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Abstract

We consider a decision problem of a rational Bayesian DM who chooses multiple
attributes to maximize payo�. The DM does not know the payo� function and faces
a cognitive cost of attention. We do not assume the dimensions to be additively
separable in the payo� function which introduces two novel features, one, the DM
can learn about the correlation of the payo� and two, the DM can choose to pay
attention to only a subset of attributes and infer about other inputs given his belief
over possible payo� functions. We then characterize the optimal attention strategy
when the cost of attention has two components, Shannon mutual entropy of the
expected posterior and prior probability and cost of a choosing a partition of the
state space, which re�ects the complexty of the choice problem. We �nd the DM
faces a complexity-precision trade-o� which implies choosing to observe a strict
subset of inputs, namely selective attention is payo� relevant. We also characterize
the types of information, namely, conditional (e.g. agricultural extension services)
and unconditional (e.g. social learning) on the DM's belief, that the DM would be
willing to buy for di�erent prior beliefs.

1 Introduction

We consider a rational producer who chooses multiple inputs to maximize his payo�
from output where the payo� function is unknown to the DM. If learning is feasible, the
optimal strategy for a rational producer would be to learn about the productivity of all
inputs as long as all inputs are payo� relevant. But the following �eld experiment shows
that the producer may not always do so.

Hanna, Mullainathan and Schwartzstein (2014) conducted a �eld experiment with
seaweed farmers in Indonesia, where most of the farmers had been farming seaweeds
for almost 15-20 years. In the baseline survey they found almost 97 − 98% of farmers
knew the optimal level of certain aspects of the production function, namely the distance
between lines, distance between pods, the cycle length etc.

Whereas almost 87% of farmers did not know the optimal level of another important
dimension, the pod size. In practice the farmers were using many di�erent levels of pod
size in their own lands and earning heterogenous payo� from di�erent levels of pod size
but they fail to notice the optimal pod size.

They further noted that on average for any farmer a switch from average pod size
within his own farm to the optimal pod size would have yielded at least 7% increase in
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annual income. This magnitude is signi�cant compared to standard government subsidy
programs for farmers in Indonesia. When asked, most the farmers said they didn't think
that pod size is an important factor for productivity.

One of the questions we want to address in this paper is when would a rational
decision maker (DM henceforth) in a multi-dimensional choice problem choose to pay
attention to only a strict subset of dimensions. The choice of observing only a strict
subset of dimensions has been referred as selective attention by Hanna et al (2014).

To answer when would selective attention be an optimal choice of a DM we formulate
a multi-dimensional decision problem where the DM faces a constraint to update beliefs.
We interpret this constraint as cognitive cost of paying attention.

Several papers have already analyzed this choice under attention constraint problem
for one-dimensional decision problem. We extend that model to multiple dimension and
analyze two key di�erences.

First, in a mutli attribute setting di�erent attributes can be correlated to each other.
If DM has a belief over the correlation then he can choose to learn only about one
attribute and update his belief over joint payo� based on his belief about correlation.
The additional choice of learning about correlation increases the set of attention strategies
available to the DM.

Second, multiple dimensional action space generates a natural categorization along
the dimensions. This implies the DM can now choose to pay attention after categorizing
the data along the dimensions.

To capture these two features purpose we consider two types cost of attention as
described in two di�erent strands of literature, namely Rational Inattention and Coarse
Categorization. In a RI model the cost of attention depends on the Blackwell informa-
tiveness of the attention strategy. The DM's optimal attention strategy depends on the
payo� relevance of the strategy and his prior belief.

In the coarse categorization models the DM wants to predict the value of a variable
of interest based on his observations. He can either face an exogenous cost which forces
him to categorize the state space for updating his belief. Given this exogenous cost he
then chooses to learn only about a coarser partition of the state space. This is known as
coarse categorization.

The DM can also face an endogenous cost of choosing a �ner partition. The endoge-
nous cost comes from a bias-variance trade-o�. If the categorization is �ne then each
category has very few data point which increases the bias, on the other hand if the cate-
gory is too coarse the variance within the category increases which a�ect the precision of
prediction. The cost in the coarse categorization is similar to a cost of paying attention
one or more dimensions.

In the RI model the cost function does not depend on the number of dimensions
wheras in the coarse categorization model conditional on a categorization the DM does
not face any cost of updating beliefs. So we combine two types of cost in a model which
we call costlly partition model to generate two features of the model.

For all these cost functions given a prior belief µ0 we want to ask the following
questions,
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1. What would the DM choose to learn about, i.e, whether selective attention is op-
timal?

2. How much the DM would optimally choose to learn?

3. If the DM chooses to learn selectively, is it payo� relevant?

The third question, namely whether selective attention is payo� relevant or not is
of interest to us. To consider the implication of the payo� relevance of the attention
strategy we consider the following policy experiment.

Suppose we observe that the DM chooses only a strict subset of dimensions to pay
attention to. If the an attention strategy is payo� relevant for him, then he may be
willing to buy infromation about the unattended input for a positive price.

On the other hand if the attention strategy is not payo� relevant for him, i.e., the
input is not relevant for maximize payo� given his prior belief thenhe would not be willing
to pay for information about the unattended dimensions.

We �nd that the selective attention strategy is payo� relevant for only the costly
partition model. In this context we consider two types of market for information, namely
conditional, i.e, conditional on the period t = 0 belief of the DM and unconditional, i.e.,
information about the average payo� of an input snd characterize the DM's choice of
information strategy based on his prior belief.

In the next section we discuss a problem discussed in context of agriculture sector in
developing economies to show the relevance of market for infromation to the producers.
The rest of the paper is organized as below: section 3 introduces the model, section 4
derives the attention policy for each type of cost function, section 5 reviews the literature
and section 6 concludes.

2 An example from Agricultural Economics

This question is particularly relevant for agricultural sector in developing countries.
There has been widespread agreement about development economists and policy maker
around the world that farmers in developing economies do not produce at the optimal
level which impacts the level of poverty in those economies. Many developing countries
have chosen policies to increase the yield for the farmers by various methods, commonly
referred together as agricultural extension policy.

As Haug(2007) summarizes the phases of agricultural extension programs, the initial
emphasis of the programs was to inform the farmers about new technology and incentivize
them to adopt the more productive technology. However, despite a high enough return
from adopting a new technology the rate of actual adoption in di�erent parts of world
has been surprisingly low. Several �eld experiments have been conducted to analyze the
reason and impact of low adoption. For a literature review see Janvry et al (2016).

However the World Development Report (2008) discusses that the gap in productivity
arises from two types of gaps, one technology gap, i.e., the farmers do not know the
existence of a new technology. The earlier extension programs were designed to bridge
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this gap. However there is also a management gap which is the gap in the productivity
between the best practice knowledge of the technology and the actual practice of the
farmers. In recent times many policy makers have focused on extension-plus programs
to bridge this gap.

Foster and Rosenzweig(2010) discusses the role of learning on technology adoption.
They argue that there are two possible ways farmers update their belief, by experimenting
on their own, i.e., private learning and learning from the experience from others, i.e, social
learning. They document that the rate of learning is higher for farmers with higher level
of education and argue that the di�erence is due to better ability of the educated farmers
to learn. This implies to the possibility that the cost of learning not only depends on
cost of experimentation but also cognitive abilities of the farmers.

For the social learning channel they show that the assumption that farmers under-
stands the relationship between input use and pro�ts, i.e, the structure of the production
function is not realistic for complex technology. For example if the famer has to choose
between varieties of HYV seeds that has di�erent resistance to di�erent types of pests,
then it is unlikely that he would know the structure of the production function.

Then they show that the farmers learn less from social learning when they do not know
the structure of the production function of their neighbours they are learning from. The
impact of social learning decreases with the complexity of the technology. In general for
any agricultural extension program this problem has been crucial for technology adoption.
Even though there are externalities from learning and policies incentivize the farmers to
learn they choose to not do so because of their lack of knowledge of the structure of the
production function which makes it di�cult for the famers to extract information from
the experience of others.

Janvry et al(2016) analyze the constraints on optimal choice posed by demand side,
mediating factor and supply side factors looking at the results of several �eld experiment.
They conclude that the supply side constraints are important but less understood in
the literature. From a case study in Eastern Indian state of Odisha they show that
the learning takes place when the technology is su�ciently simple, the gain in payo�
is su�ciently high and induces change is associated choice variables, i.e, fertlizer use
and labor intensitivity of methods. They suggest that similar to developed countries
agro dealer and commercial partners can serve as a sources of information by choosing
appropriate interlinked contrcats.

Rivera nd Alex (2004) analyzes the impact of two extensio-plus programs, one public
and one private in India. The public program KHDP (Kerala Horticulture Developmenet
Programme) provided the farmers with access to credit, group marketing, processing
technology for supply side support and participatory technology development. Besides
relaxing the physical constraints the programme helped the farmers with pest and dis-
ease control and use of low cost inputs more e�ciently. The impact of the program on
pro�tability is signi�cantly higher than the traditional extension program.

In the private program, a leadng tractor company in India set up over the counter
service providing centers where the farmers can buy several services. One of the service is
advisory and �eld supervision service where the �eld supervisors provide farmers guidance

4



on variety selection, land preparation, pest and disease management, and fertilizer use
to help reduce cost of cultivation and to realize better yields. The success of the initial
pilot program encouraged the company to roll out the program in other parts of India as
well.

All these evidence can be summarized as follows:

1. Farmers do not always use the payo� maximizng practice for production

2. Learning is costly and farmers choose to learn when the structure of production
technology is simple and change in payo� is signi�cant

3. Farmers often know that they are not using the optimal production practice and
willing to buy services that helps them increase productivity

4. Instead of learning about an average impact of a technology, farmers are more
interested to learn the idiosyncratic impact of the technology on their own farm
which is hard to obtain by social learning

5. Knowledge about the structure relating yields to attributes helps the farmer to
learn

6. There is a positive correlation between eductaion and learning by the farmer which
is mostly due to incresae in ability to learn with education

Even though there are �eld experiments to analyze the impact of di�erent extension
policies there are very few theoretical work analyzing the impact of selling information
to a farmer. In this paper we suggest for di�erent cost of attention what type of market
for information would be e�cient. Also we want to analyze the impact on the attention
strategy of the farmer when he has the option to buy information.

3 Model

3.1 Environment

Let us consider a �nite horizon discrete time environment where t ∈ {1, 2, . . . T} and
T <∞. A rational DM faces a dynamic choice problem faced by . Each period the DM
chooses two inputs to maximize production of an output. Let A = A1 × A2 denote the
set of all possible input combination where each input Ai has only two levels ai1 and ai2.
A typical element in A is denoted by aij = (a1i, a2j). Let Y = {0, 1} denote the set of
possible values of output.

Let π : A→ Y denote the payo� function that relates the choice of an input combina-
tion to output. We assume that at the beginning of period t = 0 the DM does not know
the true payo� function. Let Ω denote the set of all possible payo� functions. We would
consider Ω as the state space where a typical state ω denotes a particular payo� function.
The main feature of the model is that the payo� depends on multiple dimensions which
are possibly correlated and the exact nature of the correlation is unknown to the DM.
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Since we do not retsrict the set of possible values of π in Ω, any correlation between the
inputs can be expressed with an appropriate state ω. We further assume that the true
state is chosen according to a data generating process(DGP) µ∗ ∈ ∆(Ω) which is time
invariant.

As there are only four possible input combinations aij and only two levels of ouput
Y , the state space contains 24 = 16 possible states. The list of all possible states are
given in table 1. In general for any decision problem with mi many levels of attribute Ai
and k many levels of Y we have a states space with kΠimi many states.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16

π (a11) 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
π (a12) 1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
π (a21) 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
π (a22) 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0

Table 1: State space

Note that, ω1 and ω16 are the two states where all input combination generate equal
payo�, i.e., the payo� function is a constant. We would call these two states as constant
payo� states. States {ω2, .., ω5} are such that all but one input combinations give payo�
of 1. Compare this set of states with {ω12, ..., ω15} where only one input combination
gives a payo� of 1. We would call the �rst set of states good states and the second state
as bad states and for all these eight states both inputs are payo� relevant.

For the other six states either or both the inputs can be payo� relevant. We call
them middle states as only two input combinations give payo� of 1 and the other two
combinations give 0.

At the beginning of period t = 0 is DM enters with a prior belief over Ω denoted by
µ0 ∈ ∆ (Ω). We assume that the true DGP µ∗ ∈ supp(µ0), .i.e, all feasible states has a
positive probability under this prior. For any other period let µt denote the belief over
Ω at the beginning of period t ∈ T . We assume that in any period DM can choose to
pay attention subject to a cost and learn about the true payo� function.

The timeline of the choice problem is as follows:

1. DM enters period t with belief µt

2. Given belief µt DM chooses an attention strategy and updates belief to µt+1

3. DM then chooses an input combination aij based on µt+1 to maximize payo�

4. Payo� Y is realized and DM enters next period with belief µt+1.

Note that, we do not let the DM automatically update his belief based on his realized
payo�. This is consistent with our assumption that attention is costly so any updating is
a choice of the DM, i.e., learning is not automatic in this model even when the information
is avaliable to the DM.
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3.2 Partitions

The main objective of this model is to analyze the implication of the multiple dimen-
sionality of the action space. But our de�nition of state space consists only of the payo�
function and does not treat the di�erent dimensions separately. Given the product space
nature of the action space A we want to allow the DM to choose a projection of the A
on one of the two dimension Ai.

To translate the attention choice in terms of action space to the state space we need to
consider partitions of the state. When DM pays attention to a projection of the action
space then he would not be able to di�erentiate some states. This would generate a
partition of the state space. For example if we want to consider a scenario where the
DM doesn't want to pay attention to input A2, then he should not be able to distinguish
those states in Ω that di�ers only in terms of payo� from A2.

To formalize this notion, we de�ne a set of auxiliary problems based on the partitions
of the state space Ω and consider that the DM can choose from a menu of choice problems
indexed by the partitions rather than the original decision problem based on Ω.

Let P = {Pi}i∈I denote the set of all available partitions of Ω and Pi denote a typical
element in P with I being the indexing set. Since Ω is �nite I and P are also �nite. We
assume that in each period t given µt the DM can choose a di�erent partition Pt.

Let us de�ne a partition i choice problem for period t using partition Pi. The new
state space is denoted by Ωi ≡ Pi. Each block in the partition Pi is considered as a new
state and is denoted by ωij = ∪kωk such that ωk ∈ Ω. The corresponding belief for each

block is obtained by µit

(
ωij

)
=
∑

ωk∈ωi
j
µt (ωk).

The action space A and output Y remains same. Thus the expected payo� in state
ωij in partition Pi problem is given by,

Eµt

[
π
(
aij |ωij

)]
=


1

µit(ω
i
j)

∑
ωk
µt(ωk)π(aij |ωk) if µpt (ω

p
j ) > 0

0 otherwise.
(1)

Since µit is de�ned over ωij , in the partition i problem the DM can only update µt+1

over the partition, i.e, over ωij and not for each ωk ∈ ωij separately. This is the restriction
on any attention strategy implied by the partition. The belief over original state space
Ω can only be updated given this restrictions. If ωp and ωq are two states in ωij with
non-zero beliefs under µt, then after updating under the partition problem i we have,

µt
(
ωp
)

µt
(
ωq
) =

µt+1

(
ωp
)

µt+1

(
ωq
) . (PC)

We call equation PC the partition consistency condition.
We would denote a partition i problem as the auxiliary problem with state space Ωi,

the compressed beliefs over blocks of the partition µit with same action and payo� space
that satis�es equation 1 and partition consistency. The partition consistency condition
applies to the attention strategy but it implies that the DM can not have di�erent choice
probabilities conditional on states in the same block of the partition.
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The set of all available partition P does not include all possible partitions of Ω. We
would only consider the following partitions to be available to the DM. This assumption
does not change any of the following analysis but we restrict our analysis to economically
relevant partitions.

The avaliable partitions are the following:

1. DM only observes one level of one input

2. DM only observes one input combination

3. DM only observes one input

4. For a given level of one input the DM observes both levels of the other input

5. DM does not observe only one input

Let Ω denote the �nest partition
{
{ωi}16

i=1

}
, i.e., the original state space and Ω0

denote the coarsest partition with no learning.
We further assume that when the DM observes only Ai and not observe Aj then

to update his belief he consider a �at prior belief over the levels of input Aj , i.e., he
assumes that both the two levels of input Aj are used with equal probabilities. In
the next subsection we describe how each of this partition would look like under this
assumption.

3.2.1 Examples of Partitions

Suppose DM only observes a11 and not A2. Then his prior belief would give equal prob-
abilities to a11 and a12. This implies he would not be able to distinguish states that are
only di�erent based on a12 or states where expected payo� from the two actions a11 and
a12 are same. So the resulting partition is Pa11 =

{
{ω1, ω2, ω3, ω6} , {ω4, ω5, ω7, ω8, ω9, ω10, ω12, ω13} ,

{ω11, ω14, ω15, ω16}
}
.

Suppose DM only observes a11 and no other input combinations. Then he can only
distinguish states where a11 generates a di�erent payo�. The resulting partition is Pa11 ={
{ω1, ω2, ω3, ω4, ω6, ω7, ω8, ω12} , {ω5, ω9, ω10, ω11, ω13, ω14, ω15, ω16}

}
.

Suppose the DM only observes only A1 and not input A2 then the resulting partition is
PA1 =

{
{ω1} , {ω2, ω3} , {ω4, ω5} , {ω6} , {ω7, ω8, ω9, ω10} , {ω11} , {ω12, ω13} , {ω14, ω15} , {ω16}

}
.

Suppose the DM observes A2 given a11, i.e., he observes a11,a12. Then he cannot dis-
tinguish states where the di�erence in payo� is only due to a12, i.e., the resulting partition
is PA2|a11 =

{
{ω1, ω2, ω3, ω6} {ω4, ω7, ω8, ω12} , {ω5, ω9, ω10, ω13} , {ω11, ω14, ω15, ω16}

}
.

Finally suppose the DM does not observe only a21, then he cannot distinguish the
pairs of states that are only di�erent in terms of payo� from a21. The resulting partition
would be P¬a21 =

{
{ω1, ω3} , {ω2, ω6} , {ω4, ω8} , {ω5, ω10} , {ω7, ω12} , {ω9, ω13} , {ω11, ω15} ,

{ω14, ω16}
}
.

Note that, Pa11 is coarser than PA1 ,PA2|a11 and P¬a21 . However it is not coparable
to Pa11 . Similarly Pa11 is coarser than PA2|a11 and P¬a21 but not comparable with PA1 .
Finally PA2|a11 is coarser than P¬a21 .
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In summary if one input combination is observed in both partitions then the partition
with more blocks would be �ner. But if only one input is observed, i.e., no specifc input
combiantion is observed separately then the resulting partition can not ranked with the
partitions where the DM observes a strict subset of input combinations. In the former
the DM has more information about one input but does not know the payo� relevance
of the other input and in the latter he does not altogether observe certain combinations.
So for the observed combination he has more information.

3.3 Information structure:

Each period the DM has a choice to update his belief about Ω subject to some cost. Let
S denote the set of signal alphabets such that |S| ≥ |A|. To update his belief the DM
chooses a signal/information structure ν, given S, and updates his belief following Bayes
rule, namely,

Pt
(
ωi|ν

)
=

Pt
(
ν|ωi

)
µt (ωi)∑

j Pt
(
ν|ωj

)
µt
(
ωj
) , (2)

where Pt
(
ν|ω
)
denotes the probability of observing signal ν in state ω in period t.

Following Mat¥jka and McKay(2015) we claim that as long as choosing an information
structure which is more Blackwell informative is more costly the DM would not choose
two di�erent signals to obtain the same posterior due to Blackwell su�ciency. Hece
instead of explicitly using information/signal structures it is su�cient to look at the
distribution of posteriors generated by signals.

If the DM chooses not to pay attention in period t ∈ T then µt = µt+1, which implies
learning is not automatic in this environment. Learning is costly in this environment
and the utility cost can be interpreted of as a cognitive cost, either a cost of paying
attention/mental accounting and/or memory.

The DM chooses an action to maximize his payo� net of the cost of attention. We
assume that each belief state, i.e, a particular distribution of beliefs over Ω, has an unique
action that maximizes the expected payo� given the belief. So we can directly consider
the implied conditional choice probabilities of di�erent actions for di�erent states instead
of beliefs over the states.

In other words, given a prior belief over states and information structure if the DM
observes the signal alphabet s1, then that generates a posterior belief over states and an
unique action choice given this belief. Let Pt

(
aij
)
denote the unconditional probability

of choosing action aij at the beginning of period t given the belief µt and let Pt
(
aij |ωk

)
denote the conditional probability of choosing action aij in state ωk in period t.

Given his belief µt the DM chooses an information structure and updates his belief
to P

(
aij |ωk

)
which generates the choice of an action aij in period t. The realized

distribution Pt(aij |ωk) given the period t learning strategy becomes the unconditional
choice probability Pt+1(aij) in period t + 1. Since the DM is Bayesian, if Pt

(
aij
)

= 0
then Ps(aij) = 0 for all s > t.

Let us de�ne γt = ∆
({
Pt(aij |ω)

}
ω∈Ω

)
as the distribution over all the possible condi-

tional probabilities given the unconditional choice probability and the information struc-
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ture chosen in period t. The assumption of Bayes updating restricts γ to be such that
the expectation over conditional choice probabilities generates the unconditional choice
probability, that is for every aij ∈ A

Pt
(
aij
)

= Eγt [Pt
(
aij |ω

)
].

The cost of information is de�ned over γ and denoted by K : ∆
(
∆ (Ω)

)
→ R. We

assume the function K (.) satis�es the following three properties, namely, weak mono-
tonicity, weak convexity and costless inattention. Monotonicity implies if γ and γ′ are
two posterior distribution such that γ is more Blackwell informative than γ′, then

K (γ) ≥ K
(
γ′
)
.

Weak convexity implies, if γ′ = α ◦ γ1 + (1− α) ◦ γ2 then for all α ∈ (0, 1)

K
(
γ′
)
≤ αK (γ1) + (1− α)K (γ2) .

And costless inattention is a particular normalization where,

K
(
P (a)

)
= 0

i.e., if the DM pays no attention and chooses according to his unconditional probabilities
then he would incur no cost of learning.1

For any partition i problem the cost of learning is de�ned by the same function K(γ),
but for all P (aij |ω) in the support of γ would satisfy the partition consistency condition
for partition Pt given in equation PC.

3.4 Choice Problem

We assume the DM has 1 unit of indivisible land and uses some input combination aij in
each period to maximize his expected payo� net of cost of learning. The choice problem
faced by a DM consists of choosing a strategy specifying the choice of partition in each
period and corresponding γt, given µt such that it maximizes his net payo�.

De�nition 1. A strategy of the DM consists of a sequence of partitions {Pt}t ∈ P and dis-

tributions of conditional choice probabilities {γt}t∈T =

∆

({
Pt

(
aij |ωtj

)}
ωt∈Pt

)
t∈T

given µt such that Pt

(
aij |ωtj

)
: P×∆ (Ω)→ ∆(A) follows Bayes rule and equation PC

satis�es for all ωtk ∈ Pt.
1Caplin and Dean (2015) argues that these three assumptions on the cost function can be guaranteed

if the the behavior of the DM satis�es NIAS and NIAC conditions. The NIAC and NIAS conditions
implies that the choice problem of a ration DM can be represented as a maximization of payo� minus a
cost of learning.
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The DM's problem is to choose a strategy
{
Pt, Pt

(
aij |ωp

)}
t∈T

to maximize his sum

of net expected payo�s over all partition problems, i.e.,

V (µ0) = max
Pt∈P

 max
{γt}t∈T

∑
t∈T

E(π(Pt (aij |ωtj))
)
−K (γt)


 (AP)

Proposition 1. The solution to problem AP exists.

The proof of proposition 1 is given in the appendix. Proposition 1 guarantees that
if the behavior of the DM can be modeled as if he is optimizing over input combination
and attention strategies subject to an attention cst given by K(.) then the solution to
his problem exists.

3.5 Selective Attention

As described in the introduction selective attention is an attention choice where the DM
pays attention to only a strict subset of inputs, which means only one input in this
2× 2× 2 model.

When the DM observes only one input say Ai then he cannot distinguish between
states where the di�erence in payo� is only due to the other input Aj . This generates a
particular partition of the state space Ω. If the DM does not observe the level of input Aj
then the DM's has a �at prior over the levels of Aj , i.e, he beliefs aj1 = p is chosen with
probability p for p ∈ [0, 1]. This implies the DM believes the probability of choosing aj1
is 0.5 which same as that of aj2. The formal de�nition of the selective attention partition
is given below,

De�nition 2. A selectively attentive partition Pi for input Ai is a partition that satis�es
the following conditions:

1. If two states ωk and ωl belong to the same block ωp then the payo� from choosing
any levels of Ai conditional on not observing Aj, i.e, when the marginal distribution
over Aj is uniform, is same. This implies for all possible choices of input Ai the
DM can not distinguish the two states without observing the level of Aj.

2. If two states belong to di�erent blocks then there exist a level of Ai say aij such
that the payo� from aij is di�erent for the two states conditional on not observing
Aj, i.e, when the marginal distribution of Aj is uniform.

The de�nition gives us the two following selectively attentive partitions respectively
for two inputs. PA1 =

{
{ω1} , {ω2, ω3} , {ω4, ω5} , {ω6} , {ω7, ω8, ω9, ω10} , {ω11} , {ω12, ω13} ,

{ω14, ω15} , {ω16}
}
and PA2 =

{
{ω1} , {ω2, ω4} , {ω3, ω5} , {ω7} , {ω6, ω8, ω9, ω11} , {ω10} ,

{ω12, ω14} , {ω13, ω15} , {ω16}
}
.

Let us de�ne selective attention in terms of the selectively attentive strategies as
follows:
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De�nition 3. A DM is selectively attentive towards input Ai, if he updated his belief by
only choosing partition PAi in any period t.

In the following section we will consider other economically relevant sequences of
partition such as sequential learning of the two inputs.

4 Costly Attention Problem

In the earlier section we have shown that the solution to the attention problem exists
under general assumptions on the cost function K(γ). But to solve for properties of
the attention choice we will now introduce more speci�c cost functions that satis�es the
conditions discussed in the last section.

The main objective of this model is to analyze the impact of multiple dimensions
on attention allocation. Multiple dimensions introduce two features to an otherwise
standard choice problem with costly attention. First, if the dimensions are correlated,
i.e, learning about one gives information about other dimensions then the DM can �nd
it optimal to choose to learn only about a subset of dimensions. Since more informative
attention strategies are more costly, presence of correlation can increase the net payo�
of the DM.

To analyze this feature of the model we borrow the cost function from the Rational
Inattention(henceforth RI) literature. In the RI models the most common cost functions
is the Shannon mutual entropy cost which we discuss in detail in the next section. In
these models the cost function is the Shannon mutual entropy between the prior belief
and the expected posterior belief conditional on the attention strategy.

Note that DM's belief over correlation between the dimensions can be represented by
a belief µ over the state space Ω. In the Shannon model the attention strategy depends on
the prior belief µ and the payo� Y , so expressing correlation as a prior belief is su�cient
to solve the DM's problem who can update his belief over correlation of dimensions.

The other interesting feature of multiple dimension is that the action space is a
product space. This helps the DM to categorize the state space by considering projection
of the action space over speci�c dimensions which would simplify the DM's problem. This
feature is not present in the RI literature because the cost function is not directly related
to the action space. For the RI cost structure a multi-dimensional attention problem
is identical to an unidimensional choice problem with state space Ω and four possible
actions. In other words the �name� of the states do not a�ect the RI cost functions.

To capture the second feature of the model we consider the type of attention problems
discussed in the coarse categorization literature. In a coarse categorization model, in
equilibrium DM chooses the same action across all states in the same category. If DM is
optimally choosing the categorization then he faces a trade-o� between a �ner partition
which helps him to reduce the variance within a category and coarser partition which
reduces the bias in predicting for a category.

To introduce this trade-o� we assume that di�erent partitions have a costs associated
with them and a �ner partition is more costly. In this reduced form version of the cost
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of categorization the DM trades o� the bene�t of a �ner partition of a more informa-
tive attention strategy (less variance within a single category/partition) and the cost of
choosing a �ner partition. In this framework we interpret the cost as a cognitive cost of
memory related to the complexity of the problem.

For example in Schwarzstein(2014) model the DM can choose to pay attention to one
of the dimension, say A1, without paying any cost but for the other dimension he faces
a cognitive cost. If the cost is su�ciently high compared then DM does not encode the
other dimension A2 and categorize all values to A2 together.

But in these coarse categorization models the objective of the DM is to predict the
value of the output and not to maximize payo�, as a result the DM would choose an
attention strategy that does not depend on the expected payo� but the strategy is focused
to make his predictions correct. This generates the opposite result of the RI models where
the attention strategy depends on the expected payo�.

To illustrate the di�erence let us consider the following extreme example. Suppose
the prior belief of the DM is given by µ0({ω1, ω16}) = 1, i.e, only the constant payo�
states are possible. A DM with RI cost function would choose to pay no attention because
choosing any input combination generates same payo� and learning is costly. But a DM
who wants to predict the output would still pay attention to know whether it is ω1 or
ω16. In general in a coarse categorization model given a categorization the DM would
learn perfectly about the states which is never the case with RI models.

Thus the two types of models shows the two possible exterme cost of attention func-
tion. In the next two sections we �rst discuss the behavioral implication for the two
extreme assumptions on the cost function. Then we will introduce a new cost structure
which we call costly partition model combining these two exterme cost functions.

For the costly partition model we ask the following questions, namely,

1. If and when the DM would choose a coarse categorization?

2. Given a categorization what is the optimal attention strategy for the DM?

3. How does the two types of costs interact in the attention choice, more speci�cally
when the DM chooses a coarser categorization whether he increases his attention
to compensate?

4. How does the cost of attention interacts with the dynamic nature of the problem?

The main feature of the mulitdimensional problem that we want to emphasize here
is that the natural partitioning of the state space based on the dimensions relaxes the
attention problem of the DM by giving him an extra choice. In addition to how much to
learn about as in an usual RI model the DM can choose what to learn about or in which
order to learn about as well. The costly partition model intends to discuss this feature of
attention.
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4.1 Shannon Cost

The Shannon cost is similar to the RI models except the DM chooses a partition �rst
then decides how much to learn given his prior belief. The cost function is given by,

C(µt, λ) = λ

[
Eµt

(
H
(
Pt
(
aij |ωpk

)))
−H

(
Pt
(
aij
))]

(Shannon)

where λ denotes the marginal cost of learning and H is the negative of the entropy
function, namely,

H (p) =
∑
p∈p

p ln p.

Note that, �rst, the cost function is the same for all partitions and de�ned over
the divergence of the prior and expected posterior beliefs over the state space. In a
coarser partition, however, the DM's attention choice is constrained as it has to satisfy
the partition consistency condition. This imply the DM would never choose a coarse
categorization.

Second, the cost is linear in Shannon mutual entropy so breaking up the learning
problem into many parts, given a partition does not help the DM. As a result the DM
would choose to learn as quickly as possible. Combining the two results we get the
following theorem:

Theorem 1. 1. The optimal learning strategy has the following features:

i. The original state space Ω, i.e. the �nest possible partition is weakly better that
all other partitions in any period t.

ii. There is no learning in any period t ≥ 1.

iii. The conditional choice probabilities follow weighted logistic rule, i.e,

P (aij |ω) =
exp(

∑
t∈T π(aij |ω)/λ)P (aij)∑

a∈A exp(
∑

t∈T π(a|ω)/λ)P (a)

where P (a) is the unconditional probability of choosing action a that follows
Bayes rule,

P (a) =
∑
ω

µ0(ω)P (a|ω)

2. Selective learning of input Ai is an optimal strategy if and only if at least one of
the two conditions hold true, namely,

i. there exists a level of input Ai say aij such that unconditional choice probability
P (aij , a−i1) + P (aij , a−i2) = 1,
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ii. the prior probability of constant payo� states ω1 and ω16 sums up to one.

The conditions for selective attention for input Ai imply that the DM would choose to
not pay any attention to A−i only when the extpected payo� from doing so is zero. This
happens because of the convexity of the Shannon cost function in the choice probabilities.
As a result when DM is choosing not to pay attention to A−i, he would not change his
behavior even when the DM is o�ered information about A−i for free.

4.2 Coarse Categorization

In the coarse categorization literature the usual assumption is that the DM can choose
a coarser categorization for a lower cost or there is a �xed number of categories which is
smaller than the full state space (see Fryer and Jackson(2008), Mullinathan, Schwarzstein
and Schleifer(2008)).

We start with Schwarzstein(2014) model where the DM faces a coarse decision making
problem. In this model DM starts with a hierarchical prior, i.e., a prior over models of
production and conditional on each model a prior over the payo� functions.

The four di�erent models of the production function are M12,M1¬2,M¬12,M¬1n¬2.
M12 implies both inputs are payo� relevant, M¬12 implies input A1 is not payo� relevant
and input A2 is not, M1¬2 implies input A1 is payo� relevant but A2 is not and �nally
M¬1¬2 implies none of the two inputs are payo� relevant. In the framework of our
environment these four models represent blocks of a partition over state space. If both
inputs are payo� relevant then changing the level of input for one should a�ect the payo�
for a given level of other input.

We can rewrite the belief over four models in terms of belief over partitions of Ω. The
four models corresponds to the following partition, M¬12 = {ω7, ω10}, M1¬2 = {ω6, ω11},
M¬1¬2 = {ω1, ω16}, M12 = {ω2, ω3, ω4, ω5, ω8, ω9, ω12, ω13, ω14, ω15}.

Let µij denote the prior belief over model Mij . Schwarzstein(2014) assumes that
the prior belief has independence structure, namely, we can �nd µ1 and µ2 such that
µ12 = µ1µ2, µ¬12 = (1− µ1)µ2, µ1¬2 = µ1 (1− µ2) and µ¬1¬2 = (1− µ1) (1− µ2). In
terms of Ω in our model we can write µ2 = 1 − µ0({ω1, ω6, ω11, ω16}). The attention
constraint works as follows: the DM can always encode input A1 but he can only encode
A2 if µ2 > b.

Using this encoding strategy or attention allocation function Schwarzstein(2014) �nds
as as t→∞ with a time invariant cognitive bound b, when b ≤ µ2 the DM either learns
perfectly about the model but when b > µ2 he pays selective attention to input A1, i.e.,
chooses PA1 and only learns about the conditional model of production.

Note that µ2 is Schwarzstein(2014) model is same as µ0({ω2, ω3, ω4, ω5, ω7, ω8, ω9 ,
ω10, ω12, ω13, ω14, ω15}). So the conditional for selective attention under

µ0({ω2, ω3, ω4, ω5, ω7, ω8, ω9ω10, ω12, ω13, ω14, ω15}) < b

The interesting feature of the model is that given the DM chooses to observe the
a partition he learns perfectly about it so the only type of mistake he can make is by
choosing a coarser partition. Also, since the cost function only depends on the partition
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the margin of the choice is always determined by the value of µ2 and not the composition
of µ2.

However, the attention strategy in this model is exogenously given and thus does not
depend on payo� from di�erent actions which is opposite of the Shannon model. The
following remark shows the importance of payo� relevant attention strategy.

Remark 1. Consider the following two scenarios, safe, where the probability of bad states
are zero and risky, where the probability of the good states are zero. If in both cases the
value of µ2 remains same then the attention strategy would remain the same, i.e., in both
cases he either chooses Ω or P.

Two major features of Schwarzstein(2014) model that are not present in our model are
the following: �rst, the DM is not facing a prediction problem, rather a choice problem
conditional on his information about payo� at the time of choice. Second, in our model
we do not assume any exogenously given attention function rather we want to de�ne a
cost function that would generate an optimal attention allocation. This leads to our next
example which introduces categorization in a relatively similar framework that is used in
our model.

For the coarse categorization the cost function only applies to partitions and does not
depend on information content of the attention strategy. In line with Schwarzstein(2014)
we assume a cost function where the DM can observe one of input, say A1 for free but
there is a cost of paying attention to input A2. So the cost function given by,

c(P) =


0 for P = PA1

c̄ for P = Ω

M ow

(3)

where M >> 1. Given this cost function we know that the e�ective choice of the DM
consists of only PA1 and Ω. The DM would choose to pay attention to Ω if and only if
the expected bene�t from observing Ω is higher than the cost c̄.

Here the only cost of attention is due to the choice of partition, i.e., given a partition
there is no extra cost of learning. The information structure is as follows: given a partition
P if the true state is ω which belongs to block bi, then the DM observes a random signal
that reveals one state at random in bi. For example, under PA1 if the true state is ω2,
the DM observes ω2 and ω3 with equal probability.

Given updated belief the DM chooses a distribution of actions to maximize his ex-
pected payo�. In the previous case the DM would thus choose only a11 and a12 with
equal probability.

Result 1. Given cost function in equation 3

1. Given a partition the DM would learn perfectly about all blocks/states in the parti-
tion.

2. The DM would choose PA1 if and only if

µ0({ω7, ω8, ω9, ω10, ω12, ω13, ω14, ω15}) < 2c̄
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3. There exists values of µ2 such that DM would not be selectively attentive in risky
scenario, but the would be selectively attentive in safe scenario.

The di�erence between this result and Schwarzstein(2014) shows the impact of two
major assumptions. First the DM is not facing a predictive task and second the DM
optimally chooses the attention strategy. Since the DM does not need to predict the
outcome for all possible actions in good states he does not need to learn about all input
combinations and can still ensure a payo� of 1. This generates the di�erence in the
condition of selective attention in the two cases.

The major di�erence between this model and Shannon model is that the DM learns
perfectly about the chosen partition in this model which is never true in Shannon model.
This further implies that the attention strategy would not change if the payo� in good
states change only. The attention strategy is payo� dependent in a restricted sense, i.e.,
it depends only on the payo� in medium and bad states.

Finally in this paper we want to explore when a DM who faces a cost of attention
would be willing to buy information that he has chosen to not attend to. Schewarzstein(2014)
claims that the DM would never do so because even if he is o�ered informatio about A2

to encode the information he would have to pay the same cost b.
However that would not be the case in our model The cost of partition is interpreted

as not a cost of encoding but rather a cost of memory or storage of information. If the
DM has too high a cost of storage or memory then he would be willing to buy information
that he has unattended before. In the next section we explore this possibility and analyze
the impact of a market for information.

4.3 Costly Partition

Finally we combine the two types of the cost from the last subsection and construct a
new cost of attention function. The additive cost function has two components. First,
Shannon mutual entropy cost given a partition P,

C
(
Pt
(
aij
)
, Pt
(
aij |ωpk

))
= λ

[
Eµt

(
H
(
Pt
(
aij |ωpk

)))
−H

(
Pt
(
aij
))]

Second component is a cost of choosing a partition, c(P). The cost function c(.) satis�es
the follwoing assumptions;

Assumption 1. The cost function c(P) is weakly monotone in the coarsening order on
P, i,e., if P is coarser than Q then,

c(P) ≤ c(Q).

Assumption 2. Inattention is costless, i.e.,

c(Ω0) = 0.
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Combining two functions we get,

K(γ) = Eµt(H(Pt(aij |ωpk)))−H(Pt(aij)) + c(supp(µt)) (CP)

Assumption 1 is similar to the coarse categorization models, where choosing a �ner
partition is costly. The implicit cost in those models are often due to increased bias
in prediction whereas we interpret the cost as increased complexity. Assumption 2 is a
normalization that ensures that if the DM chooses not to learn anything then he does
not pay any cost.

The two assumptions imply that the DM may �nd it optimal to choose a coarser par-
tition because of the lower cost of partition. But the cost of choosing a coarser partition
is that of reduced informativeness. The result is summarized in the next proposition. to
prove proposition 2 we �rst need to prove the following lemmas.

Lemma 1. For any cost of partition function c(P) the DM would never choose the same
partition more than once under any optimal strategy.

Lemma 2. For any cost of partition function c(P) if the DM chooses a partition P in
period t then it is not optimal to choose a partition coarser or �ner to P in any future
period s > t. Also, If the DM chooses no learning in period t then he would not choose
to learn in any future period s > t.

Proposition 2. For a given cost function c(P) satis�es assumption 1 and 2 and a
marginal cost of attention λ there exists a set of prior belief µ0 such that choosing the
�nest partition Ω is not optimal. Moreover, choosing a partition coarser than Ω is payo�
relevant for the DM, i.e., the posterior distribution generated by the coarser partition is
less information than that of Ω.

The major di�erence between this model and the Shannon model is that choosing a
coarser partition than Ω is payo� relevant for the DM here wheras under Shannon model
since the cost function does not change with the partitions, Ω is always weakly better
strategy, i.e, choosing a coarser partition is optimal only when it is payo� equivalent to
the original stae space Ω. This observation generates the following implication:

Implication 1. Suppose the DM chooses a coarser partition and does not observe some
input combination aij, then there exists a price p > 0 for which he would be willing to
buy information about aij.

This is di�erent from both the RI models and Schwarzstein(2014) where the DM
would never buy information about an input he has not previously attended.

In the rest of the section we will characterize the optimal startegy of the DM given
the cost function c(P) and marginal cost λ in terms of prior belief µ0.

Lemma 3. If more than one partition is chosen in an optimal strategy then the DM
would choose the partition that generates more informative posterior earlier.

Proof of this lemma is in the Appendix. Orthogonality of the chosen partitions along
with linearity of Shannon cost function in posterior beliefs ensures the result.
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Lemma 4. Suppose the DM chooses not to observe a subset of input combinations in
period t = 0. If in any period t ≥ 1 he chooses to observed previously unattended input
combination then he would do so with the sequence of partition for which total cost of
aprtition

∑
t≥1 c(P1) is lowest.

Proof of lemma 4 is given in the Appendix. One implication of this lemma is that the
DM would never choose to observe same input combination twice, however if he observes
some level of only one input he may be willing to observe an input combination that
contains that level of that input.

The intuition behind the proof as follows: if DM does not observe a set of input/input
combinations in an earlier period then the participation consistency condition would
apply for only the unattended combination. If in a later period the DM decides to observe
already observed input combination he would optimally choose not to learn more about
them.

This result holds true by LIP of Shannon cost and the assumption that all possible
signal structures are available to the DM. Thus for all other entropy functions the result
would remain true. In general if the cost of updating function is UPS (uniform posterior
separable) then the result goes through. These two lemmas together characterize the
possible sequence of partitions for any optimal strategy.

First we consider the possible strategies when the optimal attention strategy involves
only one period and does not involve observing Ω.There are two types of partition, �rst,
observe only one input and assume that other input is drawn from an uniform distribution
and second observe a strict subset of input combinations. If we divide the �ve types of
partitions according to this criterion, we get the following classi�cation:

1. Does not observe both inputs simultaneously

i. Paij : only observe one level of one input Ai, say aij

ii. Selective Attention: PAi , i.e, observe only input Ai

2. Observe both inputs simultaneously

i. Paij : observe only one input combination aij ,

ii. PAj |aik : observe only two input combinations (ak1,ak2) or (a1k,a2k),

iii. P¬aij : does not observe input combination aij .

Note that the �rst group of partitions can not be ranked with the second group of
partitions but both groups are arranged according to coarseness of partition. For sim-
plicity we assume that all partitions of a given types has same cost of partition, e.g.,
c(Pai1) = c(Pai2) for i = 1, 2. This assumption along with monotonicity of cost functions
implies the follwing inequalities,

c(Paij ) ≤ c(PAi)

c(Paij ) ≤ c(PAj |aik) ≤ c(P¬aij ).

19



Next, we consider the possible strategies when the optimal strategies involves more
than one period. There are three possible strategies available to the DM, �rst, always
observe only one input at a time, always observe two inputs, i.e, some input combinations
at a time and third observe one input in one period and both inputs in another period.

Note that lemma 3 ensures that it is not optimal for the DM to observe both inputs
before at t = 0 and then only one input in next period(s). This is true because observing
only one input is preferred when the prior belief about states where only one input
combination is payo� relevant is higher. In that case by lemma 3 he should use the
partition with one input only in the earlier period.

This gives the possible more than one period strategies:

1. Choose Paij in period t = 0: by lemma 3 the only possible period t ≥ 1 strategy
is to choose Pij in period t = 1 and no learning thereafter.

2. Choose PAj |aik in period t = 0: there are three types of partition he can choose in
period t ≥ 1; observe the two other input combinations by choosing PAj |ail where
i 6= j, k 6= l, observe one unattended input combination at a time for next two
periods or just one input combination in t = 1 and �nally, observe Pail in period
t = 1 where k 6= l, i.e, observe one level l on input Ai which is not observed in
period t = 0.

3. Choose Paij in period t = 0: there are two types of possible strategies, either
observe other input combinations, i.e., Pakl

where i 6= k and j 6= l in subsequent
periods or observe only one input aij in subsequent periods. This strategy can
involve at most four periods of learning.

4. Choose PAi in period t = 0: there are two types of strategies available in
subsequent periods;

i. Sequantial Attention: observe Aj , i.e., choose PAj in period t = 1

ii. Conditional Sequential Attention: observe Aj given aik in period t = 1 or
observe ak1(or a1k) and ak2(or a2k) in periods t = 1 and t = 2 subsequently.

5. Choose Paij in period t = 0: there are two types of strategies; observe other
levels of two inputs akl in subsequent periods or observe other input combinations
aij in subsequent periods. This strategy can also take at most four periods.

Remark 2. Note that if c(P) ≡ 0 then Ω is weakly better than all possible strategies
noted above. This implies given any cost of partition c(P) for all P ∈ P \ Ω and λ and
for all prior beliefs µ0 there exists a value of c̄ such that if c(Ω) > c̄ optimal attention
strategy takes at least two periods and if c(Ω) ≤ c̄ optimal attention strategy takes only
one period.

Remark 3. Under any attention strategy the coarseness of chosen partitions increases
with the number of oeriods it takes to learn. Thus if the DM chooses a strategy that
involves s period his expected error would be higher than a strategy that involves t < s
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periods for a given a value of λ. This is opposite to the usual learning models where the
longer the DM learns the more informative his posterior belief would be.

This apparent counter-intuitive result is due to the fact that in this model the DM
trades o� between complexity of the problem with theprecision and time it takes to
update his belief. A more complex strategy would give higher precision of posterior
distribution but involves a higher cost of partition. If the complex strategy is broken
into many parts, each part would generate lower cost of partition however the DM would
sacri�ce some level of precision in posterior and the learning would take longer which
generates further loss in payo�.

Now we �nd the condition under which selective attention is optimal. For theorem 2
let us assume that the cost of partitions is symmetric across all input combinations, i.e,
for any two partition that requires observing same number of inputs/input combinations
generate the same cost of partition. This is a simplifying assumption and does not a�ect
the results qualitatively.

Theorem 2. For any prior belief µ0, selective attention strategy is optimal if the following
conditions hold true,

1. the exists c̄ > c ≥ 0 such that the ratio of the cost of partitions for the selectively
attentive strategy PAi and the fully attentive strategy Ω is given by,

c ≤ c(P)

c(Ω)
≤ c̄

2. the conditions for optimality of one input partition as described in result 2 holds
true.

The proof of theorem 2 is given in the Appendix. Since Ω always generates weakly
more informative posterior choice distribution the lower bound is intuitve. The non-
monoticity arises from the fact that the DM can choose to learn over multiple periods if
c(Ω) is too high compared to c(P).

Next we consider two other interesting strategies, namely sequential attention and
conditional sequential attention. Under the former the DM observes both input in two
periods but never observes two inputs together. We would call this a breadth strategy as
the DM observes all levels of all inputs over multiple periods. On the other hand under
the latter strategy the DM observes only one input in period t = 0 and based on his
signal he observes all input combinations for a given level of input Ai in period t = 1.
We would denote this strategy as a depth strategy since the DM observes in depth all
combinations given a particular level of an input. The next result shows the trade-o�
between the two strategies.

Proposition 3. Sequential attention is preferred over conditional sequential attention if
and only if

1. All good and bad states are symmetric in terms of prior probability, i.e, ∆G and
∆B(refer equation 5) is su�ciently small.
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2. The middle states are not symmetric,i.e., ∆M is su�ciently high. More specif-
ically the middle states where both inputs are payo� relevant,i.e, ω8 and ω9 has
relatively(compared to µ0(M)) small probabilty.

The proof of this propostition is given in the Appendix. Note that the propostition
only compares the expected payo� from the two strategies but none of them need not
be the optimal stratgy. However these two strategies are comparable because for both
strategies require the DM to use same number of observations and takes same number of
period with period t = 0 being the same. If we assume that the two strategies generate
the same cost of partition, c(P), then there exists a range of values of c(P) for which for
any given µ0 one of these two strategies would be optimal.

Another feature of this model which is also found in the coarse categorization models
is that the updated belief of the DM increases the variance across the blocks but reduces
the variance within a block. If ωi and ωj belongs to the same block then the ratio of
prior probabilities is same as that of posterior probbilities. But if the two ω's belong
to di�erent blocks then the ratio of the posterior belief can be higher than that under
full learning with Ω. For example under selective attention the DM attributes all payo�
variance to one input and never updates belief about other input.

In the next section we will discuss di�erent markets for information. The distinction
between these two strategies would be useful in that context. A conditional sequential
strategy requires observing input combinations based on information obtained in the
�rst period whereas sequential attention strategy is same irrespective of the period t = 1
belief.

4.4 Market for Information

In the previous section we have already shown that the DM would choose a coarser
partition if the cost of observing original state space Ω is too high. As a result the DM
learns only about a subset of inputs or input combination which is payo� relevant for
him. Thus a market for information can increase the precision and expected payo� of
the DM. In this section we will describe di�erent types of market for information that
would a�ect DM's decision.

In this model we interpret the cost of partition as a cognitive cost related to memory
or storage of information. If another economic agent can store/report information for a
lower cost, the DM may be willing to buy this information.

For example, suppose the DM does not observe input A2 but obseves all levels of
A1 because it is too costly to observe all input combinations. Let µ1 be the belief in
period t = 1 after the DM updates his belief based on PA1 . We will consider two types
of information provision, conditional and unconditional.

Conditional information provision means given the DM choice of attention strategy
he can buy information about A2 conditional on his belief over a1i. For example, if after
the period t = 0 learning the DM chooses a11, then in period t = 1 he can choose to
learn about A2 conditional on a11 with PA2|a11 which requires observing a11 = (a11, a21)
and a12 = (a11, a22).
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Unconditional information provision only alllows the DM observes PA2 , i.e, the ex-
pected payo� from using two levels of A2, where the expectation is de�ned over levels of
A1.

Continuing our assumption that the two types pf information provision generates
same cost of partition we analyze which type of information provision would make the
DM better o�.

Given proposition 3 unconditional information provision generates higher net payo�
if the prior belief is such that µ0(ω6, ω7, ω10, ω11) ≈ µ0(M) and the prior probabilities of
all good(or bad) states are su�ciently close. If the probability of one or two good (or bad)
states are higher then conditional information provision is strictly better for the DM.

Since conditional information provision depends on the period t = 0 learning it may
lead to higher wrror probability. As λ > 0, the DM never learns perfectly about any state.
This implies even if a12 generates a higher expected payo� there is positive probability
that the DM chooses a11 given his information in period t = 0. This means if the DM
makes a mistake in the period t = 0 then he would not learn about his mistakes in period
t = 1 by choosing the wrong conditional information.

This generates a trade-o� between choosing a conditional and the unconditional in-
formation strategies. The unconditional information strategies gives information about
A2 for all values of A1, which reduces the probability of mistake for low probability
good(bad) states compared to conditional strategies however it increases the probability
of mistake for high probability good(bad) states. This is a breadth vs depth trade-o�.

This trade-o� is however not present in any of the earlier models. In rational inat-
tention model the DM always weakly prefers Ω so this consideration does not exist.
For coarse categorization models on the other hand the DM treats conditional informa-
tion strategy strictly better since he never makes a mistake conditional on observing a
partition.

Note that the conditional information only uses one level of A1, say a11 and not for
other level a12. If λ is su�ciently low then DM is less likely to make mistake in period
t = 0 which increases the bene�t from using conditional information provision. Thus
the two types of cost are complement to each other in this case. A lower level of λ
enourages the DM to undertake conditional information strategies which further reduces
the probability of making mistakes.

These two types of information provision is similar to two real life scenarios in agricul-
ture. Agricultural extension program helps the farmers learn from his experience in his
own land, which is similar to conditional information strategies. Whereas unconditional
information provision strategies are similar to giving general information about an input
to the farmer from the experience of his neighbours/results found by researchers. This
model suggests that a conditional information provision is better for more able/educated
farmers who has a lower λ.

However it is not unambiguously true that providing any of these two types of in-
formation would make the DM better o�. Suppose the cost of partition function such
that c(Ω) is not too high compared to other partitions P. In absence of any market for
information the DM optimally chooses to observe Ω.
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In this scenario suppose conditional information provision is o�ered at a price p <
c(PAi|a−ij

). If p is low enough the DM would optimally choose PAi in period t = 1
and PA−i|aik in period t = 1. Even though it increases the net payo� of the DM the
probability of making mistake would weakly increase under the new strategy.

It is often argued in the agricultural economics literature that learning by a farmer has
a positive externality e�ect on other farmers. Thus providing information can actually
reduce the welfare of the economy by encouraging individual farmers to learn less.

The reason behind this apparently paradoxical result is that the optimal strategy
is not achieved where the probability of mistake is minimized but where net payo� in
maximized. If cost of a coarser partition is reduced then the net gain to the DM from
the reduced cost can be su�ciently high so that he switches tousing a coarser partition
leading to less learning. Thus the market for information can work as a substitute rather
than a complement to private learning by the DM.

However if the market for information is such that it a�ects the marginal cost λ then
there is an unambiguous e�ect on welfare. For any given cost function c(P) and prior
belief µ0 if λ is reduced by either educating the DM or giving them already processed
information then the DM would always learn more. As a result both DM's individual net
expected payo� would go up and through the positive externality of learning the social
welfare would also be higher.

5 Literature review

This papers mainly relates to rational inattention and coarse categorization literature.
In the RI literature Sims(2000), Caplin and Dean (2015), Matejka and McKay(2015)
and Caplin, Dean and Leahy (2017) consider Shannon mutual entropy cost in an uni-
dimensional decision problem. Given this cost function Matejka and McKay(2015)
showed that in a static discreet choice environment the choice follows a weighted lo-
gistic model. Matejka, Steiner and Stewart(2017) extends the model in a dynamic choice
problem and found that the choice is similar to a dynamic logistic model.

All these RI models consider that the DM is choosing between actions without any
multi-dimensionality of action space. One major exception is Matejka and Tabellini
(2016). They consider that the DM needs to learn about multiple attribute but the payo�
from di�erent attributes are additively separable. This implies the attention problem for
each dimension can be solved independently.

Shannon cost implies in a multi-dimensional choice problem would be equivalent to a
uni-dimensional choice problem as long as there is one-to-one mapping between the two
state spaces which is a major departure in our model

This feature that i.e., the cost function depends on the description of the state space
is similar to Woodford and Herbert (2017). In their model the DM faces a cost function
where states that are �close� to each other are harder to learn about than states that are
further apart. The measure of �closeness� is given by the perceptual distance between
di�erent alternatives. They show this feature of the cost function generates smoothness
in the attention strategy along the sequence of possible actions.
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However, in this paper we want to discuss the phenomenon of selective attention
where the attention strategy can jump from observing one attribute to two attributes.
The Fisher information matrix cost function that is used in Herbert and Woodford(2017)
can not generate this type of discontinuity, i.e., along the number of dimensions to pay
attention to.

Nieuwerburgh and Veldkamp(2009A, B) discusses a rational DM who faces an infor-
mation processing constraint and has to choose between multiple assets for his portfolio
decision which is similar to the multi-dimensional choice problem discussed here. Even
though the assets can be correlated they assume that there exists a set of independent
shocks in the economy that generates the payo� for all assets. So learning about that set
of shocks is su�cient. They further restrict the choice of DM by assuming that he can
only choose to observe independent signals for di�erent assets/shocks.

Using Shannon cost of attention function they show that the DM would choose to
learn about only one type of asset which can generate underinvestment or home bias
depending on the context. They emphasize the di�erence between this result and the
result from a pure prediction model where the DM only want to learn for prediction and
does not choose any action based on his prediction. The prediction models generate more
learning than their model and thus fail to explain real life scenarios.

Mondria (2010) discusses a model of rational DM who faces a portfolio choice problem
similar to Nieuwerburgh and Veldkamp(2009A) but he allows the DM to choose a linear
combination of two assets as a signal in addition to learning about them separately.
He �nds that a positive measure of DM would choose a linear combination of assets as
a signal even when the assets are independent. This generates a type of bias in their
information where an increase variance of one asset a�ects the posterior variance the
other independent asset.

The formulation of the partition based state space in our model is similar to Hong
and Page (2009). They describe a learning model that distinguishes between interpreted
signals and generated signals and assume that the DM updates based on the interpreted
signal instead of generated signal. The state space has a product space structure where
each component is considered as an attribute and the DM can choose any partition
to interpret his signal which is represented by a projection of the state space. Moreover
there is no notion of cmplexity which implies the DM never faces any complesity-precision
trade-o�.

The coarse categorization models discusses the impact of complexity of the learning
problem on the �nal attention choice of the DM. Mohlin (2014) describes that a rational
DM in a prediction task would choose to coarsely categorize information to trade o�
variance within categories and bias in prediction in a category. This type of categorization
is optimal for the DM as the cost of categorization is endogenously generated by the bias
in prediction for a �ner category.

Fryer and Jackson(2008) and Mullianathan, Schwarzstein and Schleifer(2008) assume
that the DM faces an exogenous cost of categorization. In the context of a predic-
tion problem both these papers show that if a rational DM coarsely categorize objects
then he attribute the properties of one into other objects. This may result overreac-
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tion/underreaction to information or systematic bias against minority group of objects
that are more likely to be grouped together.

This paper is closest to Schwarzstein(2014) which we have already discussed in detail.
There are two major di�erences between this paper and Schwarzstein(2014). First, the
cost of attention in his paper does not depend on informativeness of the attention strategy
which implies selective attention is the only type of mistake and it is payo� irrelevant,

Second, in this paper we consider the DM faces a choice problem instead of a pre-
diction problem. As noted earlier by Nieuwerburgh and Veldkamp(2009A) if the DM's
payo� depends on the prediction and does not involve any choice of action then the re-
sulting attention would be di�erent than the case when he chooses an action based on
his prediction.

The multi-attribute nature of the choice problem discussed in this paper is similar to
the context dependent choice problems as well. In the context dependent choice problems
however the dimensions are additively separable. The choice of DM is biased as he pays
more attention to certain dimensions even though the payo� relevance of all dimensions
are same. Even though the DM exhibits selectively more attention to some attributes,
attention is not chosen by the DM in these models and the attention strategy does not
depend only on the payo� relevance of the dimension but the variance of the choices
available for the dimension.

6 Conclusion

We construct a model of multi-attribute choice problem where the DM faces an attention
constraint. In this model we analyze the accuracy-complexity trade-o� faced by the DM.
One way the DM can reduce complexity is by breaking the problem is several parts across
multiple time periods which generates an interestinf time accuracy trade-o�.

We then consider two types of attention strategies, namely breadth and depth strategy
and show that a breadth strategy is preferred when the good (or bad) states have similar
probability or only one of the input is payo� relevant. Then we discuss the implication
of introducing a market for information on the DM's choice of attention strategy.

Next we want to test the implication of this model in a laboratory environment and
analyze which type of cost function are closest to the actual decision making choices by
economic agents.
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A Appendix

A.1 Proof of Proposition 1

Proof. The strategy set of the DM is given by θ =
{

Πt∈TA
P×∆(Ω)

}
Pt∈Pt

. Each θi is

compact By Tychono�'s theorem and P and T being �nite we can consider �nitely many
choice problems, one for each path of partition strategies.

We start by considering only one such θi which is compact. By assumption, π is
uniformly bounded by 1 and 0. Also, K is assumed to be weakly convex which implies
it will be continuous over all posterior belief distribution in the interior of ∆

(
∆ (Ω)

)
.

Also, K is assumed to be bounded below. This implies u − K is bounded above and
continuous in the interior of the compact set.

Continuity of the objective function in the interior of a compact set implies sup
exists for the interior compact set, θi. This result along with the bounded above condition
implies maximum exists as well. Since there are only �nitely many such θis, the maximum
i the product space θ exists as well. Hence, proved.

A.2 Main Results: Proof

A.2.1 Proof of Lemma 1

Proof. Let us consider that the DM chooses P in some period t and t+ 1. WLOG let us
assume that t = 0 and the DM chooses not learning for any period t > 1. It is enough
to show that this strategy is not optimal for the following cost of partition function,

c(Q) ≡ 0 ∀Q ∈ P

Let us assume for simplicity partition P has only two blocks, say ωh and ωl and
the prior belief at t = 0 is given by µ0. Under strategy 1 in period t = 0, the DM
suppose chooses two possible posterior distributions

{
P0(aij |ωh), P0(aij |ωl)

}
. Blackwell

informativeness criterion implies the DM would choose only two signals h and l.
At the beginning of period t = 1 after the realization of period t = 0 signal the

DM would update his belief over {ωh, ωl}. Let us these two possible beliefs as µ1|h and
µ1|l corresponding to the h and l signal. The DM would choose the attention strategy
in period t = 1 based on these beliefs, which would generate four possible posterior
distribution of actions, i.e,

{
P1h(aij |ωh), P1h(aij |ωl), P1l(aij |ωh), P1l(aij |ωl)

}
, where the

subscript 1j represents at the beginning of period t = 1 the DM has updated belief based
on the realization of signal j in period t = 0.

Consider the following alternative strategy: the DM chooses to learn only in pe-
riod t = 0 and uses the signal structure to obtain the following posterior distributions:{
pP1h(aij |ωh) + (1− p)P1l(aij |ωh), pP1h(aij |ωl) + (1− p)P1l(aij |ωl)

}
where p = µ0(ωh)

is the probability of state ωh at the beginning of period t = 0.
For the t = 0 decision problem the cost of these two strategies are the same. The cost

function is given by the Shannon mutual entropy which is linear in posterior probability.
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So the cost from �rst strategy is

C(µ0, λ) = λ(Eµ0(H(P0(aij |ωs)))−H(P (aij))︸ ︷︷ ︸
cost in period t=0

+

p(Eµ1|hH(P1h(aij |ωs))−H(P0(aij |ωs)) + (1− p)(Eµ1|lH(P1l(aij |ωs))−H(P0(aij |ωs)))︸ ︷︷ ︸
cost in period t=1

= λ(p(Eµ1|hH(P1h(aij |ωs)) + (1− p)(Eµ1|lH(P1l(aij |ωs)))−H(P (aij)))

and cost for the second strategy is given by

C(µ0, λ) = λ(Eµ1H(P1s(aij |ω))−H(P (aij)))

= C(µ0, λ) = λ(p(Eµ1|hH(P1h(aij |ωs)) + (1− p)(Eµ1|lH(P1l(aij |ωs)))−H(P (aij)))

Hence the two strategies generate exact same cost of attention. If the cost of partition
P is greater than zero then the �rst strategy is more costly than the second strategy
because the �rst strategy requires the DM to observe the same partition in two periods.

The expected payo�s from these two strategies in periods t ≥ 1 are the same since
the DM is Bayesian, i.e, maximizes expected utility. In addition under the second policy
the DM starts to enjoy the bene�t from learning one period earlier, i.e, from t = 0. This
implies the second strategy weakly dominates the �rst strategy hence observing the same
partition twice can not be optimal.

However, we need to ensure that the second strategy has to be dynamically consistent,
i.e, if the DM updates his belief to some µ1 at the end of period t = 0 then he would
not choose to learn using the partition in period t = 1. This condition is satis�ed by the
Locally Invariant Posterior(LIP) property of Shannon cost function.

Under our assumption on cost of partition c(Q) this problem is equivalent to a Shan-
non problem over the partitions. The LIP property ensures that the choice of posterior
is invariant to changes to prior and action space. If there are two decision problem char-
acterized by two possible priors µ1 and µ2 where the two priors are connected, i.,e µ2

lies in the convex hull of posterior generated by µ1 then the posterior distribution under
the prior µ1 would remain as optimal posterior even under µ2 whenever the posterior is
available under µ2.

Since we do not restrict the possible information structure for a partition other than
the partition consistency condition, possible posteriors available to the DM remains same
as long as the partition remains same. Hence, at t = 1, with the updated belief µ1|s,
where s = h, l the optimal posterior remains the the same, i.e., he would optimally choose
not to learn.

However, for any cost function with c(P) > 0 LIP does not hold true in general.
If the DM chooses di�erent partitions in di�erent periods then he can choose di�erent
posterior distribution even when the posterior distribution from the earlier period is
available because choosing a di�erent partition implies that he can choose other posterior
distributions that were not previously available.
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But the locally invariant posterior property nonetheless holds true given a partition.
Since the cost of partition c(Q) does not depend on the posterior chosen optimal condi-
tional on a partition, for µ1|s the posterior chosen under µ0 remains available. Hence the
result holds true for any cost of partition function c(Q).

Note that, this result is not only true for the cost function we have discussed in the
costly partition model but also true for any cost of attention function that satis�es LIP
and are posterior separable. First, if a cost function satis�es LIP then observing one
partition only once is dynamically consistent.

Also, following Caplin, Dean and Leahy (2017) we know that if a cost of attention
function is posterior separable and satis�es LIP then it is uniformly posterior separable
(UPS), i.e, the cost function can be written as,

C(µ0) = EµG(P (aij |ω))−G(P (aij))

where G(.) is a strictly convex function. For UPS cost function, let us consider the two
similar strategies, strategy one: choose partition P in both period t = 0 and strategy
two, choose partition P only in t = 0. Suppose under strategy 2 the DM chooses the
same posterior distribution in period t = 0 as he would do under strategy 1 in period
t = 1. Here we assume that the same posterior distribution is available under both
strategies which is trues for UPS cost functions since we do not impose any restriction
on the information structures and G is independent of prior µ and the partition P.

By linearity of the cost function and the assumption that the G(.) function does not
change with change in µ the two strategies would generate same cost of learning. Similar
to the earlier case the DM strictly prefers to learn using strategy 2 because he can use
the information for one more period. Hence he would strictly prefer strategy 2.

A.2.2 Proof of Lemma 2

Proof. For this proof we again assume WLOG that the DM chooses P in period t = 0
and Q in period t = 1 and no learning in any period t > 1. First, we assume that Q is
�ner than P. In this case there are some posterior distribution that are available with Q
but not under P.

Let µ0 denote the prior belief in period t = 0 and µ1|s denote the belief at the
beginning of period t = 1 if signal s is observed in period t = 0. Consider another
strategy where the DM chooses Q in period t = 0 and no learning for any period t > 1.

The LIP property given a partition implies the DM will choose the same posterior
belief under the �rst strategy in period t = 1 when he observes Q and under the second
strategy in period t = 0. Thus the payo� from t ≥ 2 periods are the same in both
periods.

The �rst strategy would be better if the net bene�t from breaking down the learning
problem into a coarser and �ner partition is higher than that of using only the �ner
partition under the second strategy. However, this is not the case for any cost of partition
function c(P).

Let us �rst assume that c(Q) ≡ 0, i.e., the DM faces only the Shannon cost. Similar to
the earlier lemma since the cost is a linear function of Shannon entropy the two strategies
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would generate the same cost given by

C(µ0,Q) = λ(Eµ0(Eµ1|sH(P1s(aij |ωs))−H(P (aij)))

where µ1|s is the conditional distribution of states after observing signal s in period t = 0
under strategy 1 and P1s(aij |ωs) is the corresponding posterior distribution. Hence the
DM would strictly prefer the second strategy if the cost of partition P is strictly positive.

Also, since the partition Q is coarser, by partition consistency assumption under the
�rst strategy in period t = 0 the DM can only have a less informative posterior compared
to period t = 0 with partition Q, i.e, his net expected payo� in t = 0 would be lower
under strategy 1.

A similar logic can be applied in the case where Q is coarser than P. We compare
this strategy with observing only P in period t = 0. Since under both strategies in period
t = 0 the DM observes P the DM would only be better o� if by observing Q in period
t = 1 he can either reduce the cost of attention or increase the expected value.

By the partition consistency condition we know that all possible strategies that are
available under Q is also available under P but not the other way round. Suppose under
the �rst strategy the beginning of t = 1 period belief is p1|s and the DM chooses some
posterior distribution P1|s(aij). Then under strategy 2 this posterior belief would still
be available so the net expected payo� from posterior under second strategy can only be
weakly higher.

However under the �rst strategy if c(P) > 0, then the �rst strategy has an additional
strictly positive cost of attention which implies that the �rst strategy would be strictly
worse than the second strategy.

To prove the �nal part of lemma we note that not learning is represented by choosing a
partition with only one block, i.e., the whole state space, namely P0. Since this partition
is coarser than all possible partitions the DM would not choose the partition P0 before
any other partition.

However the DM can choose P0 after any �ner partition. This is true for the following
two reasons, �rst, under P0 the Shannon cost is zero as prior probability is same as
posterior probability. Second, the cost of this partition c(P0) = 0, i.e., the DM can
strictly prefer to choose this partition if for all other partition c(P) > 0. The zero cost
assumption imply that when the DM chooses not to change his belief no learning, i.e, P0

is the best strategy. Hence, proved.

A.2.3 Proof of Theorem 1

Part 1:

First let us show that Ω is a weakly better strategy at any period t for any marginal
cost λ > 0. First, we note that the Shannon mutual entropy satis�es the LIP property
which implies the cost function does not depend on the prior belief or the state space
over which the prior is de�ned. This implies the DM faces the same cost function for
every possible partition. For a �ner partition the expected entropy cost is calculated over
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more states(blocks) but the additivity of the cost function in distribution of posteriors
ensure the cost function does not change for the DM.

Given this observation we can rewrite any partition problem as the original problem
with Ω along with the partition consistency condition. So any partition problem becomes
a constrained original problem under this cost function. Hence the optimal solution can
not be strictly better than that of Ω. So for any period t and any value of λ > 0 we get
Ω to be weakly better than all possible partitions in P.

Given this result we now use lemma 1. Lemma 1 shows the DM would never choose
to observe the same partition in two periods, this implies if the DM weakly prefers to use
Ω over all possible partition he would only use it in period t = 0 and not learn anything
after t = 0.

Note that Ω can be indi�erent to some other partition in period t = 0 if partition
consistency condition does not bind. In that case the DM can choose the coarser partition
say P in period t = 0. Since partition consistency condition does not bind, the two
partitions would generate the same posterior under both partitions and hence using
lemma 1 and lemma 2 we get the DM would only choose to observe P in period t = 0
and no learning thereafter.

Given the �rst two statement of the proof we can consider the DM's problem as a
static decision problem with partition Ω where the payo� is obtained for all t ∈ T periods.
So the relevant payo� from action aij in state ω is

∑
t∈T π(aij |ω). Thus the T period

choice problem reduces to a static decision problem with the updated payo�s. We can
apply the result of Matejka and McKay(2015) and show that the conditional probability
of choosing action aij is given by

P (aij |ω) =
exp(

∑
t∈T π(aij |ω)/λ)P (aij)∑

a∈A exp(
∑

t∈T π(a|ω)/λ)P (a)
, (4)

where P (a) is the unconditional probability of choosing action a that follows Bayes rule,

P (a) =
∑
ω

µ0(ω)P (a|ω).

Part 2:

Given statement 1 in part 1 we conclude that the selective attention partition PA1 is
optimal only if it is indi�erent to Ω. If all states except constant probability states, i.e.,
ω1 and ω16 then there is no bene�t from learning so all partitions are indi�erent to each
other which gives the �rst condition.

Next we consider the case where DM is not indi�erent to all partitions but PA1 and
Ω generate the same payo�. This happens if and only if the posterior probability from
the two partitions are same, i.e, the partition consistency condition does not bind. This
generates some restriction on the possible posteriors.

For example, since ω4 and ω5 belong to the same block the posterior probability of
choosing di�erent actions has to be the same. Given equation ?? this is only possible
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if either P (aij) = 0 or π(aij |ω4) = π(aij |ω4). This gives us either P (a11) = a12 = 0 or
µ0(ω4) = 0 = µ0(ω5).

Let us assume that µ0(ω4) = 0 = µ0(ω5). Similar argument shows that µ0(ω7) =
µ0(ω8) = µ0(ω9) = µ0(ω10) = 0 if all combinations have positive probability of being
chosen or at least two input combinations and two of the four states have zero probability.

Similarly for ω12 and ω13, since none of the actions give same payo� either P (a11) =
P (a12) = 0 or µ0(ω12) = 0 = µ0(ω13).

This gives us two sets of conditions: �rst, either P (a11) + P (a12) = 1 and µ0(ω4) =
µ0(ω5) = µ0(ω12) = µ0(ω13) = µ0(ω7) = µ0(ω8) = µ0(ω9) = µ0(ω10) = 0. If P (aij) = 1
we do not need µ0(ω7) = µ0(ω8) = 0and similarly for a12.

Second P (a21) + P (a22) = 1 and µ0(ω2) = µ0(ω3) = µ0(ω14) = µ0(ω15) = µ0(ω6) =
µ0(ω8) = µ0(ω9) = µ0(ω11) = 0. This gives us the second condition in the theorem.

Note that, selective attention is not payo� relevant for the DM because he is indi�erent
between Ω and PA1 . If the DM was given with information about A2 he would not update
based on the information given his updated belief.

A.2.4 Proof of Result 1

Since the cost of attention is only in choosing a partition and there is non-negative bene�t
from learning, given any partition P the DM would choose to learn perfectly about the
partition. This proves the �rst statement of the theorem.

Since given a partition the DM can learn perfectly about it, if he chooses Ω then he
can get 1 for all states except ω16. However if he chooses to PA1 his expected payo� is
strictly less than 1 in all the medium (except ω6, ω11) and bad states.

In case of good states however the DM can always choose an input combination to
ensure a payo� of 1, so there are no losses from observing only input A1.

So the expected gain from choosing Ω is to get payo� 1 in all bad and medium (except
ω6, ω11) states. This gain is maximum when all states have ex-ante equal probability,
i.e., DM starts with an uniform prior. Under uniform prior the expected payo� using
PA1 for all these states are 1/2. Thus the condition for choosing PA∞ is given by,

1

2
µ0({ω7, ω8, ω9, ω10, ω12, ω13, ω14, ω15} < c̄.

A.2.5 Proof of Theorem 2

Proof. We prove this proposition using the following steps: �rst we show that if a DM
chooses Ω in period t = 0 then he would not choose to pay any attention for any later
period t > 0. This directly follows from the lemma that if the DM sequentially chooses
partition P and Q, then P is neither �ner not coarser than Q. Since every other partition
is coarser than Ω, the DM would never choose any other partition along with Ω under
any optimal attention strategy.

This implies we only consider a static scenario where the DM chooses Ω is period
t = 0 and we compare this with another static attention strategy choosing a selectively
attentive partition P1 in period t = 0 and not paying any attention afterwards. Since the
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actual payo� from choosing P1 in period t = 0 followed by any other partition would be
weakly higher than this static strategy with P1 we only need to show that this strategy
is strictly better than choosing Ω in period t = 0 given some µ0.

WLOG we assume the selective attentive partition is PA1 =
{
{ω1} , {ω2, ω3} , {ω4, ω5} ,

{ω6} , {ω7, ω8} , {ω9, ω10} , {ω11} , {ω12, ω13} , {ω14, ω15} , {ω16}
}
, i.e., the DM is selectively

attentive to input A1.
Let us �rst solve the DM attention problem assuming c(Ω) = c(P1) = 0. This is same

as the Shannon model. In this case the partition problem can be written as the original
problem with Ω with the additional partition consistency condition. Under P1 since the
DM has to choose the same action for two states in the same block the two partition
would generate the same expected value for the DM under the static attention choice if
the DM �nds it optimal to choose same P (aij |ω) for all state ω in the same block under
P1.

Theorem 1 shows there exists a set of values of µ0 where the net expected payo� from
P is same as Ω. The following denotes the value function with static attention strategy
and without the cost of partition,

V (µ0,P) = max
P (aij |ω)

E(π(aij , ω))− C(µp0, λ)

and using this notation we get there exists values of µ0 such that

∆V ≡ V (µ0,Ω)− V (µ0,P1) = 0.

Since this di�erence is continuous in µ0 we conclude that for a given value of c(Ω) −
c(P1) = c̄, say there exists a set of prior belief µ0 for which ∆V < c̄, so Ω is strictly
worse option. This proves the �rst part of the proposition.

To prove the second part we note that when the DM chooses P1 over Ω then his
prior belief does not satisfy the two conditions described above. Since c(P1) > 0 the DM
would never choose to pay attention using P1 unless V (µ0,P1) ≥ c(P1). But under those
two conditions the DM either has P (aij) = 1 or

P (a11)

P (a12)
=
P (a11|ω)

P (a12|ω)
∀ω ∈ supp(µ0)

, i.e, the unconditional and conditional choice probabilities are same. This implies the
DM does not learn at all. In this case he would never choose the partition �ner than the
inattentive partition which has a zero cost. Thus selective attention can not be optimal
for this belief in this model. This implies the DM only chooses selective attention when
it is payo� relevant, which implies he would always be willing to pay a positive price for
the information he has not attended.

A.3 Proof of lemma 3

Proof. Suppose not. Let us assume the DM uses two partitions Let us consider two
di�erent strategies; strategy 1: observe P in period t = 0 and Q in period t = 1, strategy
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2: observe Q in period t = 0 and P in period t = 1. Let us further assume WLOG that
Q is more informative than P, i.e, the expected posterior distribution generated using
Q has a higher entropy than that of P. Since the DM chooses the same two partitions
under the two strategies the cost of partition for the two strategies would be same so we
only consider the net payo� subject to Shannon cost.

For now let us assume that T is very large, so the loss in payo� for any delay in
learning for one period is negligible. This is analytically equivalent to assuming that
the DM chooses the two consequtive partition in one period so the payo� is obtained
only at the end of two partitions. Since we do not allow the DM to choose two separate
partitions this can not be true in the model. However if we can show that in this context
strategy 1 and strategy 2 are payo� equivalent then strategy 2 that involves observing
a more informative partition in earlier period would be weakly payo� improving for all
T ≥ 2.

Note that since the two partitions are orthogonal, i.e, cannot be ranked by coarseness
ranking (from lemma 2) we cannot apply LIP because the period t = 1 probability ob-
tained using P does not belong to the convex hull of any posterior distribution generated
by Q.

The only way strategy 1 can be better than strategy 2 if after observing P the payo�
di�erences among input combinations increases for Q for every state in Ω. Since under
Shannon model a higher payo� di�erence implies more learning strategy 1 would generate
more informative posterior.

Since, P is a partition of the original state space the payo� di�erence would increase
for some states and decrease for some other states. Orthogonality of P and Q ensures
under Q there would exist at least one block in which for one state the payo� di�erence
has increased and for another the payo� di�erence has decreased. The states for which the
payo� di�erence increases or decreases depnds only on the partition and prior probability
and does not depend on the order of partition.

However, the DM consider the possibility of future learning while choosing the �rst
partition, thus combining the two partitions he faces the same set of participation con-
sistency condition for both strategies. The Shannon cost of attention function does not
depend on the partition.

Suppose the DM decided optimal posterior choice distribution for state ω as P ∗ω . If
he follows the strategy 1 in period t = 0 he chooses PPω and if he follows strategy 2 he
chooses PQω in period t = 0.

If under strategy 1 the participation consistency condition imlplies ωi and ωj should
have same log-odds ratio then under strategy 2 either we can separate out the two states
or the two states remain in the same partition. If they remain in the same partition then
the log-odds ratio of these two states under PPω would be same as P ∗ω . If with Q we can
separte the two states then in period t = 1 the DM would choose a log-odds ratio which
is same as P ∗ω .

Then under strategy 2 these two states would have the same log odds ratio since in
period t = 1 the DM would choose the same log-odds as that of P ∗ω and in period t = 1
the log-odds ratio does not change under P. Since the Shannon cost function does not
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depend on the partition choosing the same log-odds with only one partition would be
same irrespective of the order of partition.

On the other hand if two states can be separated in P then under Q either they can
be separated or they cannot be separated. In the later case the log-odds ratio from PPω
is same as P ∗ω . In the former case by linearity of cost function the order of the posterior
distribution would not a�ect the cost of learning, i.e, any choice of PPω that leads to P ∗ω
would cost the same.

Thus under both the two strategies the DM would choose the same posterior distri-
bution and pay the same cost of attention. Now, if we relax the assumption of T being
large, since Q generate more informative posterior it is weakly preferable to use Q before
P since the payo� di�erence is bigger for earlier periods as a result of which the DM
enjoys higher payo� for more periods.

Note that, the result is true for all other cost function where the cost of updating
is linear in posterior probability. This is true for all other entropy cost functions are in
general for all UPS cost functions where the prior belief does not a�ect the cost function
and G(.) is linear in posterior probabilities.

A.4 Proof of lemma 4

Proof. Let us assume for simplicity that the DM does not observe one input combination
a21, i.e., chooses P¬a21 in period t = 0, then the statement of the lemma claims that he
should choose Pa21 in period t = 1.

If the DM chooses to not observe more than one input combination then the cost
function would determine which seqence of partitions would generate the lowest cost.
For example if the DM does not observe a21 and a22 then he can choose to observe
PA2|a12 in period t = 1 or Pa21 and Pa22 in period t = 1 and t = 2 respectively. But
without further assumption on cost function c(P) we cannot conclude which choice would
be cheaper for the DM.

We want to show that choosing P¬a21 in period t = 0 followed by Pa21 in period
t = 1 is better than choosing P¬a21 and choosing any other partition under which a21 is
observed but the partition is �ner than Pa21 .

Suppose not. Suppose the DM chooses PA2|a12 in period t = 1 instead of Paij . Then
in period t = 1 the DM can choose a more informative posterior distribution in period
t = 1 with a �ner partition. But since in period t = 0 the DM could observe all three
input combination except a21 the DM should optimally choose the log odds ratio of the
posetrior probability of choosing action aij for all i, j 6= (2, 1).

In period t = 1, PA2|a12 gives some information about a22 which the DM already
could have obtained in period t = 0. If the DM chooses a di�erent log-odds ratio for
other input combination then the choice of posterior probability over input combination
in perod t = 0 for any given state ω was not optimal, since the only restriction in period
t = 0 was on the participation constraint imposed by P¬a21 which only restricts the
relative position of a21 without a�ecting the other input combinations.
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Thus given in period t = 0 the DM has chosen the ratio of posterior probabilities
optimally for other three inputs the optimal attention strategy would be the following:
if the signal increases the probability of payo� 1 for a21 then the probability of all other
input combinations decreases proportionaly so that the log-odds ratio remain the same.
Similarly if the signal decreases the probability of payo� 1 for aij then the probability of
choosing all other input combinations should go up proportionaly.

If probability of choosing all other input combination are changed proportionally,
both Pa21 and PA2|a12 would genrate the same posterior distribution in period t = 1
becuase both the partitions face no constraint to observe a21 so both the two partitions
should generate the same choice probability of a21 in period t = 1. This implies the
Shannon cost and gross payo� would be the same for both the two partitions. But the
cost of partition c(.) would be lower for the coarser partition. So the DM would be
weakly better o� by choosing the coarser partition. Hence, proved.

A.5 Characterization of Optimal Strategy

We would characterize the optimal strategy in terms of prior belief over Ω. Before that
let us de�ne certain quantities that would simplify the description of prior belief. Let
G = {ω2, ω3, ω4, ω5} denote the set of good states B = {ω12, ω13, ω14, ω15} denote the set
of bad states and M = {ω6, ω7, ω8, ω9, ω10, ω11} be the set of middle states.

Let

∆i = maxωi,ωj∈G|µt(ωi), µt(ωj)| (5)

for i = G,B,M be the maximum di�erence between good states bad states and middle
states respectively. ∆i takes a value zero when all good(or bad or middle) states have
same probabilities.

Let us �rst consider one-period strategies, which would be optimal if c(Ω) is su�-
ciently small relative to the cost of other partitions so that the DM prefers to observe
Ω in one period than observing more than one coarser partitions over multiple periods.
For any period t ≥ 0 the following conditions characterize which type of partition would
be optimal.

Result 2. 1. Observing only one input is optimal when the following two conditions
are true:

(a) only one of input is payo� relevant in middle states, i.e, µt(ω6, ω11) OR
µ0(ω7, ω10) are su�ciently higher than µt(ω8, ω9)

(b) there exists εG ≥ εB ≥ 0 such that ∆G ≤ εG and ∆B ≤ εB

2. Observing both inputs are optimal when the following conditions hold true:

(a) ∆G > εG and ∆B > εB

(b) The prior probability of the two middle states where both inputs are payo�
relevant, i.e, µ0(ω8, ω9) is high
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(c) there exists εM≥0 such that ∆M ≤ εM

To prove the result 2 we make the following observation. For a given prior belief µt
at time t we would say partition 1 is better than partition 2 for state ω, if the posterior
choice distribution under partition 1 generates lower error probability than that of under
partition 2, where error probability for a given state ω is the sum of choice probabilities
of any input combination that gives zero in state ω. We can also de�ne expected error
as the expected value of the error probability where the expectation is over the prior
probability of states in Ω.

For a given prior µt and state ω two partitions will generate di�erent expected error
only if they generate di�erent partition consisitency restrictions. However, this does
not imply that the state ω should belong to the same block in every period for both
partitions.

Shannon cost of attention implies given a marginal cost λ the posterior choice proba-
bilities depend on only the payo� di�erence of di�erent actions in a given state (or block
for a partition). Thus two partitions would generate same expected error for a given
state if in any period the payo� di�erence from di�erent input combinations are same
for the blocks containing ω under the two startegies.

Thus the only way partition 1 would be better than partition 2 for state ω in a period
t if under partition 1 state ω belongs to a block b1 that generates higher payo� di�erence
than block b2 which contains ω under partition 2. Since the cost of attention does not
change over time, learning early is always weakly better.

Note that under one-input strategy the only states that can be separated completely
are ω6, ω11 (using partition PA1) and ω7, ω10 (using partition PA1)

2. Whereas under
two-input partitions these four states never belongs to a block that contains only one
state. Thus for any two-input partition there exists a one-input partition which is better
for states ω6, ω7, ω10, ω11. Thus one-input partitions are optimal when prior probability
of these states are su�ciently high.

Under any one-input partitions all good and bad states are treated symmetrically,
i.e, always good (bad) states are combined with good(bad) states to form a block. For
example under PA1 the four good and bad states belong to blocks of two states, ω2 and
ω3 belong to same block and ω4 and ω5 belong to the same block. All good (bad) states
have only one state that generates payo� 1 (or 0). So the payo� di�erences would be
symmetric and hence the expected errors would be symmetric.

However if the DM chooses two inputs there exists partitions where a good state
can be combined with bad state or middle states or other good states. Thus the payo�
di�erences would not be symmetric. More speci�cally if a good state is combined with
a bad state the incentives to learn would be higher compared to the case when it is
combined with other good states. However under two input strategies the DM does not
observe at least one input combination. This implies for at least one good (or bad) state
the error probabilities would be higher under two-input partition than under any one-
input partition that observes all levels of an input. Thus two input stratgies are optimal

2Here we are ignoring ω1 and ω16 as no learning is always optimal for these states.
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when the prior probability of one or two of the good (or bad) states are di�erent than
the other good (or bad) states.

For state ω8 and ω9 all one-input partitions generate no learning optimally. Hence if
the prior proababilty of ω8 and ω9 is higher the DM would optimally choose a two-inputs
partition.

A.6 Proof of theorem 2

Proof. Using Ω always generated weakly more informative posterior choice distribution.
For a given µ0 and λ let ∆µ0(PAi) denote the minimum di�ernce in payo� between
full learning and selective attention with some partition PAi . Since the payo� function
is bounded, the maximum value of payo� di�erence is bounded as well for any given λ.
This implies we can de�ne ∆(PAi) = maxµ0 ∆µ0(PAi) as the uniform bound of the payo�
di�erence.

If the di�erence in cost of partition c(Ω)− c(PAi) is lower than the payo� di�erence
∆(PAi) then choosing Ω is optimal. This generates the lower bound c. On the other
hand if c(Ω) is too high compared to PA1 such that sequential learning which involves PAi

and PAj in two consequetive periods generates lower cost than Ω, i.e, 2c(PAi) < c(Ω)
then the DM would not choose selective attention. Instead in period t = 1 he would
choose to observe the other selectively attentive partition. However, sequential attention
also generates lower expected payo� over time compared to Ω. This generates the upper
bound c̄

The second condition guarantees that the only possible strategies are selective, se-
quential or full attention as observing one input is optimal. These two conditions together
complete the proof.

A.7 Proof of Proposition 3

Proof. The proof of this proposition follows directly from result 2 described in this sec-
tion. For both sequential and conditional sequential attention strategy the total number
of period where the DM chooses to learn are same, two periods. In period t = 0 the two
startegies use the same partition, PAi hence the posterior choice distribution would be
same at the end of period t = 0 for two strategies.

Thus to compare the two stratgies we need the states for which sequential attention
is better than conditional sequential attention and vice versa. Given any λ if Ω1 is the
set of states for which sequential attention is better than conditional sequential attention
then by continuity of the value function with respect to belief µ1 there exists a threshold
µ̄ such that if µ1(Ω1) > µ̄ then sequential attention would generate lower expected error
than conditional sequential attention and vice versa when µ1(Ω1) ≤ µ̄.

Under sequential attention problem the DM chooses a one-input partition in period
t = 1 and under conditional sequential attention he chooses a two-inputs partition in
period t = 1. Given the results in the last section sequential attention is better for
all middle states except ω8 and ω9. This proves the part 1 of the statement of the
proposition.
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For part two we note that under conditional sequential attention the DM completely
ignores two input combinations whereas under sequential attention he observes all levels
of an given input. Thus the error probability would be lower under conditional sequential
attention for a good state for which the DM observes the input combination that generates
0 but would be higher for a good state for which the DM does not observe the input
combination that generates 0. The same logic applies to bad states as well.

Thus the sequential attention strategy is preferred over conditional sequential atten-
tion if the di�erence in probability of one or two good(or bad) states are su�ciently low
so that the expected error is lower than that of under conditional sequential probability.
As probability of one or two good(or bad) start to increase the expected error under con-
ditional sequential attention strategy goes down which generates the second statement
of the proposition.
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