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Abstract

We explore the equivalence of local strategy-proofness and global strategy-proofness on
domains where alternatives have multiple dimensions and agents have lexicographic prefer-
ences over those. We show that if there exists exactly one admissible preference over compo-
nents, then local and global strategy-proofness for the multidimensional domain are equiv-
alent if and only if the same holds for every marginal domain. We further show that if the
marginal domains are either unrestricted or single-peaked, then local and global strategy-
proofness are equivalent for the multi-dimensional domain for every set of component pref-
erences.
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1. INTRODUCTION

1.1 BACKGROUND OF THE PROBLEM

We consider the situation where a designer has to choose an outcome from a feasible set of

outcomes based on the preferences of a group of individuals in a society. Such a procedure is
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called a social choice function. A well-known desirable property of such functions is strategy-

proofness. This property ensures that the dishonest individuals in the society cannot bend the

outcome in their favor by strategically misreporting their preferences.

In the seminal papers of Gibbard (1973)-Satterthwaite (1975), it is shown that if there are

at least three social outcomes and the preferences of the individuals are unrestricted, then ev-

ery strategy-proof and unanimous social choice function will be dictatorial. A dictatorial social

choice function is one that selects the most preferred alternative of one particular individual at

every collection of reported preferences.

Domain restrictions turn out to be the most practical way to evade Gibbard-Satterthwaite

(Gibbard (1973), Satterthwaite (1975)) impossibility result. Well-known domain restrictions that

are studied in literature are single-peaked, single-dipped, single-crossing etc. Moulin (1980) char-

acterize the strategy-proof and unanimous rule on single-peaked domains, Peremans and Stor-

cken (1999) characterize those on single-dipped domains, and Saporiti (2014) on single-crossing

domains.

1.2 OUR MOTIVATION

Although the strategy-proof rules are characterized on several well-known domains, a general

characterization of those on arbitrary domains is assumed to be a hard problem. In view of

this, researchers started looking at simpler (easy to check) versions of strategy-proofness. One

such version is local strategy-proofness. Local strategy-proofness requires that an individual

cannot manipulate by a ‘slight’ misreport of his preferences. More formally, it ensures that an

individual cannot manipulate by swapping two consecutive alternatives in his preference. This

raises an interesting question as to when, that is under what condition on a domain, such a

simple version of strategy-proofness becomes equivalent to strategy-proofness. This is the main

question we deal with in this paper.

In Sato (2013), it is shown that if a domain satisfies ‘no restoration’ property, then every lo-

cally strategy-proof rule is strategy-proof. However, to the best of our knowledge, no necessary

and sufficient condition is known till date for the equivalence of the two notions of strategy-

proofness.

In many practical scenarios, a decision maker has to take decision on multiple issues simulta-

neously. Examples of such situations include deciding the optimum level of budget allocations
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over different sectors such as health, education, defense etc. Such situations are modeled as

multi-dimensional decision problem and the usefulness of such models is well-established in

literature.

It is shown in Breton and Sen (1999) that if a multi-dimensional separable domain satisfies

richness property, then every strategy-proof rule on it is decomposable. However, the structure

of such rules on arbitrary multi-dimensional domains is still open. This motivates us to establish

the equivalence of local and global strategy-proofness on such domains.

1.3 OUR CONTRIBUTION

We consider multi-dimensional lexicographic domain and explore the equivalence of local and

global strategy-proofness on such domains. In particular, we investigate how the said equiva-

lence for one dimension gets translated to multiple dimensions.

We show that if there is exactly one admissible preference over components, then local and

global strategy-proofness are equivalent for the multidimensional domain if and only if they

are equivalent for every marginal domain. We further prove that if the marginal domains are

single-peaked or unrestricted, then local and global strategy-proofness are equivalent for the

multidimensional domain for every collection of component orderings. We also show by means

of example that this result does not hold for arbitrary marginal domains. We leave the prob-

lem of finding the necessary and sufficient condition on marginal domains such that local and

global strategy-proofness are equivalent on the multidimensional domain (for any collection of

component orderings) for future research.

1.4 REMAINDER

The paper is organized as follows. In Section 2, we introduce the model and in Section 3, we

present our results. Finally, we conclude the paper in Section 4. All the proofs are collected in

the Appendix.

2. MODEL

We consider a social choice problem with finite set of agents N = {1, . . . , n} with n ≥ 2. The

set of alternatives is defined as A = A1 × . . . × Am, where for all k ∈ M = {1, . . . , m}, Ak is the
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finite set of alternatives available in the k-th component. For notational convenience, whenever

it is clear from the context, we denote M by A0. For X ⊆ A0, we define AX = ∏
l∈X

Al.

For ease of presentation, we do not use braces for singleton sets. Also, whenever it is clear

from the context, we use minus sign for setminus notation, that is, for two sets X and Y, we write

X − Y for X \ Y.

2.1 DOMAINS AND THEIR PROPERTIES

For any finite set X, a complete, transitive, and antisymmetric binary relation on X, denoted by

P (also called a linear order) is called a strict preference over X. We denote by L(X) the set of

all strict preferences over X. For P ∈ L(X) and k ≤ |X|, we denote by P(k) the k-th ranked

alternative according to P, more formally, P(k) = a if and only if |{b | bPa}| = k − 1.

Two alternatives are called adjacent in a preference if they are ranked consecutively in that

preference. For P, P̄ ∈ L(X), we define

P △ P̄ = {{a, b} ⊆ X | a and b have different relative orderings in P and P̄}.

Two preferences P and P̄ are called adjacent, denoted by P ∼ P̄, if and only if |P △ P̄| = 1. In

other words, P ∼ P̄ if and only if P̄ is obtained by swapping exactly two adjacent alternatives in

P.

Throughout this paper, we denote a generic element of Ak by ak, and for X ⊆ A0, a generic

element of AX by aX. Also, we denote a generic preference in L(M) by P0, and for k ∈ M, a

generic preference in L(Ak) by Pk.

Definition 2.1. A preference P is called single-peaked with respect to an ordering ≺ over the set

of alternatives if for all x, y ∈ A with [either x ≺ y ≺ r1(P) or r1(P) ≺ y ≺ x], we have yPx.

A domain S is called single-peaked if it contains all single-peaked preferences with respect to

some ordering over the alternatives.

Definition 2.2 (Lexicographic preference). For P0 ∈ L(M) and Pk ∈ L(Ak); k = 1, . . . , m, a

preference P ∈ L(A) is called lexicographic with respect to (P0, P1, . . . , Pm) if for all a, b ∈ A, aPb

if and only if there exist j ∈ 1, . . . , m such that aP0(l) = bP0(l) for all l < j, and aP0(j)PP0(j)bP0(j).

Whenever it is clear from the context, for a preference P ∈ Li, we denote by Pk the marginal

preference of P over Ak. By L, we denote a set of all lexicographic preferences over A. Each agent
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i ∈ N has a set of admissible lexicographic preferences Li ⊆ L over A. We denote LN = ∏
i
Li.

An element PN ∈ LN is called a preference profile.

For k ∈ M and Li ⊆ L, we define Lk
i = {P̂k

i ∈ L(Ak) | there is Pi ∈ Li with Pk
i = P̂k

i } and

Lk
N = ∏

i
Lk

i . Similarly, we define L0
i = {P̂0

i ∈ L(M) | there is Pi ∈ Li with P0
i = P̂0

i }.

Definition 2.3. The graph of a domain Li is defined as the directed graph G = (Li, E), where

P, P̄ ∈ E if and only if there exists unique k ∈ {0, 1, . . . , m} such that Pk ∼ P̄k.

Definition 2.4 (Restoration). For a, b ∈ A; a ̸= b, a path π(P, P′) = (P1, . . . , Pk) in the graph of Li

is said to have (a, b) restoration if there exist i, j ∈ {1, . . . , k} such that Pi △ Pi+1 = Pj △ Pj+1 =

{{a, b}}.

2.2 SOCIAL CHOICE FUNCTIONS AND THEIR PROPERTIES

Definition 2.5. A social choice function (SCF) on LN is defined as a mapping f : LN → A, and

for all k ∈ M, an SCF on Lk
N is defined as a mapping f̂ k : Lk

N → Ak.

For an SCF f and a component k ∈ M, we denote by f k the k-th component of f , more formally,

for all PN ∈ LN, f k : LN → Ak given by f k(PN) = ( f (PN))
k.

Definition 2.6 (Locally strategy-proof function). An SCF f : LN → A is called locally manipula-

ble if there exist PN ∈ LN, i ∈ N, P′
i ∈ Li with P′

i ∼ Pi such that

f (P′
i , PN−i)Pi f (PN).

An SCF is locally strategy-proof if it is not locally manipulable.

Definition 2.7 (Globally strategy-proof function). An SCF f : LN → A is called globally manip-

ulable if there exist PN ∈ LN, i ∈ N, P′
i ∈ Li such that

f (P′
i , PN−i)Pi f (PN).

An SCF is globally strategy-proof if it is not globally manipulable.

Definition 2.8 (Smooth domain). A domain LN is said to be smooth if each locally strategy-proof

social choice function on LN is globally strategy-proof.
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Throughout this paper, by a rough social choice function, we mean an SCF that is locally strategy-

proof but not globally. Also, by a rough domain, we mean a domain that is not smooth.

Definition 2.9. An SCF f : LN → A is called globally (locally) manipulable for component

k ∈ M if there exist PM−k
N ∈ LM−k

N , i ∈ N, Pk
i , P̄k

i ∈ Lk
i (with Pk

i ∼ P̄k
i ), and Pk

N−i ∈ Lk
N−i such that

f ((P̄k
i , Pk

N−i), PM−k
N )Pk

i f ((Pk
i , Pk

N−i), PM−k
N ).

An SCF is strategy-proof for component k if it is not manipulable for component k.

Definition 2.10 (Decomposable SCFs). An SCF f : LN → A is called globally (locally) decompos-

able if f is globally (locally) strategy-proof for all k ∈ A0 implies f is globally (locally) strategy-

proof.

Definition 2.11 (Decomposable domains). A domain LN is called decomposable if Lk
i is smooth

for all k ∈ A0 implies LN is smooth.

3. RESULTS

Definition 3.1. For a ∈ A, B ⊆ A, and P̂ ∈ P , a social choice function f : P → A is called

monotonic with respect to (a, B, P̂) if f (P) = a for all P ∈ P such that there is a path from P̂ to P

in which no element from B overtakes a, and f (P) = max
P

(B) for all other preferences.

Lemma 3.1. Let a ∈ A, B ⊆ A, and P̂ ∈ P . Suppose f : P → A is monotonic with respect to (a, B, P̂).

Then, f is locally strategy-proof.

The proof of this lemma is relegated to Appendix A

Definition 3.2. A domain P is said to satisfy maximal restoration property if there exist P, P′ ∈ P

and a ∈ A such that for every path π(P, P′) from P to P′ has a (a, x) restoration for some x ∈ A \ a

with aPx.

Theorem 3.1. If a domain P satisfies the maximal restoration property, then it is a rough domain.

The proof of this theorem is relegated to Appendix B

Definition 3.3. A lexicographic domain Li is called a product lexicographic domain if for all

k = 0, . . . , m and all Pk ∈ Lk
i , there exists (P0, P1, . . . , Pm) ∈ Li.
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Theorem 3.2. Let Li for all i ∈ N be a product lexicographic domain such that |L0
i | = 1 and Lk

i is

smooth for all k ∈ A0. Then, LN is a smooth domain.

The proof of this theorem is relegated to Appendix C

Theorem 3.3. Let D ⊂ L(A) be such that for each P, P′ ∈ D and each a ∈ A, there exist a path in D

between P and P′ which is without {a, z} restoration for all z ∈ A such that aPz. Then, D is a smooth

domain.

The proof of this theorem is relegated to Appendix D

Theorem 3.4. Let P0 ⊆ L(M), and let P k = L(Ak) for all k ∈ M. Then, the product lexicographic

domain defined by D = (P0,P1,P2, . . . ,Pm) is a smooth domain.

The proof of this theorem is relegated to Appendix E

Theorem 3.5. Let P0 ⊂ L(M), and let P k ⊂ L(Ak) be single peaked for all k ∈ M. Then, the product

lexicographic domain defined by D = (P0,P1,P2, . . . ,Pm) is a smooth domain.

The proof of this theorem is relegated to Appendix F

4. CONCLUSION

We have analyzed the equivalence of local and global strategy-proofness on multi-dimensional

lexicographic domains. We have shown that the said equivalence holds if the same holds for

every marginal domain and there exists exactly one component ordering. We have also proved

that if the marginal domains are unrestricted or single-peaked, then local and global strategy-

proofness are equivalent on the multi-dimensional domain for any collection of component or-

derings.

We leave the problem of finding the necessary and sufficient condition on the marginal do-

mains and component orderings so that the local and global strategy-proofness are equivalent

on multi-dimensional lexicographic domain for future research.

A. PROOF OF LEMMA 3.1

Proof. Let Pa = {P ∈ P | f (P) = a}. Take two preferences P, P′ ∈ P such that (P, P′) ∈ E.

Suppose P, P′ ∈ Pa. Then, f (P) = f (P′) = a, and hence f is not manipulable at P via P′.
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Suppose P, P′ ∈ P \ Pa. Then, since f (P′′) = max
P′′

(B) for all P′′ ∈ P \ Pa, we have f (P)R f (P′)

and f (P′)R′ f (P), which means f is not manipulable at P via P′. Now, take P ∈ Pa and P′ ∈

P \ Pa. Since (P, P′) ∈ E and P ∈ Pa, by the construction of f , there must exist some b ∈ B that

overtakes a along the edge (P, P′). By the definition of f , this means f (P′) = b. Because aPb and

bP′a, this means f is not manipulable at P via P′ or at P′ via P. ■

B. PROOF OF THEOREM 3.1

Proof. Let P satisfy maximal restoration property. Then, there exist there exist P̂, P̄ ∈ P and

a ∈ A such that for every path π(P̂, P̄) from P̂ to P̄ has a (a, x) restoration for some x ∈ A \ a

with aP̂x.

Define B = {x ∈ A | aP̂x and there exists a path π(P̂, P̄) having (a, x) restoration} and define

B1 = {x ∈ B | aP̄x}. Without loss of generality we can assume that B1 ̸= ∅.

Suppose that each path from P̂ to P̄ has a (a, x) restoration for some x ∈ B1. This in particular

means that some element of B1 overtakes a in each path from P̂ to P̄. Consider the SCF f that is

monotonic with respect to (a, B1, P̂). By Lemma 3.1, f is locally strategy-proof. We show f is not

globally strategy-proof. Since some element of B1 overtakes a in each path from P̂ to P̄, by the

definition of f , we have f (P̄)max
P̄

(B1). Because f (P̂) = a and aP̄x for all x ∈ B1, this means f is

globally manipulable at P̄ via P̂.

Now, suppose that there exists a path π(P̂, P̄) that has no (a, x) restoration for any x ∈ B1.

Then, by our assumption, there must x ∈ B \ B1 such that π(P̂, P̄) has a (a, x) restoration. Let

P̃ ∈ π(P̂, P̄) be such that the path π(P̃, P̄) does not have any (a, x) restoration for x ∈ B \ B1,

and there is a (a, b) flip for some b ∈ B \ B1 such that π(P̂, P̄) has (a, b) restoration. We claim

that every path from P̂ to P̃ has (a, x) restoration for some x ∈ B. Assume for contradiction

that there is a path π̂(P̂, P̃) from P̂ to P̃ that has no (a, x) restoration for any x ∈ B. Consider

the path (π̂(P̂, P̃), π(P̃, P̄)) from P̂ to P̄. By our assumption, there exists b ∈ B such that this

path has a (a, b) restoration. Because both the paths π̂(P̂, P̃) and π(P̃, P̄) do not have any (a, b)

restoration, it must be that there is exactly one (a, b) flip in each of these paths. Suppose b ∈ B1.

Since P̃ ∈ π(P̂, P̄) and there is no (a, x) restoration in π(P̂, P̄) for any x ∈ B1, we must have aP̃x

for all x ∈ B1. Because aP̂x for all x ∈ B1, this means π(P̂, P̃) cannot have exactly one (a, x) flip.

This contradicts that b ∈ B1. Now, suppose b ∈ B \ B1. Note that a and b have different relative

orderings in P̂ and P̄. Therefore, in any path from P̂ to P̄ there must be odd number of flips of a
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and b. However, this contradicts the fact that a and b flips exactly once in each paths π(P̂, P̃) and

π(P̃, P̄) of a and b. This proves that every path from P̂ to P̃ has a (a, x) restoration from some

x ∈ B.

Let B2 = {x ∈ B | aP̃x}. Since b ∈ B, (a, b) flip occurs exactly once in the path π(P̃, P̄), and

bP̄a, it must be that aP̃b. Therefore, it must be that B2 ⊋ B1.

Now, if every path from P̂ to P̃ has (a, x) restoration for some x ∈ B2, then by using similar

arguments as before f B2 is a rough rule on P . If not, then it must be that B \ B2 ̸= ∅ and

there exists a path π̄(P̂, P̃) from P̂ to P̃ that has no (a, x) restoration for any x ∈ B2. Then,

using the assumption on the P , π(P̂, P̃) must have (a, x) restoration for some x ∈ B \ B2. Using

similar argument as before, there must be some ˜̃P such that (i) every path from P̂ to ˜̃P has (a, x)

restoration for some x ∈ B, and (ii) B3 = {x ∈ B | a ˜̃Px} ⊋ B2.

Continuing in this manner, we get hold of P′ such that (i) every path from P̂ to P′ has (a, x)

restoration for some x ∈ B, and (ii) aP′x for all x ∈ B. Then, the rule f B is a rough rule on P .

This completes the proof of the theorem. ■

C. PROOF OF THEOREM 3.2

Proof. Suppose not. Then, there exist a locally strategy-proof SCF f : LN → A, PN ∈ LN, i ∈ N,

P̄i ∈ Li such that f is globally manipulable at PN via P̄i. We show that there exists a compo-

nent k ∈ A0 such that Lk
N is rough, which will contradict our supposition for contradiction.

Since i and PN−i are fixed, to minimize notation, we write P to mean Pi and write f (P) to mean

f (Pi, PN−i).

Without loss of generality, assume that L0 = {P0} where 1P02P0 . . . P0m. Because f is globally

manipulable at PN via P̄i, we have (using our reduced notation) f (P̄)P f (P). Let f (P) = x and

f (P̄) = y.

Step 1. In this step, we show x1 = y1. Because yPx, it must be that y1R1x1. Suppose y1P1x1.

Claim 1. f 1(P0, P1, P̂M−1) = f 1(P0, P1, P̃M−1) for all P1 ∈ L1 and all P̂M−1, P̃M−1 ∈ LM−1.

Suppose not. Then, there must exist (P0, P1, P̂2, . . . , P̂k, P̃k+1, . . . , P̃m) and (P0, P1, P̂2, . . . , P̂k−1, P̃k, . . . , P̃m)

such that f (P0, P1, P̂2, . . . , P̂k, P̃k+1, . . . , P̃m) ̸= f (P0, P1, P̂2, . . . , P̂k−1, P̃k, . . . , P̃m). Let P(1), . . . , P(l)

be such that P(1) = P̂k, P(l) = P̃k, and P(j) ∼ P(j + 1) for all j = 1, . . . , k − 1. Then, there must

be j ∈ {1, . . . , k− 1} such that f 1(P0, P1, P̂2, . . . , P(j), P̃k+1, . . . , P̃m) ̸= f 1(P0, P1, P̂2, . . . , P̂k−1, P(j+
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1), . . . , P̃m). However, since in both the preferences (P0, P1, P̂2, . . . , P(j), P̃k+1, . . . , P̃m) and f 1(P0, P1, P̂2, . . . , P̂k−1, P(j+

1), . . . , P̃m), the marginal preference over component 1 is the same and component 1 is lexico-

graphic best, this means agent 1 will manipulate. This completes the proof of the claim.

Define the SCF f 1 : L1 → A1 as follows: for all P̂1, f 1(P̂1) = ( f (P̂1, PM−1))1.

Claim 2. f 1 is locally strategy-proof.

Assume for contradiction that there are P̂1 and P̃1 with P̂1 ∼1 P̃1 (i.e. when P̂1 and P̃1 are viewed

as preferences over A1, they are adjacent. ) such that f 1(P̃1)P̂1 f 1(P̂1). However, by the definition

of f 1 and the fact that component 1 is lexicographic best, this means f (P̃1, PM−1)P̂ f (P̂1, PM−1).

As (P̃1, PM−1) ∼ (P̂1, PM−1), this contradicts the local strategy-proofness of f , which completes

the proof of the claim.

Consider (P̄1, PM−1). Because y1P1x1 and f 1(P1) = x1, it follows that f 1 is globally manipu-

lable at P1 via P̄1, which is a contradiction. This completes Step 1.

Step 2. In this step, we show x = y. Since yPx, this completes the proof of the theorem by

contradiction.

Let k ∈ A0 be such that xl = yl for all l < k and xk ̸= yk. Because yPx, it must be that ykPkxk.

We distinguish the follows cases.

Case 1. Suppose that there exists a path from P to P̄ such that for each P′ in the path f l(P′) = xl

for all l ≤ k − 1.

Claim 3. f j(P0, P1, P2, . . . , Pl, P̂M−{1,...,l}) = f j(P0, P1, . . . , Pl, P̃M−{1,...,l}) for all j ∈ 1, 2, . . . , l, all

P̂M−{1,...,l}, and all P̃M−{1,...,l}.

The proof of this claim follows by using similar arguments as for the proof of Claim 1.

In what follows, we construct a rough SCF for the k-th component. Define f k(P̃k) = f (P1, ...Pk−1, P̃k, PM−{1,2,...,k})k

for all P̃k ∈ Lk
i . It follows from arguments similar to Claim2 that f k is locally strategy-proof.

However, note that since f l(P) = xl for all l ≤ k − 1 and ykPkxk, it follows by using similar argu-

ment as for the proof of f 1 is globally manipulable in Step 1, that f k is not globally strategy-proof.

This contradicts our assumption that Lk
i is a smooth domain.

Case 2. Suppose Case 1 does not hold. Let k̄ < k − 1 be the maximum component such that

there is a path π(P, P̄) from P to P̄ such that f l(P′) = xl for all l ≤ k̄ and all P′ ∈ π(P, P̄). Such a

k̄ must exist since f 1(P′) = x1 for all P′ that lies in any path from P to P̄.

Take P̃ ∈ π(P, P̄) such that P̃l = P̄l for all l ≤ k̄. By our assumption, f l(P̃) = xl for all l ≤ k̄.
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So by Claim 3 f l(P̄1, . . . , P̄k̄, Pk̄+1, . . . , Pm) = xl for all l ≤ k̄. Suppose not. Consider the

shortest path from (P̄1, . . . , P̄k̄, Pk̄+1, . . . , Pm) to (P̄1, . . . , P̄k̄, P̃k̄+1, . . . , P̃m). Because P̂l = Pl for

all l ≤ k̄ and all preference P̂ in this path, we have by Claim 3 that f l(P̂) = xl for all l ≤

k̄. Since f k̄+1(P̄1, . . . , P̄k̄, Pk̄+1, . . . , Pm) ̸= f k̄+1(P̄1, . . . , P̄k̄, P̃k̄+1, . . . , P̃m), this means f is locally

manipulable, which is a contradiction. This completes the proof of the claim.

Now, we complete the proof of Step 2. Consider all paths from f (P̄1, . . . , P̄k̄, Pk̄+1, . . . , Pm) =

xl to P̄. By our assumption on k̄, in every such path xk̄+1 must have a restoration with some

zk̄+1. If zk̄+1Pk̄+1xk̄+1, then f is locally manipulable. Therefore, it must be that in every such path

xk̄+1 has a restoration with some zk̄+1 such that xk̄+1Pk̄+1zk̄+1. However, by Theorem 3.1, this

means Lk̄+1
i is not smooth, a contradiction. This completes Step 2, and hence the proof of the

Theorem. ■

D. PROOF OF THEOREM 3.3

Proof. Suppose not. Then D is a rough domain.So we have a rule f : D → A which is locally

strategy proof but globally manipulable. So there exist P, P′ such that f (P′)P f (P).Let f (P) = x

and f (P′) = x′. Also there exist a path between P and P′ which has no {x′, z} restoration for

all z ∈ A such that x′Pz. Let this path be denoted by (P1 = P, P2, . . . , pl = P′) Now looking

along this path, while going from P to P′, the outcome has to change from x to x′.Let Pk, where

k ∈ {1, 2, . . . , l} be the first preference in the path (P1 = P, P2 . . . , pl = P′), where the outcome is

x′.Let f (Pk−1) = y. Then since f is locally strategy proof, we have x′Pky and yPk−1x′

Claim: yPx′

Proof: Suppose not. Then x′Py as x ̸= y. Also we have yPk−1x′ and x′Pky . This means the

path (P1 = P, P2, . . . , pl = P′) has {x′, y} restoration. Hence a contradiction. So yPx′.

Now there exist a path from P to Pk which has no {y, z} restoration for all z ∈ A such that

yPz.Then following the same technique as before and doing it repeatedly untill we get P̄ such

that f (P̄) = r1(P). Now according to the property of the domain, there exist a path from P to P̄

which has no {r1(P), z} restoration for all z ∈ A − r1(P).Since f is locally strategy proof, so any

any preference the outcome is same as that of its neighbour preference or the outcome overtakes

the outcome at its neighbour preference. So Since f (P̄) = r1(P), this a contradiction tothere exist

a path from P to P̄ which has no {r1(P), z} restoration for all z ∈ A − r1(P). This proves D is a

smooth domain. ■
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E. PROOF OF THEOREM 3.4

Proof. We will show that for each P, P′ ∈ D and each a ∈ A, there exist a path in D between P

and P′ which is without {a, z} restoration for all z ∈ A such that aPz and hence by Theorem 2.3,

it follows that D is a smooth domain.

Let (P0, P1, P2, . . . , Pm), (P̄0, P̄1, P̄2, . . . , P̄m) be any preferences and a be any alternative in

A.Let us denote a = a1a2 . . . , am Without loss of generality we can assume that P0 is such that

1P02P0 . . . P0m holds.Now we look at P1, we construct a path π1(P1, P̃1) from P1 to P̃1 such that

starting from P1, a1 overtakes its adjacent alternative which lies above it one by one. In this

process once a1 reaches the top, then we arrange the remaining alternatives in that preference

according to their relative positions amongst themselves in the preference P̄1. After this, we get a

preference which we call P̃1. So the path π1(P1, P̃1) consists of preferences that is adjacent to the

ones on their right and left of the path. Notice that since according to P0, 1 is lexicographically

the best, so along the path from (P0, P1, P2, . . . , Pm) to (P0, P̃1, P2, . . . , Pm) a has no flips with any

alternative which was below in the preference (P0, P1, P2, . . . , Pm).

Now we repeat the process for 2nd component and then 3rd till mth component. So through-

out this path, a goes to the top by overtaking alternatives that were above in the prefernece

(P0, P1, P2, . . . , Pm). Now along the path (P0, P̃1, P̃2, . . . , P̃m) to (P̄0, P̃1, P̃2, . . . , P̃m) a remains on

top throughout.Since ai is the top of P̃i and P̃i is arranged such that apart from ai other alterna-

tives are arranged in the same relative positions according to P̄i. Consider a path from P̃i to P̄i by

bringing ai down one by one.Now we look at P̄0, whichever is the lexicographically best accord-

ing to P̄0, say j, then first we construct a path from (P̄0, P̃1, ..., P̃j, ..P̃m) to (P̄0, P̃1, ..., P̄j, ..P̃m). So

along this path, a is overtaken by other altenatives only once.Similarly for all components. So in

the path from (P̄0, P̃1, . . . , P̃m) to (P̄0, P̄1, . . . , P̄m), a flips with some alternatives only once. Hence

in the entire path from (P0, P1, P2, . . . , Pm) to (P̄0, P̄1, P̄2, . . . , P̄m), a has no restoration with any

alternative below. Hence by Theorem 3.3, D is a smooth domain. ■

F. PROOF OF THEOREM 3.5

Proof. We once again use Theorem 2.3 to show that D is smooth.

Let (P0, P1, P2, . . . , Pm), (P̄0, P̄1, P̄2, . . . , P̄m) be any preferences and a be any alternative in

A.Let us denote a = a1a2 . . . , am Without loss of generality we can assume that P0 is such that
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1P02P0 . . . P0m holds.Let P̃i be the preference whose top is ai for all i ∈ {1, 2, . . . m}. Since P i’s

are single peaked so there exist a path from Pi to P̃i without restoration.(Here we have used the

fact that for any two preferneces in a single peaked domain, there exist a path between them

without restoration.). Also there exist a path from P̃i to P̄i without restoration.

Now we look at P1, we have a path π1(P1, P̃1) without restoration from P1 to P̃1.Notice that

since according to P0, 1 is lexicographially the best, so along the path from (P0, P1, P2, . . . , Pm)

to (P0, P̃1, P2, . . . , Pm) a has no flips with any alternative which was below in the preference

(P0, P1, P2, . . . , Pm).Now we repeat the process for 2nd component and then 3rd till mth compo-

nent. So throughout this path, a goes to the top by overtaking alternatives that were above in the

prefernece (P0, P1, P2, . . . , Pm). Now along the path (P0, P̃1, P̃2, . . . , P̃m) to (P̄0, P̃1, P̃2, . . . , P̃m), a

remains on top throughout.

Now also there exist a path from P̃i to P̄i without restoration for all i. Now we look at P̄0,

whichever is the lexicographically best according to P̄0, say j, then first we construct a path from

(P̄0, P̃1, ..., P̃j, ..P̃m) to (P̄0, P̃1, ..., P̄j, ..P̃m). So along this path, a is overtaken by other altenatives

only once.Similarly for all components. So in the path from (P̄0, P̃1, . . . , P̃m) to (P̄0, P̄1, . . . , P̄m),

a flips with some alternatives only once. Hence in the entire path from (P0, P1, P2, . . . , Pm) to

(P̄0, P̄1, P̄2, . . . , P̄m), a has no restoration with any alternative below. Hence by Theorem 3.3, D is

a smooth domain. ■
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