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Abstract

This paper introduces the concept of di�usion of shocks in a macroeconomic net-

work consisting of inter-sectoral production linkages. I show that if sectors have

di�erent reaction horizons it would lead to di�usion of shocks through the net-

work over time which prevents the inter-sectoral linkages to form the feedback

loop structure essential to generate aggregate volatility. This result is di�erent

from other recent papers which have single period model with contemporaneous

production linkages between di�erent sectors thus generating sectoral shock am-

pli�cation as one sector reacts to another contemporaneously resulting in bigger

agggregate �uctuations. In contrast if sectors have di�erent production horizons

due to varying complexity of their production process or supply chain, it would

break down the feedback architecture present in single period models. I further

show that if the di�usion rate is varied for di�erent sectors, the contribution of

network structure to aggregate volatility can be insigni�cant. Also, it is no longer

su�cient to characterize this contribution of inter-sectoral production network

to aggregate volatility by just looking at input-output matrix or its summary

statistics like degree distribution. The paper thus highlights the stark di�erence

between the study of �nancial and inter-sectoral production networks because of

the possibility of contemporaneous ampli�cation and hence cascades in the case

of �nancial networks. In the end, I propose lead time indicator as a possible proxy

for measuring di�erential sectoral di�usion rates.
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1 Introduction

It is one of the oldest debates in economics whether idiosyncractic shocks to individual
sectors can generate aggregate volatility in the economy. Beginning with Lucas (1977),
who argued that such shocks to individual sectors would die down in the aggregate
economy due to diversi�cation, it has been further analyzed in Dupor (1998) and Hor-
vath (1999). With the development of new tools that are available to analyze networks
now, there has been a renewed interest in revisiting this old question. This debate has
been carried forward in the recent paper by Acemoglu et al(2012) who uses a network
argument to show that in the presence of input-output linkages, small idiosyncratic
shocks can generate aggregate �uctuations depending on the structure of the network.
According to their argument, it is possible to generate such aggregate volatility from
idiosyncratic shocks if the input-output network is highly asymmetric and a few big
sectors provide input to a large number of other sectors .

Most of the papers with argument in favor of this hypothesis have a static produc-
tion framework where the productivity shocks propagate contemporaneously through
the whole economy in just one period. Due to static nature of the production setup
the general equilibrium e�ects create a feedback loop in their model which allows them
to generate big �uctuations on the aggregate level. In contrast, if we allow shocks
to di�use through the network with a certain lag, this feedback loop can break down
and can substancially attenuate the ampli�cation of shocks. This paper shows how
we can think about di�usion in a production economy and then highlights two aspects
associated with inclusion of di�usion and allowing for di�erent di�usion rates between
di�erent sectors.

The �rst part of the paper highlights the di�erence generated by allowing for a
one period di�usion lag in the economy. Here I compare the model presented in Long
and Plosser (1983), which is a one period di�usion model, with a zero period di�usion
model of Acemoglu et al (2012). Due to contemporaneous production linkages between
sectors in case of zero period di�usion model, the aggregate volatility due to sectoral
shocks is higher in such an economy. This fact has been shown empirically in the
paper by Sarte et al (2011). I further show that in a zero period di�usion model
not only the aggregate volatility is higher but the contribution of network linkages
to aggregate volatility is also higher. Actually this increase in aggregate volatility is
achieved through the hightened role of sectoral linkages, which amplify the shocks due
to the contemporaneous production function.

But the actual production economy is far from this contemporaneous production
function that is normally used in zero-period models. In the real economy, output from
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one sector does not act as an input to another sector in the same period. The di�erent
sectors in economy have di�erent production horizons and there is a signi�cant time lag
between initialization and completion of production. This fact is well presented in the
paper by Humphreys et al (2001) where they discuss the importance of input inventories
for �rms. This idea is captured in the supply chain management and inventory literature
by the concept of lead time. Figure 1 shows the density plot of average lead time for
di�erent sectos at the 3-digit NAICS level. The lead time is measured from M3 database
of US census and is the ratio of unful�lled shipments to value of shipments every month.
This ratio can then be converted into weeks to capture production horizon. For eg. the
ratio of 1 gives a lead time of one month because the unful�lled shipments is equal to
value of shipments. Now looking at �gure 1 we can see that average production horizon
for sectors is approximately ten weeks but there are signi�cant number of sectors which
have to plan their production much far ahead. This clearly highlights the presence of
some kind of friction in the sectoral production system and takes us away from the
contemporaneous production function. This same e�ect is further highlighted in �gure
2 as a response of durable and non-durable goods sector to the Lehman crisis. The
non-durable goods have a lower lead time and their production can be adjusted very
quickly. The non-durable goods reacted sharply to the 2008 crisis and hit their lowest
levels in four months. In contrast, the durable goods have longer production horizon
and it took much longer for these sectors to cut their production. Thus it took almost
more than a year before the shipments and inventory level of durable goods touched
their lowest level.

The second part of the paper builds on this fact about di�erence in lead times
across sectors. Since the sectors have di�erent lead times, they plan their production at
di�erent times and thus react to the shock in period t at di�erent times. I subsequently
develop a multi-sector model where di�erent sectors have di�erent production horizons
and use inputs from di�erent time periods. This eventually gives a model with di�erent
di�usion rates for di�erent sectors and further attenuates the ampli�cation of shocks.
Now a shock to a given sector i in time period t a�ects its downstream sectors at
di�erent period of time. This creates a diversi�cation in response of di�erent sectors at
any given time. Thus even if a sector has large out-degree i.e. it provides intermediate
input to a large number of downstream sectors, the chances of this sector generating
aggregate volatility would go down as its downstream sectors have di�erent production
horizons and would react to the same shock in di�erent periods.

I �nally show that input-output matrix is not a su�cient statistic to understand
whether sectoral shocks can generate aggregate volatility. As shown in Acemoglu et
al (2012), if the weighted out-degree of sectors has a heavy tailed distribution, it is

3



Figure 1: Average lead time across sectors (3-digit NAICS)

su�cient to generate aggregate �uctuations from sectoral shocks. In the presence of
unequal di�usion rates for di�erent sectors it depends on another measure which I
call di�usion adjusted weighted out-degree. This measure in contrast depends both on
input-output matrix and di�usion rate of di�erent sectors in the economy. As I would
later show the sum of these di�usion adjusted out-degrees for a given sector is equal to
the out-degree measure present in zero-period di�usion model. This in turn makes it
di�cult to generate a heavy tailed distribution for adjusted out-degree measure. So, it
is possible but increasingly di�cult to generate aggregate volatility from idiosyncratic
shocks when sectors have di�erent di�usion rates.

The rest of the paper is organized as follows. In section 2, I develop and compare
the two canonical zero-period and one-period di�usion models. This is then used to
illustrate the di�erence in aggregate volatility generated due to this change in assump-
tion. Section 3 provides a sketch of micro-founded production model for sectors with
unequal di�usion rates and extend it to a n sectors. This model is then used to high-
light the diversi�cation impact of unequal di�usion over time on aggregate volatility.
Section 4 concludes.
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Figure 2: Reaction of durable and non-durable sectors after Lehmann crisis

2 Di�usion: Two canonical models

The phenomenon of shock di�usion can be illustrated by comparing two basic models
which have been used frequently and interchangably in the literature. The �rst class
consists of models where shocks di�use in the same period and a�ect other sectors con-
temporaneously. This in turn impact their own production decision in the same period
and generate a feedback loop. I would call these models as zero period di�usion(0PD)
models. Some of these models are presented in Carvalho(2008), Acemoglu et al(2012),
Dupor(1998) etc. The second class consists of primarily one period di�usion(1PD)
model as presented in Long and Plosser(1983) where �rms use inputs from the previous
period for production.

In this section, I would present the basic and comparable 0PD and 1PD models as
presented in Carvalho(2008) and Long and Plosser(1983). I would then use these models
to highlight the di�erence in contribution of network interconnectivity to aggregate
volatility that one can generate from considering the speed of di�usion of shocks.

2.1 0PD- Acemoglu et al (2012)

Consider a multisector economy consisting of N di�erent sectors indexed by i = 1, .., N
. Each sector i produces a di�erent good of quantity Yit at date t using labor Lit and
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input Xijt from other sectors j = 1, .., N . The Cobb-Douglas production technology
used for production is given by:

Yit = ZitL
α
it

N∏
j=1

X
(1−α)γij
ijt (2.1)

4Zit = log(εit), εit ∼ N(0, σi) (2.2)

where Zit is the productivity shock to sector i in period t. 4Zit is log-normal and
i.i.d across sectors and time unless otherwise stated. Xijt is the input from sector j
used in the production by sector i.

The production linkages provide the source of interconnectedness between the sec-
tors and is present in the exponent γij ≥ 0. This inter-sectoral connectivity can be
completely captured by N × N matrix Γ = [γij]N×N where element ij corresponds to
the share of input j for production in sector i. This matrix Γ would be referred to as
input-output matrix in the rest of the paper. For now I assume that share of labor
α ∈ (0, 1) in production is constant across all sectors. The column sums of Γ capture
the importance of a sector as an intermediate input for production in other sectors.
This is de�ned as weighted out-degree in Acemoglu et al(2012). I further assume that
the production functions exhibit constant returns to scale which is captured by:

Assumption (A1):
N∑
j=1

γij = 1, for all i = 1, .., N

On the consumption side there is a representative agent who derives utility by consum-
ing the above mentioned N goods produced in the economy and supplies one unit of
labor inelastically. The utility of this agent is given by:

U(C) = Et

∞∑
t=0

βt
N∑
i=1

θilnCit (2.3)

N∑
i=1

θi = 1 and θi > 0,∀i (2.4)

Since, there is no inter-temporal decision making involved in production, the above
problem can be solved as a set of static problems corresponding to each time period, t.
Finally, we can close the model by de�ning the set of resource constraints:
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N∑
i=1

Lit = 1 (2.5)

Cit+
N∑
j=1

Xjit = Yit ,∀i = 1, .., N (2.6)

Let yit = log Yit and yt be the vector of log sectoral output. Then, Acemoglu et
al(2012) show that the competitive equilibrium of the above economy can be given by:

yt = µ0 + [I − (1− α)Γ]−1 zt (2.7)

where µ0 is a N-dimensional vector of constants depending on the model parameters.
Since, we are interested in aggregate growth volatility we can look at:

4yt = [I − (1− α)Γ]−1 εt (2.8)

Using the fact that all eigenvalues of (1 − α)Γ are strictly less than one, we can
express the above equation as a power series:

4yt =

[
∞∑
k=0

[(1− α)Γ]k
]
εt ≈ [I + (1− α)Γ] εt (2.9)

I have ignored the second order interconnections in the above equation because it
would make it easier to compare it with one period di�usion model. Although it is
well documented that in a network economy second order interconnections can also
matter. As I will show later, the ignored second order terms would be present in case
of 1PD model as well, so we do not loose much in terms of comparison. Using the
above equation, Acemoglu et al(2012) later show how aggregate volatility of economy
would depend on weighted out-degree of sectors. This captures the relative importance
of a sector as input to all other sectors. Given a fat-tailed distribution of weighted
out-degrees one will obtain that aggregate volatility does not decay at rate

√
n. For

now, lets look at the aggregate volatility from a practical point of view:

V ar0PD(4yt) = Σεε + (1− α)2ΓΣεεΓ
′ + (1− α)ΣεεΓ

′ + (1− α)ΓΣεε
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Since we are interested in aggregate volatility, we can use an aggregate statistic:

V ol0PD(4y) =
1

N2
1′V ar0PD(4yt)1 (2.10)

This aggregate volatility statistic is based on giving equal weight to all sectors, but
it is possible to use a more realistic weighted measure when taking the model to the
data. For volatility analysis, this statistic has been used frequently in the literature (see
Horvath, 1998, or Dupor, 1999 or Carvalho, 2008). But comparison of the 0PD and
1PD model would be the same even if we were to consider any other sectoral weights.

2.2 1PD- Long and Plosser (1983)

The 0PD model is very similar to the classic Long and Plosser (1983) model. Now, the
production in sector i in period t depends on the inputs purchased in period t− 1. The
production is given by:

Yit = ZitL
α
it−1

N∏
j=1

X
(1−α)γij
ijt−1 (2.11)

The problem of the representative household remains the same as in the previous
0PD model. The resource constraint also remains the same except that the input Xijt

from sector j to i is used for production in period t+ 1:

Cit+
N∑
j=1

Xjit = Yit ,∀i = 1, .., N (2.12)

We can again denote the log sectoral output as yt and solve for planner's problem.
Long and Plosser (1983) show that the solution to planner's problem is given by:

yt = µ1 + (1− α)Γyt−1 + zt (2.13)

where µ1 is a N-dimensional vector of constants depending on the model parameters.
Since, we are interested in aggregate volatility we can work with demeaned output:
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4yt = [I − (1− α)ΓL]−1 εt (2.14)

where L is the lag operator. We can again express the above equation as a power
series:

4yt =

[
∞∑
k=0

[(1− α)ΓL]k
]
εt ≈ [I + (1− α)ΓL] εt = εt + (1− α)Γεt−1 (2.15)

Similar to 0PD model, now we can write sectoral and aggregate volatility terms for
1PD di�usion model:

V ar1PD(4yt) = Σεε + (1− α)2ΓΣεεΓ
′

V ol1PD(4y) =
1

N2
1′V ar1PD(4yt)1 (2.16)

One key point to di�erentiate 1PD model from 0PD is the timing for usage of
inputs. In 0PD model, the shock from sector i immediately propagates to other sector
and then a�ects sector i production through general equilibrium e�ect. This generates
a feedback loop and ampli�cation of shocks. In 1PD model on the other hand, shocks
do a�ect other sectors but only with a lag of one period due to the time constraint on
production. Now a shock to a sector i has a contemporaneous e�ect on itself but only
a lagged one on all others, therefore there is no feedback from the other sectors to the
sector i and in turn again on other sectors. This partially closes down the ampli�cation
channel as present in 0PD model.

It is a common practice to treat all these models interchangeably but as shown above
they are very di�erent in their ampli�cation potential. This point has been ignored in
other papers where the models can have extended framework involving capital and
labor but inputs are produced and used in the same period. For eg. the model in
Horvath (1998) solves in�nite horizon problem for the social planner but still uses
inputs produced in the same period. The output dependence on previous period comes
only through the capital market. In terms of production linkages it is still a 0PD model
and allows for contemporaneous feedback and ampli�cation of shocks in production.
On the other hand, the 1PD model uses inputs from previous periods and do not allow
contemporaneous ampli�cation of shocks through network structure.
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2.3 0PD vs 1PD models

Proposition 1: The aggregate volatility in case of 0PD model is always higher than
1PD model:

V ol0PD(4y) > V ol1PD(4y) (2.17)

The result here follows directly from the de�nition of aggregate volatility for the
two models. The result will hold even if we include higher order terms in the power
series expansion due to the fact that 0PD model will always include the volatility terms
present in 1PD model. The reason for di�erent aggregate volatility is due to production
lag in case of 1PD model which leads to dropping out the variance term involving cross
product of εt and (1− α)Γεt−1. Under the assumption of no auto-correlation of shocks
across sectors, this cross product term is completely dropped out. But the result would
hold even if there is small auto-correlation between shocks over time.

De�nition : Network contribution to aggregate volatility(NC) is the fraction of volatil-
ity contributed by the terms involving network structure parameters. It can be
de�ned as:

NC = 1− 1′Σεε1

V ol(4y)
(2.18)

Network contribution is an important metric because it shows the importance of
inter-sectoral linkages in generating aggregate volatility. If there were no intersectoral
linkages, the aggregate volatility will just be the sum of sector level variances and is
captured by the term 1′Σεε1. The other terms in aggregate volatility contain Γ, which
captures the increase in aggregate volatility due to inter-sectoral linkages.

Proposition 2: The network contribution to aggregate volatility is always higher for
0PD model:

NC0PD > NC1PD (2.19)
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Proof: The result follows directly from proposition 1. Since, the non-network term,
1′Σεε1 in aggregate volatility is the same for both 0PD and 1PD models and
aggregate volatility is higher for 0PD model. So we get:

1′Σεε1

V ol0PD(y)
<

1′Σεε1

V ol1PD(y)
(2.20)

2.4 Irrelevance of higher order di�usion process

The 1PD Long and Plosser (1983) model can be written similarly for a n-period di�usion
model, with production lag of n periods. This model would seem to correspond to a
slower rate of di�usion of shocks in the economy. But any such model would have no
fundamental di�erence with 1PD model in terms of aggregate volatility. This can be
summarized by:

De�nition : The vector of sectoral growth rates for an n-period di�usion model will
be given by:

4yt = [I − (1− α)ΓLn]−1 εt ≈ εt + (1− α)Γεt−n (2.21)

Proposition 3: The aggregate volatility or NC do not depend on production lag i.e.:

V ol1PD(4y) = V ol2PD(4y)... = V olnPD(4y) (2.22)

NC1PD(4y) = NC2PD(4y)... = NCnPD(4y) (2.23)

The above proposition shows that all production lags give the same value for aggre-
gate volatility as well as the network contribution to aggregate volatility. This follows
from the fact that demeaned output vector depends on two terms; current shock, εt and
a lagged shock, εt−n times the network term (1−α)Γ. In terms of di�usion process the
nPD is no di�erent than 1PD because period, t output only depends on lagged output
from one other period. In case of 1PD, this input comes from period t− 1 and in case
of nPD it comes from t− n. So it does not have any additional dampening e�ects. In
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contrast if �rms were allowed and �nd it optimal to smoothen their response to shock
from period t− n for n periods, then the results could be di�erent.

But at the same time, the above proposition also highlights the di�erence between
contemporaneous production process as in 0PD model and a lagged production process
in any nPD model. So for the case where �rms are not allowed to smoothen their re-
sponse over n periods, proposition 3 would apply and considering a production processes
with more than one period lag will not change any results. For all practical purposes,
one can use 0PD and 1PD models to highlight the di�erence caused by di�usion rate.

3 Model: Unequal di�usion rate(UDR)

Since di�erent sectors have di�erent production horizons, it makes sense to study a
model where all sectors do not react to shocks at the same time. As discussed in
the introduction and explained through �gure 1, average lead time varies signi�cantly
for di�erent sectors and determines their production horizon. The sector with small
production horizon would buy its input just preceding production, while another sector
with a longer production horizon might contract its inputs multiple periods before
production can begin.

This di�erence in production horizon would create a di�erence in how sectors react
to shocks. A sector with longer production horizon would react with a delay to the
shock to its upstream sectors. Consider a sector which buys its inputs in period t − 2
for production in period t. Since the sector is unable to tinker or change its production
quickly, the shock to its supplier in period t − 2 can a�ect it only in period t. In
comparison, a sector which purchases its input in period t− 1 for production in period
t would react in period t if there is any shock to its suppliers in period t − 1. In a
multi-sector setting this would lead to slow di�usion of shocks through a sector with
longer production horizon. Thus a multi-sector model with sectors having di�erent
production horizons would generate unequal di�usion rate of shocks in di�erent parts
of the economy.

3.1 3-sector economy

Consider a 3-sector model with the restrictions discussed above. The setting is similar
to Long and Plosser (1983) with one change. Sector 1 and 2 have a small production
horizon and use inputs from period t − 1 for production in period t. On the other

12



hand, sector 3 has a longer production horizon and uses inputs from period t − 2 for
production in period t. The production in the economy is given by:

Yit = ZitL
α
it−1

N∏
j=1

X
(1−α)γij
ijt−1 ∀i = 1, 2 (3.1)

Y3t = Z3tL
α
3t−2

N∏
j=1

X
(1−α)γij
3jt−2 (3.2)

where Zit is the productivity shock to sector i in period t and εt is log-normal and
i.i.d. as before. The representative agent wants to maximize life-time utility and his
per period utility is given by:

U(Ct) =
N∑
i=1

θilnCit (3.3)

The restrictions on the utility are same as in section 2. The resource constraint is
also same, except that now sector 3 buys input in period t and uses it in period t+ 2:

Cit+
N∑
j=1

Xjit = Yit ,∀i = 1, .., N (3.4)

Now, we can solve the planner's problem for this economy. The planner wants
to maximize the expected lifetime utility of the agent subject to production functions
given in (3.1) and (3.2), resource constraint (3.4) and labor market clearing conditions.
This can be expressed as a value function problem:

V (St) = max {U(Ct) + βV (St+1|St) (3.5)

where St = (Yt, Zt) is the set of state variables. This problem can be solved by
�guess and verify�, which gives the following solution:

V (St) = k1ln Y1t + k2ln Y2t + k3ln Y3t+1 + J(Zt) +K (3.6)

where ki is a set of constants given by:
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ki = θi + β

3∑
j=1

kjγji, ∀i = 1, 2, 3 (3.7)

J(Zt) depends on production uncertainty parameters while K is also constant and
do not depend on Yt or Zt. This �nally gives us the consumption and input quantities
at time t as given in the appendix.

Given the solution above, we can now focus on output in di�erent sectors. It would
help us compare the solution obtained here with that in the previous section. The log
output for unequal di�usion rate (UDR) model is given by:

y1t = µudr1 + (1− α) [γ11y1t−1 + γ12yt−2 + γ13yt−3] + z1t (3.8)

y2t = µudr2 + (1− α) [γ21y1t−1 + γ22yt−2 + γ23yt−3] + z2t (3.9)

y3t = µudr3 + (1− α) [γ31y1t−1 + γ32yt−2 + γ33yt−3] + z3t (3.10)

where µudr terms are constants that depend on model parameters. The above
solution can be better summarized in matrix form below:

yt = µudr + (1− α) [Γ1yt−1 + Γ2yt−2] + zt (3.11)

4yt = (1− α) [Γ14yt−1 + Γ24yt−2] + εt (3.12)

where

Γ1 =

 γ11 γ12 γ13
γ21 γ22 γ23
0 0 0

 and Γ2 =

 0 0 0
0 0 0
γ31 γ32 γ33

 (3.13)

Γ = Γ1 + Γ2 (3.14)

The above equation 3.11 captures the dynamics of the economy. The input-output
matrix Γ still governs how sectoral outputs a�ect future production but it now gets
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split up in two matrices Γ1 and Γ2. Sectors 1 and 2 which have a production horizon
of 1 period gets directly a�ected through Γ1 where subscript 1 corresponds to 1-period
production horizon. Sector 3, since it has a di�erent production horizon of 2 periods
gets directly impacted through Γ2 from shocks that hit the economy in period t− 2.

3.2 n-sector economy

Given the mechanism in the last sub-section we can easily get a reduced form solution
for any n-sector economy with production linkages. Any such economy where sectors
can have up to p-periods of production horizon will have a solution of VAR(P) form
given by:

yt = µudr + (1− α) [Γ1yt−1 + ...+ Γpyt−p] + zt (3.15)

4yt =
[
I − (1− α)

[
Γ1L + ...+ ΓPL

P
]]−1

εt (3.16)

4yt ≈
[
I + (1− α)

[
Γ1L + ...+ ΓPL

P
]]
εt (3.17)

Γ = Γ1 + ..+ ΓP (3.18)

The solution to n-sector and P period production horizon economy has an easy
reduced form as shown in equation 3.15. Since the economy now has sectors with P
di�erent production horizons, the input-output matrix Γ gets split up into P compo-
nents.

3.3 1PD vs UDR models

Proposition 4: The aggregate volatility in case of 0PD and 1PD models is always
higher than UDR model:

V ol0PD(y) > V ol1PD(y) > V olUPR(y) (3.19)

Proof: It follows from the de�nition of V ol1PD(y) and V olUDR(y)as below:

V ol1PD(y) =
1

N2
1′
[
Σεε + (1− α)2ΓΣεεΓ

′]1
=

1

N2
1′
[
Σεε + (1− α)2 [Γ1 + ..+ Γp] Σεε [Γ1 + ..+ Γp]

′]1
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>
1

N2
1′
[
Σεε + (1− α)2

[
Γ1ΣεεΓ

′
1 + ..+ ΓpΣεεΓ

′
p

]]
1 = V olUPD(y)

This proposition establishes the decreases in aggregate volatility caused due to un-
equal di�usion rates over di�erent sectors. The unequal di�usion rates spread the im-
pact of a shock to sector i in period t across di�erent periods for its di�erent downstream
consumers. It is essential for all the downstream sectors to react contemporaneously
to one shock to generate substantial aggregate volatility. But unequal di�usion rates
close down this ampli�cation channel and do not allow for contemporaneous reaction
for all sectors. I will further show in next sub-section below how this addition of time
dimension to shock propagation can a�ect asymptotic properties.

The mechanism is better explained by looking at �gure 3. Sector 1 is the only input
supplier in the economy and supplies to all other sectors in the economy. The upper
half of the �gure corresponds to 1-period di�usion model. Here, a shock hits sector 1
in period t and then a�ects all the downstream sectors together in period t + 1. Now
compare this to the bottom half of the �gure which represents an unequal di�usion rate
economy where sectors 2 and 3 buy their input with 1 period production lag while 4 and
5 buy with 2 period production lag. In this second economy, the shock to sector 1 a�ects
di�erent parts of economy at di�erent times. Thus on the aggregate the contribution
of this shock that hits sector 1 in period t to aggregate volatility is diminished as all
sectors do not react at the same time. So, even if a sector is supplier to a large number
of downstream sectors its impact on aggregate volatility is diminished due to this spread
of shock over time.

Proposition 5: The network contribution to aggregate volatility is also lower for UDR
model:

NC0PD(y) > NC1PD(y) > NCUDR(y) (3.20)

Proof: The result follows the proof as given in Proposition 2.
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currently a�ected by shock that hit sector 1 in period t.
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Since the aggregate volatility goes down in case of UDR model, it also has a negative
impact on network contribution to aggregate volatility. The diversi�cation of the impact
of period t shocks over time leads to smaller ampli�cation of shocks due to network.
This in turn decreases the contribution of network structure to aggregate volatility.

3.4 Asymptotic properties

De�nition : Di�usion adjusted out-degree of a sector is the weighted out-degree mea-
sure adjusted for di�usion:

dpi =
n∑
j=1

wpji where wpji ∈ Γp (3.21)

The adjusted out-degree, dpi measures the contribution of sector i as an input for
period t production in other sectors which use input factors from period t − p. This
adjusted out-degree is closely related to the weighted out-degree measure, di:

dpi ≤ di ∀p, i (3.22)

P∑
p=1

dpi = di ∀i = 1, .., N (3.23)

So, in an economy populated by sectors with P di�erent production horizons, we
would have P ×N adjusted out-degree measures, dpi, corresponding to lag p and sector
i. The above two equations 3.22 and 3.23 follow directly from the fact that input-output
matrix Γ = Γ1 + ..+ ΓP . Since dpi ≤ di, it highlights the fact that sector i can be a big
input supplier in the whole economy, but if sectors have di�erent production horizons,
on average the contribution of sector i production in period t an an input to other
sectors can be small in subsequent periods. Thus unequal di�usion rate forces us to
make the distinction between weighted out-degree, di and adjusted out-degree, dpi.

Assumption 2(A2): The sectoral growth volatility is same across all sectors i.e. σi =
σ ∀i = 1, .., N .
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The asymptotic results can be shown to hold for any general case where the sectoral
volatility σi are bounded above by a �nite constant. Here I have considered a simple
case for illustration purpose, but can be extended as in Acemoglu et al (2012). Given
assumption 3 we can now write:

Proposition 6: Under A3 and considering �rst order-interconnections the volatility
for di�erent di�usion models can be given by:

V ol0PD(4y)1/2 = V ol1PD(4y)1/2 = Ω

 1

n

√√√√ n∑
i=1

d2i

 (3.24)

V olUDR(4y)1/2 = Ω

 1

n

√√√√ n∑
i=1

P∑
p=1

d2pi

 (3.25)

If a few sectors provide large fraction of input supplies in the economy, this asym-
metry between sectors can force the aggregate volatility to decay at a rate slower than√
n. As shown in Acemoglu et al (2012), a heavy tailed distribution for di is enough

to show that aggregate volatility decreases at a rate slower than the usual diversi�ca-
tion argument. This result is reiterated in equation 3.24, where the zero-period output
growth volatility is bounded below by average sum of squares of weighted out-degree,
di. In contrast for an economy with unequal di�usion rates, the volatility has a di�erent
lower bound given by average sum of squares of adjusted weighted out-degree, dpi.

Thus the above proposition establishes the di�erence in asymptotic properties that
can arise depending on whether we consider shock di�usion in the economy or not.
Depending on the distribution of di and dpi, these two economies can have di�erent
decay rates for aggregate volatility. So, when we take unequal di�usion rates for di�erent
sectors into consideration it can possibly change the asymptotic properties of aggregate
volatility in the economy. Also given equation 3.23, we know that the sum of dpi over
p periods is equal di. Given su�cient di�erence in di�usion rates across sectors, this
could imply a substantial di�erence in distributions of di and dpi. If dpi turns out to be
not so heavy tailed, then sectoral shocks would fail to generate aggregate volatility.

Another important implication of the above proposition is that input-output matrix
is no longer a su�cient statistic for characterizing the role of idiosyncratic sectoral
shocks in generating aggregate volatility. The aggregate volatility now depends on dpi
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which in turn depends on both input-output structure and di�usion rate across sectors.
It is possible to get the empirical counterpart of the above measure dpi. The input-
output matrix is usually available from national accounts, while lead time indicator can
be used as a proxy for di�erent production horizon or di�usion rate of sectors. I would
explore this empirical dimension in the future version of this paper.

4 Application

In this section, I look at the structure of US economy and study whether we can �nd
some evidence for variable di�usion of shocks in the economy. The �rst part provides
preliminary evidence in this regard while the second section will look at the implication
of di�erent di�usion rates in the economy.

4.1 Reaction to Lehmann Crisis

To highlight the di�erent reaction times, we can look at the reaction rates of di�erent
sectors in the aftermath of Lehmann crisis. The sectors which allowed quick adjustment
would react quickly to the shock and adjust their production decisions. This would then
be re�ected in their shipment levels and inventory.

For this purpose, I use shipments and inventory data from Bureau of Economic
Analysis and plot the reaction of di�erent sectors in the months following the Lehmann
crisis. The plots in �gure 4 and �gure 5 show the reaction times of di�erent sectors.

Figure 4 gives the reaction of shipments plus inventory for di�erent sectors after
Lehmann went bankrupt in September 2008. The sum of shipments and inventory is a
proxy for production of the sector. The vertical line on the graph corresponds to the
cut-o� month for Lehmann bankruptcy. The �rst thing to notice from these graphs is
that not all sectors reacted to this shock at the same rate. Some sectors like consumer
non-durables and petroleum and coal products reacted more by instantaneously cutting
down their production and reached their lowest levels in the following three to four
months. On the other hand, some other sectors like consumer durables and capital
goods took much longer to reach their lowest output levels which happened in almost
one year. This gives evidence for the fact that shock propagation through the macro
economy depends on sectoral di�usion rates.

Although in the above plot, all the sectors start reacting to the shock more or
less at the same time but they still di�er in their adjustment rate- some cut down
their production relatively quickly compared to others. This factor is not captured
in the model presented in the previous section but can be included in a richer model
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Figure 4: Movement of shipments plus inventory in di�erent sectors to Lehmann crisis
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Figure 5: Movement of shipments and inventory in di�erent sectors to Lehmann crisis

with inventory which allows for some forward looking adjustment by di�erent sectors.
But the plots in �gure 4 need some more analysis about sectoral shock propagation
because the above plots actually show sectoral reaction to an aggregate shock (Lehmann
bankruptcy was a major event and triggered the reactions on a national level). Since
the reaction rates for di�erent sectors are so di�erent for an aggregate level shock, we
can expect that sectors would react with di�erent lags for TFP shock to an individual
sector, the main assumption of this paper.

This fact becomes more clear when we look at the breakdown of inventory and
shipments in �gure 5. The two sectors which stand out in this �gure are capital goods
and household appliance manufacturing. Due to the shock their shipments fall relatively
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quickly when compared to their inventory levels. Infact, the inventory levels in these
two sectors remain fairly constant for few months as compared to other sectors which
means these sectors did not rapidly cut down their production levels, thus leading to
an accumulation of inventory. It is only after six or eight months that these sectors
reduced their output levels enough to bring down the levels of their inventory.

For most other sectors both inventory and shipments fall at the same rate. So, in
general shipments plus inventory seems a good proxy for sectoral prodution and can
potentially be used to quantify di�usion rates. But again what comes out of this �gure 5
is that sectors react di�erently to an aggregate shock. So in case of a sectoral shock they
would probably react even more slowly, which can be due to lack of contemporaneous
information about the shock or production frictions as argued in the previous section.

4.2 Outdegree distribution

In this section, we do the same exercise as in Acemoglu et al(2012) and look at the out-
degree distribution in the context of US economy. The di�erence in this case is that
we also plot the out-degrees after accounting for di�erent di�usion rates of di�erent
sectors. The di�usion rates are proxied by lead time of di�erent sectors. Since the
di�erent sectors in economy have di�erent production horizons, there is a time lag
between initialization and completion of production and this is captured by lead time
indicator. The di�erent lead times for di�erent sectors can be inferred from the Figure 1
in the introduction. Unlike Acemoglu, here I restrict my attention to the manufacturing
sector of the US economy because I do not have any lead time style proxy for other
sectors.

I use the detailed benchmark input�output accounts from 2007, compiled by the
Bureau of Economic Analysis for the exercise in this section. BEA provides commodity-
by- commodity direct requirements tables, where the typical (ij) entry captures the value
of spending on commodity i per dollar of production of commodity j. As detailed above,
I restrict my attention only to the manufacturing sector which gives me 237 sectors that
roughly correspond to four-digit NAICS level.

As argued before, I use lead time as a proxy for di�usion rates of di�erent sectors.
The lead time of di�erent sectors is calculated by dividing unful�lled orders by value of
shipments in a given month. I use the monthly average lead time value over the period
1991-2008 for the calculations in this section. The lead time values are not available
at 4-digit level and I can only calculate it for 42 distinct sectors. These 42 sectors
are both at 3 or 4-digit NAICS level. This means that lead time is not available at
the same disaggregated level as input-output table which has 237 sectors. The 4-digit
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Figure 6: Distribution of di�usion adjusted out-degrees for di�erent lead-time cuto�s
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NAICS sectors in the direct requirements that do not have a corresponding 4-digit lead
time indicator, I assign them the lead time value for 3-digit NAICS. This would give
me similar di�usion rates for many sectors and would thus lead to less di�erentiated
di�usion rates on a �ner sectoral level.

Figure 6 shows the density plots of weighted out-degree for di�erent di�usion rates
depending on how we split up the economy based on sectoral lead times. The top-
left panel in this �gure corresponds to the case where we do not account for di�erent
di�usion rates. It is similar to the case presented in other network models like in
Acemoglu et al(2012). The top right panel corresponds to dividing sectors into two
categories, those with lead time less than 26 weeks and others with lead time more
than 26 weeks. This gives us two di�erent di�usion rates for the sectors in this economy
where the di�usion adjusted weighted out-degree are calculated from Γ1 and Γ2 as in
equation 3.15. The bottom left panel similarly corresponds to the case when we split
sectors by lead time cuto�s 12, 24, 36 and above weeks. Finally, the bottom right panel
corresponds to the case with bins created using 4, 8, 12, 24 and above week slices of
lead time.

What the results in the above graphs show is that once we start accounting for
di�erential di�usion rates, the sectors with very high weighted out-degree starts to fall.
This makes it di�cult to generate heavy tailed distribution of the di�usion adjusted
weighted out-degree of these sectors. As compared to the top left panel where the
highest outdegree was roughly 15, the bottom right panel has the highest out-degree of
8. What is more important is that the entire density shifts to the left and thus making
it even less likely to generate heavy-tailed distribution.

Another important point to notice here is that these plots are generated with limited
information in lead time values for many sectors. Since, the lead time data was available
for only 42 sectors, a lot of sectors get assigned to the same di�usion bin corresponding
to the parent NAICS level. Due to this problem a large number of sectors are present in
the �rst bin and hence in�ate the di�usion adjusted out-degrees to a certain level. But
overall the di�usion mechanism decreases the likelihood of generating a heavy tailed
distribution of outdegrees and thus also decreases the chances that a sectoral shock can
generate aggregate �uctuations.

5 Sectoral shock decomposition

In this section, I do similar exercise as performed in Foerster, Sarte and Watson (2012)
and use factor methods to decompose the industrial production (IP) into components
arising from aggregate and sector speci�c shocks. I use structural factor analysis and
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see how incorporation of di�usion channel into multi-sector growth model attenuates
the contribution of sector speci�c shocks to aggregate volatility.

5.1 Overview of the data

I use IP data for the years 1984-2007 for the analysis in this section. The data is
restricted to the above time period to keep the results comaparable to the exercise
performed in Foerster, Sarte and Watson (2012). The data corresponds to 3-digit
industry level NAICS classi�cation and reported for 26 sectors. It is possible to extend
the analysis and use 117 sectors i.e. 4-digit industry classi�cation as in Foerster, Sarte
and Watson (2012) instead of current 26 sectors but we are restricted by data on lead
time indicator as it is reported only at 3-digit level.

The IP data is reported on a monthly frequency level but we restrict ourselves to
quarterly level. The quarterly value for IP indices are constructed by taking average
over the monthly values in that quarter. IPt denotes the aggregate IP value in time
period t while IPit denotes the IP value for sector i in period t. We will be working with
growth rates of di�erent sectors which are denoted by gt for the aggregate IP and as xit
at the sectoral level. The growth rates are then de�ned by gt = 400 × ln (IPt/IPt−1)
and xit = 400× ln (IPit/IPit−1).

5.2 Setup: Factor Analysis

In this section, we perform both statistical as well as structural factor analysis to
decompose the aggregate �uctuations into aggregate and sectoral shocks. Let us �rst
begin with the statistical factor analysis. Let Xt denote the vector of sectoral growth
rates xit in period t, then the factor model can be written as:

Xt = ΛFt + ut (5.1)

where Ft is a k×1 vector of latent factors, Λ is N ×k matrix of factor loadings and
ut is N × 1 vector of sector speci�c idiosyncratic disturbances. As in classical factor
analysis Ft and ut are assumed to be mutually uncorrelated and i.i.d. with a diagonal
covariance matrix for ut. This allows us to express the covariance matrix of growth
rates, Xt as ΣXX = ΛΣFFΛ′ + ΣXX , where ΣFF and ΣXX are covariance matrices of
Ft and ut respectively. Since, by construction, ΣXX is assumed to be diagonal, all
covariance between di�erent sectors is explained by the common factos Ft. We can
use principal components to consistently estimate the factors as discussed in Stock
and Watson (2000) and then use penalized least-square criterion to further select the
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number of factors. In the current exercise, I restrict the number of factors to two to
simplify the analysis and deliver comparable results. Although the results are similar
if we use just one common factor.

Now having estimated the common factors, we can use them to construct a measure
for importance of aggregate shocks. We can de�ne R2(F ) = w̄′ΛΣFFΛ′w̄/σ2

g as the
contribution of common factors to aggregate volatility where σ2

g is the variance of growth
rate of aggregate IP. The above formula comes from the assumption that aggregate
growth rate gt ' w̄′Xt, where we have further assumed that sectoral weights w̄, i.e.
vector of contributions of sectors to overall IP, is constant over time.

The above described statistical factor analysis misses one important point that
sectoral shocks can be ampli�ed through sectoral linkages as shown in Long and Plosser
(1983), Horvath (1998), Carvalho (2007) and other related papers. What this implies
is that in the absence of a structural model, idiosyncratic sectoral shocks ampli�ed
through inter-sectoral linkages would appear as common shocks under statistical factor
analysis. But we can use the structural models presented in the Section 3 to separate
the network contribution of sectoral shocks from common shocks as done in Foerster,
Sarte and Watson (2012).

We have to look at the one-period di�usion model or Long and Plosser (1983) model
for carrying out structural factor analysis. The sectoral growth rate Xt is given by:

Xt = [I − (1− α)Γ1L]−1 εt (5.2)

Now, sectoral innovations εt consist of both aggregate as well as sectoral shocks,
given by:

εt = ΛSSt + νt (5.3)

where St is a k× 1 vector of latent factors and correspond to aggregate shocks, ΛS

is N×k matrix of factor loadings while νt is N×1 vector of sector speci�c idiosyncratic
disturbances. We further assume that St and νt are mutually uncorrelated and i.i.d and
the idiosyncratic shocks, νt are uncorrelated i.e. the covariance matrix Σνν is diagonal.

The evolution of sectoral output growth can now be expressed as a factor model:

Xt = Λ(L)Ft + ut (5.4)

where

Λ(L) = [I − (1− α)Γ1L]−1 ΛS (5.5)
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Table 1: Contribution Aggregate shocks

Data 1PD UDR
(1) (2) (3)

R2(S) 72% 63% 73%

and Ft = St, and

ut = [I − (1− α)Γ1L]−1 νt (5.6)

From the above equation, one can see that sectoral shocks are ampli�ed through
inter-sectoral linkages captured by the term [I − (1− α)Γ1L]−1. Ignoring the above
term is the main reason for over-estimation of contribution of aggregate shocks in ag-
gregate volatility. To overcome this problem, one can apply factor model to εt, instead
of Xt. The only problem is that one does not observe εt but it is possible to apply
factor decomposition on its empirical counterpart given by:

εt = [I − (1− α)Γ1L]Xt (5.7)

A similar analysis as listed above is done in Foerster, Sarte and Watson (2012).
The additional exercise in this paper is is to perform a similar analysis for di�usion
adjusted model. In case of di�usion adjusted model, we decompose:

εt =
[
I − (1− α)

[
Γ1L + ...+ ΓPL

P
]]
Xt (5.8)

5.3 Results

The results of the di�erent models discussed above are presented in table 1. The
contribution of aggregate shocks is captured by the value R2(S). Column 1 corresponds
to the case where we apply factor analysis to raw data. In this case, the sectoral inter-
linkages do not play any role and we see that common shocks have a 72% contribution
to overall volatility.

The second column in the same table corresponds to one period di�usion model or
Long and Plosser (1983) model. Since this model takes into account the inter-sectoral
linkages, the contribution of common shocks goes down and now only contribute 63%
to the aggregate volatility. Although, the contribution of common shocks has gone
down in this case but not as much as reported in Foerster, Sarte and Watson (2012).
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The reason being that the shocks a�ect downstream sectors one period later and hence
attenuates some of the ampli�cation mechanism present in their paper.

The third column needs some explanation because I have used unequal di�usion
rate model in this case. I have divided the sectors into two- one with lead time less
than a quarter and another with lead time more than one quarter i.e. Γ is split into
Γ1 and Γ2. Then I applied factor method to decompose εt constructed using the �lter
I − (1−α) [Γ1L + Γ2L

2]. In this case, the contribution of common shocks goes up due
to the fact that sectoral shocks a�ect few sectors in one time period. To compensate
this and achieve higher correlation between sectors, the common shocks now need to
be larger to achieve the same aggregate volatility.

6 Conclusion

This paper started out to explore the idea of shock di�usion in a multi-sector economy.
Using two canonical models, I showed how a lagged production function can be used
to model shock di�usion in the context of a production economy. I then showed that
1-period di�usion models generate less aggregate volatility when compared to 0-period
di�usion models that use contemporaneous production linkages.

I then developed a more realistic di�usion model where di�erent sectors have di�er-
ent production horizons and thus di�erent di�usion rates. Under this setup, I �nd that
introduction of shock di�usion partially closes down the important channel for shock
ampli�cation as present in the single period models with contemporaneous production
linkages. Since di�erent sectors have di�erent shock di�usion rates, the shock to sector
i at time t a�ects di�erent sectors at di�erent periods of time, thus reducing the impact
of this shock on aggregate volatility in any single period. I later use this model to pin
down the asymptotic properties of aggregate volatility as the number of sectors goes to
in�nity and again ask the question- whether idiosyncratic sectoral shocks can generate
aggregate volatility in the economy after controlling for di�erential shock di�usion? The
short answer is yes, but with a much stricter requirement. The requirement is that the
di�usion adjusted weighted out-degree measure should have a heavy tailed distribution
where this adjusted weighted out-degree depends on both the network structure and
di�usion rates of di�erent sectors.

In the end, the paper presents quantitative evidence to show that accounting for
di�usion channel reduces the importance of inter-sectoral networks in amplifying id-
iosyncratic sectoral shocks. The contribution of sectoral shocks in aggregate volatility
is not as high as argued in some of the recent papers. This gives important reason
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to further examine the di�usion channel in greater detail as it will have important
implications for the direction of this literature.
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