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Bowerbirds’	  Mate-‐selection	  Contests:	  Analysis	  and	  an	  Application	  

	   	   Bharat	  Goel*	    

In the world of satin bower-birds, the male-birds engage in a contest among themselves to win 
their mates:  they spend considerable time and effort in decorating their own bowers, and then 
attempt to destroy the decorations of their rivals’ bowers.  The female-birds, in turn, select 
their mates on the basis of the attractiveness of the best surviving bowers.  We study a game-
theoretic model of such a mating contest, where two male-birds of distinct strengths engage in 
competitive signaling with value-less signals followed by signal sabotage (in an environment 
where a female-bird infers a male-bird’s strength by observing the quality of his surviving 
bower).  We prove that sabotage possibilities can improve the outcomes for both male-birds – 
since anticipated threat of sabotage depresses each male-bird’s incentive to engage in costly 
signaling, while harming the outcome for the female-bird – as sabotage introduces noise in the 
female-bird’s selection process. 
We go on to study a principal-agent model that is similar in structure to the bowerbirds’ 
contest:  A principal cares about the best output created between two agents, and can design a 
tournament with suitably chosen order-of-moves and prizes.  In a scenario where (a) produced 
outputs need to be stress-tested to determine their durability (here, stress-testing is similar to 
mutual sabotage in its analytics, though not in its intent), and (b) outputs can only be evaluated 
in relation to each other and /or an exogenous benchmark, it is shown that if the two agents are 
not too asymmetric then a tournament is strictly better for the principal than individually 
contracting with a single agent; if no external benchmark is available then for limited agent-
asymmetry, the optimal output-selection mechanism is a simultaneous tournament with 
maximal feasible winning prize. 
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1.	  	  	  Introduction	  

In the world of satin bower-birds, male-birds engage in a unique contest among themselves in 
order to win their mates.  On the one hand, they spend considerable time and effort in elaborately 
decorating their individual bowers, and on the other hand, they attempt to destroy the decorations 
of their rivals’ bowers.  The female-birds, in turn, select their mates on the basis of the 
attractiveness of the best surviving bowers; presumably, they do so because a bower’s surviving 
quality signals the inherent (and directly unobservable) strength of its maker.  The bowerbirds’ 
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mating contest  has been extensively documented in the biology literature; for instance, see Borgia 

(1985a,b) and Doerr (2010).

The clearest description of this phenomenon might, however, be found in the Science Classics 
comic-strip created by Larry Gonick; the strip (some panels of which are presented below) was 
published in the Discover magazine. 

	  



	  

3	  
	  

Evolutionary biologists have attempted to understand the bower-birds’ mate-selection process 
by studying it as an evolutionary game; see, for instance, the articles by Pruett-Jones and 
Pruett-Jones (1994) and Pruett-Jones and Heifetz (2012).  However, most of the research in 
evolutionary biology has focused on the game of mutual destruction of rival bowers by male-
birds of symmetric strength; this research has not studied the sequential decisions of male-
birds of different abilities regarding their initial efforts in decorating their own bowers and 
their subsequent attempts to destroy rival bowers. 

In contrast, we present a strategic model (in the rational choice paradigm) of the mating 
contest between two male bower-birds of asymmetric strengths, where the male-birds first 
decide on the effort to be invested in own bower decoration, and then decide on whether to 
defend own bower from rival attack (in order to preserve ones’ decorations to the extent 
possible) or to attack rival bower (in order to destroy some of the rival’s decorations).  The 
single female-bird in our model follows the rule of choosing that male-bird who possesses the 
best surviving bower as her mate (given that she cannot directly observe the inherent 
strengths of the male-birds).  Our contest model is thus one of competitive signaling between 
two differentially-strong male-birds, where each male-bird’s (value-less) signal is the extent 
of his bower decorations and where each such signal is subject to subsequent sabotage. 

Apart from throwing light on the logic of the bower-birds’ mate-selection process, our 
analysis contributes to the growing literature on ‘contests with sabotage’; see Konrad (2000), 
Chen (2003), and Gurtler and Munster (2010) for some early papers, and Chowdhury and 
Gurtler (2015) for a survey.  We complement the extant literature by modeling a scenario 
(that is motivated by the biologists’ description of the bower-birds’ interactions) where: 

(a) sabotage occurs only after each contestant has observed his rival’s (intermediate) signal, 

(b) sabotage involves a discrete choice of attacking or not attacking a rival, and 

(c) each contestant has the opportunity to defend against rival attack. 

Given the above-described sabotage possibilities, we address the following questions: 

(1)  Who gets sabotaged, and what is the equilibrium impact of sabotage activities? 

(2)  How do sabotage possibilities affect the initial signaling efforts of the contestants? 

(3)  What are the implications of ex ante signaling and ex post sabotage on the female-bird’s 
ability to correctly identify the stronger male-bird? 

We present our detailed results after our formal analysis of the bower-birds’ mating contest 
(see Section 2.2).  It is, however, worth stating our central conclusion up front:  The 
possibility of sabotage (as compared to a scenario where the female-bird can select her mate 
directly on the basis of the male-birds’ signals) can improve the welfare of both the male-
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birds – by reducing their dissipative signaling efforts, while concurrently worsening the 
expected utility of the female-bird – by making her selection process more imprecise.     

Next, we turn our attention to a principal-agent model that has some structural similarities 
with the bowerbirds’ mating contest.  Specifically, we study the following ‘output-selection 
problem’ in a model with a single principal and two potential agents.  We consider a scenario 
where a software developer (the principal) has to decide on an incentive contract / tournament 
to get a programmer to create a code for her.  As the developer cares about the final surviving 
(i.e., bug-free) quality of the code, she has to engage a hacker to hack every code created by 
any programmer to determine its final surviving quality.  [Note that the agency problem that 
we study applies to many situations where an agent’s output has to be stress-tested to 
determine its durability.]  As a code’s final quality is not precisely verifiable by the courts 
(only specific quality rankings are verifiable), the principal has to consider the efficacy of 
holding a tournament between two programmers (the agents) to incentivize them to create the 
best codes possible (see Section 3.1 for the details of the model).  In our model, the 
principal’s payoff is posited to depend only on the final quality (i.e., durability) of the best 
surviving code; thus our model is closely related to a ‘quality contest’ studied by Serena 
(2017).  The main issues that we study in this context are the following:   

(i)  Given that the developer cannot observe the realized efficiency of any programmer, when 
should she organize a tournament between two programmers in order to maximize the ex 
ante expected quality of the best surviving code? 

(ii)  When holding a tournament is optimal, should the developer structure the tournament as 
a ‘simultaneous contest’ (where each programmer has to create his code simultaneously), 
or as a ‘sequential contest’ (where one randomly-chosen programmer creates his code 
first, and then the other programmer creates his code after observing the first output)? 1 

We show that the analytics of this principal-agent problem is similar to that of the bower-
birds’ mate-selection game, even though the underlying stories / motivations are quite 
different.  Specifically, the hacking (i.e., stress-testing) instigated by the developer in order to 
determine the best surviving code is analytically similar to the sabotage process among the 
male bower-birds; however, the developer’s motivation to hack is entirely distinct from the 
sabotage incentives of the male-birds. [The similarities and dissimilarities of the bowerbirds’ 
contest and the principal-agent interaction are further discussed in Section 3.]  Our analysis of 
the output-selection problem proves that when the agents are not too ‘ex ante dissimilar’ in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1  For other studies of ‘simultaneous vs. sequential contests’, see Dixit (1987), Morgan (2003), and 
Serena (2017). 
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their efficiency levels, the principal’s optimal mechanism is a simultaneous-move tournament 
between the agents, with the maximal feasible winning prize. 

The rest of this paper is organized as follows.  Section 2 presents the bower-birds’ mate-
selection game, and its equilibrium analysis.  The principal-agent problem and its analysis are 
presented in Section 3.  Section 4 contains some concluding remarks.  An appendix contains 
the formal proofs of our results.	  

2.	  	  The	  	  Bowerbird’s	  	  Mating	  	  Contest	  

A female bowerbird wants to select a single mate from among two male bowerbirds 1 and 2.  
The female-bird follows an exogenously specified mate-selection rule – the rule being based 
on the “decorative quality” of the bowers that the male-birds create (see footnote 2 for a 
justification of this rule).  The selection rule induces a bower-decorating contest between the 
two male-birds, aimed at winning the “prize” of mating with the female-bird.  We model this 
contest as follows. 

The male-birds, i = 1, 2, differ in their intrinsic abilities θ1 and θ2. We assume that θ1 and θ2  

are realizations of two independent and identical random variables, each with a continuous 

distribution function H(.) over an interval [θ, θ ] with 0 < θ < θ < ∞.  In what follows, θ– will 

refer to the lower realized ability parameter and θ+ (≥ θ–) to the higher realized ability 

parameter; note that θ1 and θ2 will be distinct with probability one.  We assume that while the 

female-bird cannot observe the realized θ1 and θ2, they are common knowledge between the 

male-birds. These parameters affect the male-birds’ welfare in the following ways. 

Each male-bird i = 1, 2 has T > 0 units of time to spend over two activities – foraging, and 
creating a bower of (decorative) quality ai ≥ 0.  We will sometimes refer to bird i’s bower as 

bower i.  If male-bird i spends an amount of time ti ∈ [0, T] on foraging, then he earns a flow 

payoff {φ(θi).t} from foraging , where φ(θi) > 0 represents i’s foraging effectiveness and is 

assumed to be strictly increasing in ability.  Further, in order to create a bower of quality              

ai ≥ 0, bird i requires the amount of time  [τ(θi).(ai)n], where the ‘cost convexity parameter’ n 

is no less than 1, and τ(θi) > 0 represents bird i’s time-efficiency in bower-decoration (with a 

lower value of τ(.) representing greater efficiency).  Note that if male-bird i with ability θi 

creates a bower of quality ai, his foraging payoff will be {φ(θi).[T – τ(θi).(ai)n]}.  We define 

male-bird i’s cost-efficiency in bower-creation to be c(θi) ≡ [φ(θi)×τ(θi)] > 0 (with a lower 
value of c(.) representing greater efficiency), and assume that c(.) is strictly decreasing in 

ability (i.e., we assume that τʹ′(θ) / τ(θ) < – φʹ′(θ) / φ(θ) for all θ).  A higher-ability male-bird is 

thus more effective both in foraging and in bower-creation, and so we will refer to the higher-
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θ male-bird as being the stronger one. 

2.1	  	  	  Alternative	  Mating	  Contests	  

We now define two mate-selection games for the bower-birds – Game NS and Game S.  The 
former game does not permit sabotage – i.e., the opportunity of a male-bird to destroy (a part 
of) his rival’s bower decorations, while the latter game does permit sabotage. 

Game NS :  The two male-birds 1 and 2 simultaneously choose their bower qualities a1 and 
a2 respectively (each male-bird is permitted to employ a mixed strategy and randomize over 
different quality choices).  Given the realized bower qualities a1 and a2, each male-bird i 

spends [τ(θi).ai
n] amount of time decorating his bower, and [T – τ(θi).ai

n] amount of time 

foraging.  Then, at the end of the time interval [0, T], the female-bird enters the picture and 
executes the following mate-selection rule:  She observes the realized bower qualities a1 and 
a2 and selects male-bird 1 (respectively, 2) as her mate if a1 > a2 (respectively, a1 < a2); if       
a1= a2 then the female-bird selects either male-bird to be her mate with equal probability.2 

Each male bird i  is risk-neutral, and values winning the prize of mating with the female-bird 
at W  > 0.  As a result, if male-bird i  creates a bower of quality ai and then gets selected to be 

the female-bird’s mate, then he obtains total utility of {W + φ(θi).T – c(θi).ai
n}, while if he 

does not get selected then he obtains total utility of {φ(θi).T – c(θi).ai
n}.3  We assume that T  is 

sufficiently large so that each male bird always spends a strictly positive amount of time on 

foraging; to be specific, we assume that T  > W / φ(θ). 

The female bird F is also risk-neutral, and obtains utility of V(θi) > 0 when she mates with a 

male bird i  having ability parameter θi ;  we assume that V(.) is strictly increasing in its 
argument.  Recognize that this utility specification makes bower-decorating a completely 
dissipative activity, as neither the male-birds nor the female-bird get any direct utility from it.  
Thus, the bowerbird’s mate-selection game is a game of competitive signaling via value-less 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2  We take the female-bird’s selection rule as exogenously given, and do not study the case where she 
can pre-announce a strategically chosen selection rule.  In this context, note the following point:  
Given that the female-bird prefers to select the stronger male-bird (see the female-bird’s utility 
specification given subsequently), it is likely that an optimally-chosen selection rule by the female-
bird will induce higher bower-creation effort by the stronger male-bird.  In that case, it will be 
sequentially optimal for the female-bird to choose her mate according to the selection rule stated 
above.  So, it is very likely that the stated mate-selection rule by the female-bird is optimal when she 
lacks commitment. 
3  We could incorporate a ‘loser’s prize’ of L < W.  We set L = 0 as that neither affects the strategic 
interaction between the male-birds, nor equilibrium characterization results in any substantive way. 
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signals. 

Game S :  As in Game NS, each male-bird i chooses his bower quality ai and spends 

[τ(θi).ai
n] amount of time in bower-creation and [T – τ(θi).ai

n] amount of time in foraging.   

At the end of the time interval [0, T], there is an additional time interval [T, T + Δ]  (where    

Δ > 0) in which each male-bird (after observing a1 and a2) chooses either to defend his own 

bower or to attack the rival bower.  If a bower ai is not attacked, it retains its intermediate 
quality as its final quality: fi = ai.  When a bower ai is attacked, its final quality fi is the 
realization of a random variable whose distribution depends on whether the bower is 
defended or not:  if the bower is defended then its final quality fi is uniformly distributed on 

[0, ai], but if it is not defended then its final quality fi is uniformly distributed on [0, δ.ai], 

where the ‘destruction parameter’ δ ∈ (0, 1) represents the additional loss from leaving an 

attacked bower undefended (a smaller value of δ denotes a greater loss).4  We assume that if a 
male-bird is indifferent between defending his bower and attacking rival bower, then he 
chooses to do the former.5 

At the end of the time interval [T, T + Δ], the female-bird enters the picture and executes the 

same mate-selection rule as specified in Game NS, except that now she selects on the basis of 
the final bower qualities  f1 and f2.  The payoffs in the different contingencies to all the players 
are also identical to that in Game NS :  if male-bird i creates a bower of quality ai and then 

gets selected to be the female-bird’s mate, then he obtains total utility [W + φ(θi).T – c(θi).ai
n] 

, while if he does not get selected then he obtains total utility [φ(θi).T – c(θi).ai
n].6  The 

female-bird obtains utility of V(θi) > 0 when she mates with a male bird i  having ability 

parameter θi; here, in keeping with the discussion in the evolutionary biology literature, we 

assume that the female-bird does not directly get utility from her mate’s bower quality. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4  There are other ways of modeling the benefit derived from defending a bower that will leave our 
main results unchanged (as long as the benefit from defending is not too high).  For example, given δ 
∈ (0, 1), we could posit that the final quality of a defended bower of intermediate quality ai, when 
attacked, is:  fi = ai with probability χ ∈ [0, 0.5], while fi is uniformly distributed on [0, δ.ai] with 
probability [1 – χ]. 
5 This assumption helps us pin down a unique continuation equilibrium in the sabotage subgame.  
However, in this bilateral contest, the continuation equilibrium win-probabilities of the two male-
birds are uniquely determined even without this assumption (and our main results remain unaffected). 
6  We do not consider any disutility for the male-birds from attacking/defending bowers in the time 
interval [T, T + Δ].  Assuming small fixed costs for these activities will not change our results. 
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2.2	  	  	  Equilibrium	  Mating	  Outcomes	  

In this section, we characterize the equilibrium outcomes of the alternative mate-selection 
games, and delineate their comparative statics properties. 

Game NS :  Recognize that Game NS  is essentially a first-price all-pay auction between the 
two male-birds under complete information.  As is well understood from the auction 
literature, this game has a unique Nash equilibrium in which the contestants play mixed 
strategies. 

PROPOSITION  1.  In the unique Nash equilibrium of Game NS, when the realized ability 

parameters of the male-birds are {θ+, θ–}, they play as follows:  Male-bird θ+ chooses his 

bower quality according to the cumulative distribution function (CDF):  G+*(a+) =                  

{[c(θ–)].(a+)n/(W)} for a+ ∈ [0, (W/c(θ–))1/n], while male-bird θ– chooses his bower quality 

according to the CDF: G–*(a–) = {1 –[c(θ+)/c(θ–)]} + {[c(θ+)](a–)n/(W)} for a–
 ∈ [0,                       

(W/c(θ–))1/n].  Resultantly, the male birds’ equilibrium win-probabilities are:  P*(θ+) =                     

{1– 0.5[c(θ+)/c(θ–)]} and P*(θ–) = [1 – P*(θ+)]; while their equilibrium payoffs are:                         

U*(θ+) = {1 – [c(θ+)/c(θ–)]}.W + φ(θ+).T, and U*(θ–) = φ(θ–).T. 

Proposition 1 establishes that even though the signaling contest embedded in Game NS 
generates value-less but costly signals, the contest is not wholly dissipative for the male-birds 
in the following sense:  neither male-bird would be strictly better off if the possibility of 
mating with the female-bird was entirely eliminated.  In fact, in terms of ex ante expected 
utility (i.e., before the ability parameters are realized), each male-bird is strictly better off 
from being able to participate in the contest because each male-bird has equal chance of 

being endowed with higher ability.  For some ability level θ+, the stronger male-bird’s ex post 

expected utility (post realization of abilities) increases in cost inequality – as measured by the 

ratio [c(θ–)/c(θ+)] ≥ 1  (a higher ratio implying higher cost inequality) precisely because his 

win-probability increases in cost inequality.  In contrast, the ex post utility of the weaker 
male-bird depends only on his absolute ability level. 7 

As far as the female-bird is concerned, the randomized strategies pursued in equilibrium by 
the male-birds prevent her from being always ex post correct in identifying the stronger male-

bird.  Recognize that the magnitude of P*(θ+) is an obvious measure of  precision in selection 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7  For the weaker male-bird with a given ability level θ–, an increase in the ability of the rival male-
bird dampens his effort choice for bower decoration and  his win-probability in a way that the net 
effect is zero and his ex post expected utility remains φ(θ–).T. 
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by the female bird, and the fact that P*(θ+) > 0.5 implies that the female-bird’s chance of 

being ex post correct in her selection is always strictly greater than her chance of being ex 

post incorrect.  Further, P*(θ+) rises in cost inequality.  This implies the following:  Consider 

two distinct realized ability vectors (θʹ′+, θ–) and (θʺ″+, θ–) with θʹ′+ > θʺ″+.  Then the female-

bird’s expected utility under the former realization {P*(θʹ′+).V(θʹ′+) + P*(θ–).V(θ–)} will be 

strictly greater than her expected utility under the latter realization {P*(θʺ″+).V(θʺ″+) +                 

P*(θ–).V(θ–)} for two reasons – her likelihood of being correct in her selection will be higher 

in the former case, and when she is correct in selection she will get a higher ex post payoff. 

Finally, note that the magnitude of the destruction parameter δ, and that of the cost convexity 
parameter n, have no impact on the equilibrium win-probabilities or on any player’s 
equilibrium payoffs in Game NS.  Next, we turn to the mate-selection game with sabotage 
(Game S), where the former property will continue to hold in equilibrium, but the latter 
property will not. 

Game S :  In this game, we restrict attention to ‘subgame-perfect Nash equilibria in pure 
strategies (P-SPNE)’.  As we will show below, this is not a restriction in the sabotage 
subgame, since there exists a unique continuation Nash equilibrium in that subgame that is in 
pure strategies.  In contrast, while there exists a unique P-SPNE  in the overall game, it is an 
open question whether there exist other SPNEs in the overall game in which the male-birds 
randomize in their bower quality selection (our intuition suggests that there do not). 

Our first result for Game S relates to the sabotage subgame between the two male-birds 

during the time interval [T, T + Δ].  This subgame starts after the intermediate bower qualities 
of the two-male-birds {a1, a2} are realized at the end of the time interval [0, T]. 

LEMMA 2.  In the unique Nash equilibrium of the sabotage subgame, each male-bird attacks 
his rival’s bower as long as the realized intermediate bower qualities a1 and a2 are strictly 
positive.  If at least one of the realized bower qualities is zero, each male-bird defends his 
own bower. 

In our model, the realized abilities of the two male-birds can be very different, and as a result 
there can be significant difference in their chosen bower qualities.  However, in our posited 
environment where sabotage possibilities arise only after intermediate bower qualities are 
revealed, and where sabotage consists of a {0-1} attack /defense choice, Lemma 2 establishes 
that whenever both bower qualities are positive, each male-bird will attack the other 
irrespective of the inequality in the bower qualities.  Given the unique Nash equilibrium in 
the sabotage subgame, we are able to completely characterize the unique P-SPNE in the 
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overall Game S. 

PROPOSITION  3.  There exists a unique P-SPNE  in Game S.  In this equilibrium, when the 

realized ability parameters of the male-birds are {θ+, θ–}, they play as follows:  Male-bird θ+ 

chooses his bower quality to be a*(θ+) = [(0.5W/n)]1/n.[1/(c(θ–).c(θ+)n–1)]1/(n
×
n), while male-

bird θ– chooses a*(θ–) = [(0.5W/n)]1/n.[ c(θ+)/c(θ–)n+1]1/(n
×
n).  The equilibrium win-probabilities 

of male-birds θ+ and θ– are P*(θ+) = {1– 0.5[c(θ+)/c(θ–)]1/n} > 0.5 and P*(θ–) = [1 – P*(θ+)], 

and their equilibrium payoffs are U*(θ+) = {1 – 0.5[(n+1)/n]. [c(θ+)/c(θ–)]1/n}.W + φ(θ+).T, 

and U*(θ–) = {0.5[(n–1)/n]. [c(θ+)/c(θ–)]1/n}.W + φ(θ–)T. 

In what follows, we present a set of remarks delineating the properties of the unique P-SPNE 
outcome in the bower-birds’ mate-selection game with sabotage possibilities, and comparing 
these properties with those of the unique Nash equilibrium in the game without sabotage. 

Remark 1.  The equilibrium outcomes – win-probabilities and each players’ payoffs – are 
identical for Game NS with any convex structure of signaling effort costs (i.e., for any n ≥ 1) 
and for Game S with linear signaling effort costs (n = 1).  This result is to be understood as 
follows.  In the all-pay auction in Game NS, each male-bird wants to ‘bid a little more’ 
against any ‘small enough’ deterministic bid by the rival.  This forces the contestants to 
randomize in their bids in equilibrium, and while the mixed strategy distribution of each 
player does depend on cost convexity (n), the ‘expected outcome’ does not.  In contrast, the 
randomness in final payoffs induced by the equilibrium sabotage strategies in Game S 
permits a unique set of pure-strategies to constitute a signaling equilibrium in the first stage.  
When signaling costs are linear, the equilibrium signaling and attack/defense choices in 
Game S generate the same outcome as when sabotage is not permitted.8 

Remark 2.   In the unique P-SPNE in Game S, the two male-birds signal in such a way that 

the individual signaling costs are equalized between them:  for any realized {θ+, θ–} with      

θ+ > θ–, a*(θ+) > a*(θ–) such that c(θ+).[a*(θ+)]n = c(θ–).[a*(θ–)]n.  This implies that for a 
given structure of signaling cost convexity (n), the male-birds’ bower quality asymmetry 

[a*(θ+) /a*(θ–)] increases in the realized cost inequality [c(θ–)/c(θ+)], while for a given level 

of realized cost inequality, bower quality asymmetry decreases in signaling cost convexity. 

Remark 3.  In the unique P-SPNE in Game S, the male-birds signal in such a way that for any 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8  For an analogous result, see Hart (2016), especially his Theorem 6, for the equivalence between an 
all-pay auction and an “expenditure game followed by a General Lotto game” when bid-costs are 
linear in bids. 
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realized {θ+, θ–}, the total equilibrium signaling costs {c(θ+).[a*(θ+)]n + c(θ–).[a*(θ–)]n} 

equal {[W/n].[ c(θ+)/c(θ–)]1/n]}, and are thus affected by the realized cost inequality and the 

structure of signaling cost convexity in the following ways:  Given n, the total signaling costs 

fall with an increase in cost inequality [c(θ–)/c(θ+)].   Further, as long as realized cost 

inequality is ‘small’ so that [c(θ–) /c(θ+)] ∈ [1, e], the total signaling costs fall with an 

increase in n (see the proof of Proposition 3).9 

Remark 4.  For any realized {θ+, θ–} in the unique P-SPNE in Game S, the win-probability of 

the ‘stronger’ and the ‘weaker’ birds – P*(θ+) and P*(θ–) – change with the realized cost 

inequality and the structure of signaling cost convexity in the following ways:  given n, 

P*(θ+) increases and P*(θ–) decreases in cost inequality [c(θ–)/c(θ+)]; and given cost 

inequality, P*(θ+) decreases and P*(θ–) increases in n.  The win-probabilities are unaffected 

by the ‘prize value’ W and the magnitude of the destruction parameter δ.10 

Remark 5.  In the unique P-SPNE in Game S, for any n ≥ 1, the equilibrium outcome is “not 
wholly dissipative” for the male-birds in exactly the same sense as in the unique equilibrium 
outcome of Game NS.  Further, the following results hold for the equilibrium payoffs to the 

two male-birds in Game S:   (i) given n, U*(θ+) increases and U*(θ–) decreases in cost 

inequality; (ii) for any cost inequality [c(θ–)/c(θ+)],  U*(θ–) strictly increases in n; and (iii) as 

long as cost inequality is ‘close’ to 1 such that [c(θ–)/c(θ+)] ∈ [1, e0.5], U*(θ+) strictly 

increases in n (see the proof of Proposition 3). 11  The impact of signaling cost convexity on 
the equilibrium payoffs of the male-birds is to be understood as follows.  As n increases, 
‘incremental increase’ in signaling becomes more costly for each male-bird.  Given the 
expected loss of value from subsequent sabotage, (as long as cost inequality is low) this 
depresses the male-birds’ signaling efforts in a way that reduces bower quality asymmetry 
(see Remarks 2 and 3) and thus the gap between the win and loss probabilities.  All this is 
good news for the weaker male-bird, whose equilibrium payoff increases unambiguously in 
n.  On the other hand, there are conflicting impacts of an increase in n on the welfare of the 
stronger male-bird – while he saves on signaling costs his win-probability goes down.  The 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9  Here, e is the e is the base of the natural logarithm. For [c(θ–)/c(θ+)] > e, the total signaling costs 
increases in n for n ∈ (1, log[c(θ–)/c(θ+)]) and decreases in n for n > log[c(θ–)/c(θ+)]. 
10  Note that in the in the unique P-SPNE in Game S, all outcomes are independent of δ.  On the other 
hand, an increase in the prize value W improves the equilibrium welfare of both male-birds in spite of 
inducing an increase in the intermediate signals and thus an increase in individual signaling costs. 
11  For [c(θ–)/c(θ+)] ∈ (e0.5, e), U*(θ+) falls in n for n ∈ (1, log(c(θ–)/c(θ+))/[1 – log(c(θ–)/c(θ+))]) and 
increases in n for n > log(c(θ–)/c(θ+))/[1 – log(c(θ–)/c(θ+))].  For [c(θ–)/c(θ+)] ≥ e, U*(θ+) falls in n.   
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net effect is positive for the stronger male-bird as long as the cost inequality between the 
contestants is not too great. 

Remark 6.  In the unique P-SPNE in Game S, the following results hold regarding the 

‘selection precision’ of the female-bird – as measured by P*(θ+), and her expected payoff 

given the realized abilities of the male-birds {θ+, θ–}.  As in Game S, it is also true in Game 

NS  that since P*(θ+) > 0.5, the female-bird’s chance of correct selection ex post  is always 

greater than her chance of being incorrect ex post.  Further, as P*(θ+) rises in cost inequality, 

the female-bird’s expected utility under the ability realization (θʹ′+, θ–) is greater than that 

under the ability realization (θʺ″+, θ–) whenever θʹ′+ > θʺ″+.  However, for any ability realization 

(θ+, θ–), an increase in n reduces the expected equilibrium payoff of the female-bird in Game 

S.  This is in contrast to game NS (where n does not affect the female-bird’s equilibrium 
payoff), and occurs due to the following reason.  An increase in n raises incremental 
signaling costs and reduces bower-quality asymmetry, impacting adversely on the female-

bird’s selection precision by lowering P*(θ+). 

We conclude our analysis of the bowerbirds’ mate-selection game by re-emphasizing the role 
that sabotage plays in affecting selection precision and the birds’ welfare.  Sabotage 
possibilities make the selection process more imprecise, and this has the following 
asymmetric impacts on the male and the female birds for every set of male-birds’ ability 
realizations:  the female-bird is unambiguously worse off while the weaker male-bird is 
unambiguously better off; further, when there is limited ability asymmetry between the two 
male-birds, the stronger male-bird is also better off; when the signaling cost structure 
becomes more convex, these impacts are reinforced.  Recognize that these results depend 
critically on the posited payoff structures of the bowerbirds.  As mentioned before, we follow 
the evolutionary biology literature in positing that the female-bird’s utility depends only on 
her chosen mate’s efficiency.  To understand the implications of this assumption, consider the 
polar opposite case where her utility is assumed to depend only on her mate’s final bower 
quality.  When it is the case that V(.) depends only on fi, it can be proved that the female-bird 
will obtain a higher payoff in Game S than in NS in the following scenario: V(.) is highly 
concave in fi, and the two male-birds are ex ante not too asymmetric. 12  This indicates the 
benefit that a ‘principal’ can obtain from a ‘second stage’ after initial output-production, in 
which stress-testing can reveal some hidden quality / durability of the output.  In the agency 
model studied in the next section, where the principal’s utility is posited to depend only on 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12  To see this, note that when both male-birds are identical and V(.) is linear in fi, then S and NS 
generate exactly the same expected utility for the female-bird. 
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the final output quality of her selected agent, the hacking in the second stage to find the 
durability of the produced output(s) will be essential for meeting the principal’s goal. 

3.	  	  Output	  -‐	  Selection	  	  Tournament	  	  in	  	  a	  	  Principal	  -‐	  Agent	  	  Model	  

In this section, we consider the problem regarding the design of an output-selection 
mechanism by a principal.  As the following description will clarify, the induced game 
among two agents has structural similarities with the male-birds’ contest in the bower-birds’ 
mate-selection game; the similarities (and dissimilarities) will be clarified below. 

3.1	  	  	  The	  Principal-‐Agent	  Model	  

A software-developer (the principal) needs a customized code to be developed by a specialist 
programmer.  The developer’s utility depends on the final surviving quality of the code.   In 
order to uncover this attribute of a code, the developer has to take any ‘intermediate code’ as 
written by a programmer and then get her ‘hacker’ to hack it.  The code quality that survives 
after the hacking process represents the final (bug-free) quality of the code.  The hacking 
considered in this model is analytically equivalent to stress-testing a product to determine its 
durability. 

The basic problem faced by the developer is that while she can observe the final quality of a 
code, this quality is not third-party verifiable.  This precludes the developer from hiring a 
programmer and offering him a compensation contract conditioned on the final quality of the 
code.  Instead, the developer can only take advantage of the fact that the courts can verify two 
kinds of ‘ranking outcomes’: (a) the courts can verify whether the final surviving quality of a 
code is above or below an exogenous quality threshold, and (b) given two surviving codes to 
compare, the courts can correctly identify which code has the better final quality. 

There exist two specialist programmers (agents) who can do the coding, but by incurring 
different costs.  Specifically, each programmer i, for i = 1, 2, incurs a cost of [ci.ai] to produce 
a code of intermediate quality ai.  When such a code is hacked (i.e., stress-tested) its final 
bug-free (i.e., durable) quality fi will be the realization of a random variable that is uniformly 
distributed on [0, ai].  The unit effort cost ci of each programmer i is drawn independently 

from an identical distribution H(.) over an interval [c, 𝑐 ] with 0 < c < 𝑐 < ∞.  While the 

developer is only aware of this fact (and does not get to observe the agents’ realized unit 
costs), the realized c1 and c2 are common knowledge between the programmers (and this fact 
is also known by the developer).  In what follows, c– (resp., c+

 ≥     c–) will refer to the lower 
(resp., higher) realized unit cost; note that the realizations c1 and c2 will be distinct with 
probability one. 
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In this environment, the developer – who has a budget of B – can choose between a set of 
distinct output selection schemes, where a subset of the schemes will involve a ‘tournament’ 
between the two agents.  We will denote this set of output-selection schemes to be K, and 
posit that K contains three distinct schemes – K[1], K[2.1], and K[2.2] – that are described 
below (note that K[2.1] and K[2.2] are specific tournament schemes). 

• Under scheme K[1], the developer has to hire a randomly-selected programmer and offer 
him a contract K1:  “After you produce the intermediate code I will have it hacked, and if 
the final quality is above a (court-verifiable) threshold  f0 (> 0) I will pay you W∈(0, B], 
otherwise I will pay you L ∈	  [0, W).” 

• Under schemes K[2.1] and K[2.2], the developer has to hire both programmers 1 and 2 
and offer each of them (publicly) the following contract K2:  “After you produce the 
intermediate code I will have it hacked, and if your final quality is better than the rival 
quality (this event being court-verifiable) I will pay you W > 0, otherwise I will pay you 
L ∈	  [0, W); if the final surviving qualities are identical then I will pay you W and your 
rival L with probability ½, and vice-versa with probability ½.” 13, 14  In each scheme, it 
must be that W + L ≤ B. 

• The distinction between the schemes K[2.1] and K[2.2] is as follows:  Under the former 
scheme, the developer has to ask both programmers to code simultaneously, and then 
hack both the codes; while under the latter scheme, the developer has to pick one 
programmer to write his code first, then require the other programmer to write his code 
after observing the intermediate quality of the first code, and then finally hack both the 
codes. 

As the following analysis will demonstrate, in this principal-agent model, hacking (i.e., 
stress-testing) of the codes created by the programmers corresponds to the sabotage of rival 
bowers by the male bower-birds in their mating contest.  But, of course, while the hacking of 
both codes is similar to mutual sabotage in its analytics, it is not similar in its intent; in the 
principal-agent model, the hacking is conducted by the principal in order to determine the 
durability of the codes (which is something that he directly cares about).  The two models are 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13  Note that given the model specification, a tie in final qualities will be a zero probability event. 
14  A more sophisticated version of the tournament schemes {K[2.1], K[2.2]} can include the 
following additional condition imposed by the principal on each agent:  “After you produce the 
intermediate code, I will have it hacked, and if your final quality is better than the rival quality as well 
as the exogenous threshold f0 (this event being court-verifiable) I will pay you W > 0, otherwise I will 
pay you L ∈ [0, W).”  Our central result that a “tournament is better” – i.e., that scheme K[1] is 
dominated either by K[2.1] or K[2.2] – when agent-asymmetry is low (see Proposition 4) will hold 
even for this generalization; see footnote 17. 
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structurally similar in the sense that ‘individual effort incentives’ are similar in the following 
sub-models – in game S for the male bower-birds, and under contract K[2.1] (and, to some 
extent, under contract K[2.2]) for the two programmers. 

The ‘outside options’ of the two programmers and of the developer are (normalized to) zero.  
Under any contract in K, if programmer i produces a code of intermediate quality ai and 
receives remuneration R from the developer, his payoff will be {R – [ci.ai]}.  In contrast, the 
developer’s payoff is assumed to be a function only of the quality of the best surviving code.  
Specifically, if the developer employs selection scheme K[1] and the final surviving code 
quality is fi, the developer’s payoff will be V(fi) = fi; while if the developer employs either 
selection scheme K[2.1] or K[2.2] and the final surviving code qualities are f1 and f2 , the 
developer’s payoff will be V( f1, f2) = max{ f1, f2}.15 

3.2	  	  	  The	  Optimal	  Output-‐Selection	  Mechanism	  

We begin by stating the optimal selection mechanism for the software-developer (the 
principal), when the two programmers (the agents) are not very asymmetric ex ante.  We then 
present a set of results that prove the optimality of the stated mechanism.  Recall that the unit 

effort cost ci of each programmer i is drawn independently and identically from [c, 𝑐 ] with     

0 < c < 𝑐 < ∞. 

PROPOSITION  4.  There exists k > 1 such that whenever (𝑐 / c) < k, the following result holds:           
{Selection scheme K[2.1] with W* = B and L* = 0} is the optimal scheme in the set K.16, 17 

The above proposition asserts the optimality of the simultaneous-move tournament with 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15  As indicated at the beginning of Section 3.1, the principal’s utility is posited to depend only on the 
agents’ final outputs, and not on their inherent efficiency levels.  Also note that our payoff 
specifications incorporate the following assumptions:  (i) the developer incurs no costs of hacking, 
and (ii) he gets no additional benefit if a part of the budget B is saved.  Regarding (i), it is easy to 
check that introducing a small lump-sum cost of hacking will not change our results.  As for (ii), if the 
benefit from saving a part X of the budget is η.X, our results will hold as long as η is ‘sufficiently 
small’. 
16  This result is valid under the assumption that in any induced contest, the agents play a P-SPNE. 
17	  	  	  Consider the more sophisticated version the tournament schemes {K[2.1], K[2.2]} described in 
Footnote 14.  If the developer can choose whether to introduce the additional exogenous threshold 
benchmark in {K[2.1], K[2.2]}, then his expected payoff can only (weakly) improve upon the payoff 
that he obtains from the scheme-set {K[2.1], K[2.2]} [where the threshold can be thought to be set at 
0].  Then, given that K[1] is dominated by K[2.1] vide Proposition 4, some version of the tournament 
scheme will still dominate K[1] for the developer when ex ante agent-asymmetry is low. 
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maximal winning prize when the realized efficiencies of the two agents are a priori not very 
dissimilar.  The following results prove the veracity of Proposition 4. 

LEMMA  5.  Consider the case where a randomly-picked programmer i with unit effort cost ci 

is hired under scheme K[1].  Then for any compensation vector {W ∈ (0, B], L ∈ [0, W)} and 

for any exogenous final quality threshold  f0 (> 0) (that the courts can verify), the developer’s 
expected payoff from the mechanism will be no greater than [(0.25B) / (ci)].18 

LEMMA  6.  For any realized {c–, c+} with c– ≤ c+, if the developer employs scheme K[2.1], 
then in the unique  P-SPNE, the programmer c– creates a code of intermediate quality a–* =           
[0.5(W – L)/c+] while the programmer c+ creates a code a+* = 0.5(W – L)[(c–)/(c+)2].  The 
‘better’ programmer c– wins the tournament with probability [1 – 0.5(c–)/(c+)], and the 
‘worse’ programmer c+ wins with the complementary probability.  Consequently, the 
developer’s expected payoff is {0.25(W – L).[1 + (c–/c+)2/3] /(c+)}. 

LEMMA  7.  For any realized {c–, c+} with c– ≤ c+, if the developer employs scheme K[2.2] and 
the better programmer c– gets to move first, then in the unique P-SPNE, the programmer c– 
creates a code of intermediate quality a–* = {0.5(W – L)/c+} while the programmer c+ creates 
a code a+* = 0.  The better programmer c– wins the tournament for sure, and the developer’s 
expected payoff is {0.25(W – L) /c+}. 

LEMMA  8.  For any realized {c–, c+}, if the developer employs scheme K[2.2] and the worse 
programmer c+ gets to move first, then the unique P-SPNE outcome depends on the 
magnitude of the cost inequality [c+ /c–]:  (i) if [c+ /c–] < {1 + 30.5/2} then the programmer c+ 
creates a code a+* = {0.5(W – L)/c–} following which the programmer c– creates a code of 
intermediate quality a–* = 0.  The worse programmer c+ wins the tournament for sure, and the 
developer’s expected payoff is {0.25(W – L) /c–}; and (ii) if [c+ /c–] > {1 + 30.5/2} then the 
programmer c+ creates a code a+* = {(c–)/(c+)2.[W – L]/8} following which the programmer 
c– creates a code of intermediate quality a–* = {0.25(W – L)/c+}.  The better programmer c– 
wins the tournament with probability [1 – 0.5(c–)/(c+)], and the developer’s expected payoff 
is {0.125(W – L).[1 + (c–/c+)2/12] / c+}. 

Straightforward calculations on the basis of Lemmas 5–8 generate the following results, 
which in turn immediately prove Proposition 4: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
18  Specifically, when  f0 ≤ 0.25B/ci, the developer’s optimal expected payoff will be 0.5[f0B/ci]0.5, 
while if f0 > 0.25B/ci the developer’s payoff will be zero as she cannot induce the programmer to exert 
any effort for any feasible compensation scheme. 
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(1)  Under any selection scheme, it is optimal for the developer to set W* = B and L* = 0. 

(2)  Given that, as long as realized [c+ /c–] is not much greater than unity, the developer’s 
expected utility given {c–, c+} is maximal under the scheme K[2.1] in the set K. 

4.	  	  Concluding	  Remarks	  

This paper focuses on a remarkable competitive interaction in the animal world, and analyzes 
this behaviour through the lens of ‘rational choice theory’.  With respect to the mating 
contests of the satin bowerbirds, evolutionary biologists have developed formal models of the 
male-birds’ competition.   But their research has been confined to studying evolutionary 
games focused on ‘bower sabotage’ by male-birds of identical strengths; they have not 
studied the sequential decisions of male-birds of different abilities regarding initial 
investments in bower-decoration and subsequent attempts in rival-bower-sabotage.  In that 
regard, this paper complements the extant evolutionary biology literature. 

In this context, a central finding of the current analysis is the following:  Sabotage 
possibilities improve the welfare of both the male-birds, while lowering the female-bird’s 
utility; the former happens because the anticipated threat of sabotage depresses each male-
bird’s incentive to engage in costly (and dissipative) signaling, while the latter happens 
because sabotage inserts noise into the female-bird’s selection process.  This result also 
complements the existing results in the ‘contest theory’ literature and incorporates sabotage 
possibilities; this is achieved in this paper by considering a contest model where sabotage – 
which is modeled as a {0 -1} choice of attacking or not attacking a rival – occurs after each 
contestant has observed his rival’s (intermediate) output. 

Subsequently, this paper uses the bowerbirds’ dilemma as an allegory and studies a principal-
agent problem with a similar incentive structure for the contestants.  In the agency model, a 
principal cares about the best among the outputs created by two agents, and is in a position to 
design a tournament with suitably chosen order-of-moves and prizes.  In a setting where          
(a) produced outputs need to be stress-tested  to determine durability (where stress-testing is 
analytically similar to mutual sabotage, though not in intent) and (b) outputs can only be 
evaluated in relation to other outputs or an exogenous benchmark, our analysis shows that if 
the agents are not too asymmetric then a tournament is strictly better for the principal than 
individually contracting with a single agent; further, if no exogenous benchmark is available, 
then for limited agent-asymmetry, the optimal output-selection mechanism is a simultaneous 
tournament with the maximal feasible winning prize. 
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Appendix	  

PROOF OF PROPOSITION 1:  Let each of the two male-birds be represented by the index i = 1, 
2.  In the single-stage game, i.e., Game NS, between the two male-birds, bird i’s choice 
variable is ai ≥ 0.  However, ai

n is a strictly monotonic function of ai.  So, we can transform 
the game and assume that the choice variable for bird i is ai

n:  this transformation does not 
affect the equilibrium set.  The transformed game is now a standard all-pay auction with two 
bidders, symmetric prizes and asymmetric linear costs of bidding.  It is well known that this 
game has a unique equilibrium; further, it is easily checked that the potential equilibrium 
provided in the proposition is actually an equilibrium of the game, and hence it is the unique 
equilibrium of the game.  The equilibrium win-probabilities and equilibrium payoffs are then 
determined by straightforward calculations. ! 

PROOF OF LEMMA 2:  Let the two male-birds be represented by the indices i, j = 1, 2, where i 

≠ j.  Now, given bower qualities a1 ≥ 0 and a2 ≥ 0 produced in Stage 1 of Game S, we want to 

establish that there exists a unique continuation equilibrium at Stage 2 of the game.  As we 
have assumed that there are no costs of any actions in Stage 2, each male-bird is simply 
interested in maximizing own win-probability (however, see footnote 6).  Note that if ai > aj 
> 0, then the dominant strategy for bird j is to sabotage bird i’s bower since otherwise j’s win-
probability will be 0 (which it can strictly improve upon by sabotaging i’s bower, irrespective 
of bird i’s action).  Given that bird j sabotages i’s bower, what is bird i’s best response?  Bird 
i’s win-probability from defending own bower is [1 – aj/ai], while that from sabotaging  j’s 
bower is strictly higher:  [1 – 0.5aj/ai].  Hence, if ai > aj > 0 then there is a unique 
continuation equilibrium in which each male-bird sabotages the rival’s bower.  It is easy to 
check that this is also the unique continuation equilibrium when ai = aj > 0.  Finally, when  

[a1
 × a2] = 0 then a male-bird’s win-probability is the same across all possible action profiles, 

hence each bird will simply choose to defend own bower in the unique continuation 
equilibrium. ! 

PROOF OF PROPOSITION 3:  Let the two male-birds be represented by the indices i, j = 1, 2, 

where i ≠ j.  Let ci represent bird i’s cost-efficiency in bower-creation and φi represent his 
foraging effectiveness.  Without any loss of generality, let us assume that bird 1 possesses the 

higher realized ability and hence we have:  φ1 ≥ φ2 and c1 ≤ c2.  We provide here the details of 

the proof for the case with n > 1; the details for the case with n = 1 are almost identical.  
Having established in Lemma 2 the unique continuation equilibrium at Stage 2 of Game S, 
we obtain the first-stage expected payoff Ui(ai, aj) of male-bird i as: 
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0.5.W + φi.T    if ai = aj = 0,               

[1 – 0.5aj/ai].W + φi.T – ci.ai
n    if ai > aj, Ui(ai, aj) =           

[0.5ai/aj].W + φi.T – ci.ai
n   if ai ≤ aj

  (excluding ai = aj = 0).                   

We will next check whether Ui(ai, aj) is concave in ai: 

∂Ui(.)/∂ai = W.aj/[2ai
2] – n.ciai

n–1, if ai > aj; 

∂Ui(.)/∂ai = W/[2aj] – n.ciai
n–1, if ai ≤ aj

  (excluding ai = aj = 0). 

Note that neither Ui(.) nor ∂Ui(.)/∂ai is discontinuous at ai = aj > 0.  Now, given aj > 0, it is 

directly observed that ∂Ui(.)/∂ai is decreasing in ai ≥ 0 and hence Ui(.) is indeed concave in ai 

(given that aj > 0).  Now, it is obvious that we cannot have an equilibrium (a1*, a2*) with 

[a1*×a2*] = 0, so let us assume that there exists an equilibrium (ai*, aj*) such that ai* ≥ aj* > 

0.  Since the payoff function of each of the two male-birds is concave in own bower-building 
effort (given that the rival’s bower-building effort is strictly positive), it must be the case that 
(ai*, aj*) solves the First Order Conditions (i.e., the FOCs) of the two birds simultaneously.  
Given the assumption that ai* ≥ aj* > 0, the two birds’ FOCs are given by: 

W.aj/[2ai
2] – n.ciai

n–1 = 0  [male-bird i’s FOC], 

W/[2ai] – n.cjaj
n–1 = 0  [male-bird j’s FOC]. 

Solving the two FOCs simultaneously gives:  ci.(ai*)n = cj.(aj*)n.  Since we have taken c1 ≤ 
c2, so a1* ≥ a2* and hence we get that i = 1 and j = 2.  Now, solving for a1* and a2* we get: 

a1* = [0.5W/n]1/n.[1/(c2.c1
n–1)]1/(n

×
n), 

a2* = [0.5W/n]1/n.[c1/c2
n+1]1/(n

×
n). 

Hence, there is a unique SPNE in pure strategies of Game S in which the two male-birds exert 
strictly positive bower-building efforts in the first-stage (provided by the above expressions); 
then, in the continuation subgame, each male-bird attacks his rival’s bower.  Straightforward 
calculations give us the expressions for equilibrium win-probabilities and equilibrium 
payoffs. 

We also include in this proof the following analysis that will help establish the validity of the 
different remarks that we make following Proposition 3. 

Firstly, direct use of the expressions for a1* and a2* given in Proposition 3 gives us the total 

equilibrium signaling costs, R ≡ {c1.[a1*]n + c2.[a2*]n} = {[W/n].[c1/c2]1/n}.  Since [1/n] ≤ 1 

(as n ≥ 1), so R increases in [c1/c2] and hence it decreases in [c2/c1] ≥ 1.  Now, ∂R/∂n =                     

– [W/n2].[c1/c2]1/n +[W/n3].[c1/c2]1/n.ln[c2/c1].  Hence, for c2/c1 ∈ [1, e], where e is the 

exponential constant, ∂R/∂n < 0 for all n > 1.  Further, for c2/c1 > e, ∂R/∂n > 0 for all                            
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n ∈ [1, ln[c2/c1]] and ∂R/∂n < 0 for larger n.  These arguments prove the claims made in 

Remark 3. 

Secondly, from the expression for U*(θ1) we obtain:  ∂U*(θ1)/∂n = [0.5/n2].[c1/c2]1/n.{1 – 

[(n+1)/n].ln[c2/c1]}.  Hence, for c2/c1 ∈ [1, e0.5] we have ∂U*(θ1)/∂n > 0 for all n > 1;  for 

c2/c1 ≥ e we have ∂U*(θ1)/∂n < 0 for all n > 1.  Finally, for c2/c1 ∈ (e0.5, e), we have 

∂U*(θ1)/∂n < 0 for n ∈ (1, ln[c2/c1] / [1 – ln[c2/c1]]) while ∂U*(θ1)/∂n > 0 for n >                                  
ln[c2/c1] / [1 – ln[c2/c1]].  These arguments prove the claims made in Remark 5.  ! 

PROOF OF LEMMA 5:  Let W ∈ (0, B], L ∈ [0, W) such that W + L ≤ B, and let the exogenous 

final quality threshold be  f0 > 0.  For ai < f0, the optimal effort by the programmer is ai = 0 
giving him a payoff of L.  Suppose ai ≥ f0, then the programmer’s expected payoff is:  Ui(ai) = 

[(ai – f0)/ai].W + [f0/ai].L – ci.ai = W – [f0/ai].(W – L) – ci.ai  ⇒  ∂Ui(ai)/∂ai = [f0/ai
2].(W – L) – 

ci.  Since ∂Ui(ai)/∂ai is decreasing in ai, so Ui(ai) is concave in ai ≥ f0.  We want to determine 

the optimal effort by the programmer from among the efforts that are weakly greater than f0.  

Set ∂Ui(ai
#)/∂ai = 0  ⇒  ai

# = [f0.(W – L)/ci]1/2.  For ai = ai
# to be the optimal effort by the 

programmer in the interval ai ≥ f0, we need:  ai
# ≥  f0  ⇒  f0 ≤ (W – L)/ci.  For f0 > (W – L)/ci, 

the optimal effort for the programmer from among the efforts that are weakly greater than f0 
will be f0;  however, the payoff obtained by the programmer with this effort will be strictly 
less than L and so he will strictly prefer to exert zero effort over this effort, and hence the 
developer will obtain a payoff of 0 (if  f0 > (W – L)/ci).  Given the way the programmer will 
behave when facing the contract, it is straightforward that from the developer’s viewpoint the 
optimal L is 0 and the optimal  f0 is some value less than (W – L)/ci. 

Henceforth, we take L= 0, W∈(0, B] and f0∈(0, W/ci].  Given such a contract, ai
# = [f0.W/ci]1/2.  

Since Ui(0) = 0, in order to induce the programmer to exert a strictly positive effort we 

require that Ui(ai
#) ≥ 0 ⇒ f0 ≤ 0.25W/ci.  Since ai

# strictly increases in both W and  f0, we get 

the developer’s optimal contract as one with W = B and  f0 = 0.25B/ci.  Facing the optimal 
contract with W* = B and  f0* = 0.25B/ci, the effort exerted by the programmer i will be              
ai* = 0.5B/ci.  Then, the developer’s expected payoff with the optimal contract is 0.25B/ci.  ! 

PROOF OF LEMMA 6:  The simultaneous game of coding between the two programmers is 
analogous to Game S between the two male-birds that we studied in the previous section, 

with the difference that there is a ‘loser’s prize’ of L here (and effectively we have T = ∞), we 

have taken n = 1 here, and mutual sabotage is externally imposed here in the ‘second stage’ 
(in the form of hacking by the developer).  We immediately get the equilibrium of this game 
by adapting the solution of the earlier game.  Given that the final code quality  fi of each 
programmer i is uniformly distributed between 0 and ai*, the developer’s expected payoff 
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(which is equal to the expected value of max{f1, f2}) is obtained through straightforward 
calculations.  ! 

PROOF OF LEMMA 7:  Let the two programmers be represented by the indices i, j = 1, 2, where 

i ≠ j.  Let ci represent programmer i’s realized unit effort cost.  Without any loss of generality, 

let us assume that programmer 1 is the more efficient programmer and hence we have:  c1 ≤ 
c2.  In Lemma 7 we are considering the sequential game where the better programmer 1 (with 
unit effort cost c1) moves first and deploys effort a1;  after the better programmer deploys his 
effort, the worse programmer 2 (with unit effort cost c2) will respond by deploying effort a2.  
Let Ui(ai, aj) represent programmer i’s expected payoff.  Then, using the solution of Game S 
provided in the proof of Proposition 3 (in the previous section) we get: 

              0.5(W – L) + L    if ai = aj = 0, 
Ui(ai, aj) =          [1 – 0.5aj/ai].(W – L) + L – ciai  if ai > aj, 
                  [0.5ai/aj].(W – L) + L – ciai   if ai ≤ aj

  (excluding ai = aj = 0). 

Then, we have: 

∂Ui(.)/∂ai = (W – L).aj / [2ai
2] – ci, if ai > aj; 

∂Ui(.)/∂ai = (W – L) / [2aj] – ci, if ai ≤ aj
  (excluding ai = aj = 0). 

Note that neither Ui(.) nor ∂Ui(.)/∂ai is discontinuous at ai = aj > 0.  Taking programmer j to 

be the first-mover and programmer i to be the second-mover, we can easily solve for the 
optimal ai = ai

BR(aj): 

[0.5(W – L).aj/ci]1/2   if aj ∈ (0, 0.5(W – L)/ci],               

m ∈ [0, 0.5(W – L)/ci]    if aj = 0.5(W – L)/ci, ai
BR(aj)  =              

                  0     if aj
  > 0.5(W – L)/ci. 

Replacing ai with ai
BR(aj) in Uj(aj, ai) gives us Uj(aj, ai

BR(aj)).  From the interval aj ≥ 0.5(W – 
L)/ci,  j’s optimal effort choice is 0.5(W – L)/ci, giving him an expected payoff of (W – L).[1 – 
0.5cj/ci].  For aj < 0.5(W – L)/ci, we have:  Uj(aj, ai

BR(aj)) = [0.5(W – L).aj.ci]1/2 + L – cjaj.  
Finding the optimal aj = aj

# < 0.5(W – L)/ci by straightforward differentiation gives us:  aj
# = 

0.125(W – L).ci/cj
2.  Since the better programmer 1 moves first in the sequential game being 

considered here, so we have j = 1 and i = 2.  Straightforward calculations from here on 
establish that a1* = 0.5(W – L)/c2 is the optimal effort choice for the better programmer 1 for 
all parameter values, following which the worse programmer 2 deploys zero effort, i.e., a2* = 
0.  Then, the developer’s expected payoff is simply half the effort exerted by the better 
programmer, i.e., 0.25(W – L)/c2.  ! 
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PROOF OF LEMMA 8:  The proof of this result is just like that of Lemma 7 with programmer j 
= 2 moving first and programmer i = 1 moving second, and we suppress the algebraic details 
here. ! 
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