.
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we can something. We define a rule, Top-Weight-Quota-Priority Rule, which gives positive
probability to top alternatives but the probabilities will depend on the whole preference
ordering. To define the whole rule first we define two other rules. First we define Quota-
Priority (Q-P) Rule. For n agents this rule first defines a priority matrix, P , of size n× n.
Each number in the matrix is a probability priority so it has to be non-negative. Each
column represents an agent and the total of each column is (probability) quota assigned to
that respective agent. The sum of all quotas has be be 1. Each quota can be thought of
power assigned to an agent to implement his priority. So for any entry ik in the matrix, it
represents probability agent i gives to priority(or rank) k. The quota is divided into priorities
which has to satisfy two conditions. First it has to be in decreasing order and the second is
the feasibility conditions. A typical priority matrix is given below.

P =

11 21 · · · n1
12 22 · · · n2
...

...
. . .

...
1n 2n · · · nn

q1 q2 · · · qn

This has to satisfy the following conditions :

1.
n∑

k=1

ik = qi ∀i = 1, ..., n and
n∑

i=1

qi = 1.

2. ik ≥ ik+1 ≥ 0 ∀i, k = 1, 2, ..., n. such that for all i either i2 = 0 or in > 0.

The Q-P Rule works as follows. Given the preference profile (P1, P2, ..., Pn) submitted by
all agents, select an agent i if qi = 0 then go to qi+1 otherwise distribute the probability qi
as follows. If i1 = qi i.e. ik = 0 for k ≥ 2 then give i1 weight to the alternative 1(P1) i.e. the
top alternative in the preference ordering submitted by agent i suppose its a and then move
to next agent. But if ik > 0 for k ≥ 2 then comes the crucial step. Now check how many
agents, in total, have alternative a as their top which is the same as top of agent i. Suppose
m1 such agents are there, which obviously includes agent i, then first m1 priorities of agent
i i.e. i1 + i2 + ...+ im1 goes to a. Next see what is the second rank alternative of agent i, lets
say it is b. Now check how many agents have alternative b as their top. Suppose m2 such
agents are there then next m2 priorities of agent i i.e. i(m1+1)+i(mi+2)+...+i(m1+m2) goes to b.

Repeat this procedure till we exhaust the all priorities of agent i and then move to next
agent and apply the same protocols. Note that for each agent we have at most n priories
therefore the rule exhausts all priorities which add to qi and the maximum step it will take is
when all agents have different alternatives as their tops. Because all qi’s exactly add to 1 i.e.
(q1, q2, ..., qn) forms a probability distribution, so when we are done with all agents we have
effectively distributed total weight of 1 over alternatives. Therefore, Q-P Rule terminates at
a lottery over alternatives. We want to point out that suppose ik+1 = 0 i.e. positive priority
ends at kth priority/level. Then the above procedure ends even early and it will end at the
alternative which gets the last priority ik.

Remember that tops-only rule give the same allocation if tops remain the same i.e. chang-
ing the ordering keeping the top same has no effect. The Q-P Rule gives probability only
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to the top alternatives of agents. But it is not a tops-only rule because if an agent changes
his preference ordering but keeping the top same it can affect the probability of alternatives
other than his top. It includes random dictatorship as a special case when i1 = qi for all i.

Next rule we want to define is Top −Weight (TW ) Rule. Lets first define few terms.
Given any profile PN , let T (PN) = {1(Pi) | i ∈ N} contains all the top alternatives in this
profile. Next we define the rule by weight function W over all preference profiles as follows,
for any profile, W(PN) ∈ 4T (PN)+ such that 5

1. It gives strict positive probability to all and only top alternatives.
2. For any two profiles PN and P̂N if there is an alternative (say) a such that {i ∈ N |
1(Pi) = a} ( {i ∈ N | 1(P̂i) = a} then Wa(P

N) < Wa(P̂
N) i.e. if from one profile to the

other the set of agents who have a as their top increases then the probability of a should
also increase.

The above rule is simple and it gives probability only to the tops and if even a single
agent changes its top the probability of all the tops can change but subject to (population)
monotonicity condition. It simply means if more agents have an alternative as their tops then
its probability should also increase. Here increasing in agents just don’t mean to increase
in numbers rather they should include the previous one and include more. One can observe
that it is a Top-only rule but not a random dictator though includes it as a special case.
It is easy to see that this rule is strategy-proof and ex-post efficient. Now we can define
our main rule, Top-Weight-Quota-Priority Rule. This is combination of the above two rule
where Top-Weight probabilities should add to (say) α ≤ 1 and Quota-Priority should add
to β ≤ 1 and α + β = 1.

Theorem 4 : The Top-Weight-Quota-Priority Rule satisfy ex-post efficiency and strategy
proof when agents have Top-Lex Preferences. Moreover it is not a Tops-Only rule.

6 Conclusion

We conclude this paper by mentioning in brief what we have done and what is left for the
future research. With ex-post efficiency and strategy proof, under B-Lex preferences we have
given the complete characterization. Under T-lex preferences, such rules should fall under
the category of Top-Support only rules. For two agents we have complete characterization.
For more than two agents we have given a (very) general class of rules, TWQP rules, which
includes random dictator as very special case and this rule is not a Top-Only rule. For future
research, the complete characterization for more than two agents in T-Lex can be done. Also
it will be interesting to see why Gibbard’s result hold for B-Lex and not for T-Lex. One can
use other lottery extensions in this set up and see its implication. This results will provide
further insights to the famous “Impossibility Results”.

5It means set of lotteries over set T (PN ) such that each component is strictly positive.
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8 Appendix

8.1 Proof of Theorem 1

Our proof is on the lines of Sen(2011) paper. First we will show it for two agents and then
we will prove the result for n agents by induction.

Lemma 0: Monotonicity Condition for B-Lex Strategy proof RSCF
Take any P−i, Pi, P

′
i and if ∃k such that l(Pi) = l(P ′i ) ∀l ≤ k then

Fl(Pi)(Pi, P−i) = Fl(Pi)(Pi, P−i) ∀l ≤ k.

This also imply that
∑

r<k Fr(Pi)(Pi, P−i) =
∑

r<k Fr(Pi)(Pi, P−i). This can be shown
very easily. If the above claim is not true then we can construct a profile where an agent
can manipulate. A contradiction to to the hypothesis that it is a strategy proof RRSCF

Lemma 1: F (P a, P ba) = F (P ab, P b) = (λab, 1− λab) for all a, b ∈ A, P
Proof:

F


a b
b a
...

...
...

...

 = F


a b
· a
...

...
...

...

 ∀ P ab, P ba, P a

If not then agent 1 can manipulate either of preferences depending on which gives the better
lottery.

Lemma 2: λab = λcd

Proof :

1− λab = Fb


a b
c a
b ·
...

...

 ≤ Fb


c b
b a
...

...
...

...

 = 1− λcb

1− λab = Fb


a b
b c
...

...
...

...

 ≥ Fb


c b
a c
b ·
...

...

 = 1− λcb

⇒ λab = λcb
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A similar argument shows that λcb = λcd, which imply ⇒ λab = λcd.

λcb = Fc


c b
b d
· c
...

...

 ≤ Fc


c d
b c
...

...
...

...

 = λcd

λcb = Fc


c b
d c
...

...
...

...

 ≥ Fc


c d
d b
· c
...

...

 = λcd

Lemma 3: F (P ax, P bx) = (λab, 1− λab) for all a, b, x ∈ A, P
Proof: We know that

F


x b
a x
...

...
...

...

 = (λxb, 1− λxb)

Now swap x and a. Note because of previous claim, probability of alternative b should
remain the same. So we get

F


a b
x a
...

...
...

...

 = L =

(
La
Lx

Lb = 1− λxb

)

Because probability of b is same, if La 6= λxb i.e. Lx > 0. Then agent 1 will manipulate here

by F

a b
b x
...

...

.

Lemma 4: F (P a
1 , P

b
2 ) = (λab, 1− λab) ∀ a, b ∈ A ∀P a

1 , P
b
2

Proof: Take any profile (P ax
1 , P by

2 ). Case 1: x = y then because of previous lemma we are
done. Case 2: x 6= y. We have following possibilities to consider.

If Fc(P
ax
1 , P by

2 ) > 0
for any b �1 c

If Fb(P
ax
1 , P by

2 ) > 1− λab

If Fb(P
ax
1 , P by

2 ) < 1− λab

then agent 1 will manipulate here by P ab
1 .

then again 1 will manipulate here by P̂ ay
1 .

then again agent 1 will manipulate at (P̂ ay
1 , P by

2 ) by P ax
1 .

A similar argument follows for agent 2.
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If Fc(P
ax
1 , P by

2 ) > 0
for any a �2 c

If Fa(P
ax
1 , P by

2 ) > λab

If Fa(P
ax
1 , P by

2 ) < λab

then agent 2 will manipulate here by P ba
2 .

then again 2 will manipulate here by P̂ bx
2 .

then again agent 2 will manipulate at (P̂ ax
1 , P bx

2 ) by P ay
2 .

Therefore, we have established that for two agents the claim of random dictatorship is
true. Now we use the induction argument. Assume that for all integers k < n, the following
statement is true:
Induction Hypothesis (IH): Assume m ≥ 3. If F : Pk −→ 4A satisfies ex-post efficiency and
strategic proof, then it is a random dictatorship.
Let N̂ = {I, 3, ..., n} be a set of voters where 3, ..., n ∈ N . Define a RSCF g : Pn−1 −→ 4A
for the set of voters N̂ as follows: For all (PI , P3, ..., Pn) ∈ Pn−1

g(PI , P3, ..., Pn) = F (P, P, P3, ..., Pn) ∀PI = P, alternatively g(P, P−12) = F (P, P, P−12)

Lemma 5 : RSCF g is ex-post efficiency and strategic-proof.
Proof: g is ex-post efficient and strategic-proof, for all agents except I, because F is. To see
for I, note that

g(P̂ , P−12) = F (P̂ , P̂ , P−12)
2�
P

F (P̂ , P, P−12)
1�
P

F (P, P, P−12)

= g(P, P−12)

So we have shown g(PI , P−12) �PI
g(P̂I , P−12) for preference profiles.

Let β, β3, ..., βn be the weights associated with the random dictatorship g; i.e. βi, is the
weight associated with voter i = 3, ..., n and β is the weight associated with voter I. Let
T x =

∑
{i 6=1,2 : 1(Pi)=a}

βi. So gx(P a
I , P−12) = T x for all x 6= a and ga(P

a
I , P−12) = T a + β.

Lemma 6: F (P a, P a, P−12) = F (P a, P̂ a, P−12) for all a ∈ A and all such orderings.
Proof: Because F is strategic-proof we have

F (P a, P a, P−12) �
Pa
F (P a, P̂ a, P−12) �

Pa
F (P̂ a, P̂ a, P−12)

Because Lexico-Down is linear order then above relation can hold only if they if the middle
lottery is also same. This lemma also imply that Fx(P a, P̂ a, P−12) = Fx(P b, P̂ b, P−12) ∀ x 6=
a, b.

To simplify the notation now onwards we will drop P−12 with the understanding that
F (P, P̂ , P−12) ≡ F (P, P̂ ).

Lemma 7: F (P ab, P b) = F (P a, P ba) = (lets say)6 L(ab)

Proof: Because Fx(P ab, P b) = Fx(P a, P ba) = Fx(P ab, P ba) = T x ∀x 6= a, b. This can be

6This is not exactly equivalent to just top alternatives of 1 & 2. This means that at-latest one of them
has top of other agent as his second rank.
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argued from previous lemma. One just needs to put b and a on rank 1 for agent 1 and 2
(while keeping b on top of agent 2) and then flip it.

So if for any
profile

F


a b
b ·
...

...
...

...

 6= F


a b
b a
...

...
...

...

 then 2 will manipulate at either
of the case depending on which
is better lottery.

Similarly if F (P a, P ba) 6= F (P ab, P ba) then agent 1 will manipulate at either of the case

depending on which is better lottery. So we will write, for all 1(P1) = a 6= b = 1(P2), L
(ab)
a =

λabβ + T a. The λab ∈ [0, 1] is the proportion given to agent 1 from the weight β when tops
of both agents are in the exact pattern consisting a & b. And remaining 1− λab of β goes to
agent 2. Note that order is important, so potentially λab 6= λba.

Lemma 8: λab = λcd ∀ a, b, c, d,∈ A.
Proof: First note that L

(ab)
x = L

(cd)
x = T x ∀ x 6= a, b, c, d. So we just need to focus on these

four alternatives.

(1− λab)β + T b = Fb


a b
c a
b ·
...

...

 ≤ Fb


c b
b a
...

...
...

...

 = (1− λcb)β + T b

(1− λab)β + T b = Fb


a b
b c
...

...
...

...

 ≥ Fb


c b
a c
b ·
...

...

 = (1− λcb)β + T b

⇒ λab = λcb

A similar argument below shows that λcb = λcd, which imply ⇒ λab = λcd.

λcbβ + T c = Fc


c b
b d
· c
...

...

 ≤ Fc


c d
b c
...

...
...

...

 = λcdβ + T c

λcbβ + T c = Fc


c b
d c
...

...
...

...

 ≥ Fc


c d
d b
· c
...

...

 = λcdβ + T c

Lemma 9: F (P ac, P bc, P−12) = F (P ac, P bc, P−12)
Proof: Start with any profile (P ca, P bc, P−12). Then let agent 1 swaps a and c. This makes
probability of any x 6= a, c same in both the lotteries (pre and post swap). Now we need to

13



check only for a & c.

(
L(cb)
x =

)
Fx


c b
a c
...

...
...

...

 = Fx


a b
c c
...

...
...

...

 ∀x 6= a, c

If Fc


a b
c c
...

...
...

...

 > T c
(
= L(ab)

c

)
Then agent 1 will manipulate here by P ab

If Fa


a b
c c
...

...
...

...

 > λabβ + T a
(
= L(ab)

a

)
Then agent 2 will manipulate here by P ba

. Since Fa + Fc should add to the exactly those two terms, which completes this lemma.

Lemma 10: F (P a, P b, P−12) = L(ab) for all such profiles. Alternatively F (PN) = L(1(P1),1(P2))

for all profiles. Proof: Because B-Lex is a complete ordering and the previous lemmas imply
that for each possible case the claim is true means the probabilities remain same as tops
remain the same. And we started with an arbitrary profile this completes the proof of our
theorem.

8.2 Proof of Theorem 2

First we highlight few implications of strategy proofness in T-Lex extension. If a RSCF f is
strategy proof under T-Lex then following is true.
1. Take any two profiles where only agent i is changing, (Pi, P−i) and (P ′i , P−i), if first k
ranks are same for i then so the probabilities are i.e. l(Pi) = l(P ′i ) for all l = 1, 2, ..., k imply
fl(Pi)(Pi, P−i) = fl(Pi)(P

′
i , P−i) for all l = 1, 2, ..., k. It is easy to see why it should be true

because if it is not then agent i will manipulate either of the preference, which is true since
T-Lex is a complete ordering.
2. Weak Monotonicity condition. If an alternative (say a (b)) is moved to higher (lower)
rank, but keeping the ranks above it exactly same then its probability can only increase (de-
crease). Formally, if moving from (Pi, P−i) to (P ′i , P−i) and ∃ k such that l(Pi) = l(P ′i ) for all
l < k and k(Pi) = b = (k + 1)(P ′i ) & (k + 1)(Pi) = a = k(P ′i ) then fa(P

′
i , P−i) ≥ fa(Pi, P−i)

and fb(P
′
i , P−i) ≤ fb(Pi, P−i). Note this is a weaker from the usual monotonicity condition

because, if all alternatives which are above 7 are not ranked exactly same then potentially
the probability of a can go down despite its improvement.

To prove the main claim, fix a profile PN where x ∈ T (PN) and fx(PN) > 0. If no
such profile exists then we are done. Now we start with a different profile each agent’s top

7All the alternatives above a
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|T (PN)| ranks contain alternatives only from T (PN) subject to top same as in PN . Now
any alternative x /∈ T (PN) should get zero probability because of ex-post efficiency. Now
start moving x up to rank 2 for all agents. We can argue with different cases that the
probability of x remain 0. Now using the above two fact reconstruct the profile PN from
here and we will get fx(PN) = 0 which is contradiction to the starting hypothesis. Therefore,
∀ x /∈ T (PN) ⇒ fx(PN) = 0. So we are done.

8.3 Proof of Theorem 3 and Theorem 4

Q-P rule provides positive probability only to the tops of agents which straight forward
makes it ex-post efficient. Mainly we have to check for the other condition. Lets see strategy
proofness first. Fix any agent i and a true profile PN = (Pi, P−i). Now consider a deviation
by this agent. If he keeps the top same then probability of top remain same. And by
changing his top he can only reduce its probability which can only make him worse. So he
has no incentive to change in top. Now suppose he change his ordering other than top, then
if there is any change in the probability then it will make him worse off only. Because by
increasing the rank of an alternative it will only increase its probability. And this increase
will be compensated with the alternative which is going down. Therefore my manipulating
he is increasing the probability of a less preferred alternative and decreasing the probability
of a more preferred alternative which certainly makes him worse off. Since our arguments
are valid of any agent any profile, this makes the rule strategy proof. In the previous lines
we have shown that by changing the ordering other than top can change the probability.
So this is not a tops-only rule. And because both T-W and Q-P rules are strategy-proof
and ex-post efficient then so TWQP rule. And in the case of two agents TWQP rule gives
use the results of theorem 2 for positive probabilities part. When there is any degenerated
lottery, strategy proofness imply those conditions.

15


