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Abstract. In this paper, we study conditions under which the Condorcet Jury Theorem extends
to the spatial model of elections. In the model, individuals with ideal points distributed over a
unidimensional policy space vote over two alternatives, the location of one of which is uncertain.
By employing the techniques used in Bhattacharya (2013), we identify the entire set of symmetric
equilibria for almost every voting rule. If there is uncertainty about whether the outcome induced
by the policy alternative is to the right or to the left of the status quo (the certain alternative),
then an election produces three outcomes, exactly one of which is full information equivalent. In
the other two equilibria, the status quo always wins. This finding provides a novel explanation for
status quo bias in referenda and incumbent advantage. The "bad equilibrium" is consistent with
the ex-ante unlikely victory of the Brexit side in the UK referendum of 2016.

1. Introduction

The main lesson of Condorcet Jury Theorem (Condorcet, 1785, henceforth CJT) is that in large
majoritarian elections, the commonly preferred alternative wins almost surely even if individuals
are uncertain about which alternative is better. Most of the existing work on CJT assumes that
individuals have the same preferences and receive independent, partially informative signals about
which alternative is the better one. Under these assumptions, these models show that elections
are full information equivalent, i.e., they produce outcomes that would occur if there were no
individual uncertainty about the alternatives in competition. In this paper, we examine whether
and to what extent this result holds up in the most commonly studied applied model of elections:
the Downsian model. In the standard Downsian model (Downs 1957), there is a unidimensional
space over which voter ideal points are distributed. Therefore, the main question here is whether
the intuition derived with homogeneous preferences in a jury setup is robust to variation in voter
preferences.1 Our central result is that even with very precise signals, there is a class of situations
under which an alternative that is both ex-ante and ex-post majority preferred may lose the election
almost surely.2

In the standard Downsian model, there are two policies in competition, and each policy is
identified with a location on the left-right ideological continuum [−1, 1]. Voter ideal points are
distributed on the same space, and each voter prefers the policy closest to her ideal point. Our
main innovation is to assume that while the location of one of the two policies (the “status quo”, Q)
is known, there is uncertainty about the location of the other policy (the “policy alternative”, P).
The interpretation is P induces one of two possible outcomes, but it is not known ex-ante which
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outcome it induces. Each outcome is associated with one known location on the policy space. Thus,
there are two states of the world– in state L, P is located at L ∈ [−1, 1] and in state R, P is located
at L ∈ [−1, 1]. Voters may be mistaken in their assessment of which state has actually occurred,
i.e., whether the location of P is at L or at R. To capture the possibility of such mistakes, we
assume that each voter receives an independent but imperfectly informative signal about the state.
Our main insight is that while the precise location of the alternatives is irrelevant for the outcome,
what matters is whether there is uncertainty about the order in the location of the alternatives. In
particular, if there is even a small uncertainty over which direction the policy alternative shifts the
status quo, then the CJT fails to go through.
To see how such an uncertainty over the order of location of alternatives may arise, consider

the (very stylized) example of a vote over trade liberalization. Suppose that a country facing a
referendum over whether to allow free trade by joining an economic union with other countries
(This example should be reminiscent of the failed Swiss referendum in 1992 on joining the EU).
Because of its isolation, it has developed both an industrial sector and an agricultural sector to suit
its own consumption needs. If the country allows free trade, the sector in which it has comparative
advantage will grow and the other will shrink. If there is an ex-ante uncertainty over which sector
the comparative advantage lies, i.e., whether the proposed trade reform will make those voters
engaged in industry better off at the cost of those in agriculture or the other way round, we
have a situation of unordered alternatives, leading to the reform being blocked. The possibility of
trade reforms being blocked by voters due to uncertainty over final payoffs has been identified by
Fernandez and Rodrik (1991). However, their model explains such outcomes through the perverse
effects of the price mechanism while this paper shows that the failure is driven by the rational
voting calculus.
Without loss of generality, assume that L < R and Q is located at 0.We say that the alternatives

are ordered if in each state, the policy alternative is located on the same side of the status quo, i.e.,
L < R < 0 or 0 < L < R. On the other hand, we say that the alternatives are unordered if the
policy lies to the left of the status quo in one state and to the right in the other, i.e., L < 0 < R. In
this case, the uncertainty is really about the order in the location of the alternatives. The important
feature of the unordered alternatives case is the fact that there are two groups of voters who have
opposed interests in each state of the world. In particular, when the policy is to the left of the
status quo (state L), the leftist voters prefer the policy over status quo while the rightist voters
prefer the status quo to the policy. The ranking over alternatives is reversed for both these groups
in state R. It is this state-contingent conflict that leads to the co-ordination problems among voter
groups.
It must be noted that while we denote the alternative with no locational uncertainty as the

“status quo”, our result applies equally well to a setting where the pre-reform policy is the one
corresponding to open trade and the proposal is about whether to continute with such a policy,
with the alternative being autarky. As long as there is current uncertainty about whether the
policy will move to the left or the right, this situation would correspond to the now-famous Brexit
referendum in Britain in 2016.
The exercise in the current paper involves finding the full set of symmetric equilibria for any

plurality rule in large electorates. We show that if the alternatives are ordered, then the uncertainty
does not matter– the election outcome is as if the state is known. On the other hand, if the
alternatives are unordered, behavior of each voter depends on what she expects others to do. Using
a methodology developed in Bhattacharya (2013), we find the full set of symmetric equilibria in the
unordered alternatives case. We show that in this case, there are exactly three possible equilibrium
outcomes. In one of these outcomes, the correct alternative wins almost surely in each state. But
there are two other equilibria in which the status quo is always elected. In one of the two “bad”
equilibria, each voter believes that almost everyone else is voting uninformatively, dampening his
own incentive to use information. Independent of information received, the larger group votes for
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the status quo and almost everyone in the smaller group votes for the alternative P. Voter behavior
in this equilibrium is akin to what we know as block voting. In another “bad”equilibrium, only the
extremists at either end of the ideological spectrum are responsive to information– but aggregation
fails because most of the other voters vote for the status quo in either state.
An important application of our result is in direct democracies. When voters vote in a referen-

dum, they face the choice over whether to adopt a new policy over a status quo. Any proposed
reform creates winners and losers (compared to the status quo), but there is often ex-ante uncer-
tainty about the identity of the winners and losers. There is a large literature in both economics and
political science that equates policymaking with experimentation, making the point that choosing
or electing a policy rarely the same as ascertaining or implementing an outcome.3 Thus, voting for
a policy alternative may often lead to substantial uncertainty over whether the outcome would lie
to the left or to the right of the status quo. We show that in these situations, the voting outcome
may simply favor the status quo even when it is not the correct choice. It is important to note here
that it is not risk aversion but co-ordination problems between voter groups that leads to elections
failing to aggregate information.
In fact, some proponents of direct democracy invoke the CJT in order to suggest that referenda

aggregate information effi ciently even if voters may be mistaken about the policy consequences
(Matsusaka 2005, Lupia 2001).4.This paper points out that such a position may be unwarranted:
While there does exist one equilibrium that does indeed aggregate information, there may be others
in which the alternative proposal always fails to pass.
Status quo bias in referenda have been well documented in empirical work. In general, the

details of the referendum process and the rules for passage might vary, making comparison across
countries or aggregation over instances diffi cult. In Australia, all amendments to the constitution
are required to be passed via referenda in which voting is compulsory for everyone on the electoral
roll, which makes it the closest approximation to the model we want to study. As of date, of the
44 proposals put forth for referendum in Australia, only 8 have passed. In Switzerland, the “gold
standard”for direct democracy, only 36% of all optional referenda have passed in the period from
1991 till 2006, although the proportion was higher earlier (see footnote 7 in Kirchgassner (2007)).
In fact, the status quo bias has been well-documented and studied in the case of Switzerland, where
authors have held direct democracy responsible for its slow growth during the nineties, delays in
reforms and so on (Kirchgassner 2008). In the United States, among 2360 statewide initiatives
to appear on the ballot since the first such initiative in Oregon in 1904 till 2010, only 962 have
passed.5 The success rate of 40% in these initiatives seems a rather low figure, keeping in mind
that initiatives appearing on the ballot are already those which are seen by their sponsors to be at
least somewhat likely to pass.
Referenda, by definition, involve a single issue. To the extent we can think of a political race

between two candidates or parties being reducible to a single, possibly ideological dimension, the
current paper applies to elections too. In case of high profile national elections, we often know which
candidate is to the right and which one is to the left simply from their party identities. However,
in may other situations voters are faced with an uncertainty over the order of the alternatives. In
primaries where both candidates are from the same party, the left-right order of candidates may
not be clear. In local or municipal elections, candidates often run on the plank of effi ciency or

3See Lindblom (1959) for an early enunciation of the idea of policymakers “muddling through”policies in search
of good outcomes. A more recent example is Callander (2011).

4For example, Matsusaka (2005, p. 193) claims that “Direct democracy can be effective even when voters have no
more or even worse information than legislators....aggregating the opinions of a million voters can be highly accurate
by the Law of Large numbers even if each person’s chance of being right is small (this is a version of Condorcet Jury
Theorem..)”

5Source: Historical database maintained by the Initiative and Referendum Institute at the University of Southern
California (http://www.iandrinstitute.org/data.htm)
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local issues, making it diffi cult for voters to use party affi liation as an informational shortcut for
candidate positions.
Even when the candidates do take clearly defined issue positions, there is substantial evidence

to the effect that voters often fail to learn the positions or, worse still, fail to even identify the
order of the candidates according to their positions. Lenz (2012, table 5.1, page 117-118) presents
a survey where he studies several salient issues in US and European national elections (social
security in 2000 US elections, EU integration in the British 1997 elections, public works jobs in
the 1976 US elections, defense spending in the 1980 US elections, ideology in the 1992 US elections
and Chernobyl in the 1986 Dutch elections) and shows that, in each case, less than half of the
respondents could start out identifying the order of candidates correctly. These facts suggest that
even in electoral races between candidates, there may be uncertainty in voters’minds about the
order of candidates.
In case of electoral competitions, our results provide a new explanation for the phenomenon

of incumbency advantage. It is well documented that incumbents enjoy a strong and growing
advantage in US electorates - both in legislative and executive offi ces (Ansolabehere, Snyder and
Stewart 2000, Ansolabehere and Snyder 2002). We hold that if there is incomplete information
regarding wether the challenger lies to the left or right of the incumbent, then incumbency advantage
may arise due to a co-ordination failure among voters. This explanation is in addition to those
relying on issues relating to political structure (e.g. decline of the party (Cover 1977), campaign
contribution and interest group activities (Jacobson 1980)) which can only explain the phenomenon
in legislative offi ces. Our explanation applies to executive offi ces as well. In fact, our theory is more
suited to lower offi ces where information regarding the challenger is harder to come by and party
identification plays a smaller role.
Moreover, as Ansolabehere, Snyder and Stewart (2000) puts it, “measured in terms of vote share,

the incumbency advantage grew from a modest 1-3 percentage point edge in the 1940s and early
1950s to a 7-10 percentage point edge in the 1980s and early 1990s.”This growth has been linked
with the increase in television coverage (Eriskson 1995, Ansolabehere, Snowberg and Snyder 2006):
The idea being that since the incumbent gathers a larger share of television time than the challenger
both in terms of news coverage and campaign advertisements. Our explanation is broadly in line
with this position: the incumbent advantage stems from the voters being more informed about the
incumbent than about the challenger.
In the main body of the paper, we compare the equilibrium properties of the ordered alternatives

case (L < R < 0) with those of the unordered alternatives case (L < 0 < R). This not only allows
us to show when elections may fail to aggregate information, it also sheds light on why aggregation
fails. We show that in equilibrium only a subset of voters are responsive in the sense that changes
in information received changes their voting decision. In the ordered alternatives case, for all
responsive voters, the same information induces the same voting decision. But under unordered
alternatives, the same information may induce opposite voting decisions among different groups of
responsive voters. What is surprising is that the very possibility of different voters interpreting the
same information in different ways leads to outcomes that are “wrong”with a very high probability.
The fact that this breakdown does not depend on the size of conflicting groups, the accuracy of
signals or on the exact distribution of voter preferences indicates that the source of informational
ineffi ciency in voting is just the existence of two groups of voters that never agree with each other.
The paper is organized as follows. Section 2 discusses the relationship to the literature on

Condorcet Jury Theorem in detail. Section 3 discusses the basic model and defines equilibrium
of the game We study the information aggregation properties of the ordered alternatives case in
section 4 and that of the unordered alternatives case in section 5. A final section concludes. Most
proofs are relegated to the appendix.
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2. Relationship to the literature on CJT

Most of the previous game-theoteric work on CJT (e.g. Austen-Smith and Banks (1996), My-
erson (1998a, 1998b, 2000), Wit(1998), Meirowitz (2002)) assume that all voters have the same
preference.6 Feddersen and Pesendorfer (1997), henceforth FP, was the first to provide a proof of
CJT allowing a limited heterogeneity of voter preferences. In FP, while not all voters have the same
ranking over alternatives, any given increase in the state (e.g. extent of guilt) always increases the
utility from voting for a specific alternative (e.g. conviction). As such, in FP, any change in state
induces switches in favor of the same alternative in FP. In the ordered alternatives case in our
model, a switch in state from L (the more extreme state) to R (the more moderate state) induces
switches in ranking from P to Q but not the other way round. and this is the reason why, much
like FP, information is always aggregated if the alternatives are ordered.7

Bhattacharya (2013) develops a methodology to analyze the limit of equilibria of a two-state,
two-alternative election game with general voter preferences. In particular, Bhattacharya (2013)
shows that if some voters prefer P in state L and Q in state R while others prefer Q in state L
and P in state R, then there exists an equilibrium sequence where the full information equivalent
outcome fails to obtain in the limit. The imposition of spatial structure allows us to use the same
methodology to make clear predictions about the entire set of limit equilibrium outcomes. We
show that while the equilibrium with the “wrong”outcome does exist as predicted by Bhattacharya
(2013), there also exists one equilibrium in which the correct outcome obtains almost surely. Thus,
the message here is that whether majoritarian elections lead to the effi cient outcome or not depends
entirely on voter co-ordination. If the achievement of informational effi ciency is the objective of
the government (or more generally, the election designer), then our work suggests that policies
should be targeted towards co-ordinating on the right equilibrium. Characterization of the entire
equilibrium set allows the designer to know precisely which outcomes to avoid while designing such
a targeting mechanism.
It is important to mention the formal relationship between conditions on information aggrega-

tion in the spatial model (i.e., ordered vs. unordered alternatives) and those in the more general
setting in Bhattacharya (2013). According to the Strong Preference Monotonicity (SPM) condition
in Bhattacharya (2013), if the distribution of preferences is such that a randomly chosen voter is
more likely to the same alternative over the other for each belief over states, then information is
aggregated in all equilibria. Conversely, if SPM is not satisfied by the distribution of preferences,
then there exist signal probabilities for which a “wrong”outcome obtains in at least one equilib-
rium. Bhattacharya (2013) also identifies a joint condition on signal probabilities and preference
distribution called Weak Preference Monotonicity (WPM) that has the same flavor.8 In the spatial
model, if the alternatives are ordered, both SPM and WPM are satisfied. Hence, it follows di-
rectly that information is aggregated effi ciently in every equilibrium. On the other hand, when the
alternatives are unordered, both SPM and WPM are violated. Therefore, according to the main
theorem in Bhattacharya (2013), there exist equilibria that fail to aggregate information for conse-
quential rules.9 Moreover, in the current paper, the spatial structure allows us to predict the entire
set of symmetric equilibria for all non-unanimous voting rules, and not just consequential rules.
Another interesting difference with Bhattacharya (2013) is in terms of exposition. Bhattacharya
(2013) solves the electoral game in terms of beliefs held in equilibrium, while the current paper

6There is also an older literature on statistical proofs of CJT (see Nitzan and Paroush (1985), Ladha (1992) and
Berg (1993) for example).

7Gersbach (1995) has also shown in an abstract setting with mechanistic voters that uncertainty over payoff
distributions may lead to problems with aggregation.

8WPM is said to be satisfied if a change in the signal from a to b makes a randomly chosen voter more likely to
prefer the same alternative for each belief over states. For a given distribution of preference, SPM holds if and only
if WPM holds for every possible distribution over signals satisfying MLRP.

9Consequential rules are those voting rules that induce different outcomes in different states under full information.
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derives the strategies held in equilibrium by the voters. This allows us to track the behavior of the
swing (i.e., responsive) voters and provide conditions on what has to be true of such behavior for
the election to achieve the correct outcomes in equilibrium. These conditions throw light on the
reasons for why information may or may not be aggregated in different equilibria.

3. The Model

Suppose there is an electorate composed of a finite number (n+ 1) of people who are voting for
or against a policy proposal P. If the proposed policy gets more than a proportion θ of the votes,
then P wins; otherwise the status quo Q wins.10 Assume that the policy space is [−1, 1], and that
each policy leads to an outcome that is modelled as a location on the policy space. We shall stick
to the conventional interpretation of the policy space as the left-right ideological continuum, and
think of locations expressed as higher numbers as more rightist outcomes. We assume that the
location of the status quo Q is 0. On the other hand, there is uncertainty about the location of the
proposal P. With equal probability, P likely to be located at L or R. The event that P is located
at S, where S ∈ {L,R} is referred to as state S. Additionally, we assume that the policy proposal
never coincides with the status quo, i.e., both L and R are non-zero and that L < R.
At this stage, we introduce an important classification of the possible configurations of L, R

and Q. Notice that with the assumptions made above, there are three possible configurations:
L < R < 0, 0 < L < R and L < 0 < R. In the first (second) case, the proposed policy lies to the
left (right) of the status quo irrespective of its actual location. In these two cases, we say that we
have ordered alternatives in the sense that it is ex-ante known whether the proposed policy is to the
right or left of the status quo. On the other hand, if we have L < 0 < R, then we say that we have
unordered alternatives. In this case, the ordering between the proposed policy P and the status quo
Q depends on the realized state: in state L, P is to the left of Q and in state R, P is to the right
of Q. The unordered alternatives case captures situations where there is uncertainty regarding
whether the proposal shifts the status quo to the right or left. We study these two cases separately.
In the ordered alternatives case, we assume that −1 < L < R < 0 without loss of generality, since
the other case (0 < L < R < 1) would be symmetric. In the unordered alternatives case, we assume
that L = −b and R = b for some b ∈ (0, 1), i.e., the two alternatives are located equidistant from
the status quo.
Voters have single peaked preferences defined on the policy space. Every individual has a pri-

vately known bliss point x that is drawn independently from a commonly known non-atomic distri-
bution F (·) with support [−1, 1] and a positive, bounded and continuous density f(·) on the entire
support. For a voter with ideal point x, the utility from a policy with location a is assumed to
be −(x − a)2. What matters for her voting decision is the difference in utility between P and Q.
Denote by v(x, S) as the difference in utility between P and Q when the proposed policy is located
at S ∈ {L,R} :

(1) v (x, S) = (x− 0)2 − (x− S)2 = S(2x− S)

If the state S is known, a voter votes for P if v(x, S) > 0 and only if v(x, S) ≥ 0.11 The types
x for which v(x, S) is weakly positive for S ∈ {L,R} vote for P irrespective of the signal they
receive, and are called partisans for P. Similarly, the types x for which v(x, S) is weakly negative
for S ∈ {L,R} are called partisans for Q. It is only those types for which v(x, L)v(x,R) < 0 whose
behavior is sensitive to information: they are called independent voters. Such a voter calculates the
expected value of this function using the relevant probability distribution over states conditioning

10To simplify the analysis, assume the tie breaking rule that if the policy receives exactly θ proportion of votes,
the status quo wins.

11Since v(x, S) = 0 occurs with zero probability, it does not matter for the outcome what a type x does when
v(x, S) = 0.
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on his vote being pivotal in determining the outcome (given his signal and the behavior of other
voters) and votes P if the expectation is non-negative.
Each voter receives a private signal σ ∈ {l, r} about the state. Signals are independent and

identically distributed conditional on the state, with the distribution being:

Pr(l|L) = Pr(r|R) = q

The parameter q measures signal precision, and we assume that the signals are suffi ciently precise,
in particular, q > 1

2 + b
4 . We denote this informativeness assumption by I. While we assume I

throughout the paper, it has bite only when the alternatives are unordered.
At this stage, a few comments about the assumptions are due. First, symmetric location of

alternatives is not too strong an assumption as we have very few restrictions on the distribution of
voter ideal points except non-atomicity and full support. Second, assumption I ensures that it is
never the case that all types of voters vote for the status quo irrespective of the signal. Therefore,
the role of this assumption is to ensure that for every voter, there is always a positive probability
of being pivotal.
The utility from the alternative A, when it is located at a, is given by:

U(x,A) = −(x− a)2, A ∈ {Q,P}

Given a draw of x and S, we define v(x, S) as the difference in utility between the policy alter-
native and the status quo:
We denote a voting environment by the tuple (F, q, L,R), and a voting game by an environment

together with voting rule θ ∈ (0, 1) and a finite number n + 1 of voters. Now, we turn to the
equilibrium of a voting game.

3.1. Strategies and equilibrium. The equilibrium concept we employ is symmetric Bayesian
Nash equilibrium in undominated strategies. By symmetric, we mean that individuals with the
same private information (bliss point x ∈ [−1, 1] and signal σ ∈ {r, l}) vote the same way. Since F
is nonatomic, we can concentrate on pure strategies. The strategy π(x, σ) takes a value 0 or 1 for
each (x, σ), and this value is a probability of voting for P.
It is easy to see that any equilibrium strategy π∗ of this game will be a “cut-off”strategy. To

see that, for a voter with signal σ, denote the equilibrium belief of the state being L conditioning
on a tie as p∗σ = Pr(L|piv, π∗, σ). Note that this belief must be the same for all x ∈ [−1, 1]. The net
expected utility of a voter with preference type x of voting for P is

E(v(x, S)|piv, π∗, σ) = p∗σv(x, L) + (1− p∗σ)v(x,R)

= 2x(p∗σL+ (1− p∗σ)R)− (p∗σL
2 + (1− p∗σ)R2),(2)

which is linear in x. Therefore, in equilibrium, we will have a cut-offxσ defined by E(v(xσ, S)|piv, π∗, σ) =
0, such that all x < xσ vote for one alternative and all x > xσ vote for the other alternative. While
a voter with x = xσ is indifferent and can potentially mix, since such voters occur with zero
probability, their action does not matter for equilibrium.
The linearity of E(v(x, S)|piv, π∗, σ) allows us a different way of characterizing the equilib-

rium of the voting game (F, q, L,R, θ, n). We have already seen that the equilibrium strategies
can be characterized by a pair of cut-offs x∗l and x∗r satisfying E(v(xl, s)|piv, π∗, l) = 0 and
E(v(xr, s)|piv, π∗, r) = 0. Equation (2) implies that finding a pair (x∗l , x

∗
r) is equivalent to find-

ing a pair of beliefs (p∗l , p
∗
r), one for each signal. Now, denote the likelihood of a tie induced by any

strategy profile π without conditioning on a signal as βL = Pr(L|piv, π), and notice that we must
have the posterior likelihoods (pl, pr) related by Bayes Rule to βL in the following way.

(3)
pl(βL) ≡ β(L|piv, π, l) = qβL

qβL+(1−q)(1−βL)
pr(βL) ≡ β(L|piv, π, r) = (1−q)βL

(1−q)βL+q(1−βL)

}
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It is easy to see that (i) both pl and pr are strictly increasing functions of βL, (ii) pl(βL) =
pr(βL) = βL at βL ∈ {0, 1}, and (iii) pl(βL) > pr(βL) for βL ∈ (0, 1). Therefore, given q, finding
a pair of posterior beliefs (pl, pr) is equivalent to finding a value of βL. Thus, there is a one-
to-one correspondence between the cut-off strategy (xl, xr) and the βL, the likelihood of state L
conditional on a tie. We call βL Pr(L|piv, π) the induced prior as it acts as a prior likelihood from
which posteriors pσ are determined, but it is induced in equilibrium by the strategy profile.

3.2. Existence. Given a strategy profile π, the likelihood that a randomly chosen voter votes for
P in state S is

(4) t(S, π) =

∫ 1

−1
Pr(l|S)π(x, l)dF (x) +

∫ 1

−1
Pr(r|S)π(x, r)dF (x), S = L,R

Expanding (4) we can write

t(L, π) = q
∫ 1
−1 π(x, l)dF (x) + (1− q)

∫ 1
−1 π(x, r)dF (x)

t(R, π) = (1− q)
∫ 1
−1 π(x, l)dF (x) + q

∫ 1
−1 π(x, r)dF (x)

Under a rule θ a voter is pivotal if nθ votes are cast for the policy P from among the remaining
n voters. So, the probability of being pivotal under state S is given by12:

(5) Pr(piv|π, S) =

(
n

nθ

)
(t(S, π))nθ (1− t(S, π))n−nθ , S = L,R

Note that equation (5) actually denotes a pair of equations, one for each state. Call these the
pivot equations. Note that if t(S, π) ∈ (0, 1) then Pr(piv|π, S) > 0. We show later that in any
equilibrium of the model, we must have t(S, π) ∈ (0, 1) which ensures that pivot probabilities in
equations (5) are well defined. The belief on the state S conditional on being pivotal is given by:

(6) β (S|piv, π) =
Pr(piv|π, S)

Pr(piv|π, L) + Pr(piv|π,R)
, S = L,R

We can rewrite this as
βL

1− βL
=
β (L|piv, π)

β (R|piv, π)
=

Pr(piv|π, L)

Pr(piv|π,R)
,

which, using the pivot equations, gives us

(7)
βL

1− βL
=

[
(t(L, π))θ (1− t(L, π))1−θ

(t(R, π))θ (1− t(R, π))1−θ

]n
Equation (7) is called the equilibrium condition. Consider any strategy π that is comprised of

cut-offs xl(βL) and xr(βL) arising from beliefs βL. Clearly, it is an equilibrium if and only if it
induces the same belief βL, and therefore, leads to the same cut-offs xl(βL) and xr(βL) as best
response. In other words, such a belief is characterized by a solution to the equilibrium condition
(7).
Now consider any given voting game (F, q, L,R, θ, n), and consider any strategy π that is com-

prised of cut-offs xl(βL) and xr(βL). First, note that t(S, π) is continuous is βL. We later show
that t(S, π) ∈ (0, 1) for any cut-off strategy. So, the right hand side of equation (7) is continuous
in βL and bounded above and below. The left hand side, on the other hand, goes from 0 to ∞
continuously as βL changes from 0 to 1. Hence, there exists a solution to the equation (7). This
establishes the existence of cut-off equilibrium strategies in any given voting game.
Before identifying equilibrium strategies, we classify the voting rules and lay down the conditions

that need to be satisfied for information to be aggregated in equilibrium given a voting rule.

12For technical convenience, we assume that nθ is an integer. The “integer problem” in dealt with in detail in
Bhattacharya (2013). There, it is shown that the assumption that nθ is an integer does not affect the results in the
limit as n becomes large.
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3.3. Conditions for Information Aggregation. Before proceeding with the analysis of infor-
mation aggregation properties, we set up some important definitions that will be useful throughout
the paper. First, we introduce a classification of the voting rules according to the outcome induced
in each state under full information in a large election. We shall call a voting rule consequential if
under that rule, we get different outcomes under different states if the states were common knowl-
edge. On the contrary, if the voting threshold is such that under full information, the same outcome
obtains in each state, we call the it a trivial rule. Notice that this classification depends on the
particular voting environment under consideration. We shall discuss this classification for each case
(ordered vs unordered alternatives) in a later section.
Next, we define the standard for information aggregation in election.

Definition 1 (Full Information Equivalence). Suppose in a voting environment (F, q, L,R) under
voting rule θ, alternative A wins in state L and A′ wins in state R when the state is common
knowledge. Now, consider a sequence πn of equilibria in this environment, fixing voting rule θ
and letting the number of voters increase unboundedly. The sequence of equilibria πn is said to
aggregate information for the voting rule θ if the probability of alternative A winning in state L
and A′ winning in state R converges to 1 along the sequence. An environment is said to be full
information equivalent if every equilibrium sequence aggregates information for every voting rule
θ ∈ (0, 1).

We shall see that while all environments satisfying ordered alternatives will be full information
equivalent, it will not be the case for environments with unordered alternatives. When alternatives
are unordered, for each consequential rule, there will be three sequences of equilibria, one of which
will aggregate information. In two others, the status quo Q will win almost surely in both states,
and thus information aggregation will fail.
If in an equilibrium sequence, the vote of an individual with type x changes with the signal,

i.e., if πn(x, l) 6= πn(x, r) for all n large enough, then type x is said to be responsive. Given a
voting rule, the characteristics of the responsive set of voters determines whether information will
be successfully aggregated.

Definition 2 (Alignment). Suppose that given a consequential rule, under full information, P wins
under state S and Q in the other state, i.e., the state {L,R}\S. A type x is said to be aligned with
the society if he prefers P in state S and Q in the other state. If on the other hand, a type x prefers
Q in state S and P in the other state, then we call the type mis-aligned.
Note that the responsive set of voters contains only independent types, and independents are

either aligned or misaligned. If the majority of types in a set of voters is aligned, the set itself is
said to be aligned. For voting with a consequential rule θ, we need the following conditions to be
satisfied in equilibrium for the information to be aggregated in the limit.

(1) The responsive set should be influential, i.e., the overall voting outcome should change as
the responsive types vote differently in the different states. In other words, the vote share
for P should be higher than the threshold θ in one state and lower in the other.

(2) The responsive set should be aligned with the society, and thus contribute more votes for
the “correct”alternative in each state.

Both conditions are satisfied under equilibrium in the common values situation, but in the non-
common values situation, each can individually fail in the limit equilibrium.
On the other hand, for voting with trivial rules, we need the responsive types not to be influential

for information to be aggregated.

4. Ordered Alternatives

First, we look at the benchmark case of ordered alternatives (L < R < 0). We show that the
conditions for information aggregation above are satisfied for every voting rule.
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We start by looking at the cut-offs xl and xr. From equation (2), for any pσ, we obtain xσ as the
unique solution to E(v(x, S) = 0.

x(pσ) =
1

2

(
(L)2 pσ + (R)2 (1− pσ)

Lpσ +R(1− pσ)

)
∈
[
L

2
,
R

2

]
The the cut-off strategies are given by equation (8):

(8)


π(x, l) =

{
1 if x ≤ xl
0 otherwise

,

π(x, r) =

{
1 if x ≤ xr
0 otherwise

 when L < R < 0

Since the cut-offs xσ are functions of posteriors pσ which are again functions of the induced prior
βL, we should understand the cut-offs xσ as functions of βL

Remark 1. It is easy to check that (i) xσ(βL) are decreasing functions of βL,(ii)xr(βL) > xl(βL)
for βL ∈ (0, 1), and (iii) For βL = 1, xr = xl = L

2 , and likewise for βL = 0, xr = xl = R
2 .
13

Thus, for any induced prior, the strategies in the benchmark case are characterized by cutpoints
xl and xr, with xl ≤ xr. Thus, types left of xl always vote for P and those right of xr vote for
Q while types in [xl, xr] vote informatively (according to their signal). The set of types [xl, xr] is
the responsive set, while the other types vote according to their bias. Irrespective of the location
of the cutoffs, the responsive set is always aligned with the society. This means that whenever
the responsive set is influential, information will be aggregated. Thus, for consequential rules, all
we need to show for information aggregation is that in any limit equilibrium, the responsive set
is influential. For this, we need monotonicity of the vote shares under both states, which is again
ensured by the ordered nature of the cut off strategies.
We define the probability of an individual voting for the alternative P given σ as zσ, i.e., zσ ≡∫ 1
−1 π(x, σ)dF. We have from equation (8),

zσ = F (xσ), σ = {l, r}
Therefore, using (4) we write:

(9)
t(L, π) = qzl + (1− q)zr = qF (xl) + (1− q)F (xr)
t(R, π) = (1− q)zl + qzr = (1− q)F (xl) + qF (xr)

}
Note that since the cut-offs xl and xr are functions of the induced prior βL, the vote shares

t(L, π) and t(R, π) are also functions of βL. The following lemma examines how the vote share in
each state changes as a function of the induced prior.

Lemma 1. The expected share of votes t(S, π) in state S decreases strictly with the induced prior
βL. For all βL ∈ (0, 1), the vote share t(L, π) in state L is strictly less than the share t(R, π) in
state R. For βL = 0, t(L, π) = t(R, π) = F (R2 ) and for βL = 1, t(L, π) = t(R, π) = F (L2 ).

Proof. By Remark 1, at βL = 0, zl = zr = F (R2 ) ⇒ t(S, π) = F (R2 ) for S ∈ {L,R}. Similarly,
at βL = 1, t(S, π) = F (L2 ) for S ∈ {L,R}. Also, since xσ is decreasing in βL, t(S, π) is strictly
decreasing in βL. For the second part of the lemma, note that

t(L, π)− t(R, π) = (2q − 1) (F (xl)− F (xr))

By remark 1 again, for βL ∈ (0, 1), F (xl)− F (xr) < 0, and since q > 1
2 , we have t(L, π) < t(R, π).

Lemma 1 states that as the induced prior probability of the state being L (conditional on being
pivotal) increases, the expected share of votes for the alternative policy decreases under either state

13The crucial observation driving this result is dx(p)
dp

< 0.
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since the state L is deemed to be more “extreme”. Informative voting by the responsive set ensures
that the policy receives more votes in the “moderate“ state (R). Note also that at any induced
prior, the difference in expected vote shares is increasing in the informativeness of the signal. The
expected vote shares in the two states are plotted against the induced prior in figure 1.

t(L,π), t(R,π)

0

1

1

t(L,π)

t(R,π)F(R/2)

F(L/2)

βL

Figure 1: Vote shares in each state under ordered alternatives
Lemma 1 also ensures that since t(S, π) lies strictly between 0 and 1, and β(S|piv, π, σ) is always

well-defined. Intuitively, since the types left of L2 are P-partisans and those to the right of
R
2 are

Q-partisans, there is always a positive probability that any given type is pivotal..

4.1. Limit Equilibria under ordered alternatives. Now, we consider the properties of the vot-
ing equilibria as the electorate grows in size arbitrarily, keeping the environment and the voting rule
constant. Therefore, every quantity is superscripted by the number of voters n. The superscript will
be suppressed when there is no ambiguity Suppose, given an environment and voting rule for some
n, the equilibrium is πn, and the cutoffs are xnσ. Since x

n
σ lies in a compact space

[
L
2 ,

R
2

]
, existence

of equilibrium for any n implies the existence of a convergent subsequence with an accumulation
point as n → ∞. If a limit of this sequence exists, we call it π0. By continuity arguments, as
xnσ → x0σ, t(S, π

n), βnL, p
n
l ,and p

n
r all converge to finite limits t(S, π

0), β0L, p
0
l , and p

0
r respectively

along the sequence.
Rewriting the equilibrium condition:

(10)
βnL

1− βnL
=

[
(t(L, πn))θ (1− t(L, πn))1−θ

(t(R, πn))θ (1− t(R, πn))1−θ

]n
for all n

We know that a solution to equation (10) exists for every n. From continuity, if a limit exists, we
can also say that the above relation has to hold in the limit; call this the limit equilibrium condition.

(11)
β0L

1− β0L
= lim

n→∞

[(
t(L, π0)

)θ (
1− t(L, π0)

)1−θ
(t(R, π0))θ (1− t(R, π0))1−θ

]n
To avoid writing complicated expressions, we define:

αn =
(t(L, πn))θ (1− t(L, πn))1−θ

(t(R, πn))θ (1− t(R, πn))1−θ
and α0 =

(
t(L, π0)

)θ (
1− t(L, π0)

)1−θ
(t(R, π0))θ (1− t(R, π0))1−θ



12 SOURAV BHATTACHARYA†

Note that the vote shares t(S, πn) are functions of βnL. Next, we look at the properties of the
limit, assuming existence for the time being. We later show that in the ordered alternatives setting,
for any voting rule, there is only one accumulation point of πn which must be the limit.

Lemma 2. If β0L ∈ (0, 1), α0 = lim
n→∞

αn = 1

Proof. See Appendix. Note that this lemma does not use the condition that L < R < 0, so it is
true of unordered alternatives too.

Lemma 3. If β0L = 1, then xnσ → R
2 from the left for σ = l, r. Similarly, if β0L = 0, then xnσ → L

2 from
the right for σ = l, r

Proof. Follows from continuity of xnσ in p
n
σ and of p

n
σ is β

n
L, along with Remark 1.

Note, as an aside to Lemma 3, that although under both signals the cutoffs converge to R
2 or

L
2

as the induced prior converges to 1 or 0 respectively, by remark 2, we always have xnl < xnr . Thus,
in the responsive set, the voters always vote for Q if they get moderate signal r and P if they get
the extreme signal l. The responsive interval is vanishingly small as the induced prior distribution
converges to state R , grows for intermediate values of the prior, and again shrinks to a vanishing
size as the distribution converges to a degenerate distribution at state L. Thus, given q, a level of
precision of the signals, the difference between expected shares in the two states is low for extreme
values of the induced prior and high for intermediate values.
Lemma 2 and Lemma 3 together imply that for any limit induced prior, given a voting rule under

any equilibrium, the vote shares in each state must be related in a certain way. This is stated in
Proposition 1 below. According to Lemma 2, if αn is bounded away from 1, then β0L must be either
0 or1. Under conditions of Lemma 3, if βnL is indeed 0 (or 1), then the voters are almost sure of
the state in which they are pivotal and vote as if under full information. Every type except those
in a vanishing set votes uninformatively, and the vote shares under either state are the same in the
limit. Thus, in equilibrium, we have α0 = 1 for all values of the induced prior.

Proposition 1. In all limit equilibria with ordered alternatives, we must have α0 = 1, i.e.,(
t(L, π0)

)θ (
1− t(L, π0)

)1−θ
=
(
t(R, π0)

)θ (
1− t(R, π0)

)1−θ
, i.e., α0 = 1

Proof. For any equilibrium with β0L ∈ (0, 1), the proposition follows straightforwardly from Lemma
2. If β0L = 1, the first part of Lemma 3 implies that t(L, πn) and t(R, πn) both converge to F (R2 ).

Therefore, α0 = 1, since F (R2 ) ∈ (0, 1). If β0L = 0, the proof follows in exactly the same way.
Note that Proposition 1 is based on a necessary condition that must be true for a β0L to which

induced belief converges in the limit equilibrium. It helps exclude certain voting rules that cannot
support a given value of βL in the limit. To say this formally, define Θ(βL) as the set of voting
rules that can support βL as an induced belief in the limit equilibrium condition (equation 11) for
some distribution of preferences in the cut-off equilibrium. To emphasize that t(S, π) is a function
of βL, we write t(S, π) as tS(βL) for S ∈ {L,R}.

Lemma 4. Under ordered alternatives, (i) If βL ∈ (0, 1), then Θ(βL) is a strictly increasing
function θ∗(βL), with tL(βL) < θ∗(βL) < tR(βL). (ii) Otherwise, Θ(1) = {θ : θ < F (L2 )}, and
Θ(0) = {θ : θ > F (R2 )}

Proof. In Appendix.
The first part of the lemma is almost a corollary of Proposition 1. For each interior value βL of

the induced prior, it identifies a unique θ as the only possible voting rule to support βL in the limit
equilibrium. As long as the expected vote shares in the two states are different, the only voting
rule that can satisfy Proposition 1 is one that lies strictly between the two shares. This has the
implication that under one state the status quo wins, while in the other, the policy wins. If there are
any equilibria with beliefs that place positive probability on both states, then the responsive set of
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types for these equilibria are always influential. The second part of the lemma says that the extreme
beliefs can be supported only by extreme values of the voting rules. The main implication of the
Lemma is that while the responsive set is influential for any possible equilibria with consequential
rules, it is never influential for trivial rules.
Note that since θ∗(βL) is strictly increasing, its inverse function β−1L (θ) exists for θ ∈

(
F (L2 ), F (R2 )

)
and is strictly increasing. Thus, according to Lemma 5, for every θ, there is a unique βL that can
be supported as an equilibrium induced prior in the limit, for any distribution of types. Call it
β (θ) . We can write:

(12) β (θ) =


1 if θ < F (L2 )
β−1L (θ) if θ ∈

(
F (L2 ), F (R2 )

)
0 if θ > F (R2 )

We plot the correspondence Θ(βL) along with the expected vote shares in each state against the
induced prior in Figure 2.

t(R,π)

t(L,π), t(R,π)

0

1

1

t(L,π)

F(R/2)

F(L/2)

βL

Θ*(βL)

Figure 2: Correspondence Θ(βL) under ordered alternatives

The next proposition gives a characterization of cut-offequilibria in large populations for different
voting rules under ordered alternatives.

Proposition 2. Assume that a voting environment (F, q, L,R) satisfies L < R < 0. Fix a voting
rule θ ∈ (0, 1). Then there is a unique limit equilibrium π0 in cut-off strategies with the induced
prior converging to βL if and only if θ ∈ Θ(βL), or alternatively, if and only if βL = β (θ) .

Proof. Since βL lies in a compact set, for the sequence π
n, there is an accumulation point πa, given

θ. We show in the appendix that this πa is the limit equilibrium π0 given θ. Lemma 4 states that
for any distribution of types, if a limit exists, there is a unique number β (θ) to which the induced
prior converges in the limit along the sequence of equilibria under voting rule θ.
Note that once the limiting value of the induced prior βL is established, the limit posterior

distributions pσ, the limit cut-offs xσ etc. are all determined from βL. Thus this proposition
describes all relevant information about strategies, vote shares and statewise outcomes in equilibria
with a voting rule when the population size becomes large. Also, by the Law of Large numbers,
the actual vote shares are arbitrarily close to the expected vote shares14.

14More specifically, given any ε > 0 and δ > 0, we can find some number N such that as long as the polupation
size is larger than N , the actual vote share is within ε of the exoected share with a probability higher than 1− δ.
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4.2. Outcomes and Information Aggregation. In Section 2, we informally discussed a clas-
sification of voting rules according to the outcomes produced under full information. With full
information, under state L, the policy would get F (L2 ) share of votes; and similarly under state R,
the policy would get F (R2 ) share of votes. Therefore:

• Any voting rule θ < F (L2 ) is a P-trivial rule, i.e., P wins under both states.
• Any voting rule F (L2 ) < θ < F

(
R
2

)
is a consequential rule, i.e., P wins in state R and Q in

state L.
• Any voting rule θ > F

(
R
2

)
is a Q-trivial rule, i.e., outcome is status quo under both states.

t(R,π)

t(L,π), t(R,π)

0

1

1

t(L,π)

F(R/2)

F(L/2)

βL

θ

β

tL(β)

tR(β)

P in R
Q in L

Figure 5(a): Outcome under a Consequential rule θ under
Preference monotonicity (L < R < 0)

t(R,π)

t(L,π), t(R,π)

0

1

1

t(L,π)

F(R/2)

F(L/2)

βL

θ

tR(β) = tL(β)

Q in R
Q in L

Figure 5(b): Outcome under a Q­trivial rule θ under
preference monotonicity (L < R < 0)

Figure 3(a), 3(b)

Proposition 3. A voting environment (F, q, L,R) satisfying L < R < 0 satisfies full information
equivalence.

Proof. In appendix.
According to the proposition, under ordered cut-offs, any voting rule aggregates information in all

equilibrium sequences. Since the vote shares in each state is between F (L2 ) and F
(
R
2

)
, any trivial

rule aggregates information. Essentially, the responsive types lying between L
2 and

R
2 can never be

influential with trivial rules. With P-trivial rules, everyone is virtually sure that conditional on
being pivotal, the state is L. In other words, under such a rule, being pivotal at state L (when P
receives least votes) is infinitely more probable than being pivotal at state R. Similarly, with any
Q-trivial rule, one has far higher chance of being pivotal in state R (when P receives most votes)
than in state L. We depict the outcome in the limit equilibrium with a Q-trivial rule in figure 3(a).
On the other hand, for any consequential rule, the induced prior places positive probability on both
states in the limit, and the responsive set is influential. Since the responsive types are aligned too,
we have outcome P in state R and Q in state L almost surely, and hence we have information
aggregation. The limit equilibrium outcome with a consequential rule is depicted in figure 3(b).

5. Unordered Alternatives

In this section, we study the case where L < 0 < R. We look at the strategies and equilibria in
this situation and compare and contrast their properties with that of the benchmark model with
ordered alternatives. Specifically, we show how voting can fail to aggregate information in the
presence of heterogeneous groups with competing interests. Since the voters with x ≤ L

2 support
the alternative policy only in state L and those with x ≥ R

2 do so only in state R, we will call these
two groups of voters the L-group and the R-group respectively. Within the groups, the voters have
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the same ranking over alternatives, while across the groups, voters have exactly opposite ranking
over alternatives in each state.
We shall simplify the model a bit and consider a slightly special case with L = −b and R = b > 0.

Note that this is not too strong an assumption as we consider all possible distributions of voter ideal
points. An environment with unordered cut-offs is denoted by the tuple (F, q, b) . In this section,
we shall use the same methodology we used in the previous section to examine the unordered
alternatives situation.
When L = −b and R = b, the condition for type x voting for the policy P after having received

σ is:

Ev(x, σ) ≥ 0⇒ 2x(1− 2pσ) ≥ b,

which gives us the following cut-offs

(13) xσ =

{
min(1, b

2(1−2pσ)), 0 ≤ pσ < 1
2

max(−1, b
2(1−2pσ)),

1
2 ≤ pσ ≤ 1

and optimal strategies based on these cut-offs

(14) π(x, σ) =


1 for x ≤ xσ
0 for x > xσ

}
if 1

2 ≤ pσ ≤ 1

1 for x ≥ xσ
0 for x < xσ

}
if 0 ≤ pσ < 1

2

Or alternatively, combining equations (13) and (14), we define the strategies in terms of pσ as
follows:

π(x, σ) =



1 for x ≤ b
2(1−2pσ)

0 for x > b
2(1−2pσ)

}
if pσ ≥ 1

2 + b
4

0 for all x if pσ ∈
(
1
2 −

b
4 ,
1
2 + b

4

)
1 for x ≥ b

2(1−2pσ)
0 for x < b

2(1−2pσ)

}
if pσ ≤ 1

2 −
b
4


Any equilibria must have strategies of the above form. Note that pσ ∈ [0, 1]⇒ −1 ≤ 1− 2pσ ≤

1 and so xσ ∈ [−1,− b
2 ] ∪ [ b2 , 1]. Also, for all values of pσ, π(x, σ) = 0 in the range (− b

2 ,
b
2). Thus

a voter with his bliss point in this range always votes for the status quo irrespective of the signal.
Thus, although all equilibria must have cut-off strategies, the cut-offs are not nicely ordered as in
the case with ordered alternatives.
One implication of the fact that all types in the range (− b

2 ,
b
2) always vote for Q is that the vote

share t(S, π) for P is strictly less than 1. To ensure that t(S, π) > 0, we need to ensure that we can
never have both pl and pr simultaneously in the range

(
1
2 −

b
4 ,
1
2 + b

4

)
, which is guaranteed by the

informativeness assumption I.
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Figure 4: Cut-offs in an unordered alternatives setting as functions of induced prior
The cutoffs as functions of the induced prior are plotted in Figure 4. When a cut-off is in

[−1,− b
2 ] (the L-group), the types to the left of the cut-off vote for P, and when the cut-off lies

in [ b2 , 1] (the R-group), types to the right of the cut-off vote for P. This has several implications.
First, the responsive types lying in these two groups would vote in opposite ways based on the
same information since one of the groups is aligned with the society and the other is not. Second,
in each state, the vote share is a non-monotonic function of the induced belief. Note that the
monotonicity in vote shares was crucial for information aggregation with consequential rules in the
ordered alternatives case. Third, with unordered cut-offs, the existence of a well-defined induced
prior is no longer trivial, and we need the informativeness assumption I on signals to guarantee
that. Lastly, with a loss of the ordering property, uniqueness of the responsive set is no longer
assured. This can give rise to equilibria with a certain feature that is not seen in the benchmark
case of ordered alternatives, as we shall soon see in proposition.4.
Recall that the probability of an individual voting for the alternative P given σ is zσ, i.e., zσ ≡∫ 1
−1 π(x, σ)dF. In any equilibrium, we have:

(15) zσ =

 F (xσ) if xσ ≤ − b
2

1− F (xσ) if xσ ≥ b
2

0 otherwise

Although the definition of zσ is different in the unordered alternatives case, the vote shares in the
two states in terms of zσ are still given by equation (9):

t(L, π) = qzl + (1− q)zr
t(R, π) = (1− q)zl + qzr

We can immediately identify one particular equilibrium for the case with a distribution of
types with density f(·) that is symmetric about 0.

Proposition 4. Consider any environment with unordered alternatives (F, q, b), for which the
density f(·) is symmetric about 0. For any voting rule θ ∈ (0, 1) and any finite number of voters n,
there is an equilibrium with x∗l = − b

2(2q−1) and x
∗
r = −x∗l .

Proof. Consider the situation where everyone else plays xσ = x∗σ, and σ ∈ {l, r}. Note that x∗l < − b
2

and x∗r >
b
2 . So, z

∗
l = F (x∗l ) and z

∗
r = 1 − F (x∗r) = 1 − F (−x∗l ) = F (x∗l ) = z∗l , by symmetry of

f(·). Therefore, t(L, π) = t(R, π) = F (x∗l ) for each n, which implies that βL = 1
2 for every θ and

n. Thus, the signals are fully informative, and we have pl = q and pr = 1− q. These, coupled with
the Assumption I, imply that the best response to x∗σ is indeed x

∗
σ, which establishes the claim.
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The proposition says that if the commonly held induced priors are uninformative, then suffi ciently
extreme types vote for the alternative P if and only if they get favorable signals, and everyone else
votes uninformatively, disregarding their signal. There are a few things to be noted about the above
equilibrium. First, this is the only “stable” equilibrium sequence in the sense that the strategies
do not change with the number of players. Second, in this equilibrium, the expected vote share
does not change with the state or the voting rule. If the required plurality for the policy to pass
is higher than F (x∗σ) , then the status quo always passes, and if the required share is lower than
F (x∗σ) , then the status quo always loses. If θ = F (x∗σ), then we get either alternative (policy or
status quo) with equal probability. We later show that even if the distribution of ideal points is
not symmetric, there is always an equilibrium at some belief β∗L (not necessarily equal to

1
2) that

has the same vote share for each state and is independent of the voting rule. As we shall establish
later, this constitutes a failure of information aggregation.
Next, let us examine the vote share as a function of the induced prior in the unordered alternatives

set-up.

Lemma 5. In any environment with unordered alternatives (F, q, b), there exists some number β∗L
satisfying 0 < β∗L < 1 such that βL < β∗L, t(R, π) > t(L, π), for βL > β∗L, t(R, π) > t(L, π) and for
βL = β∗L, t(R, π) = t(L, π).

Proof. See Appendix.
This lemma says that if the commonly held induced prior probability that one is pivotal at state

L falls below a critical value β∗L, then the expected vote share in favour of the policy in state L is
higher than that in state R. If, on the contrary, the belief is higher than β∗L, then the alternative P
is expected to get a higher vote share in state R. However, given a state, the expected share of the
votes in favour of the policy alternative increases as one gets more and more extreme beliefs, i.e., as
one is surer and surer of the state in which one is pivotal. As the voters get more unsure about the
state, only the very extreme types vote for the policy. Note that at β∗L, we have F (xl) +F (xr) = 1,
and under a symmetric distribution of types, β∗L = 1

2 , and we have an equilibrium at βL = 1
2

according to Proposition 4. The expected share of votes under the two states (when L = −b and
R = b) as functions of the induced prior are shown in figure 5. To illustrate how the shares are
constructed according to (9), we also show the functions zl and zr (i.e., the probability of voting
for P on getting the signal l and r respectively) in the figure.

t(L,π)

t(R,π)
zl

zr

Vote shares

1­F(b/2)

F(b/2)

βL
*

βL

Figure 5: Construction of vote shares as functions of induced prior

5.1. Limit equilibria with unordered alternatives. We use the same notation as in Section
4.1. Since the cutoffs are bounded within a compact set, any sequence of xnσ will have a convergent
subsequence. We look at such convergent subsequences xnσ as n → ∞. We call an accumulation
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point of such a sequence of cutoffs as x0σ, and the resulting equilibrium as π0. By the continuity
arguments , as xnσ → x0σ, t(S, π

n), βnL, p
n
l ,and p

n
r all converge to t(S, π

0), β0L, p
0
l , and p

0
r respectively

along the subsequence. In this section we examine which outcomes can be supported in the limit.
The limit equilibrium condition as identified in equation (11) remains exactly the same. Lemma

2 goes through without any change. Lemma 3 goes through too, with the slight modification that
it is no longer true of all n, but it holds for large enough n. We state this in Lemma 6. For a
suffi ciently large electorate, if the induced prior converges to 0 (1), both cut-offs are in the L-group
(R-group).

Lemma 6. Consider any environment with unordered alternatives (F, q, b). If β0L = 1 , (i) ∃ some
m such that xnl > xnr for all n > m; and (ii) xnσ → − b

2 from the left for σ = l, r. Similarly, if β0L =
0 , (i) ∃ some m1 such that xnl > xnr for all n > m1; and (ii) xnσ → b

2 from the right for σ = l, r

Proof. See Appendix.
Next, we examine which voting rules can be supported by a given value of the induced prior in

the limit, for which an equivalent of Lemma 4 is necessary. We define Θ(βL) in the same way as
before, i.e., the set of voting rules that may support an equilibrium sequence with induced prior
converging to βL.

Lemma 7. Under unordered alternatives, (i)for βL ∈ (0, β∗L) ∪ (β∗L, 1), Θ(βL) is a continuous
function θ∗(βL), with tL(βL) < θ∗(βL) < tR(βL) for βL < β∗L, and tL(βL) > θ∗(βL) > tR(βL) for
βL > β∗L, (ii)Otherwise, Θ(1) = {θ : θ > F (− b

2)}, Θ(0) = {θ : θ > 1−F ( b2)} and Θ(β∗L) = {θ : θ ∈
(0, 1)}.

Proof. In Appendix.

1­F(b/2)

F(­b/2)

Vote shares,
Voting rules

t(L,π)
t(R,π)

Θ(βL)

0 1
βL

βL
*

Figure 6: The correspondence Θ(βL) under unordered alternatives
The correspondence Θ(βL) for the unordered alternatives case, as inferred in Lemma 7, is de-

picted in figure 6. Note that in this case, if we invert the correspondence to get the supporting
induced belief βL for each voting rule θ, we no longer get a function β(θ) as defined in (12) in the
ordered alternatives case, but rather a correspondence.
Denote t(L, β∗L) = t(R, β∗L) by z. Because of the non-monotonic vote share functions, for any

voting rule θ > z, there can be three different limit equilibria. One equilibrium is an approximation
to the symmetric equilibrium in Proposition 4. With the equilibrium belief at β∗L, the vote shares
are equal in both states and independent of the voting rule. For any consequential rule or a P-trivial
rule, information is not aggregated in this equilibrium. Of the two other limit equilibria, one has
induced prior probability of state L less than β∗L and has the responsive set of types entirely (or
mostly) in the R-group. For voting rules less than 1−F ( b2), the responsive set in this equilibrium is
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influential, and P obtains in state R and Q in state L. For θ > 1−F ( b2), the responsive set in this
equilibrium sequence cannot be influential, and the status quo obtains in both states. Similarly,
there is another equilibrium with induced prior belief greater than β∗L, where the responsive set is
entirely or mostly in the L-group.
Note that so far we have only claimed that for a given voting rule there can be three limit equi-

libria. The next proposition states that all the equilibria discussed above exist for any distribution
of ideal points. Given an induced prior βL, any voting rule that is not ruled out by the necessary
condition (11) can indeed support a limit equilibrium with beliefs converging to βL.

Proposition 5. For any voting environment (F, q, L,R) satisfying L = −b and R = b, given a
voting rule θ, there is a sequence of equilibria with cut-off strategies and with the equilibrium induced
prior converging to βL if θ ∈ Θ(βL)15.

Proof. In appendix.

5.2. Outcomes and Information Aggregation. From Lemma 7 and Proposition 5, we can
deduce possible outcomes for each value of the induced prior. All these outcomes occur almost
surely, in the same way as in the ordered alternatives case.

• For βL = 0, the only possible outcome is Q under both states. Here, the responsive set is
in the R-group but is not influential.
• For βL ∈ (β∗L , 1), the only possible outcome is Q under state L and P under state R. Here,
the responsive set is in the R-group and is influential.
• For βL = β∗L , the vote share in each state is fixed at z and the outcome depends on whether
the voting rule is greater or less than z.
• For βL ∈ (0, β∗L ), the only possible outcome is P under state L and Q under state R. Here,
the responsive set is in the L-group and is influential.
• For βL = 0, the only possible outcome is Q under both states. Here, the responsive set is
in the L-group but is not influential.

From here onwards, we assume with a slight loss of generality that F (− b
2) > 1− F ( b2). In other

words, we assume that the L-group is the larger interest group, and hence the group that is aligned
with the society. Therefore,

• Any voting rule θ < 1− F
(
b
2

)
is P-trivial

• Any voting rule 1 − F
(
− b
2

)
≤ θ < F

(
b
2

)
is a consequential rule, i.e., the policy wins in

state L and the status quo in state R.
• Any voting rule θ ≥ F

(
− b
2

)
is a Q-trivial rule.

For all Q-trivial rules, the beliefs that can be supported in equilibrium are β = {0, β∗L, 1}. Since
the maximum share of received by the alternative P in any state is F

(
− b
2

)
, Q-trivial rules always

aggregate information. Figure 7(a) depicts the limit equilibria for a Q-trivial rule.
For information to be aggregated under consequential rules, we need the responsive set to be

influential and in the L-group. For these rules however, there is always one equilibrium with βL = 0
where the responsive set in the R-group and is not influential. Hence we get Q in both states. In
another equilibrium for these rules, βL = β∗L, and here too, we get Q in both states with a very high
probability. However, there is a third equilibrium with induced prior converging to some belief in
(0, β∗L ) with the responsive set entirely in the L-group and influential. This equilibrium aggregates
information. Figure 7(b) depicts all the possible limit equilibria for a consequential rule.
For P-trivial rules greater than z we have two equilibria with opposite outcomes in the different

states: one with equilibrium induced prior in the set (0, β∗L ) and the other in the set (β∗L , 1). The
responsive sets are influential here when information aggregation requires that they not be so. So,

15This theorem requires an assumption that θ∗(βL) is not constant over any range. We ignore that as a non-generic
case.
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for these voting rules we have no information-aggregating equilibrium. The third equilibrium has
beliefs converging to β∗L. Since at this belief, the vote share in both states is z, in this equilibrium
we always get the status quo. Figure 7(c) shows the possible equilibria for one such rule. However,
information is aggregated almost surely by the very low P-trivial rules16.
We summarize the inferences about information aggregation for different voting rules in an

unordered alternatives setting in the next proposition. We use the definition of information ag-
gregation as defined in Section 3.3. Fixing a voting environment and a voting rule, we say that
an equilibrium sequence aggregates information if we obtain approximately the full information
outcome in the limit. Notice that for the same environment and voting rule, we may have multiple
equilibrium sequences, some of which do aggregate information while some do not.

Proposition 6. Consider any voting environment (F, q, L,R) satisfying L = −b and R = b. All
(limit) voting equilibria with Q-trivial voting rules aggregate information. For consequential rules,
there is one equilibrium sequence that aggregate information and two that do not aggregate informa-
tion. For P-trivial rules that are suffi ciently large, all equilibrium sequences are non-information
aggregating. All P-trivial rules below some threshold aggregate information.

The above proposition establishes the bias in favour of the status quo. Unless the required vote
share for the policy to win is very low, competition between two groups ensures that the status quo
wins in at least one state. Note that the only voting rules for which information is aggregated in
any equilibrium are all Q-trivial rules and the very low P-trivial rules.

1­F(b/2)

F(­b/2)

Vote shares,
Voting rules

t(L,π)
t(R,π)

0 1
βL

βL
*

θ

Each equilibrium selects Q in both states

Figure 7(a): Equilibria under a Q-trivial rule

16More speficically, the P-trivial voting rules that aggregate information for sure for any distribution of preferences
are those that are below the minimum share of votes received by P for any belief, i.e. those rules that satisfy
θ < min{minβL t(L, π),minβL t(L, π)}. Equilibrium induced prior is β∗L and equilibrium shares in both states are z >
θ in the limit.
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t(R,π)

0 1
βL

βL
*

θ

P in L
Q in R
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Figure 7(b): Equilibria under a consequential rule
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Figure 7(c): Equilibria under a large P-trivial rule

6. Discussion

The chief idea of the paper is that the source of informational ineffi ciency in elections is the
existence of groups of voters who always have opposed interests. While the method we have used
allows us to pin down all (limit) equilibria for the unidimensional policy space and identify their
aggregation properties, the analysis readily applies to any finite dimensional policy space. In
some sense, it is easier to obtain groups with state-contingent conflicts when the policy space is
multidimensional, i.e., when people care about many issues simultaneously. Therefore, our message
is that the co-ordination problems is exacerbated when we move beyond the Downsian policy space.
The fact that voting under incomplete information may produce outcomes inferior to those under

complete information is hardly a surprise. Several papers point out sources of aggregation failure
using completely preference homogeneity or only limited heterogeneity in the form of common val-
ues: use of unanimity rules (Feddersen and Pesendorfer 1998), voters signaling their preferences
through their votes (Razin 2003), information being costly (Persico 2004, Martinelli 2006), ab-
stention (Oliveros 2005) and so on. Since the agenda of the current paper is to pinpoint that the
fundamental source of aggregation failure is in competing interests among groups which is endemic
to any democracy, we do not allow for these other possible causes of partial failure and simply
consider the unidimensional policy space.
There are a few papers (Kim and Fey 2006, Meirowitz 2006, 2007a) that consider groups with

opposed rankings in each state, but in these papers, the voters within the group have exactly
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same preferences. In the spatial model however, voters with the same ranking over the alternatives
under full information need not have the same intensity of preference for them, leading to different
behavior under uncertainty. Allowing any intra-group heterogeneity uncovers the deeper problem
with inter-group conflict in preferences.
Another important contribution of our paper is that we show why the electoral system may fail to

produce the outcomes desired by the majority. Since there are different equilibria, there are different
reasons why elections can fail to aggregate information. The multiplicity of equilibria makes the
role of beliefs in a political system crucial. The model endogenizes the process of formation of beliefs
about which types are going to be responsive to information in equilibrium. Aggregation failure for
consequential rules can simply be thought of a co-ordination failure because of "wrong" beliefs. For
example, while a consequential rule needs the responsive set to be in the larger interest group, voters
can believe that almost everyone is voting uninformatively. Independent of information received,
the larger interest group votes for the status quo and almost everyone in the smaller interest group
votes for the alternative. Voter behavior in this equilibrium is akin to what we know as block
voting. In another “bad”equilibrium, only the extremists at either end of the ideological spectrum
are responsive– but aggregation fails because most of the voters vote for the status quo in either
state.
In each of these “bad”equilibria, whatever be the mode of failure of aggregation, the failure is

of an extreme nature in the sense that the “wrong”outcomes occur with a very high probability
in a large electorate. It is worth noting that these results do not depend on the relative size of
the conflicting groups or on the extent of noise in the signals. Therefore, any improvement in the
accuracy of information that individuals have will fail to produce superior outcomes in the limit.
One interpretation of Condorcet Jury Theorem is that communication among voters is not nec-

essary in large elections for the information problem to be solved. This paper indicates that we
are faced with the possibility of multiple equilibria, some or all of which produce informationally
inferior outcomes. Thus, voting cannot perform the role of communication among voters. Can
democratic deliberation improve election outcomes?17 Note that since all members within each
conflicting interest group have the same state-contingent rankings18, members each group have an
incentive to share information among themselves. However, this needs the voter preferences to
be public information. We can think of each set of independent voters with similar rankings as
belonging to a political party or a special interest group, and thus this paper highlights the role of
political institutions like parties or interest groups as information aggregators in an electorate.
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8. Appendix

8.1. Proof of Lemma 2. By hypothesis of the lemma, lim
n→∞

βnL
1−βnL

=
β0L
1−β0L

is a finite, positive

number. Now suppose ∃ some ε > 0 such that αn > 1+ε for all n. Then βnL
1−βnL

= (αn)n > (1 + ε)n →
∞ as n → ∞ which is a contradiction. On the other hand, suppose ∃ some ε ∈ (0, 1) such that
αn < 1−ε for all n. Then βnL

1−βnL
= (αn)n < (1− ε)n → 0 as n→∞, which is again a contradiction.

8.2. Proof of Lemma 4.

Proof. For part (i) of the lemma, since βL ∈ (0, 1), Proposition 1 holds. Suppose 0 < y < x < 1,
and f(z, θ) = zθ(1 − z)1−θ, with both z and θ lying in (0, 1) . Note that if we fix θ, the function
f(z, θ) is continuous and single peaked in z with the peak lying at θ. From the properties of this
function, we can show that for any 0 < y < x < 1, there exists a unique θ∗such that f(x, θ∗) =

f(y, θ∗), and x < θ∗ < y. To be specific, θ∗ =
log 1−y

1−x

log
x(1−y)
y(1−x)

. Also, if both x and y increase, θ∗ must

increase. Since 0 < F (L2 ) < tL(βL) < tR(βL) < F (R2 ) < 1, taking tR(βL) = x and tL(βL) = y
and noting that tR(βL) and tL(βL) are strictly increasing functions of βL, part (i) of the Lemma
is established.
For part (ii), note that for any n, by Remark 1, we have xnl < xnr . Since z

n
σ = F (xnσ) , we have

znr > znl > 0. Define, for any n, hn = znr − znl > 0. Substituting, we have: t(R, πn) = znl + qhn, and
t(L, πn) = znl + (1− q)hn. Therefore:

1− βnL
βnL

=

[
(t(R, πn))θ (1− t(R, πn))1−θ

(t(L, πn))θ (1− t(L, πn))1−θ

]n
=

[
(znl + qhn)θ (1− znl − qhn)1−θ(

znl + (1− q)hn
)θ (

1− znl − (1− q)hn
)1−θ

]n

If β0L = 0 (or 1) , the left hand side of the above equation goes to infinity (or 0). This requires the
term in the bracket large enough n to be greater (or less) than unity, or its logarithm to be positive
(or negative). We can write,

log
(znl + qhn)θ (1− znl − qhn)1−θ(

znl + (1− q)hn
)θ (

1− znl − (1− q)hn
)1−θ > 0⇔ θ > ζ(znl , h

n) ∀n

where the function ζ(znl , h
n) is defined as:

ζ(znl , h
n) ≡

− log
[

1−znl −qhn
1−znl −(1−q)hn

]
log

[
(znl +qhn)(1−znl −(1−q)hn)
(znl +(1−q)hn)(1−znl −qhn)

]
By Lemma 3, we know that for any sequence, with β0L ∈ {0, 1}, hn → 0+. Hence,

lim
hn→0+, znl =t

ζ(znl , h
n) = lim

hn→0+, znl =t

 − log
[

1−znl −qhn
1−znl −(1−q)hn

]
log

[
(znl +qhn)(1−znl −(1−q)hn)
(znl +(1−q)hn)(1−znl −qhn)

]
 = lim

znl =t
znσ = t

By Lemma 3, if β0L = 0, t = F (R2 ), and θ > ζ(znl , h
n) ∀n ⇒ θ > limhn→0+, znl =t ζ(znl , h

n) = F (R2 ).

Similarly, if β0L = 1, t = F (L2 ), and θ < ζ(znl , h
n) ∀n⇒ θ < limhn→0+, znl =t ζ(znl , h

n) = F (L2 ).
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8.3. Proof of Proposition 2. Here we only show that the only accumulation point is also the
limit. For this, it is enough to show that given θ ∈ Θ

(
β0L
)
, for any neighbourhood ε of β0L, there is

some large enough N, such that βnL in the equilibrium sequence must lie within the nighbourhood
for all values of n > N.
First consider β0L ∈ (0, 1).Suppose the accumulation point is not the limit, and there is an infinite

equilibrium subsequence βmL of the sequence βnL, such that for any ε > 0, there is some M so that
for all values of m larger than M, βmL lies outside

(
β0L − ε, β0L + ε

)
. Since even this subsequence

must have an accumulation point, it must be either 0 or 1. But, by the second part of Lemma 5,
since the limit equilibrium condition must hold for accumulation points too, there cannot be an
accumulation point for θ in Θ

(
β0L
)
at 0 or 1. Hence there is no such infinite subsequence.

The proof for β0L ∈ {0, 1} is similar.

8.4. Proof of Proposition 3.

Proof. Proposition 2 guarantees existence of limit equilibrium for all θ.
Consider θ < F

(
L
2

)
. We know that t(S, πn) > F

(
L
2

)
∀n for S = L,R. Let δ = F

(
L
2

)
− θ. By

Law of large numbers, given ε we can find N such that actual share of votes τ(S,πn, θ) under rule
θ in any state S is greater than F

(
L
2

)
− δ > θ for any n > N with a probability larger than 1− ε.

Thus, under both states, P wins with a probability larger than 1− ε.
Since t(S, πn) < F

(
R
2

)
∀n∀S, by the same logic as above, any Q-trivial rule aggregates informa-

tion too.
Consider a consequential rule θ, for which the only equilibrium induced prior in the limit is

β−1L (θ). By Lemma 4, tL
(
β−1L (θ)

)
< θ < tR

(
β−1L (θ)

)
.

Also, for any consequential rule θ, we can find a positive number η such that F
(
L
2

)
+ η < θ <

F
(
R
2

)
− η. By Lemma 4, we can find a similar number κ > 0 such that κ < β−1L (θ) < 1 − κ.

Also, we can find some λ > 0 such that tR
(
β−1L (θ)

)
− tL

(
β−1L (θ)

)
> λ. Now, from Proposition

1, we can derive θ from tR
(
β−1L (θ)

)
and tL

(
β−1L (θ)

)
and can find another number µ > 0 such

that tL
(
β−1L (θ)

)
+ µ < θ < tR

(
β−1L (θ)

)
− µ. Since tR, tL and θ∗ are all continuous functions of

βL, we can find a number ξ > 0 such that for a range
(
β−1L (θ)− ξ, β−1L (θ) + ξ

)
around β−1L (θ),

tL − µ
2 < θ < tR + µ

2 . Given ξ,we can find M1 such that βnL ∈
(
β−1L (θ)− ξ, β−1L (θ) + ξ

)
in any

πn whenever n > M1. Now consider δ = min
(
(tR
(
β−1L (θ)− ξ

)
+ µ

2 − θ, θ − tL(β−1L (θ) + ξ)− µ
2

)
.

By Law of large numbers, given ε we can find M2 such that actual share of votes under rule θ
under state R, τ(R,πn, θ) is less than tR

(
β−1L (θ)− ξ

)
+ µ

2 − δ < θ for any n > M2 and the actual
share under state L, τ(L,πn, θ) is greater than tL

(
β−1L (θ) + ξ

)
+ µ

2 − δ > θ for any n > M2 with a
probability larger than 1− ε. Set N = max(M1,M2) and we are done.

8.5. Proof of Lemma 5.

Proof. At βL = 0, xl = xr = b
2 ⇒ zl = zr = 1− F

(
b
2

)
. Now, consider the interval of βL such that

pl lies in (0, 12 + b
4 ]. In this interval, xl ∈ ( b2 , 1]∪{−1} ⇒ zl = 1−F (xl). Also, in this interval of βL,

pr <
1
2 −

b
4 ⇒ xr ∈ ( b2 , 1)⇒ zr = 1−F (xr) > 0, by assumptions F and I. For values of βL such that

xl ≤ 1, xr < xl ⇒ zl = 1− F (xl) < 1− F (xr) = zr, again by assumption F. For values of βL such
that xl = −1, zl = 1− F (−1) = 0 < zr. Thus, over this entire interval zr > zl. Note also that over
this set of values of βL, zr is strictly decreasing, while zl first strictly decreases and then stays at
0. For βL such that pl = 1

2 + b
4 , zr = zr, say. In the same way, consider the interval of βL such that

pr lies in [12 −
b
4 , 1]. Here, by the same token, zr < zl except for βL = 1 where zl = zr = F

(
− b
2

)
. zl

increases strictly from zl > 0 to F
(
− b
2

)
over this interval, while zr is initially 0 and then strictly

increases.
Now, consider the remaining interval of βL which is

(
p−1l (12 + b

4), p−1r (12 −
b
4)
)
. That this is a valid

nonempty interval is guaranteed by assumption I. In this interval, xr ∈ ( b2 , 1], and xr increases with
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βL. Thus, zr = 1 − F (xr) is a strictly falling continuous function, going from zr > 0 to 0 over
this interval. Similarly, zl strictly and continuously increases from 0 to zl > 0. Therefore, there
exists a unique β∗L in this interval where zl = zr. This implies that at β∗L, t(L, π) = t(R, π). For all
βL < β∗L, zl < zr ⇒ t(L, π) = qzl + (1 − q)zr < qzr + (1 − q)zl = t(R, π). Similarly, for βL > β∗L,
where zl > zr, we have t(L, π) > t(R, π).

8.6. Proof of Lemma 6.

Proof. We prove the result for the case β0L = 1, the other one follows symmetrically. First we look
at how pl

pr
changes with βL.

pl
pr

=

(
q

1− q

)(
qβR + (1− q)βL
qβL + (1− q)βR

)
=

(
q

1− q

)(
q + (1− q)α
qα+ (1− q)

)
,

where α = βL
βR
. Therefore, we have:

d

dβL

(
pl
pr

)
=

dα

dβL
· d
dα

(
pl
pr

)
=

1

(1− βL)2

(
q

1− q

)
(1− q)2 − q2

(qα+ (1− q))2
< 0

At βL = 1, we have pl = pr = 1. Thus, for βL ∈ [0, 1), we always have pl > pr by the above strictly
monotonic relationship. Since β0L = 1 ⇒ pnr → 1, by continuity we can find some m large enough
such that for all n > m, we have pnr >

1
2 + b

4 . Since p
n
l > pnr , for all n > m, pnl >

1
2 + b

4 too. Since
we always have βnL < 1, pnσ < 1. Therefore, for all n > m, both xnl and x

n
r lie in the open interval

(−1,− b
2). Also, pnl > pnr ⇒ xnl > xnr for all n > m. This proves part (i) . Part (ii) follows trivially

from pnσ → 1.

8.7. Proof of Lemma 7.

Proof. Part (i) follows from Lemma 4 and 5.
For part (ii), we first consider the case with β0L = 1. By Lemma 6, we know that for any such

sequence, xnσ →
(
− b
2

)−
for σ = {l, r}, and xnl > xnr for all large enough n. For large enough n,

pnσ > 1
2 + b

4 ⇒ znσ = F (xnσ) ⇒ znl > znr > 0 and znσ → F (− b
2). Define hn = znl − znr → 0+.

Substituting, we have: t(L, πn) = znr + qhn, and t(R, πn) = znr + (1− q)hn. Therefore:

βnL
1− βnL

=

[
(t(L, πn))θ (1− t(L, πn))1−θ

(t(R, πn))θ (1− t(R, πn))1−θ

]n
=

[
(znr + qhn)θ (1− znr − qhn)1−θ

(znr + (1− q)hn)θ (1− znr − (1− q)hn)1−θ

]n
If β0L = 1, the left hand side of the above equation goes to infinity. This requires the term in the
bracket large enough n to be greater than unity, or its logarithm to be positive .
For the case with β0L = 0, we again use Lemma 6 which tells us that xnσ →

(
b
2

)+
for σ = {l, r},

and xnl > xnr for all large enough n.We also know that for large enough n, p
n
σ >

1
2 −

b
4 ⇒ znσ =

1−F (xnσ)⇒ znr > znl > 0 and znσ → 1−F (− b
2). Define hn = znr − znl → 0+. Substituting, we have:

t(R, πn) = znr + qhn, and t(L, πn) = znr + (1− q)hn. Therefore:

βnL
1− βnL

=

[
(t(L, πn))θ (1− t(L, πn))1−θ

(t(R, πn))θ (1− t(R, πn))1−θ

]n
=

[
(znr + qhn)θ (1− znr − qhn)1−θ

(znr + (1− q)hn)θ (1− znr − (1− q)hn)1−θ

]−n
Since the LHS goes to 0 in the limit, the term within the bracket in the RHS has to be greater than
1. Thus we have the exact same situation as in the proof of Lemma 5, and therefore, we need.

log
(znr + qhn)θ (1− znr − qhn)1−θ

(znr + (1− q)hn)θ (1− znr − (1− q)hn)1−θ
> 0⇔ θ > ζ(znr , h

n) ∀n
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where the function ζ(znl , h
n) is defined as in the proof of lemma 4.

By Lemma 4, if β0L = 0, t = 1 − F ( b2), and θ > ζ(znl , h
n) ∀n ⇒ θ > limhn→0+, znl =t ζ(znl , h

n) =

1− F ( b2). Similarly, if β0L = 1, t = F (− b
2), and θ > F (− b

2).

For β0L = β∗L, from Proposition 4, no value of θ can be ruled out.

8.8. Proof of Proposition 5. This is a proof by construction. Consider any unordered alterna-
tives environment (F (·), q, b). We show that every β ∈ [0, 1] can be supported by any θ ∈ Θ(β) for
any F (·) satisfying full support.
Define the function

fn(β, θ) =
1

1 +
[
tR(β)θ(1−tR(β))1−θ
tL(β)θ(1−tL(β))1−θ

]n
If given (n, θ) we can show that there is some fixed point βn of the function fn(β, θ), then that

βn is the solution to the equilibrium condition (10), proving that πn exists for that θ. We prove
proposition 5 by showing that for any θ ∈ Θ(β0), there is a sequence of fixed points of beliefs βn
such that βn → β0 as n→∞. We prove this separately for different values ranges of β0.

Case 1: β0 ∈ (0, β∗L) ∪ (β∗L, 1)

Proof. First, consider some β0 the range of beliefs (0, β∗L) ∪ (β∗L, 1). By Lemma 7, in this range,
Θ(βL) is a continuous function θ∗(βL). Since F admits a pdf f, θ∗(βL) is differentiable too. Thus,
there exists a neighbourhood (β0− ε, β0+ ε) where θ∗(βL) is either only increasing, only decreasing
or constant.
Suppose first that θ∗(βL) is decreasing in (β0− ε, β0+ ε). Now, for β ∈ (β0, β0+ ε), we must have

fn(β, θ∗(β0))→ 0 as n→∞.On the other hand, for β ∈ (β0−ε, β0), we must have fn(β, θ∗(β0))→ 1
as n → ∞. Thus, for δ small enough, there must exist some m such that fn(β + ε, θ∗(β0)) < δ
and fn(β − ε, θ∗(β0)) > 1 − δ for all n > m. In particular, choose δ < ε. Then, for all n > m, if
fn(β, θ∗(β0)) is plotted against β, it intersects the 450 line for some β ∈ (β0 − ε, β0 + ε), which is
the fixed point of the function. Call it βn. To be specific, βn is the solution of fn(β, θ∗(β0)) = β,
and for all n > m, βn ∈ (β0 − ε, β0 + ε). Thus, there exists a sequence βn such that for any ε > 0
small enough, there is some m such that for all n > m, fn(βn, θ

∗(β0)) = βn and
∣∣βn − β0∣∣ < ε.

If θ∗(βL) is increasing in (β0− ε, β0+ ε), then we can prove the proposition in an analogous way.
However, if θ∗(βL) is constant in the range (β0 − ε, β0 + ε), the theorem may not hold. To be

clear, this case requires that tL(βL) increases (decreases) and tL(βL) decreases (increases) so as to

keep tR(β)
θ(1−tR(β))1−θ

tL(β)θ(1−tL(β))1−θ
constant over the range. We ignore this case as non-generic.

Case 2: β0 ∈ {0, β∗L, 1}

Proof. Consider the case β0 = 0. Note that Θ(0) = {θ : θ > 1− F (R2 )}.
Select ε > 0 small enough such that tR(βL) > tL(βL) in the range βL ∈ (0, 2ε). Choose δ < ε. By

Case 1, for voting rule θ∗(ε) there exists a sequence of equilibria βn such that fn(βn, θ
∗(ε)) = βn

and βn ∈ (ε− δ, ε+ δ) for n large enough. This implies βn < 2ε for all n large enough.
Now consider the sequence βn such that fn(βn, θ

∗(ε)) = βn. For θ > 1− F (R2 ) > θ∗(ε),we must
have fn(βn, θ) < βn. Now, consider the function fn(β, θ) − β. At β = βn, the function is negative
while at β = 0, the function is positive due to the boundedness of the shares. Since fn(β, θ) is
continuous, there is some 0 < β′n < βn < 2ε such that fn(β′n, θ) = β′n.
Thus, given θ ∈ Θ(0), for any ε small enough, there exists a sequence β′n.such that fn(β′n, θ) = β′n

and
∣∣β′n − 0

∣∣ < 2ε for all n large enough.
In the same way, we can prove the theorem for β0 = 1.
Next, consider the case with β0 = β∗L. Note that Θ(β∗L) = (0, 1). To show existence of a limit

equilibrium for θ < tL(β∗L), use the neighbourhood (β∗L − ε, β∗L) to the left of β∗L, and to show
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existence of a limit equilibrium for θ > tL(β∗L), use the neighbourhood (β∗L, β
∗
L + ε) to the right of

β∗L and apply the same method.
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