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Abstract

We study the implications of patents in an overlapping generations model with horizontal

innovation of differentiated physical capital. We show that within this demographic structure of

finitely lived agents, weakening patent protection generates two contradicting effects on innova-

tion and growth. Weakening patent protection lowers the (average) price of patented machines,

thereby increasing machine utilization, output, aggregate saving, and investment. However, a

higher demand for machines shifts investment away from the R&D activity aimed at inventing

new machine varieties, toward the formation of physical capital. The growth-maximizing level

of patent protection is incomplete. Shortening patent length is more effective than loosening

patent breadth in spurring growth, due to an additional positive effect on growth, that is de-

creasing investment in old patents. Welfare can be improved by weakening patent protection

beyond the growth-maximizing level.
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1 Introduction

There is a relatively large literature on the role of patent policy in modern growth theory and

the implications of patent strength to R&D-based growth and welfare. The current literature,

however, is almost exclusively written about models with infinitely lived agents. This paper utilizes

an overlapping generations model to highlight some unique implications of finite lifetimes to patent

policy.

In an economy of finitely lived agents, the limited longevity sets a barrier to growth by inducing

intergenerational trade in productive assets. This point was emphasized by Jones and Manuelli

(1992) in a model of physical capital accumulation, and by Chou and Shy (1993) in an endogenous

growth model of variety expansion with no physical capital. Both studies employed the canonical

Overlapping Generations (OLG) model pioneered by Samuelson (1958) and Diamond (1965), where

saving and investment are constrained by labor income.1

Jones and Manuelli (1992) showed that perpetual growth cannot prevail in the neoclassical OLG

economy2 due to the limited ability of the young to purchase capital held by the old. One of the

remedies they consider to support sustained growth in such an economy is direct income transfers

from old to young. Chou and Shy (1993) emphasized that inter-generational trade in old patents

slows down growth as investment in old patents crowds out innovative (R&D) investment in new

varieties. They showed that due to this crowding-out effect, which is not present in infinitely-lived

agent economies, shortening patent length enhances growth.

To the best of our knowledge, Sorek (2011) is the only other work to study the growth im-

plications of patents in the OLG framework. However, this work focuses on the effect of patents’

breadth and length on quality growth (i.e. vertical innovation), where differentiated consumption

goods are only produced with labor (i.e. there is no physical capital as in Chou and Shy 1993).

In Sorek’s (2011) setup, the effect of patent policy on growth depends crucially on the elasticity of

inter-temporal substitution, through the effect of the interest rate on life-cycle saving in the OLG

model. This effect plays no role in the current analysis (though it is considered in the Appendix).

The present work studies an OLG economy that incorporates variety expansion of specialized

machines and physical capital accumulation, to highlight a unique mechanism through which loos-

ening patents’strength spurs growth. Our analysis places the variety-expansion model proposed

by Rivera-Batiz and Romer (1991)3 into the canonical OLG demographic framework of Samuelson

(1958) and Diamond (1965).

In order to isolate the main effect under study from the aforementioned crowding-out effect4, we

first show that under infinite patent length, growth is maximized with incomplete patent breadth.

1More generally, in economies with finitely lived agents the accumulation of assets is limited by the agent’s con-
sumption horizon (longevity).

2 In other words, the perpetual accumulation of physical capital per-capita.
3Barro and Sala-i-Martin (2004) and Aghion and Howitt (2008) adopted this framework as the textbook

variety-expansion model; See chapters 6 and 8, respectively.
4The weakening of breadth protection over all patents evenly (as considered here), does not reduce the

crowding-out effect induced by intergenerational trade in old patents.
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The mechanism at work behind this result involves the trade-off between the static and dynamic

effects faced by the patents policy maker. Weakening patent breadth protection works to lower the

price of patented machines (by weakening sellers’market power), which in turn increases demand

for machines. With more machines being utilized, output and labor income are higher, thus in-

creasing aggregate saving and investment. This is the positive effect of loosening patent breadth

protection on growth.5 However, higher demand for machines shifts investment away from patents

and innovation toward physical capital. This is the negative effect of weakening patent breadth pro-

tection on growth. The growth-maximizing patent breadth is incomplete and depends negatively

on the depreciation rate of capital.

The effect of patent policy on growth we are highlighting here is not present in the counterpart

models of infinitely lived agents, where saving is not bounded by labor income. Previous works

on Rivera-Batiz and Romer’s (1991) model economy with infinitely lived agents concluded that

growth is maximized with complete patent protection, that is, infinite patent length and complete

patent breadth; See Iwaisako and Futagami (2003), Kwan and Lai (2003), Cysne and Turchick

(2012, 2014), and Zeng et al. (2014).6 ,7 The growth rate in the infinitely lived agents economy

is determined by the familiar Euler condition,
·
c
c =

1
θ (r − ρ).

8 Therefore, the effect of patent

protection strength on growth works solely through its positive impact on the returns to innovation

and, thereby, the interest rate.

Next, we show that, for any positive depreciation rate on physical capital, shortening patent

length is more effective in spurring growth than loosening patent breadth protection. Shortening

patent length triggers the mechanism presented above while mitigating the crowding out effect as

in Chou and Shy (1993).9 Shortening patent length induces the same effect as loosening patent

breadth protection by lowering the average price of machine varieties. Patent expiration over a

certain specialized machine results in competition among imitators of this specific variety, which

brings its price down to marginal cost. Shorter patent length increases the fraction of competitive

machine-industries, thus lowering average machines’price. Compared with Chou and Shy (1993)

and Sorek (2011), who found that one-period patent length yields higher growth than infinite

5Since the old are the patent owners, this effect of weakening patent breadth protection is similar to income
transfers from the old to the young considered by Jones and Manuelli (1992). Similarly, Uhlig and Yanagawa
(1996) showed that reliance on capital-income taxation can also enhance growth.

6These studies differ mainly in their modelling approach of patent policy. All these works assume the differen-
tiated inputs are intermediate goods that are formed in the same period they are being used, whereas we consider
the differentiated inputs as investment goods (i.e. physical capital) that are formed one period ahead of utilization.
Nonetheless, for the infinitely lived agents this assumption does not effect the implications of the main mechanism
under study here.

7 In another related work, Iwaisako and Futagami (2013) study the implications of patent policy for growth in a
model of infinitely lived agents with physical capital. However, the role of physical capital is completely different
than in the present analysis. They use homogenous (raw) physical capital, along with labor, as an input in the
production of differentiated consumption goods - to which patent policy applies.

8Where c is per-capita consumption, θ is the inter-temporal elasticity of substitution, ρ is the time preference
parameter and r is the interest rate. See for example equations (3),(14) and (15), in Zeng et al. (2014).

9This crowding-out reduction could be also achieved by weakening patent breadth protection gradually along
patents’lifetime. Either way, the market value of an old patent will decrease, freeing investment resources for R&D
activity.
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patents protection in OLG economy with no physical capital, we also find that one-period patent

length never maximizes growth in our model economy.

Our welfare analysis shows that loosening patent breadth protection beyond the growth-maximizing

level can benefit all generations. Our welfare results do not differ qualitatively from the ones ob-

tained in the counterpart studies of infinitely lived agents, where welfare is also maximized with

incomplete patent protection; See Iwaisako and Futagami (2003), Cysne and Turchick (2012, 2014),

and Zeng et al. (2014). Hence, both our OLG framework and the infinitely lived agents models

exhibit the feature that welfare maximizing patent protection is weaker than growth-maximizing

patent protection.

Finally, in the last section of the analysis, we present an implication of our main finding for

patent policy and economic development. We show that when labor productivity increases relative

to innovation cost, due to human capital accumulation, the growth-maximizing patent breadth

protection adjusts to labor productivity. Hence, as the economy develops, the growth-maximizing

patent strength is increasing as well. This result provides a normative case for the documented

positive correlation between the strength of intellectual property rights (IPR) and economic devel-

opment worldwide (See Eicher and Newiak 2013, and Chu et al. 2014).

Chu et al. (2014) presented the first analysis of stage-dependent optimal IPR, based on a trade-

off between imitation from foreign direct investment (FDI) and reliance on domestic innovation.

Our last result provides a complementary case for growth-enhancing stage-dependent IPR policy

for a closed economy (which is independent of the imitation motive). In an earlier analysis of the

topic, Diwakar and Sorek (2016) provide evidence that major developing economies strongly restrict

(physical) capital inflows.

The paper proceeds in a straightforward manner. Section 2 presents the model. Section 3

studies the implications of alternative patent policies to growth and welfare. Lastly, Section 4

concludes.

2 Model

Our model incorporates the variety expansion model with lab-equipment innovation technology and

differentiated capital goods proposed by Rivera-Batiz and Romer (1991), into Diamond’s (1965)

canonical OLG demographic structure. Each period two overlapping generations of measure L, the

"young" and the "old, are economically active. Each agent is endowed with one unit of labor to be

supplied inelastically when young. Old agents retire and consume their saving.

The benchmark model presented in this section assumes full patent protection (i.e., infinite

patent duration and complete patent breadth protection), implying that in any period innova-

tors can charge the unconstrained monopolistic price for their patented machines. We study the

implications of incomplete patent protection in Section 3.
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2.1 Production and innovation

The final good Y is produced by perfectly competitive firms with labor and differentiated capital

goods, to which we refer also as specialized machines.

Yt = AL1−α
Mt∫
0

Kα
i,t di , (1)

where α ∈ (0, 1), A is a productivity factor, L is the constant labor supply,Ki,t is the utilization level

of machine-variety i in period t, respectively, and Mt measures the number of available machine-

varieties.10 Machines are subject to the depreciation rate δ ∈ (0, 1) per usage-period, and the
price of the final good is normalized to one. Under symmetric equilibrium, utilization level for all

machines is the same, i.e. Ki,t = Kt ∀ i , and thus total output is

Yt = AMtK
α
t L

1−α. (1a)

The representative (perfectly-competitive) firm in the final-good production sector employs spe-

cialized machines at the rental price pi and labor at the market wage w, in order to maximize the

profit function

πt = AL1−α
Mt∫
0

Kα
i,t di−

Mt∫
0

pi,tKi,t di− wtL .

The labor market is perfectly competitive and the equilibrium wage and aggregate labor income are

wt = (1− α)AMtK
α
t L
−α and wtL = A(1 − α)MtK

α
t L

1−α, respectively. The profit maximization

with respect to each machine variety yields the familiar demand function: Kd
i,t = A

1
1−αL( α

pi,t
)

1
1−α .

Assuming symmetric equilibrium prices and plugging the latter expression back into (1a) we obtain

Yt = A
1

1−αMtL(
α

pt
)

α
1−α . (2)

We assume that innovation technology follows the "lab-equipment" specification proposed by

Rivera-Batiz and Romer (1991). The cost of a new blue print, that is the cost of inventing a new

machine variety, is η output units.11 This cost is borne by the innovating firms. The innovation

process takes one period, and then the machines of the newly invented variety can be rented to the

producers of the final good under implemented patent protection policy.

10The elasticity of substitution between different varieties is 1
1−α .

11This innovation technology was assumed in all the counterpart models of infinitely lived agents mentioned in
the introduction section.
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2.2 Preferences

Lifetime utility of the representative agent born in period t is derived from consumption (denoted

by c) over two periods, based on the logarithmic instantaneous-utility specification12

Ut = ln ct + ρ ln ct+1, (3)

where ρ ∈ (0, 1) is the subjective discount factor. Young agents allocate their labor income between
consumption and saving, denoted by s. The solution for the standard optimal saving problem is

st =
wt

1+ρ−1 . Hence, aggregate saving by the young is St =
wtL
1+ρ−1 , which after substituting the

explicit expressions for wt becomes

St =
(1− α)A

1
1−αMtL

(
α
p

) α
1−α

1 + ρ−1
. (4)

2.3 Equilibrium and growth

The patent owners of each machine variety borrow raw physical capital from savers/lenders at the

net interest rate rt. They then transform each unit of raw capital into one specialized machine, at

no cost. This investment process of physical capital formation takes one period. In the following

period, the specialized machines are rented to final output producers at the rate p. Hence, given

the demand for each machine, as previously specified, the per-period surplus from each patented

machine, denoted PS, is: PSi,t = [pi,t − (δ + rt)]Kd
i,t.

The surplus is maximized by the standard monopolistic price pi,t = δ+rt
α . Under infinite patent

duration, all new and old varieties are priced equally and, therefore, share the same utilization level.

As long as innovation takes place, the market value of old patents, that is patents over varieties

that were invented in the past, equals the cost of inventing a new one, η. The gross rate of return

on investment in patents is given by 1 + rt =
PS+η
η . Notice that the numerator in the interest

expression contains η because each and every period all patents held by old agents are sold to the

young agents, that is the intergenerational trade in old patents.

Using the explicit term for the surplus and price of the specialized machines, we obtain the

following implicit expression for the stationary equilibrium interest rate, r∗:

∀t : 1 + rt =
[pi,t − (δ + rt)]Kd

i,t + η

η
=⇒ 1 + r∗ =

(δ + r∗)−
α

1−α
(
1
α − 1

)
α

2
1−α + η̂

η̂
, (5)

where η̂ ≡ η

A
1

1−αL
. Equation (5) also defines the no-arbitrage condition that equalizes the net rate

of return on investment in patents and investment in physical capital.

Lemma 1 There exists a unique stationary interest rate, r∗, which solves (5).

12 It is well known that under the assumed demographic structure, the logarithmic instantaneous utility implies
that the saving (and investment) level is independent of the interest rate. In the Appendix, we consider the impli-
cations of the general CEIS preference form.
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Proof. The left hand side of (5) is increasing linearly in r , from one (for r = 0) to infinity. The

right hand side of (5) is decreasing in r from
δ

α
1−α ( 1α−1)α

2
1−α+η̂

η̂ > 1 (for r = 0) to one (for r →∞).
Hence, by the intermediate value Theorem, there exists a positive stationary interest rate, r∗, that

solves (5).

For the case δ = 0, equation (5) yields an explicit solution for the stationary equilibrium interest

rate:

for δ = 0: r∗ = α1+α
(
1− α
η̂

)1−α
. (5a)

Under the stationary-equilibrium interest rate, aggregate saving of the young is allocated over

investment in old and new patents, and in physical capital (i.e. specialized machines), where the

investment in physical capital is set to meet the demand for specialized machines.

It =Mt+1

[
η +A

1
1−αL

(
α2

r∗ + δ

) 1
1−α
]

(6)

Equation (5) implies that under the stationary interest rate, machine prices are also stationary:

∀t, i : p∗ = δ+r∗

α . Hence, the output growth rate, denoted gY,t+1 ≡ Yt+1
Yt
− 1, equals to the rate of

machine-varieties expansion, i.e. gY,t+1 = gM,t+1. Imposing the equilibrium condition S = I, we

equalize (4) and (6) to derive the stationary rate of variety expansion, g∗, which defines the output

growth rate:

1 + g∗ =

1−α
1+ρ−1

(
α2

r∗+δ

) α
1−α

η̂ +
(

α2

r∗+δ

) 1
1−α

(7)

Lemma 2 For suffi ciently low η̂ the growth rate defined in (7) is positive.

Proof. Notice that as η̂ approaches zero, the right hand side in (7) approaches 1−α
1+ρ−1

r∗+δ
α2
. How-

ever, by (5), as η̂ approaches zero, the interest rate r approaches approaches infinity, and thus

lim
η̂→0

1−α
1+ρ−1

r∗+δ
α2

approaches infinity as well.

Assumption 1 Based on Lemma 2, we assume hereafter that η̂ is suffi ciently low, so that the

growth rate under complete patent protection, defined in equation (7) is positive.

3 Patents

We are prepared now to explore the implications of patent policy for growth and welfare. The

growth implications of incomplete patent breadth protection, under infinite patent length, are

studied first. We then demonstrate the greater effectiveness of finite patent length in spurring

economic growth. Lastly, we examine welfare enhancing stage-dependent patent policies.
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3.1 Patent breadth and growth

We model patent breadth protection with the parameter λ, which limits the ability of patent

holders to charge the unconstrained monopolistic price: p∗ (λ) = λ(δ+r∗)
α where λ ∈ [α, 1], and thus

p∗ (λ) ∈
(
δ + r∗, δ+r

∗

α

)
. One can think of p∗ (λ) as the maximal price a patent holder can set and

still deter competition by imitators. Weaker breadth protection lowers the cost of imitation, thereby

imposing a lower deterrence price on patent holders.13 When λ = 1, patent breadth protection is

complete and patent holders can charge the unconstrained monopolistic price. With zero protection

λ = α, patent holders lose their market power completely and sell at marginal cost. Note that as

patent breadth protection is weakened, machines’price is reduced and quantity demanded for each

machine-variety increases. Under this patent breadth policy, the equilibrium stationary interest

rate in equation (5) modifies to

1 + r∗ =
(δ + r∗)−

α
1−α

(
λ
α − 1

) (
α2

λ

) 1
1−α

+ η̂

η̂
. (8)

For δ = 0 : r∗ =

[(
λ
α − 1

)
η̂

]1−α(
α2

λ

)
. (8a)

Lemma 3 The stationary equilibrium interest rate r∗ is increasing with patent breadth protection

and decreasing with the depreciation rate and innovation cost. That is ∂r∗

∂λ > 0 and ∂r∗

∂δ ,
∂r∗

∂η < 0.

Furthermore, ∂(r
∗+δ)
∂δ > 0.

Proof. Differentiating the right hand of (8) side for λ yields a positive derivative for any α < λ < 1

. Hence, the value of r∗, which solves (8), is increasing with patent breadth protection λ. Similarly,

as the right hand side of (8) is decreasing with the depreciation rate and the innovation cost, so

does the value of interest rate that solves (8). Since r∗ is a decreasing function of the depreciation

rate, the left-hand side of equation (8) is decreasing in the depreciation rate. The term (r∗ + δ)

on the right-hand side of the equation must therefore be an increasing function of the depreciation

rate, as the exponent is negative. Thus, ∂(r+δ)∂δ > 0.

Lemma 3 implies that loosening patent breadth protection decreases machines’price, p∗ (λ),

through capping the monopolistic markup and by decreasing the marginal cost (of capital) on

which this markup builds. Thus, loosening patent breadth protection increases the demand for

each machine variety. This increase in demand for machines has a positive effect on aggregate

saving (4), for a given variety span:

St =
(1− α)A

1
1−αMtL

(
α

pt(λ)

) α
1−α

1 + ρ−1
.

13Similar modeling approach for patent breadth protection was used (among others) by Goh and Olivier (2002),
Iwaisako and Futagami (2003,2013), and Chu et al. (2016). Zeng et al. (2014) interpret the same modeling ap-
proach as direct price regulation.
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This is the positive effect of loosening patent breadth protection on aggregate saving (for a given

variety span Mt) and, thereby, innovation and growth. However, for a given level of saving, the

increased demand for machines works to shift investment toward physical capital and away from

patents. This is the negative effect of loosening patent breadth protection on innovation and growth.

From equation (6) we have:

It =Mt+1

[
η +A

1
1−αL

(
α

pt+1 (λ)

) 1
1−α
]
.

Plugging p∗ (λ) = λ(δ+r∗)
α in the above saving and investment expressions and imposing the aggre-

gate constraint S = I , we obtain

1 + gy =
1− α
1 + ρ−1

ψ
α

1−α

η̂ + ψ
1

1−α
. (9)

where η̂ = η

A
1

1−αL
(as before), and ψ ≡ α2

λ(δ+r∗) . Finally, we denote the growth-maximizing patent

breadth policy λ∗∗.

Proposition 1 The growth-maximizing patent breadth protection policy, λ∗∗, is given by the so-

lution to α2

λ∗∗(δ+r∗∗) =
(

α
1−α η̂

)1−α
. For any positive depreciation rate it is incomplete, and it is

decreasing in the depreciation rate. That is, ∀δ > 0 : α < λ∗∗ < 1 and ∂λ∗∗

∂δ < 0.

Proof. Differentiating (9) for ψ reveals that the growth rate is increasing in ψ, if ψ <
(

α
1−α η̂

)1−α
,

that is α2

λ(δ+r∗) <
(

α
1−α η̂

)1−α
, and is maximized for α2

λ∗∗(δ+r∗) =
α
1−α η̂

1−α. The interest rate equa-

tion (8) can be rearranged, to be written as: α
1−α η̂ =

(δ+r∗)(λ−α1−α )
r∗ ψ

1
1−α . Substituting the growth-

maximizing condition into the latter expression yields λ∗∗−α
1−α = r∗

r∗+δ . Therefore, under zero de-

preciation rate the growth-maximizing policy is λ∗∗ = 1. And for any positive depreciation rate

α < λ∗∗ < 1. Finally, by Lemma 3 we have ∂r∗

∂δ < 0 and ∂(r∗+δ)
∂δ > 0. Hence, a high depreciation

rate requires a lower λ∗∗ to maintain the latter growth-maximizing condition.

The main mechanism behind Proposition 1 was already explained with the presentation of the

aggregate saving and aggregate investment equations above. The negative relation between the

growth-maximizing patent breadth and the physical depreciation rate, is due to the effect of the

latter on machines’price. The lower the depreciation rate, the lower the price of physical capital

and, therefore, the higher is the demand for physical capital. With initial lower machine prices,

there is less potential for growth enhancement through further price decrease induced by loosening

patent protection.

Proposition 1 shows that the growth-maximizing patent protection is negatively related to the

depreciation rate of physical capital, δ.

Corollary 1 The maximal growth rate, g∗∗y , that corresponds to λ
∗∗ is not dependent on the de-

preciation rate. Under the growth-maximizing policy, which, by Proposition 1, satisfies ψ
∗∗ ≡

9



(
α
1−α η̂

)1−α
, the right hand side of (9) reduces to the following expression that is independent of δ:

1 + g∗∗y = αα(1−α)2−α
(1+ρ−1)η̂1−α

.

3.2 Patent length and growth

We turn to study the implications of patent length for growth, under complete patent breadth

protection. We study stochastic patent length, assuming that each period a fraction 1 − π of the
existing patents expire, where π ∈ [0, 1].14 ,15 However, all new patents are certain to be granted
with a patent for one period, which will expire with probability 1−π in the second period. In other
words, imitation may take place only after the new variety was used for one period. This means

that, at the beginning of each period, the expected lifetime of all patents (old and new), denoted T ,

is given by E(T ) = 1+ π
1−π Under this specification, the stationary fraction of patented industries,

µ∗, is16

µ∗ =
g∗

1 + g∗ − π ⇒ 1− µ∗ = 1− π
1 + g∗ − π . (10)

Applying (10) to (1) we write the modified output equation:

Yt = A
1

1−αMtL

[
g∗

1 + g∗ − π

(
α2

δ + r∗

) α
1−α

+
1− π

1 + g∗ − π

(
α2

δ + r∗

) α
1−α
]
. (11)

Aggregate saving is still a constant fraction of total output: St =
(1−α)
1+ρ−1Yt, and the modified

investment equation is

It =Mt+1

[
g∗

1 + g∗ − πη +
g∗

1 + g∗ − πA
1

1−αL

(
α2

δ + r∗

) 1
1−α

+
1− π

1 + g∗ − πA
1

1−αL

(
α

δ + r∗

) 1
1−α
]
.

(12)

Imposing It = St yields the following implicit equation for the stationary growth rate:

14This formulation of patent length is equivalent to the Blanchard’s (1985) formulation of human longevity,
in his classic "perpetual youth" model. This approach has two significant advantages. First, greatly enhance
tractability by implying that in each and every period, all patents -old and new - have the same remaining ex-
pected lifetime. Therefore they have the same market value (price) as well. Secondly, this formulation implies
a continuous policy instrument (which allows us using standard optimization techniques), although time in this
model is discrete.
15Previous works used interpreted the same formulations more generally and as patent strength follows Helpman

(1993), Kwan and Lai (2003), and Rubens and Turchick (2012). Their original interpretation was that a fraction π
of the patented technologies is being imitated due to a lack of patent-protection enforcement. Rubens and Turchick
(2014) interpret this formulation of patent policy as stochastic patent length, and demonstrate its equivalency to
the deterministic patent length that was employed by Iwaisako and Futagami (2003) and Zeng et al. (2014).
16The number of patented industries is given by the sum of the renewed existing patents πµtMt and the new

patents 4Mt+t ≡ Mt+t − Mt. Hence, the fraction of patented industries in period t + 1 is given by µt+1 =
πµtMt+Mt+t−Mt

Mt+1
= πµt

1+g
+ g

1+g
. This equation implies that under stationary growth rate the fraction of patented

machine varieties converges to the stationary level given in equation (10).
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1 + g∗ =

1−α
1+ρ−1

[(
α2

δ+r∗

) α
1−α

+ 1−π
g∗

(
α

δ+r∗

) α
1−α
]

η̂ +
(

α2

δ+r∗

) 1
1−α

+ 1−π
g∗

(
α

δ+r∗

) 1
1−α

=

1−α
1+ρ−1ψ

α
1−α (1 + 1−π

g∗ α
−α
1−α )

η̂ + ψ
1

1−α
(
1 + 1−π

g∗ α
−1
1−α
) . (13)

where ψt ≡ α2

δ+rt
, as before. Equation (13) has only one positive root, and for π = 1 it coincides

with (7). The stationary interest rate under the current patent policy is given by

1 + r∗ =
(δ + r∗)−

α
1−α

(
1
α − 1

)
α

2
1−α + πη̂

η̂
. (14)

The stationary equilibrium interest rate that satisfies (14), r∗, is increasing with the patent survival

probability π, and thus ψ is decreasing with the patent survival probability, i.e. ∂ψ
∂π < 0.

Remark 1 Setting π = (1− δ) in (14) yields δ + r∗ =
(
1−α
αη̂

)1−α
α2. Thus, by Proposition 1, we

have: ψ (π = 1− δ, λ = 1) = ψ
∗∗
(π = 1, λ∗∗) ≡

(
α
1−α η̂

)1−α
.

Applying the implicit function theorem to (13) we obtain the following expression for ∂g∗

∂π :

(1−α)
1+ρ−1ψ

α
1−α [

α|∂ψ∂π|
(
1+ 1−π

g∗ α
−α
1−α

)
(1−α)ψ + α

−α
1−α
g∗ ]− ψ

1
1−α [
|∂ψ∂π|

(
1+ 1−π

g∗ α
−1
1−α

)
(1−α)ψ + α

−1
1−α
g∗ ](1 + g∗)

− (1−π)ψ
α

1−α α
−1
1−α

(g∗)2

[
(1−α)α
1+ρ−1 − ψ(1 + g∗)

]
−B

(15)

Where B is the denominator in the right hand side of (13). Based on the above remark and

equation (15), we obtain the following proposition.

Proposition 2 For any positive depreciation rate, a finite expected patent length can yield a higher
growth rate than incomplete patent breadth protection.

Proof. Substituting ψ = ψ∗∗ into (13) yields the growth rate obtained in Corollary 1. That is

for π = (1− δ) and λ = 1: 1 + g∗∗y = αα(1−α)2−α
(1+ρ−1)η̂1−α

. Then, substituting ψ = ψ∗∗ and g = g∗∗y
into (15) reveals that, for any positive depreciation rate, both the denominator and numerator are

negative, and for zero depreciation rate the numerator equals zero (and the denominator remains

negative). That is, ∀δ > 0 : ∂g∗

∂π |π=1−δ > 0, and for δ = 0 : ∂g∗

∂π |π=1−δ = 0 . Hence, for any

positive depreciation rate, growth under finite patent length can be enhanced beyond the maximal

rate defined in Corollary 1 by marginal increase in expected patent length. Finally, for π = 1, the

expression in (15) is negative for any positive depreciation rate. Therefore, ∀δ > 0 : π∗∗ ∈ (1−δ, 1),
that is E(T ∗∗) ∈ ( 1+ 1−δ

δ ,∞), and g(π∗∗, λ = 1) > g(1, λ∗∗). For zero depreciation on physical

capital growth is maximized with infinite patent length. That is, for δ = 0, π∗∗ = 1, and g(π∗∗, λ =

1) = g(1, λ∗∗).
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3.3 Patents and welfare

This section explores some welfare implications of patent policy in our model economy. To maintain

tractability, we focus on patent breadth protection. The definition of a social welfare function for

the OLG economy is not trivial, due to lack of a natural social discount factor.17 Hence, we follow

Chou and Shy (1993) in comparing the lifetime utility of all living generations under alternative,

stationary, patent protection degrees.18 That is, we are interested in characterizing patent breadth

protection policy that is Pareto improving for all present and future generations. Substituting the

explicit expressions for c1 and c2, (based on per-worker saving), into the lifetime utility function

(3) yields the indirect lifetime utility of the representative consumer who was born in period t:

Ut = ln

(1− α)MtA
1

1−αL
(

α
p(λ)

) α
1−α

1 + ρ

+ ρ ln
ρ(1− α)MtA

1
1−αL

(
α
p(λ)

) α
1−α

1 + ρ
(1 + r∗)

 . (16)

Equation (16) implies that Ut = Ut−1 + (1 + ρ) ln(1 + g), and thus

Ut = U0 + t(1 + ρ) ln(1 + g), (16a)

where U0 is given by evaluating (16) for M0. Equation (16) implies that, for every generation,

loosening patent breadth protection involves a trade offbetween increasing first period consumption

and saving (due to increased labor income), and a decrease in second-period consumption due to a

lower interest rate (as ∂r
∗

∂λ > 0). In addition, equation (16a) implies that future generations benefit

from a positive effect of loosening patent breadth protection on the growth rate, where this effect

is stronger the more distant in the future the generation is born.

The derivative of the lifetime utility of generation t with respect to the patent breadth protection

parameter is

∂Ut
∂λ

=
∂U0
∂λ

U0 + t(1 + ρ)

(
1

1 + g

∂g

∂λ

)
. (17)

The derivative ∂U0
∂λ has the following expression:

∂U0
∂λ

=

[
ρ

1 + r
− α

1− α
(1 + ρ)

(δ + r∗)

]
∂r

∂λ
− α

1− α
(1 + ρ)

λ
. (17a)

We are interested in verifying whether the lifetime utility of all generations can be improved by

weakening, or strengthening, patent protection further beyond the growth-maximizing policy. For

this purpose, we need to evaluate the sign of (17a) under the growth-maximizing policy λ = λ∗∗.

However, by definition, under the growth-maximizing policy the second addend in (17a) is zero.

17Which determines the weight that is given to the lifetime utility of different generations in the social objective
function.
18They, however, only compare welfare under the two extreme policies - one period and infinite patent length.

See Propositions 3-4 on page 310, there.

12



Therefore, we need only to determine the sign of ∂U0∂λ |λ=λ∗∗ .

Applying the implicit function theorem to equation (8) we obtain: ∂r∗

∂λ =
r∗ α
λ−α

1−λ
1−α

r∗
r∗+δ

α
1−α+1

. Then,

we use the growth-maximizing condition, λ
∗∗−α
1−α = r∗

r∗+δ (from Proposition 1) to evaluate ∂r∗

∂λ for

λ = λ∗∗: ∂r
∗

∂λ |λ=λ∗∗ =
α(r∗+δ)(1−λ)
λα+1−2α . Substituting the latter expression into (17a) yields the following

condition ∂U0
∂λ |λ=λ∗∗ < 0 ⇐⇒ δ+r∗

1+r < 1+ρ
ρ(1−α)

[
1 + λα+1−2α

λ(1−λ)

]
, for which the lifetime utility of all

generations can be increased by weakening patent breadth protection further beyond the growth-

maximizing level. The latter condition holds for all relevant parameter values, as the left hand side

is never greater than one, but the right hand side is always greater than one. The next Proposition

concludes this result.

Proposition 3 Weakening patent breath protection further beyond the growth-maximizing level
benefits all generations.

Recall that, by equation (16a), a generation that is born more distant in the future would benefit

more from growth enhancing policy. And, by derivation of the result presented in Proposition 1, the

patent protection policy that maximizes the term U0 (which is independent of the growth rate), is

weaker than the growth-maximizing policy. Hence, the degree of patent protection that maximizes

the lifetime utility of each generation depends positively on their birth period t. That is, the degree

of patent protection that maximizes the lifetime utility of the generation born in period t is always

lower than the one that maximizes the lifetime utility of generation t+ n (for any positive n).

Proposition 3 relies on a comparison between two alternative stationary policies. However, the

direct transitional impact of loosening patent breadth policy at a certain period will not yield Pareto

improvement even if the above proposition holds. At period zero, the amount of available machines

is already pre-determined, and thus, decreasing their price can not increase their utilization level.

Hence, the positive effect on aggregate saving will not prevail, and only the negative effect on

second-period consumption (due to the lower interest rate) will be at work. Therefore, transfers

from the next young generation (to be born in period one) to the current young generation will be

required to maintain Pareto improvement. However, the complete analysis of this issue falls beyond

the scope of the current study.

3.4 Stage-dependent patent policy

Proposition 1 implies that the stationary growth-maximizing patent policy depends positively on

the value19 of η̂ ≡ η

A
1

1−αL
, which can be interpreted as innovation-cost, denoted η, per effective

labor supply, denoted: H ≡ A
1

1−αL .20

19Recall that the growth-maximizing policy defined in Proposition 1 satisfies
[

α2

λ∗∗(δ+r∗∗)

] 1
1−α

= α
1−α η̂ , and, by

Lemma 3, the equilibrium interest rate is also increasing with the patent breadth protection λ.
20 If A

1
1−α is interpreted as labor augmented productivity factor we can write (1) as : Y =MKα

(
A

1
1−αL

)1−α
.
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In this subsection, we attempt to extend this result for a transitional, non-stationary, trajectory

which corresponds an economic development phase, along which the term η̂ is decreasing due to

an increase in H. Indeed, labor productivity is typically increasing along the course of economic

development through the accumulation of human capital.

Adding the time subscript to the relevant parameters, we re-write the output and growth

equations

Yt =MtHt

[
α

pt (λt)

] α
1−α

, (18)

1 + gM,t+1 =
(1− α)
1 + ρ−1

Ht

[
α

pt(λt)

] α
1−α

η +Ht+1

[
α

pt+1(λt+1)

] α
1−α

, (18a)

where pt (λt) =
λt(δ+rt)

α , as before, and the interest rate follows the modified no-arbitrage condition

1 + rt+1 =
(δ + rt+1)

−α
1−α

(
λt+1
α − 1

)
λ
−1
1−α
t+1 α

2
1−α + η̂t+1

η̂t+t
, (18b)

where η̂t+t =
η

Ht+1
. Note that as all the variables in (18b) are share same time index, Lemma 3 that

characterized the properties of stationary interest rate still applies to the intra-temporal equilibrium

for each and every period. Equation (18) implies the following growth rate of per-capita output

1 + gy,t+1 = (1 + gM,t+1) (1 + gH,t+1)(1 + gp(λ),t+1)
−α
1−α . (19)

Combining equations (19) with (18a) yields

1 + gy,t+1 =
(1− α)
1 + ρ−1

ψ
α

1−α
t+1

η̂t+1 + ψ
1

1−α
t+1

. (19a)

Notice that the growth equation (19a) depends only on the patent policy expected to prevail in

period t+ 1.

Proposition 4 For any positive depreciation rate, the growth-maximizing patent breadth is in-
creasing with effective labor supply. That is, ∀δ > 0 : ∂λ

∗∗

∂H > 0. Hence, as effective labor supply

increases along the phase of economic development, the growth-maximizing patent breadth protection

is tightened.

Proof. Proposition 1 implies that the growth rate in (19a) is maximized with
α2

λt+1 (δ + rt+1)︸ ︷︷ ︸
=ψt+1

=

(
α
1−α η̂t+1

)1−α
. As effective labor supply increases, η̂t+1 decreases. Consequently, the right-hand

side of the latter equation is decreasing and, by Lemma 3, the left-hand side is also decreasing (due

14



to the effect of η̂t+1 on rt+1). Nevertheless, by the proof of Proposition 1, combining the latter

condition with the interest-rate equation (18b), yields the following relation between the growth-

maximizing policy and the equilibrium interest rate
λ∗∗t+1−α
1−α =

r∗t+1
r∗t+1+δ

. Hence, as η̂t+1 decreases (with

the increase in effective labor supply), the right hand side of the latter equation increases for any

positive depreciation rate (due to the increasing interest rate). Therefore, an increase in λt+1, that

is tightening patent breadth protection, is required to maintain the latter growth-maximizing-policy

equation.

4 Conclusion

This work proposes a contribution to the literature on patent policy and economic growth by

exploring the implications of patent policy in an OLG framework with physical capital. We have

highlighted a novel mechanism through which weakening patent protection can enhance growth.

This result is unique to the OLG demographic structure of finitely lived agents, as complete patent

protection maximizes growth in the counterpart model of infinitely lived agents. This mechanism

involves a trade-off between the effect of patent strength on aggregate saving and investment and

the allocation of total investment between patent ownership and physical capital.

The positive effect on growth can be induced by either shortening patent length or loosening

patent breadth protection, in our framework. However, shortening patent length also mitigates the

crowding out effect of trade in old patents on R&D investment. Hence, shortening patent length

can be more effective at generating growth than loosening patent breadth protection. These effects

are not present in similar models with infinitely lived agents. Consequently, growth in these models

is maximized with eternal patent life and complete patent breadth protection.

Finally, we have also presented an important implication of the main mechanism under study

to patent policy and economic development. A stage-dependent patent policy for which patent

strength is increasing over the course of economic development may be growth maximizing. This

result provides a normative case for the often observed positive correlation between patent strength

and economic development around the world.
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Appendix: CEIS utility

We turn here to consider the implication of the general CEIS instantaneous utility to our

previous result, considering the following lifetime utility form:

U =
c1−θt

1− θ + ρ
c1−θt+1

1− θ (A.1)

where 1
θ is the elasticity of inter-temporal substitution, and for θ = 1 equation (A.1) falls back to

the logarithmic form (3). The modified solution for the standard optimal saving problem is st =
wt

1+ρ−
1
θ (1+r∗)

θ−1
θ

. Hence, aggregate saving now is St = wtL

1+ρ−
1
θ (1+r∗)

θ−1
θ

.Substituting the explicit ex-

pressions for wt into St and equalizing to aggregate investment, It =Mt+1

[
η +A

1
1−αL

(
α
p(λ)

) 1
1−α
]
,

yields the growth equation

1 + g∗ =
1− α

1 + 1
ρ (1 + r

∗)1−
1
θ

(
α2

λ(δ+r∗)

) α
1−α

η̂ +
(

α2

λ(δ+r∗)

) 1
1−α

(A.2)

As it is well known, in the standard OLG framework the effect of interest rate on saving depends

on the inter-temporal elasticity of substitution: it is positive (negative) if θ < 1 (θ > 1). Hence,

because the interest rate is increasing with patent protection, the positive impact of decreasing

patent breadth on growth is diminishing with the inter-temporal elasticity of substitution. More

specifically, for θ < 1 all our results remain (and will hold for a larger set of parameters) as a

decrease in the interest rate by itself stimulates saving and investment (this is an additional effect

was not induced under the logarithmic utility form). However, as θ increases beyond one, the

decrease in the interest rate due to loosening patent breadth protection will work to hinder growth,

countering the positive effects that were defined in Proposition 1. For suffi ciently high value of

θ this direct interest effect may dominate the over all impact of loosening patent protection on

innovation and growth. Nevertheless, the empirical literature commonly suggests that θ is lower

than one, and thus supporting the relevance of our main findings.21 The welfare analysis for θ 6= 1
turns out being intractable.

21See for example Hall (1988), Beaudry and Wincoop (1996), Ogaki and Reinhart (1998), Engelhardt and Kumar
(2009).
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