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Abstract

Transportation networks worldwide suffer from heavy congestion. This paper provides the first esti-
mates of congestion’s effect on the production side of the economy, combining firm survey data with traffic
data from Indian Railways. Geographic variation in congestion comes from a recent wave of passenger
trains which were planned according to certain rigid rules, making it possible to identify the costs the
additional traffic imposes on firms using the railways to ship goods. In estimating this “congestion exter-
nality”, the empirical strategy accounts for both direct and spillover effects of congestion. It also draws
on a traffic model from operations research to disentangle a mean effect (congestion makes the average
shipment slower) from a variance effect (congestion makes shipping times less predictable). In response
especially to the unpredictability, firms simplify operations in several ways, leading to lower productivity
and substantial revenue loss. While affected firms suffer, however, I draw on a general equilibrium model
of competition to identify gains to their competitors. Policy implications of these results concern both
the management of traffic on existing infrastructure, and the construction of new infrastructure.
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1 Introduction

Transportation networks worldwide suffer from heavy congestion. In economics, most existing research on
congestion treats it as an urban problem, affecting personal commutes. Yet congestion also affects long
distance goods shipments, with firms and policymakers alike claiming that this poses a major barrier to
firms’ productive efficiency and growth.

To visualize why congestion might affect firm production, consider a manufacturer waiting on its inputs
to ship from Mumbai to New Delhi, along one of India’s busiest rail corridors. The distance is 870 miles.
With a clear railway line, a freight train running at normal speed could make the trip in less than a day.
In practice, it can take two weeks. Walking from Mumbai to Delhi would be faster – 11 days by Google
Maps estimates. Financing and depreciation costs might accumulate while the goods are in transit, and the
slow shipping might limit the manufacturer’s ability to adapt to changing conditions. But slow shipping is
only part of the potential problem, as congestion also makes shipping unpredictable: the goods might find a
clear path on the rails and arrive in a couple of days, before the manufacturer has any use for them, or bad
traffic might push the wait to weeks, disrupting the manufacturer’s supply chain and slowing productivity.
Factors like these provide the basis for firms’ complaints about congestion, and the justification for major
infrastructure investments such as India’s Dedicated Freight Corridor, a proposed network of freight-only
railroad tracks aiming to boost firm productivity by freeing freight shipments from congestion.

At the same time, two economic factors suggest congestion might not prove very costly after all. First, firms
can try to insulate themselves from congestion, for instance by holding inventories to guard against stockouts.
The cost of congestion for an individual firm depends on the availability of these insulating measures, and
on the extent to which the measures bring costs of their own. Second, even if congestion hurts some firms,
its net effect depends on the ability of these firms’ competitors to steal their business and replace the lost
revenue. In light of these possibilities, the magnitude of congestion’s cost is empirically ambiguous, and so
too are the benefits of policies and infrastructure projects aimed at congestion relief.

To settle these empirical questions, I compile a unique dataset linking firm surveys with detailed measures
of congestion and shipping times on the Indian Railways. The data reveal staggering amounts of congestion,
with more than half of the major lines running beyond the capacity prescribed by international engineering
norms. Consistent with operations research models of railway traffic, travel on these congested lines is slow
and arrival times vary widely, both across routes and over time for a given route. The main reason for the
congestion is that the Indian Railways, a political Ministry answering to voters’ demands, often introduces
new passenger trains, and does so without regard for the effects on overall traffic flows. In countries such as
the United States, where freight operators own the tracks, passenger trains often need to stop and wait for
freight trains. But India does the opposite: passenger trains almost always get first priority on the rails. As
a result, heavy passenger traffic slows freight shipments, and looking at the addition of passenger trains is
an ideal way to study the effects of congestion on firms using railway freight.

I focus, in particular, on a major recent passenger train program, the Duronto trains, exhibiting two features
crucial for identification. First, Durontos adhere to a rigid rule of taking the shortest possible path between
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endpoints, ruling out endogenous selection of the path. Second, Durontos are supposed to make no stops
between their endpoints, ruling out any effects of the trains on the intermediate rail lines other than through
congesting these lines and disrupting freight shipments in the area. To avoid confounds from selection or
effects unrelated to congestion, I only focus on these intermediate districts, excluding from my analysis
the endpoint cities targeted by the Duronto program. Several pieces of evidence indicate that, conditional
on being located between two cities considered for the Duronto program, actually having a Duronto pass
through a given district is as good as random.

Even with as-good-as-random shocks to congestion, an important identification challenge remains, having to
do with spillover effects. Specifically, when one railway line becomes more congested, some of its traffic moves
to neighboring lines, increasing congestion there. Thus, the neighboring lines are not a suitable control group.
In the language of Rubin (1980), using the neighbors as controls would violate the stable unit treatment
value assumption (SUTVA). Finding “pure controls” which satisfy SUTVA is a challenging problem in spatial
economics, especially as relates to infrastructure projects, and the literature offers few convincing solutions
(Donaldson, 2015; Redding and Turner, 2015). The fundamental dilemma is that control units need to
simultaneously (a) satisfy SUTVA, which is more likely if they are far away or different in kind from the
treatment units, and (b) serve as a counterfactual for the treatment units, which is more likely when they
are nearby or similar.

I overcome this dilemma by using data on rail traffic patterns to identify exactly which districts will receive
spillover traffic from the Durontos. For each Duronto route and each pair of stations along the route, I
identify all the paths taken by at least one regularly scheduled train traveling between these stations. I refer
to this set of paths as the “spillover routes” for the Duronto in question. To show that the districts on these
spillover routes are exactly the ones exposed to spillover traffic, I conduct a “zero-th stage” analysis of traffic
patterns. It shows that when a Duronto is introduced on a given rail line, this increases traffic both on that
line and on the spillover routes I have identified. The spillovers do not extend any farther, however, as there
is no traffic increase on the “second order” spillover-routes-of-the-spillover-routes. I therefore know the set
of districts exposed to spillovers, and can account for this in studying the effects on these districts’ firms.

Reduced form results show that Duronto traffic leads to increased costs, less efficient production, and ul-
timately a substantial revenue loss for firms in rail using industries. For each new line of Duronto service
passing through a district, local factory revenue falls by 1.9 percent. The preferred specification also in-
cludes a control for each district’s exposure to spillover traffic, which serves two purposes. First, it shows
that spillover traffic also causes revenue loss, with each spillover route passing through a district leading to a
1.1 percent loss in factory revenue for rail using firms. Second, it serves to remove bias in the estimates of the
Duronto main effect, by controlling for an omitted variable. Spillover traffic through a district is negatively
correlated with Duronto traffic through that district, because the spillover routes tend to run in parallel to
the main Duronto routes. Since spillovers themselves have a negative effect, failing to control from them
would bias estimates of the Duronto main effect toward zero. In the end, the local revenue loss associated
with Duronto traffic is substantial, and we realize its full magnitude only by accounting for spillovers.

Why do affected firms lose revenue from Duronto-associated congestion? In settings other than Indian
Railways, congestion could affect firms through a variety of mechanisms, including increased shipping prices,
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reduced availability of freight shipment, or disruptions to passenger travel. In this setting, however, the
evidence points toward a single, clear mechanism: the Duronto traffic disrupts freight shipments for rail-
using firms, making these shipments slower and less predictable, which raises the effective costs of producing
output and delivering it to consumers.

Several institutional details specific to Indian Railways support the claim that this is the mechanism at
work. The Indian Railways fixes freight rates as a function of distance, independent of congestion, ruling
out costs associated with firms facing higher shipping expenses. It also does not ration freight trains or
change the schedules of existing passenger trains as a result of new trains like the Durontos, ruling out
effects associated with freight availability or movements of passengers for labor or consumption. Moreover,
each of these institutional details finds validation in the empirical evidence, as Duronto traffic has no effect
on firms’ reported nominal shipping expenses, the number of freight trains run, or the number of passenger
trips. So while congestion, in general, works through a bundle of possible channels, this paper’s institutional
setting provides an opportunity to isolate its effects working through freight shipping times.

Apart from these institutional factors, several aspects of the firm’s observed empirical response to Duronto
congestion also point toward effects associated with shipping times. First, Duronto traffic leads affected
firms to hold larger inventories. The theory of inventory management, in the tradition of Arrow, Harris and
Marschak (1951), holds that for a firm trying to guard against stockouts, a key determinants of the optimal
inventory level is the time it takes inputs to arrive. Second, Duronto congestion leads firms to alter their
product mix, making fewer products per factory, and switching to products which are less time sensitive and
which have more predictable demand. These responses are consistent with firms trying to remove uncertainty
in the production process, in order to offset the increased uncertainty about shipment times on a congested
transport network.

Given that shipping times are the reason Duronto traffic creates problems, I distinguish two specific aspects
of this problem: a mean effect (congestion slows average shipping times) and a variance effect (congestion
makes shipping times less predictable). To understand the link between congestion and shipping times and,
indeed, why congestion is so central to transportation economics, consider a single hypothetical railway line.
In principle, arbitrarily many trains can run on the line at arbitrarily high speeds, and with no variance in
arrival time, if they are dispatched one after another, running at the same speed and in the same direction.
With train speed differentials and different directions of travel, however, trains meet and delay each other.
It is because of these potential meetings between heterogeneous trains that congestion becomes a problem:
each new train is a possible source of delay for the trains already on the line. Mean travel times increase with
congestion due to the higher number of expected train meetings, and variance increases because with more
congestion there are more possible meetings, each of which might or might not happen. These effects are,
moreover, worse when there is more heterogeneity in train speeds. Averaging 70 to 80 kilometers per hour,
the Durontos are among the fastest trains on Indian Railways, while freight trains, typically running at 25
kilometers per hour, are the slowest. It therefore comes as no surprise that the Durontos cause substantial
increases in both the mean and the variance of freight shipping times.

In terms of the economic implications for firms, the relative importance of shipping time mean versus variance
is, a priori, ambiguous. Slow shipping, in the sense of high mean shipping times, might prove unproblematic
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if firms simply need to place orders farther in advance. Or it might cause major problems if production and
demand are uncertain. For instance, a car manufacturing firm might forecast high demand for red cars and
place an order for red paint, only to find that by the time its paint arrives all of its recent orders are for blue
cars and it is stuck with the wrong color. Variance of shipping time becomes a problem when, for instance,
a firm’s input orders arrive later than anticipated, forcing it to stop production because it lacks a key input.
On the other hand, variance might matter less if firms can costlessly guard against stockouts with measures
such as inventories, or if they can forecast the arrival time of a particular shipment and plan accordingly.

The empirical challenge is to obtain independent variation in the mean and variance of shipping time, which
I accomplish by drawing on an operations research model of railway travel times. Chen and Harker (1990)
and Harker and Hong (1990) model travel times on a railway line where trains are dispatched according to
a given distribution of departure times and train characteristics. I extend their model to show how travel
times change with the introduction of additional trains. Both mean and variance increase with additional
traffic, but the model’s key result is that at higher congestion levels the variance diverges from the mean.
Intuitively, this divergence comes from “knock-on effects”: on a congested line trains might adhere to schedule
on days when none of them are delayed; but when one train gets delayed, this delays other trains which need
to wait for it, which is in turn correlated with delays between other pairs of trains, yielding an especially
high variance of travel time. I thus instrument for mean and variance using the Duronto shock along with
flexible interactions of this shock with pre-Duronto congestion levels.

Two stage least squares results show differing effects of the slowness and the unpredictability, with unpre-
dictability proving the more costly. Consistent with models of inventory management, increases in both
mean and variance of shipping time prompt firms to increase their inventory holdings, as a guard against
stockout risk. While these measures may provide firms with some insulation, they do not fully buffer against
the costs of unpredictable shipping. For each 10 percent increase in the variance of shipping times, average
costs increase by 0.3 percent, and in turn, revenue falls by 1.1 percent.

The magnitude of these revenue losses is substantial, raising a puzzle: how can just a few new passenger
trains cause such large losses for affected firms? I distinguish two basic explanations. One possibility is that
Duronto congestion has a large “cost effect”: it substantially raises an affected firm’s production costs by
making freight shipments slower and less reliable, and thereby disrupting its supply chain. Large cost effects
imply that if every firm in the economy suffered an increase in congestion, large losses in output and welfare
would follow. Several features of the setting make a large cost effect seem like a plausible explanation. The
median district in the sample has only one relatively small railway line, so adding even a single Duronto
route through it consumes a large amount of its line capacity. The associated increases in both the mean and
variance of freight shipment times forces firms into responses such as higher inventory holdings and more
conservative production processes. With these movements away from efficient production, firms ultimately
exhibit higher average costs and lower revenue productivity.

The alternate possibility, however, is that Durontos’ cost effect is actually small, and firm revenue losses
owe more to stiff competition: in competitive markets, firms with even a small cost increase can fall behind
their competitors and see revenue plummet. It is possible, moreover, that when these competitors steal the
business of congestion-affected firms, this is a relocation of output, but not a large net loss. Distinguishing
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between these cost and competition based explanations is essential because if the cost effect is in fact small,
then increasing congestion for every firm in the economy could lead to negligible aggregate losses.

In distinguishing these explanations, I first turn to evidence isolating the cost effect, based on the finding
that Duronto traffic leads to increases in factories’ average cost per unit of production. A simple prediction
of firm optimization, for a very general class of production functions, and even in the presence of competition
effects, is that observed increases in average cost provide a lower bound on the magnitude of the shift in
the firm’s cost function. Intuitively, any competition effects reduce a firm’s output, pushing it down its cost
function, which, with decreasing returns, serves to reduce average cost.1 So observed effects of congestion on
average cost reflect the actual outward shift in the firm’s cost function, offset by this downward force from
competition. The methodological appeal of this result is that it leverages firm data to isolate basic features
of the firm problem which are invariant to any competition effect, making it possible to identify the cost
effect without strong dependence on general equilibrium model assumptions.

Given the cost increase for affected firms, the ultimate implications for firm revenue depend on the nature
of competition, which is characterized by two main empirical results. First, exposure of a firm’s competitors
to Duronto traffic leads to increased sales for that firm, indicating ready substitution between the products
of the affected and unaffected firms. Second, the negative effect of Durontos on firm revenue is concentrated
in industries with high elasticities of substitution, indicating that the degree of substitutability magnifies
the consequences of the cost effect. To interpret these results and quantify the aggregate effects of the
congestion shock, net of business stealing, I draw on a model of general equilibrium interactions between
firms competing in a given industry. Based on Rotemberg (2017), the model predicts how a cost shock will
translate into revenue loss for the affected firm, as a function of elasticities of substitution and the exposure
of the firm’s competitors to similar cost shocks. The associated parameter estimates imply that competitors’
gains from business stealing are almost as large as the losses suffered by Duronto-affected firms, adding up
to only a minimal aggregate loss from running the Duronto trains.

In applying these results to policy, I consider the implications both for traffic management on existing
infrastructure, and for the construction of new infrastructure. Currently, Indian Railways maintains a
uniform priority for passenger trains over freight traffic, and does little to increase the speed of lagging
freight trains. Since variable shipping times are the main source of cost for freight using firms, however, the
Railways could greatly help these firms by granting higher priority to a freight train which has already met
some delay. One such priority scheme would be a backpressure routing algorithm (Neely, 2010), which routes
traffic on a network to minimize a sum of squared delays, and so reduced the probability of extreme delays
and thereby the variance. More concretely, the Indian Railways is experimenting with running freight trains
on fixed time tables, in contrast to the current policy of scheduling them on an ad hoc basis, in between
the running of passenger trains, and with no promised arrival times. Implementing fixed time tables and
more predictable freight shipping is a particular priority for the Dedicated Freight Corridor, and the costs
associated with variable shipping times once again indicate that these policies could yield substantial gains
for affected firms.

1In the presence of fixed costs, this movement might not reduce average cost, but would reduce average variable cost. The
effects I find on average variable cost are similar to those on average cost.
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This paper’s analysis of congestion offers an empirical supplement to a recent literature modeling optimal
infrastructure investment in the presence of congestion (Fajgelbaum and Schaal, 2017; Allen and Arkolakis,
2016). These papers model trade costs as a function of quantities shipped along a trade link, departing from
the conventional assumption of iceberg trade costs. Fajgelbaum and Schaal (2017) show that incorporating
congestion in this manner shuts down complementarities in infrastructure investment, convexifying the op-
timization problem of a social planner choosing infrastructure investments, goods movements, and economic
quantities. This convexification ensures a unique solution and simplifies the procedure for finding it. The
assumption behind this modeling device is that additional traffic on the transportation network increases
costs for other users, and my results provide empirical support for this assumption.

More broadly, this paper adds to a burgeoning literature on the micro-foundations of trade costs. As
surveyed in Anderson and Van Wincoop (2004), both domestic and international trade costs depend on a
variety of frictions, from nominal freight prices, to policy barriers, among many others. More recent work
uses a combination of theory and micro data to show exactly how these frictions depend on the economics
of, for instance, imperfect information (Allen, 2014; Startz, 2016), the organization of production networks
(Hillberry and Hummels, 2008), and contractual relationships (Macchiavello and Morjaria, 2015). Closest
to my paper is the Hummels and Schaur (2013) study using exporters’ revealed preference for shipments by
air versus ocean, in order to estimate the value of time in trade. I go beyond their findings by identifying
congestion as an important source of the variation in shipping times, then demonstrating the causal effect
on firms, the mechanism of the firm response, and how these effects differ, separately, for changes in the
mean and variance of shipping time. My ability to take these extra steps owes to advantageous features
of my setting, in which freight rates and distances are fixed, enabling me to isolate the effects of shipping
times. Characterizing trade costs as a function of shipping times offers a useful way to predict the effects of
infrastructure projects, since the planning of most projects involves ready engineering estimates of how the
project will affect travel times.

Indeed, my emphasis on congestion bears special relevance to modern infrastructure projects. Existing
infrastructure papers tend to focus on historical projects (Fogel, 1964; Donaldson, 2017; Banerjee, Duflo
and Qian, 2012), or in any case on the establishment of large-scale transport systems (Baum-Snow, 2007;
Duranton and Turner, 2012; Faber, 2014), aiming to speak to the old debate about the importance of railroads
and national highway systems in countries’ development. Today, when a developing country like India spends
3 percent of annual GDP on infrastructure, it typically is not constructing new transport systems, but more
often widening existing highways, adding links to an already-dense railway network, or otherwise addressing
the problem that the existing transport systems are inefficient, unreliable, and indeed, congested. These
issues require firms to make complex logistical adjustments, making it essential to understand why and for
which firms the adjustments are most costly.

At the broadest level, I contribute to the literature on the determinants of low firm productivity in developing
countries. Policy debates cite poor infrastructure as a major impediment to productivity (World Bank, 1994;
Bajaj, 2010; Ziobro, 2017), and point specifically to inventory holdings as a symptom (Guasch and Kogan,
2003; Datta, 2012; Li and Li, 2013). I provide causal evidence on the mechanisms of this firm response to poor
infrastructure, its origins in the unpredictability as well as the slowness of shipping, and its implications for
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productivity. While some papers consider the effects of uncertainty on productivity (Allcott, Collard-Wexler
and O’Connell, 2016) and misallocation (Asker, Collard-Wexler and De Loecker, 2014; David, Hopenhayn
and Venkateswaran, 2016), disentangling uncertainty from the adverse events that often accompany it is
difficult in practice (with one notable effort being Bloom, 2009), but I provide some of the first causal
microeconomic evidence drawing this distinction.

2 Context and data

This section describes the Indian Railways context, and the data used to study the effects of congestion in
this setting. The Indian Railways are an important carrier of both passengers and goods, but Railways traffic
data shows overwhelming congestion on most of its lines, leading to slow and unreliable freight shipments.
A major source of congestion is the indiscriminate adding of new passenger trains, so to study how this
hurts freight using firms, I highlight one particular wave of new passenger trains, the Durontos, which were
introduced according to certain rigid rules proving useful for identification. A basic contribution of this
paper is linking data on these railway traffic patterns, with detailed data on firm outcomes, which I draw
from India’s Annual Survey of Industries (ASI).

2.1 Indian Railways

The official slogan of the Indian Railways, “Lifeline to the Nation”, speaks to the perceived economic impor-
tance of the Railways. India has the world’s third largest railway network by track length, and trails only
Japan in passenger volume, handling over 8 billion trips per year. India especially excels at making passenger
travel affordable. The average Indian passenger fare amounts to 0.6 US cents per kilometer, compared with
2.4 US center per kilometer in China, and far higher rates in developed countries: 12.6 cents per kilometer
in Germany, for instance, and 19.0 cents per kilometer in Japan.2

The convenience and affordability of passenger travel comes, however, at a cost. Passenger fares are insuf-
ficient to cover operating expenses, so the Railways’s financing of passenger travel relies on a cross-subsidy
from freight shipments. As a result, Indian freight rates are, in nominal terms, 49 percent higher than
those in China, and on par with those in developed countries. Adjusted for PPP, Indian freight rates are
approximately twice as high as those in both China and the United States (Ministry of Railways, 2015a).
Apart from passengers’ financial burden on freight, passengers also consume the scarce track space shared
by the two forms of traffic. Unlike many countries, India does not have separate tracks for passenger and
freight trains.

In allocating track space, moreover, India accords highest priority to passenger travel. Passenger trains run
on fixed schedules and new trains are frequently introduced by politicians to gain their constituents’ favor.

2Adjusted for PPP, these countries’ passenger fares, relative to those in India, are 2.7 times higher in China, 6.2 times
higher in Germany, and 9.4 times higher in Japan.
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Freight trains, on the other hand, have no fixed schedules, running on an as-needed basis. When a customer
wants to make a freight shipment, the customer files a request with the Railways, and a railway manager
tries to find a time to dispatch the freight train, in between the scheduled running of the passenger trains
(Ministry of Railways, 2008). As a result, freight shipments often need to wait before beginning their journey,
then even once they are en route, stop and wait again for passenger traffic to clear. So freight shipments are
slow and unreliable, and the key determinant of freight shipping performance in a given area is the amount
of passenger traffic there.

The role of passenger trains in affecting freight shipments motivates this paper’s focus on the introduction
of new passenger trains as its source of variation in congestion. I focus on one particular set of passenger
trains, the Durontos, introduced by Rail Minister Mamata Banerjee in 2009 (Banerjee, 2009; Ministry of
Railways, 2009). The Duronto trains aim to provide nonstop service on the shortest possible routes between
12 of the largest cities in India. The decisions about where to introduce Duronto trains were based on
passenger demand for travel between these major cities. The intermediate districts on the Duronto routes
receive congestion as a by-product, and this is the identifying variation I use.

Over time, the heavy passenger congestion on the Railways has pushed freight traffic off of the rails, and
on to other modes of transportation such as roads. In 1950, Railways carried 89 percent of India’s freight
traffic, measured by weight, but by 2016, this share fell to 31 percent. Of the freight traffic remaining on
the Railways, an overwhelming majority, 87 percent, comes from just a few “rail goods”: coal, iron, steel,
fertilizers, cement, mineral oils, and food grains (see Figure 4a). Conversely, these goods rely heavily on the
rails, as indicated by the modal shares reported in Figure 4b. In particular, the railways carry 80 percent of
India’s coal shipments and more than 50 percent of its iron, steel, and cement (Ministry of Railways, 2011).
Producers of these goods have little choice but to ship by rail, since the goods’ bulk makes them difficult,
or far more costly, or in some cases unsafe, to transport by road. Given this clear specialization of the rails,
I focus my analysis on firms in “rail-using” industries, which I define to be those producing a rail good, or
with rail goods comprising at least 5 percent of their input cost share, based on the industry input-output
structure in the years prior to the introduction of Durontos.

2.2 Data sources

2.2.1 Railways data

To study geographic patterns in these train movements and the associated congestion effects, I collect data
from the Indian Railways, consisting of three parts.

First, Line Capacity data describes the structure of the railway network and the traffic on each part of
the network. It comes from annual Line Capacity Reports, prepared by each of the 17 zonal authorities
on Indian Railways. These reports provide traffic data based on a division of the railway network into
1218 track sections, where the median section length is 35 kilometers. For each section and each year, the
reports indicate (i) how many passenger, freight, and other trains run there in an average 24 hour period,
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(ii) the types of signaling, electrification, and other physical capabilities present on the section, and (iii)
the theoretical capacity of the section. The theoretical capacity is an engineering estimate of the number of
trains which can safely run on a section in a 24 hour period. It is based on Scott’s Formula, which accounts
for the physical features of the track, the type of equipment present, and a range of other factors. Railway
operators regard line capacity numbers as a rough guideline and often run trains in excess of these numbers,
perhaps causing some loss in safety or travel time efficiency. Indeed, Figure 1 shows a histogram of the traffic
on each section as a fraction of the section’s line capacity, and its most striking feature is that half of the
track sections on Indian Railways operate beyond their prescribed capacity.

Second, shipping times data indicates the mean and variance of railway freight shipments. This data is
available starting in 2011, the year in which the Railways adopted its current computerized train database.
For this project, annual summary data was extracted on freight shipments for all possible origin-destination
pairs from a sample of 179 major stations. These 179 stations consist of the 109 most important freight
shipment points, and a random sample of 70 additional stations. For each origin-destination pair, the data
reports the annual number of freight trains run, and the mean and variance of the running time for these
trains. Figure 2 illustrates three key lessons from these data. First, freight shipments are slow in general,
with even relatively short shipments often taking five to ten days, and most shipments taking longer than the
Railways’s benchmark shipping speed. Second, some routes experience extremely slow shipping, with average
times stretching well beyond ten days. Finally, even conditional on track distance, there is considerable cross-
route variation in shipping time; the R2 from regressing shipping time on distance in the cross section is
only 0.19.3 So shipping times and the associated costs depend on factors other than distance, including, as
I will show, congestion.

Finally, geographic data on all railway stations and the routes of all passenger trains is scraped from the
IndiaRailInfo website, a sample of which appears in Figure 3. The resulting data details a variety of train
characteristics, and lists the stations which each train passes, including stations where the train does not
stop. I use this data for two main purposes. First, it identifies the districts and track sections crossed by the
Duronto trains and exposed to the associated congestion. Second, since it includes the universe of passenger
trains, it provides the set of reasonable routes that a train might follow between two stations. As described
in Section 3, this information on traffic patterns helps me identify the areas subject to spillover congestion
when the Durontos are introduced.

2.2.2 Firm data

The main source of outcome data is India’s Annual Survey of Industries (ASI), which has been widely
used in the economics literature. ASI data comes from an annual government survey of manufacturers,
and includes factory-level measures of output, input use, and a variety of other firm characteristics, such
as inventory holdings, which can help explain how firms adapt to congested infrastructure. Output data
appears separately for each product, making it possible to observe changes in the factory’s product mix.

3There is, likewise, considerable variation across shipments for a given route, as indicated by the annual route-wise data on
variance of shipping time.
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Input data includes detailed measures of capital and labor, as well as materials use, disaggregated by the
commodity category of each material. This disaggregation is useful, both for observing how firms alter their
product and input mixes in response to congested railways, and for identifying the firms which use heavy
inputs typically shipped by rail and which are therefore most likely to be affected by railway congestion.

The ASI data includes all manufacturing establishments above a certain employment threshold which varies
by year, and a random sample of smaller establishments. It is provided to researchers in two forms. The
first, ASI Panel data, includes factory identifiers, making it possible to link a factory’s data across years and
form a panel. While ASI Panel does not include district identifiers, a separate version of the data, ASI Geo,
contains all of the same firms and indicators, with the addition of district identifiers, but with the factory
identifiers excluded. To construct panel data with geographic identifiers, I use observable characteristics
to match the entries in the ASI Panel with those in ASI Geo for 2009-10, the year in which ASI Geo was
discontinued. I then use the factory identifiers to link across years, ascertaining the district of factories in
the ASI Panel data for 2010-11 through 2012-13. Constructing this geographically identified panel dataset
enables me to use district-level geographic variation in congestion while still running regressions with factory
fixed effects, and enables me to link the geographically identified firm data with Railways shipping time data
which is available only starting in 2011. Table 1 provides additional descriptive statistics from both the ASI
data, and the data on Railway traffic patterns.

3 Reduced form effects of congestion on firm revenue

This section identifies reduced form effects of Duronto passenger traffic on rail-using firms. I argue that
for certain intermediate districts, having a Duronto run through the district is as good as random. This
argument rests both on institutional facts about the Duronto trains, which by rule follow the shortest nonstop
path between their endpoints, and on empirical checks of balance and parallel trends. To address SUTVA
concerns, the empirical strategy accounts for spillover effects arising because Durontos divert traffic onto
neighboring lines. After 3.1 outlines the basic strategy, subsection 3.2 describes the approach to spillovers,
and 3.3 presents results showing that Duronto traffic disrupts firm operations, raising production costs and
leading to revenue loss.

3.1 Basic empirical strategy

Figure 5a illustrates the empirical strategy, using a comparison between representative “treatment” district
Rourkela and representative “control” district Bokaro. Both Rourkela and Bokaro are important steel-
producing districts with populations around 500,000. Neither is a major urban center, though, so neither
was under consideration to receive Duronto passenger service. Rourkela happens to lie on the shortest rail
path between Mumbai and Kolkata, so the Mumbai-Kolkata Duronto passes through. Bokaro lies on a
similarly important rail line which is part of the shortest path between Ahmedabad and Kolkata. Other
Duronto trains serve Ahmedabad and others serve Kolkata, but the specific Ahmedabad-Kolkata route
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does not receive Duronto service, so no Duronto passes through Bokaro. The fact that a Duronto passes
through Rourkela but not Bokaro is an incidental consequence of the Railways’ intention to provide nonstop
service between Mumbai and Kolkata, unrelated to any other differences between Rourkela and Bokaro.
This observation supports the empirical strategy’s core identifying assumption, which is that firms in the
two districts are comparable via differences-in-differences: in the absence of any Durontos, changes in firm
outcomes in Rourkela would have been the same as those in Bokaro.

Some institutional details provide further support for this assumption. First, Durontos make no intermediate
stops between Their s endpoints. This eliminates any possibility that the Duronto routes were chosen to
serve or not serve the passengers of places such as Rourkela and Bokaro. A remaining concern is that
planners might have chosen Durontos’ paths to avoid congesting Bokaro’s rail lines, for instance because
these lines were already too congested or because this congestion would interfere with positive economic
trends in Bokaro. A second institutional detail helps allay this concern: the Durontos by rule follow the
shortest path between their endpoints. While other trains’ routes might be planned to avoid congesting
favored or fast-growing areas, the Durontos’ shortest-path rule ensures that Duronto routes are not chosen
based on these characteristics of the intermediate areas. A final remaining concern is endogenous choice of
the entire Duronto route, for example because planners favor the firms between Ahmedabad and Kolkata, as
a group, over the firms between Mumbai and Kolkata. This possibility is difficult to falsify, but is inconsistent
with the motives of the Railways planners, whose explicit goal was to facilitate passenger travel between the
target cities, and is also allayed, as I will show, by parallel pre-trends in firm outcomes in the districts with
and without Duronto traffic.

The comparison between these districts motivates the basic specification

yit = βDDdt + βSSdt + γi + γt×s + γt×k + εit, (1)

where yit is an outcome of interest in year t for factory i, which operates in industry k and is located in
district d of state s, Ddt is the number of Duronto trains passing through d as of year t.4 The sample
is limited to intermediate districts which lie between the 12 major urban centers served by the Duronto
program. This sample definition excludes two types of districts. First, it excludes the 12 urban centers
targeted by the Duronto program, so all of the sample’s variation in Duronto traffic depends on which cities
a district happens to lie between, not on any explicit intention to target or avoid that city. The main results
are robust to also excluding a “donut” of districts bordering the urban centers. Second, the sample excludes
remote districts not lying between any of the 12 major cities. Results are, however, robust to including all
districts in India as controls.

While the initial Duronto plan involved nonstop service on the shortest paths between endpoints, later
adjustments involved certain Durontos making stops or deviating from the shortest path. These changes

4Looking at the number of routes actually passing through a district may seem like a simplistic measure of exposure to the
added congestion, relative to measures accounting for (a) traffic on the lines a firm uses to ship its goods, or (b) for changes
in market access (Redding and Sturm, 2008; Donaldson and Hornbeck, 2016). In Appendix D, however, I consider versions
of these alternate measures. Empirically, they do not provide explanatory power beyond the actual passage of Duronto and
spillover routes through a given district, so I focus the analysis on the simpler and easily interpretable measures of passage
through a district.
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pose little threat to identification, since most of them happened after the end of my sample period in 2012,
and in any case deviations were minimal. As of 2016, the average Duronto makes 2.4 stops, and travels on
a route 2.9 percent longer than the shortest possible route. Still, to avoid concerns that these deviations
might have been endogenous, I construct all Duronto treatment variables based on the shortest path between
the Duronto’s endpoints. Figure 6 shows district-wise treatment status, measured as the total number of
Duronto routes passing through each district as of 2012.

The final ingredient in (1) is Sdt, a measure of exposure to spillover traffic. It serves two purposes. First,
controlling for spillover effects is essential for identifying the causal effect of Duronto traffic, relative to a
counterfactual of no Durontos. Second, estimating the spillover effects is of inherent interest, since measuring
the full cost of the Durontos requires accounting for these effects.

3.2 Spillovers from diversion of traffic onto alternate routes

Spillovers arise because when a Duronto train passes through one district, the congestion it creates there
diverts traffic to neighboring districts. Figure 5b illustrates this possibility, with Durontos running through
Rourkela leading to diversion of traffic and possible congestion effects in Bokaro. Since this spillover traffic
flows onto lines other than the main Duronto lines, a reasonable expectation is that spillover traffic through
a district is negatively correlated with main Duronto traffic through that district, and that failing to account
for the spillovers will therefore lead to downward bias in estimates of the Duronto main effect. In principle,
however, the opposite bias is also possible, if the lines with Duronto traffic are geographically concentrated,
so that one Duronto’s spillover traffic flows onto the other Duronto lines, leading to positive correlation
between Durontos and spillovers. Which type of bias prevails is therefore an empirical matter.

To account for these spillovers, I use information on the Railways’ typical traffic patterns, drawn from the
data on the universe of passenger train routes. For each Duronto route and each pair of stations along the
route, I identify all of the paths taken by at least one passenger train traveling between these stations. I
refer to this set of routes as the “spillover routes” for the Duronto in question. Figure 5b illustrates this
construction with stations A and C lying on the Mumbai-Kolkata line, and certain non-Duronto trains
traveling from A to C via Bokaro. So although Bokaro is not directly affected by Duronto traffic, it is on
an alternate route for trains traveling between points on the Duronto route, and is therefore subject to a
possible spillover effect.

To validate this definition of the spillover routes, I conduct a “zero-th stage” analysis of how Durontos affect
traffic patterns. Unlike the main district-level regressions in this paper, the zero-th stage analysis is at the
level of track section n. Specifically, it studies how traffic on the section, Trafficnt, measured as the average
daily number of trains of a given type, responds to Duronto and alternate-route spillover traffic running on
the section:

Trafficnt = αDDnt + αSSnt + γn + γt×Sample + εnt. (2)

Here, Dnt is the number of Duronto trains running on section s as of year t and Snt is the number of Duronto
trains for which s is on the spillover route. If the outcome is total number of trains running on the section,
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and all other traffic is held fixed on a line when a Duronto is introduced, we would find α̂D = 1 and α̂S = 0.
If, on the other hand, one Duronto train leads to displacement of exactly one train onto each section of its
alternate route, we would find α̂D = 1 and α̂S = 0.

Table 2 reports results of this regression. Column (1) shows that for each additional Duronto scheduled to
run along a line, the total number of passenger trains running on that line increases by 0.61. This increase
is less than one, because some traffic is diverted onto the spillover routes. Each spillover route receives 0.22
additional passenger trains, and as Column (2) indicates, 0.23 additional freight trains. Column (3) shows
that α̂D and α̂S add to one, meaning the total amount of traffic is unchanged.5 Columns (4) through (6)
show that while the spillover routes as defined above receive traffic as a result of the Durontos, there is no
change in traffic on the “second-order” spillover routes of the spillover routes. Thus, I conclude that the
possible traffic-diversion spillover effects extend to the routes I have identified, but no farther.6

3.3 Reduced form results

This subsection describes the reduced form results, beginning with empirical checks of balance and pre-
trends, then proceeding to the main reduced form effects of Duronto traffic, and a body of supplemental
evidence which helps clarify the mechanism behind these effects.

Throughout the analysis, I focus on four main outcomes: revenue, productivity (TFPR), average cost, and
total inventory holding. I consider the natural logarithm of each of these variables, so estimated effects can
be interpreted as percent changes. Effects on revenue represent an overall effect of the Duronto congestion,
inclusive of any associated increases in production costs or losses in sales to competitors due to poor shipping
performance. Effects on TFPR show how Durontos affect productivity: this effect could result from the
Duronto congestion disrupting the production processes, though it also includes effects due to changes in the
price of the firm’s product.

Studying average cost removes effects of these changes in output price. For single-product factories in the
data, measures of average cost come from dividing total costs by the data’s reported quantities. For a
multi-product factory i making products {1, . . . ,K}, the average cost measure is

ACi =
Total Cost∑K
k=1 p̄kqik

, (3)

where qik is i’s quantity of k produced, and p̄ is the median all-India price of k. Using a fixed product price
p̄ acts simply to weight across the factory’s product-level output quantities.7

5For each kilometer of Duronto route, there is 1.02km of alternate route, so the amount of train-kilometers diverted onto
alternate routes is approximately the same as the amount of train-kilometers from the introduced Durontos.

6The empirical results are robust to using alternate definitions of the spillover routes, for example restricting to alternate
routes for trains traveling between the same endpoints as the Durontos, and restricting to spillover routes within a 200 kilometer
radius of the Duronto main route.

7Changes in average cost as measured in (3) could be correlated with changes in product quality or by changes in the
relative prices of the firm’s products. This correlation could lead to bias in regressions of average cost on Duronto running, if
Durontos affect quality or these relative prices. However, the main results on average cost are robust to alternate measures of
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Finally, inventories represent the response firms take to insulate themselves from the costs of congestion. Of
course, firms take many insulating measures apart from inventories, and Tables A2 and A3 detail some of
these responses. But inventories appear repeatedly in the literature as a key response to poor infrastructure
(Guasch and Kogan, 2003; Datta, 2012; Li and Li, 2013) and to uncertainty more generally (Fafchamps,
Gunning and Oostendorp, 2000). Models of optimal inventory management trace their roots to Edgeworth
(1888) and the Newsvendor Problem of Arrow, Harris and Marschak (1951). Appendix E presents a modern
version of these models, in which a firm holds inventory to guard against stockout risk arising from uncertain
lead times and demand fluctuations. As the model shows, the firm should hold larger inventories in response
to increases in either the mean or variance of lead time. The model also predicts larger inventory responses for
goods with higher value added, higher penalty of stockout, and higher demand uncertainty. These predictions
provide an interpretation for the inventory effects of Duronto congestion, and its associated effects on the
mean and variance of shipping time.

3.3.1 Balance and pre-trend checks

In addition to the institutional features supporting the empirical strategy, the data also show evidence of
balance and parallel trends. Table 1 shows that intermediate districts receiving more Duronto traffic are
similar to those receiving less. Districts set to receive more total Duronto and spillover traffic by 2012
do exhibit slightly lower revenue productivity and reliance on rail goods as inputs, though this difference
is economically small and significant at only the 10 percent level. More important from the perspective
of the difference-in-difference strategy is that Figure 8 shows parallel trends across Duronto-affected and
unaffected districts, both in terms of congestion levels, and in terms of each of the four main outcomes of
interest: revenue, productivity, average cost, and inventory holding. This evidence lends empirical support
to the identification strategy’s most basic assumption that these districts would have continued to follow
parallel trends in the absence of the Duronto program.

3.3.2 Main results

Table 3 presents the main reduced form effects of running Duronto trains. First consider Panel A, showing
results from the preferred specification which accounts for the effects of both Durontos and the traffic
spillovers. As Column (1) shows, one two-way Duronto route running through a district leads to a 1.9
percent decrease in revenue for the rail-using factories in that district.8 This revenue effect is large. For
perspective, one Duronto route amounts to approximately 7 percent of the charted line capacity in the median
district. Thus, scaling the revenue effect implies that if a district went from a completely clear railway line,

p̄, such as using fixed 2008 median prices to remove the effect of changes in relative product price, or 2008 firm-specific prices
to account for fixed firm-specific differences in relative product quality. A disadvantage to using 2008 prices, and the reason I
avoid it as the preferred definition of p̄, is that the ASI’s product classifications change in 2010 from ASICC to NPCMS, and
the ASICC to NPCMS concordance is more exact in some industries than other, leading to differential changes in measured
average costs between 2009-10 and 2010-11.

8As noted above, the rail-using firms are those in industries which either produce one of the goods typically shipped by rail
(coal, iron, steel, fertilizers, food grains, cement, and mineral oils), or have these goods amount to at least 5 percent of their
input cost share, as per the 2007-08 input-output table.
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with no passenger traffic, to having Duronto trains use its full line capacity, factories would suffer a revenue
loss of 1.9/0.07 = 27 percent. Of course, this calculation perhaps represents an upper bound on the effect
of having a line become completely full, since such a large increase in congestion might prompt firms into
larger reorganizations to offset the congestion effect.

Still, the large revenue effect might appear surprising on its surface: why should some passenger trains
speeding through a district lead to such losses for firms? Part of the answer appears in Columns (2) through
(4), which show effects on rail using factories’ productivity, production costs, and inventory holdings. Each
Duronto route reduces TFPR by 1.1 percent, a smaller magnitude than the revenue loss, indicating that
input use falls, but by less than the decrease in revenue. Whereas the revenue and TFPR effects both depend
on the firm’s output price, the effects on average cost reflect cost per unit of output, independent of this
price. As Column (3) shows, each Duronto route increases average cost by 0.8 percent. These cost increases
could come from a variety of sources, including financing costs as goods shipments become slower, or risk
of input stockout with uncertain arrival times. Inventory stocks, though they bring holding costs of their
own, help insulate firms against these costs, and as Column (4) shows, each Duronto route increases firm
inventory holding by 1.0 percent. This absolute increase in inventory holdings comes despite a scaling down
in firm revenue, entailing an even larger increase in inventory holdings as a fraction of firm revenue.

Panel A also shows evidence of spillover effects. In particular, each alternate route through a district decreases
rail-using firms’ revenue by 1.1 percent and increases average cost by 0.7 percent. These effects are smaller
in magnitude than the Duronto main effect, though measured with less precision, making them statistically
indistinguishable from the main effects.

Apart from the economic importance of their effects, the spillovers also play a role in identifying the main
effect of Duronto traffic. As Panel B shows, the estimated magnitudes of the Duronto main effects are far
smaller than in Panel A, as a result of omitting the spillover controls. The revenue loss, for instance, is only
1.3 percent. While this estimate is not quite statistically distinguishable at the 10 percent level from the
Panel A estimate of 1.9 percent, the difference between these point estimates is economically meaningful.
The reason for the difference is that spillover traffic through a district is negatively correlated with Duronto
main line traffic, and the spillover effects themselves work in the same direction as the main effects. Thus,
omitting the spillover control leads to downward bias.

As a placebo test, Table 4 shows no effect on firms in non rail using industries. Theoretically, these firms
might have experienced Duronto effects, either due to congestion spillovers as traffic moves from the congested
rail lines to roads, or due to general equilibrium effects, for instance if they compete or do transactions with
rail-using firms. While these possibilities make the placebo test imperfect, another way to interpret Table 4 is
as a falsification of the hypothesis that Duronto-affected districts were, even without the Duronto congestion,
set to embark on different economic trends from the unaffected districts. This could happen, as discussed
above, if the Duronto running patterns were correlated with planners’ broader policy favoritism of certain
districts. In such a case, we would expect to find effects even on the non rail using firms in Duronto-affected
districts. Yet we see no such effects.
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3.3.3 Additional evidence on mechanism

To detail the mechanism behind these reduced form effects, I provide evidence on several additional outcomes
(reported in detail in Appendix A) and on heterogeneity (reported in Appendix B). This evidence tells a
clear story: the congestion arising from new Duronto passenger trains disrupts freight shipments for rail-
using firms, making these shipments slower and less predictable, which raises the effective costs of producing
output and delivering it to consumers.

In support of this story, we should find, first of all, that Duronto congestion has its largest effects on firms
relying most intensively on railway shipment of freight. The contrast between the effects for rail-using firms
and lack of effect for non rail-using firms shows already that the extensive margin of rail use matters for
finding congestion effects. The intensive margin also matters, as Table B1 shows larger effects for industries
with a greater fraction of their input cost share coming from goods shipped by rail and larger effects for
industries actually producing these rail goods.9 So the costs associated with railway congestion scale with
the firm’s reliance on railway shipments, and this congestion seems to create problems both for the receipt
of inputs and for the delivery of output.

While firms’ use of railway freight at least partly explains the reduced form effect, it remains possible that
another part of the effect comes from changes in passenger movement as a result of the Durontos. In
particular, one possibility is that when the Durontos ease passenger movements between the major cities,
this has some effect on the intermediate sample districts, either because citizens there can take advantage of
the Durontos by traveling via the major cities, or because the advent of Durontos brings economic benefits
to the major cities which then spill over to nearby intermediate districts. Ruling out this possibility, Table
C4 shows that the main results do not change when we exclude from the sample a 100 kilometer “donut”
of districts surrounding the major cities, and Table C1 shows that there is no effect of simply being located
close to a major city receiving Duronto service.

Another possibility related to passenger movements is that the Durontos affect local passenger train move-
ments in the intermediate sample districts, either by creating too much congestion for the local trains, or
by causing substitution away from other long distance trains which, unlike the Durontos, make stops in the
intermediate districts. In practice, the Indian Railways rarely cancels or significantly modifies the schedules
of existing passenger trains, making this possibility unlikely. Empirical results in Table A1 show that, indeed,
Duronto traffic through an intermediate district affects neither the number of passenger departures from that
district’s stations, nor the number of arrivals.10 So the evidence points, once again, toward the conclusion
that the Durontos’ reduced form effects arise not from effects on passenger movements, but from disruptions
of freight shipment.

It remains to establish why Duronto traffic disrupts freight shipment: is it actually by affecting freight ship-
ping times, as my hypothesis suggests, or via some other channel such as reduced availability of freight trains?

9Among the rail using industries in the sample, producing a rail good is positively correlated with the industry’s rail good
input cost share.

10These results on the total number of arrivals and departures include trips both within and outside the district, but results
similarly show no effect when disaggregated by arrivals and departures withing and outside the district.
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Four sets of facts point toward the shipping time story. First, if Duronto congestion led to reduced avail-
ability of freight trains, we would expect to see reductions in railway freight shipment volumes. Empirically,
however, Columns (3) and (4) of Table A1 shows that the number of freight train arrivals and departures
from a district is unaffected by Duronto traffic.11 This finding is consistent with the institutional detail that
congestion does not necessarily lead to rationing of freight train slots (Ministry of Railways, 2008): firms
can, and empirically do, still present their goods for shipment when the rail lines become congested, but
they simply need to wait longer for these shipments.

Second, we might suspect that, apart from any effects on shipping time, congestion raises firms’ freight
shipment prices. While congestion could affect freight prices in many settings, for instance because it is
associated with shifts in the supply or demand for freight shipments, none of these effects are likely to occur
on Indian Railways, where the government fixes freight rates as a function of the good shipped and distance
covered. Empirically, Table A2 also shows no effects of Duronto traffic on the amounts rail-using firms report
paying in distribution costs.

Third, we might suspect that congestion leads firms to ship their goods by roads instead of rail. Such
behavior could lead firms to incur additional costs associated with highway shipment, or provide certain
advantages, perhaps without affecting shipment times. Table B2 shows, however, that the Duronto effects
are no different in states with greater availability of road shipping options, as measured by the density of
national highways. Indeed, given that most of the goods shipped by rail are heavy materials for which road
shipment is unsafe or impractical, it makes sense that firms shipping these goods cannot use road substitution
as an insulator against rail congestion, and are instead at the mercy of the shipping times available on the
railways.

Finally, the ways in which firms cope with congestion are consistent with an effort to make their production
process simpler and more predictable, in the face of slower and less reliable goods shipments. Apart from
increasing inventory holdings as discussed already, firms also hedge against uncertainty with adjustments in
their product mix. Table A3 reports these adjustments. Most basically, the firms make fewer products per
factory, as reported in Column (1).12 Column (2) shows that they also substitute toward less time sensitive
products, where the measure of time sensitivity comes from the revealed preference of internationally trading
firms to pay for fast air shipping, as studied in Hummels and Schaur (2013). Column (3) shows substitution
toward products with more predictable demand, based on a standard volatility measure from the literature.13

Column (4) shows evidence, though significant only at the 10 percent level, that firms substitute toward
products with less complex production processes, where the measure of complexity, as in Levchenko (2007),

11The data shows the number of freight train departures, and not the weight or value of goods aboard the trains. So it is
possible that congestion-affected firms are in fact sending and receiving less material. But the continued running of the same
number of freight trains shows, at least, that congestion does not make these trains unavailable if the firms want to put goods
aboard them.

12This result indicates that factories exit from certain product markets, though as reported in Table 1, the Duronto and
spillover traffic do not have large enough effects to prompt exit at the plant level.

13Demand uncertainty, estimated at the product level using pre-2005 ASI data, is measured as standard deviation of νi,t,
the unpredictable part of log changes in (product-level) sales:

∆ lnPYi,t = ρ0,i + ρ1,i∆ lnPYi,t−i + νi,t.

This method of estimating demand uncertainty follows papers such as McConnell and Perez-Quiros (2000) and Blanchard and
Simon (2001).
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is the (inverse) Herfindahl index of the product’s input cost shares according to US input-output tables.
Each of these adjustments potentially streamlines the firm’s production process, amounting to exactly the
firm response we should expect if the main problem caused by congestion is to make freight shipments slower
and less reliable.

4 The effect of shipping times: mean versus variance

Building on the argument that Duronto effects result from a disruption of freight shipments, this section asks
whether the problem is that shipments become slower (mean effect) or that they become less predictable
(variance effect). To explain how the Durontos affect shipping times, I draw on an operations research
model of railway traffic, and leverage the model’s predictions to instrument separately for the mean and
the variance of freight shipping times. Section 4.1 details this empirical strategy. As the results in Section
4.2 show, the Duronto effects owe primarily to the variance of shipping time, which adds uncertainty to the
already uncertain world that firms face.

4.1 Model and empirical strategy

We are interested in estimating an equation of the form

yit = βM lnMdt + βV lnVdt + γi + γt×s + γt×k + ηit, (4)

where yit is an outcome of interest for factory i, Mdt is the mean shipping time for shipments to and from
district d, and Vdt is the variance.14 The empirical challenge is to obtain independent empirical variation in
this mean and variance which is not correlated with the error term ηit.

To separately identify these mean and variance effects, I draw on Chen and Harker (1990) and Harker and
Hong (1990), who model two-way traffic on a single rail line, with trains dispatched according to a given
distribution. Trains i and j meet with probability qij , in which case i experiences delay dij , which is random.
The mean and variance of travel time are

E(ti) = FRi +
∑
j

qijE(dij) (5)

V ar(ti) =
∑
j

[qijV ar(dij) + qij(1− qij)E2(dij)] +
∑
h

∑
k

Cov(qihdih, qikdik), (6)

14To calculate this mean and variance for the empirical application, I restrict focus to those point-to-point shipping routes
with at least two shipments in each of the sample years for which data is available (2011 and 2012). This ensures that changes
in mean and variance are due to shipping becoming slower and less predictable for a fixed set of routes, rather than due to
changes in the composition of shipping origins and destinations. Having at least two shipments is necessary, because otherwise
the variance is undefined. For district-level measures of mean and variance, I average across the routes serving each district,
weighting by the number of trains run on that route over all the years for which data is available (2011 to 2015). I also normalize
each value by the route’s track distance, to avoid giving more weight to longer routes, though doing the analysis without this
normalization does not substantially change the results.
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where FR is free-running time. Solving for the expectation and variance of each ti requires numerical
methods, and Appendix F elaborates on this solution, but equations (5) and (6) reveal a key prediction. To
first order, the effect of adding more trains on E(ti) is simply that each new train j imposes some expected
delay, qijE(dij), on train i. For V ar(ti), however, there is both a direct effect of this additional train j,
reflected in the first sum in (6), and an additional effect arising from the covariance of the meeting times
for all possible pairs of trains on the line. The extra dimension of these pairwise interactions makes the
covariance term, and ultimately V ar(ti), scale more rapidly when there are many trains on the line. The
implication is that the effect on V ar(ti) of adding an additional train to the line, relative to the effect on
E(ti), is greater for lines which already have high congestion, than for low congestion lines. The intuition
for this prediction is based on “knock-on effects”. Even on a congested line, all trains might run on schedule
and reach their destinations quickly. But once one train is delayed, it meets other trains and makes them
delayed, starting a chain reaction and possibly very slow travel for all trains involved. The variance blows up
at high congestion levels because of this difference between everything running on schedule and everything
falling in to the chain reaction.

This prediction serves as a basis for the first-stage equations

lnMdt = πM1 Ddt + πM2 (Ddt × Td,t=t0) + πM3 Sdt + γd + γy + εMdt

lnVdt = πV1 Ddt + πV2 (Ddt × Td,t=t0) + πV3 Sdt + γd + γy + εVdt.
(7)

Here, Ddy is the number of Durontos affecting district d, Sdy is the spillover control, and Td,y=y0 is the
amount of traffic on the local railway lines in 2008, the year prior to the introduction of Durontos. So
the idea of the identification strategy is that when a Duronto hits a given railway line, it has some effect
on mean shipping times which is relatively independent of the amount of pre-existing congestion on that
line. For variability of shipping times, however, pre-existing congestion and the associated interaction term
matters: a Duronto hitting a low-congestion line has some small effect on shipping variance, while a Duronto
hitting a high congestion line sets off knock-on effects that entail a much greater increase in the variance.
Figure 9 provides an empirical illustration of this mechanism, binning all track sections by their pre-existing
congestion levels, and plotting the bin-specific effects of Durontos on mean and variance of shipping time.
The divergence it shows between these two curves represents the source of identifying variation.

Even with random variation in the introduction of Durontos and with the controls for spillovers, this iden-
tification strategy requires an exclusion restriction: the Duronto and interaction instruments affect firm
outcomes only through their effect on mean and variance of freight shipping times. One possible violation
of the restriction would occur if Durontos work through channels other than shipping times. As discussed in
Section 3.3.3, both institutional and empirical details help to rule out these possibilities. Because Durontos
run non-stop and local passenger train schedules are unaffected, Durontos have no effects on local labor
movement. Also, because Indian Railways fixes freight rates based on the type of good and distance trav-
eled, congestion arising from the Durontos has no effect on shipping prices or on the quantities that can be
shipped; the shippers simply need to wait longer.

Even if Durontos work only through shipping times, another possible violation of the exclusion restriction
would occur if Durontos work through some feature of the shipping time distribution other than the mean
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and variance. For example, congestion might fatten the tails of this distribution, increasing the probability
of extremely long and disruptive delays. Because my shipping time data includes only mean and variance
statistics, I cannot directly test for this. However, I construct an over-identification test (Hansen, 1982)
to help address the concern. Specifically, assume D and D × T are valid instruments. Testing whether
higher-order interactions such as D2 × T are correlated with the η̂ is a way of testing whether the track
conditions and congestion affect the outcomes through a channel other than mean and variance of shipping
time. These tests do not reject the hypothesis that the extended set of instruments are correlated with
the errors, lending support to the claim that they actually are not producing effects through higher-order
moments of the shipping time distribution.15

Another threat to identification comes from the use of pre-existing congestion in the interaction term. Areas
with higher pre-exiting congestion are different from less congested areas, and might be on different time
trends. Figure 10 addresses this concern, showing that high-congestion lines receiving Duronto trains are
not on a differential trend.

4.2 Results of the shipping times IV

Table 5 presents first-stage effects of the Duronto trains on the mean and variance of freight shipment times.
Column (1) and shows that Durontos increase mean shipping times, but as per the small point estimates on
the interaction term, this effect is no greater for Durontos hitting high-congestion lines. Column (2) shows
that the effect of Durontos on the variance of shipping times increases with the pre-existing congestion in
that district. For each additional 10 percent of pre-existing line capacity utilization, a Duronto route through
a district leads to 2.1 percent greater variance of shipping time.

Table 6 presents two-stage least squares estimates of the effects of mean and variance of shipping times.
Column (1) shows that increasing the variance of shipping times by 10 percent reduces firm revenue by 1.1
percent. Mean shipping times, on the other hand, do not have a statistically significant effect on revenue,
and we can easily reject the hypothesis that the mean and variance are equal, in favor of the alternative that
the variance effect is greater. Estimates for revenue productivity, reported in Column (2), show negative
point estimates which are comparable in magnitude, though only the effect of variance is significant at the
10 percent level. Column (3) shows how shipping times affect production costs, with a 10 percent increase
in variance leading to a 0.3 percent increase in average cost, compared with almost no effect coming from
the mean. Finally, Column (4) indicates that both mean and variance contribute to increases in inventory
holdings, consistent with the predictions of canonical inventory models as described in Appendix E.

15I also employ similar tests using D interacted with the district’s pre-Duronto congestion bin, for instance D × 1[50% <
C ≤ 60%]. These tests similarly do not reject the exclusion restriction. In an earlier version of the paper, I estimated linear
effects of M and V , instead of the log functional form used here. This linear formulation enables a Wald-style specification
test (Godfrey, 1988) whose formulation is similar to the over-identification test but which follows a different logic. Suppose,
regardless of whether D and D × T are valid instruments for M and V , that D, D × 1[50 < C ≤ 60], D × 1[60 < C ≤ 70], and
so forth are valid instrument for an extended set of endogenous variables including not only M and V , but polynomial terms
M2 and MV . Estimating this extended model and constructing the Wald test shows that it is actually the mean and variance,
and not these polynomial terms, producing the effects on firms. Effects of M2 being the true source of the estimated effects of
variance is a particular concern given that the variance scales with the mean or with mean-squared for many random variable
distributions. However, that does not seem to be what is happening here.
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5 Explaining the revenue loss: costs versus competition

To determine the economic reason for Durontos’ effect on firm revenue, this section models how firm produc-
tion and competition are affected by the running of Duronto trains. As the reduced form results in Section
3 show, a rail-using firm suffers substantial losses when one of these trains passes through its district. But
this revenue loss could occur for two basic reasons. One possibility, which I call a “cost effect”, is that the
Duronto traffic greatly disrupts firm operations and increases production costs. Large cost effects entail that
if every firm in the economy suffered an increase in congestion, large losses in aggregate output would follow.
A second possibility, however, is that Durontos’ revenue effects owe more to simple market competition: the
disruption caused by Durontos is, perhaps, only very small, but because the disrupted firms compete with
other firms less exposed to traffic, even a small cost increase can force them out of business. Distinguishing
between these possibilities is essential both because it bears on the net effect of the Duronto program, and
because if the cost effect is in fact small, then increasing congestion for every firm in the economy could lead
to negligible aggregate losses, while a large cost effect implies large losses from nationwide congestion.

5.1 Model and empirical strategy

The following model serves to isolate the pure cost effect in the presence of competitive forces, and to provide
empirical estimating equations. As in Rotemberg (2017), the economy has K sectors, and a consumer with
income I has utility

U =

K∑
k=1

Qφk + c, (8)

where Qk is sectoral output and c is consumption of an outside good, whose price is normalized to one.

Consumer optimization implies that sectoral revenue is

PkQk =

(
Pk
φ

) φ
φ−1

. (9)

Sectoral production is a CES aggregate of the output quantities qjk of each firm j in the sector:

Qk =

 N∑
j=1

ajkSjkq
σk−1

σk

jk


σk
σk−1

, (10)

where ajk is quality, and Sjk is the share of output going to consumption. Sectoral prices come from profit
maximization of the sector’s final good producer:

Pk =

 N∑
j=1

p1−σk
jk

 1
1−σk

. (11)
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The elasticity of substitution across varieties, σk, is an important parameter for determining the effects of
exposing some firms in the sector to congestion. Low substitutability σk will mean that when some firms
are exposed, these firms can raise their prices to offset the associated costs, without losing much business to
their competitors. Their ability to retain sales could result from their making specialized products, or from
the geography of production, for instance because their customers are local and distant competitors have
difficulty reaching these customers. High σk, on the other hand, means that if congestion forces affected
firms into even a small price increase, customers will switch to the competitors.

Production of each firm’s variety is Cobb-Douglas:

qjk = AjkK
αK
jk L

αL
jk R

αR
jk N

αN
jk , (12)

where A is firm-specific TFP, and production uses capital K, labor L, “rail good” materials R, and “non
rail good” materials N . In particular, R is a composite of the rail goods specified above (coal, iron, steel,
cement, fertilizers, foodgrains, and mineral oils), while N is a composite of all other materials. For ease
of notation, index inputs by I. Returns to scale are reflected by γ ≡

∑
I∈{K,L,R,N} αI . For now, assume

constant returns to scale (γ = 1).

As in Hsieh and Klenow (2009), production is subject to firm-specific distortions affecting the marginal
product of each input: τK,j , τL,j , τR,j , and τN,j . The literature proposes many possible sources of these
distortions, from credit constraints to political connections; Hopenhayn (2014) provides a useful survey.
Taking the pre-existing distortions as given, transport congestion could increase the distortions through a
variety of channels. For instance, slow shipping on a congested rail network could force the firm to incur some
financing or depreciation costs for each unit of rail input used, or uncertainty in input arrival times could
distort another input, such as labor, if workers tasks become less productive or more difficult to coordinate
as a result of the uncertainty. So I model congestion as potentially affecting each of the distortions, and will
show how firm behavior responds to these changes in distortions.16

The firm takes the overall price index as given and maximizes profits

πjk = pjkqjk −
∑
I

(1 + τI,j)pIIj , (13)

implying that it sets price at a constant markup over marginal cost:

pjk =
σk

σk − 1
·
∏
I

(
pI
αI

)αI
·
∏
I(1 + τI,j)

αI

Ajk
. (14)

Firm revenue is

yjk = pjkqjk = (p1−σk
jk )(Pσk−1

jk )

(
Pk
φ

) φ
φ−1

. (15)

16Apart from the channels mentioned here, congestion could also yield effects similar to an “output distortion”, for instance
if slow shipping makes consumers buy less of the firm’s product at a given price. As Hsieh and Klenow (2009) note, however,
the effects of changing this output distortion are equivalent to the effects of changing all of the input distortions equally. I thus
omit an explicit output distortion, though I note for purposes of interpretation that the input distortions I study could also
reflect these channels related to output distortion.
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Allow firm productivity to grow according to

Âjk = −εjk, (16)

where εjk is mean-zero and normally distributed. Then, combining (15) with (14), (11), and (16), changes
in firm revenue are

ŷjk = (1− σk)

(∑
I
αI ̂(1 + τI,j) + εjk

)
︸ ︷︷ ︸

direct effect

+ (σk −
1

1− φ
)

Nk∑
j′=1

[(∑
I
αI ̂(1 + τI,j′) + εj′k

)
yj′k
Yk

]
︸ ︷︷ ︸

stealing effect

. (17)

As I elaborate below, the first term in (17) is the direct effect of exposure to congestion on firm revenue
loss, while the second term captures the firms gains from stealing the business of competitors exposed to
congestion. Let ψI be the effect of one Duronto route on a firm’s input I distortion:

̂(1 + τI,j) = ψIDj . (18)

We can now write a simplified version of equation (17):

ŷjk = βΨDj + χΨµk + ε̃jk, (19)

where
β ≡ 1− σk

Ψ ≡
∑
I
αIψI

χ ≡ σk −
1

1− φ

µk ≡
∑
j′ Djyjk

Yk

ε̃jk ≡ (1− σk)εjk + (σk −
1

1− φ
)

Nk∑
j′=1

εj′k
yj′k
Yk

.

Here, β reflects the direct effect of increasing distortions. This effect is largest if the elasticity of substitution
σk is high, since this means that firm varieties in the sector are close substitutes, so even a small distortion
to one firm’s costs will cause it to lose a large amount of business to its competitors. While β captures the
effect of the distortions themselves, Ψ captures how these distortions respond to Duronto routes Dj through
the firm’s district. In particular, Ψ is a sum of the Durontos’ effect, ψI , on each input distortion, weighted
by each input’s cost share αI .

Just as congestion can lead to revenue losses for a given firm, it also presents an opportunity for the firm
to steal the business of its competitors who experience congestion of their own. The magnitude of this
stealing depends on crowd-out parameter χ. It is largest when the firm’s product is a ready substitute for
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its competitors’ products (high σk), and when the sector as a whole is less replaceable by other sectors (low
1

1−φ ). The measure of sectoral exposure, µk is an output-weighted average of exposure to Duronto congestion
for all the firms in the sector. Finally, the disturbance ε′jk is normally distributed with mean zero.

An additional prediction comes from the observation that the revenue effect increases with the elasticity of
substitution. In particular, re-write (19) as

ŷjk = Ψ1Dj −Ψ2(σk ×Dj) + χΨµk + ε′jk. (20)

Here, Ψ1 reflects the cost effect for firms in low σ industries, while Ψ2 reflects that revenue losses become
greater for firms in more competitive industries. Below, I use industry level estimates of σ to estimate (20).
Note that if the model is correct and σ is measured perfectly, we should find Ψ1 = Ψ2 = Ψ.

The aggregate effect on sectoral output comes from summing across all firms in (17), yielding

Ŷk = (β + χ)Ψµk + εk, (21)

where the disturbance εk ≡
∑Nk
j=1 ε̃jk

yjk
Yk

is a weighted average of the firm-level disturbances. Equation
(21) nicely breaks the effect of the Duronto congestion shock into three parts. First, firms in the sector
face some exposure to the congestion, as measured by µk. Second, this disrupts firm operations, leading to
some total distortion Ψ, which reflects pure “cost effect” of the Durontos, independent of any output market
competition. Finally, β+χ reflects how the previous two components, working through market competition,
lead to an ultimate effect on sectoral revenue. The aggregate effect depends on whether the direct losses to
firms, reflected by β, are large relative to the ability of other firms in the sector to replace the lost output,
as reflected by χ.17

To isolate the pure cost effect Ψ, note that Cobb-Douglas production (12) with constant returns to scale
entails that the firm’s average cost equals marginal cost:

ACj = MCj =
∏
I

(
pI
αI

)αI
·
∏
I(1 + τI,j)

αI

Ajk
. (22)

It follows that
ÂCj = ΨDj + ε̂AC,j , (23)

with

εAC ≡
∏
I

(
pI
αI

)αI
· 1

Ajk
. (24)

17It is straightforward to extend the above discussion to account for the effects of spillover traffic. Letting Sj be the amount
of spillover traffic in the district of firm j, ΨS the total cost effect of spillover routes, and µS the exposure of other firms in the
sector, we obtain analogues of equations (19) and (21):

ŷjk = β(ΨDj + ΨSSj) + χ(Ψµk + ΨSµSk ) + ε̃jk

Ŷk = (β + χ)Ψµk + (β + χ)ΨSµSk + εk.
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Under the assumption that Duronto running is uncorrelated with changes in factor prices pI and the physical
TFP Ajk in the firm’s production function, regressions of the form (23) identify the effect of Durontos on
costs. In other words, observed changes in average cost reflect an actual cost effect, independent of any
competition effect.

A more general version of this statement holds for generic production functions with non-increasing returns.
Let C(q) be the cost function, which is unknown, but assumed to satisfy C ′(q) > 0 and C ′′(q) ≥ 0. Also
assume there are no fixed costs (limq→0+ = C(0) = 0).18 Suppose costs increase by shifting outward, so the
new cost function is C̃(q) = (1 + τ̃)C(q). How can we identify (1 + τ̃)?

Equating marginal revenue with marginal cost, firm optimization entails

σ + 1 = (1 + τ̃)C ′(q). (25)

Differentiating with respect to τ̃ , we see that

∂q

∂τ̃
= − C

′(q)

C ′′(q)

1

1 + τ̃
< 0. (26)

Finally, noting that ACj = (1 + τ̃)C(q) and considering the effect of changing τ̃ , it follows that

ÂCj = ̂(1 + τ̃) +
∂[C(q)/q]

∂q

∂q

∂τ̃
̂(1 + τ̃). (27)

So the effect of the cost shift τ̃ on average costs is, first, a direct increase in costs, ̂(1 + τ̃). But as the second
term reflects, the cost shift also pushes the firm down its cost function ( ∂q∂τ̃ < 0), which with non-increasing
returns has the effect of reducing average costs (∂[C(q)/q]

∂q > 0). Thus, since the second term in (27) is

negative, observed changes in average cost ÂCj are a lower bound on the cost shift ̂(1 + τ̃).

5.2 Empirical application of the model

To identify the effect of competitors’ exposure to Duronto congestion, I estimate an empirical counterpart
of (19):

yit = a1Ddt + a2Sdt + a3µsk + a4µ
S
sk + γi + γt×s + γt×k + εit, (28)

where µsk and µSsk are the exposure to Duronto and spillover traffic, respectively, of factories in the same
state s and four-digit NIC industry k as factory i. All exposure measures are calculated based on the
Duronto routes in service as of year t, but the 2008 district locations of each industry’s output. As above,
all regressions include fixed effects for each firm, and year-specific effects for each state and industry.

Table 7 presents results of this regression. Column (1) shows, first, that the main effect of a Duronto route
is a 3.1 percent loss in revenue for rail-using factories. This is greater than the revenue loss estimated in the

18Even for a production with fixed costs, a version of (27) holds, with average variable cost, rather than average cost, as the
object of interest.
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basic reduced form regression of Table 3, because Duronto traffic is positively correlated with the exposure
of competitors to Duronto traffic, and this exposure µDsk itself has a positive effect on a firm’s own revenue.
In particular, if each of a firm’s competitors is exposed to on additional Duronto route, that firm gains 2.5
percent in revenue.

In the context of the model, the sum of these revenue coefficients, â1 + â3, provides an estimate of (β+χ)Ψ,
which indicates the aggregate effect of Duronto exposure on firm revenue. I cannot statistically reject the
hypothesis that the sum of these coefficients is greater than or equal to zero, against the alternative that it
is negative; the p-value on this test is 0.29. So it is not possible to rule out that the competitors replace all,
or at least a large portion, of the output lost by congestion-affected firms. Estimates of the spillover and
state-industry spillover exposure effects offer less precision, but yield a similar qualitative conclusion.

Columns (2), (3), and (4) of Table 7 show that competitors’ exposure to congestion does not affect a firm’s
revenue productivity, average cost, or inventory holding. These results are unsurprising: while competitors’
exposure enables a firm to steal the business of these competitors, it does not affect the firm’s own logistical
operations or production costs. In principle, competitors’ exposure to congestion might have affected revenue
productivity through price effects, though revenue productivity depends not only on prices but on physical
productivity, which is likely to remain unaffected. The main effects on these three variables remain the same
as in the reduced form, however, with each Duronto route still leading to a 0.8 percent increase in average
costs. As per equation (23), this effect on average costs is interpretable as an estimate of the pure cost effect
Ψ under Cobb-Douglas production, and more generally as a lower bound on the shift in the cost function
as illustrated in (27). So Duronto congestion does lead to some disruption of firm production and pure cost
effect which, though magnified by competition, is nontrivial on its own.

Table 8 shows support for the additional prediction of equation (20) that revenue effects scale with the
elasticity of substitution. In an industry with inelastic demand, Duronto congestion causes little revenue
loss: the 10th percentile elasticity is σ = 2.9, implying the Duronto effect on revenue is a 2.0 percent loss.
Intuitively, the low elasticity means that when congestion increases costs for these firms, consumers still
buy their products. For high elasticity industries, on the other hand, the congestion effect leads customers
to substitute to other sellers, and affected firms suffer a larger revenue loss: the 90th percentile industry
has σ = 6.2, implying a 4.2 percent revenue loss. The estimated coefficient on the Duronto main effect
Ψ̂1 = −0.0014 and that on the elasticity interaction Ψ̂2 = −0.0065 do not explicitly validate the theoretical
prediction that Ψ̂1 = −Ψ̂2, though the confidence interval on Ψ̂1 is wide enough that we also cannot reject
this prediction. One likely reason for the difference between Ψ̂1 and −Ψ̂2 is measurement error in the
elasticities σ. The economically relevant elasticity concerns substitution between a firm’s variety and the
varieties of other firms in the state-industry, but the elasticities in the data reflect substitution patterns
between Harmonized Standard 6-digit products.19 Still, this type of measurement error would attenuate
estimates of Ψ̂2. So we should expect the true magnitude of Ψ2 to be larger than estimated, and the basic
conclusion still holds: Duronto congestion effects are worst for firms facing stiff competition.

19The product categories with the lowest elasticities are those with specialized products: uranium and thorium ores, man-
ufacture of cement plaster, manufacture of electricity distribution, and control apparatus, and manufacture of electric motors.
Those with higher elasticities include more substitutable products: iron ores, soft drinks, alcohol, and animal feeds. So although
the elasticities from Broda, Greenfield and Weinstein (2006) do not measure the relevant cross-firm-variety elasticity, they reflect
the interchangeability of products within categories, and in this sense proxy well for the relevant elasticities.
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While the estimates so far use firm-level data to estimate the parameters that matter for aggregate revenue
effects, a direct test for aggregate effects is also possible, using an empirical counterpart of (21):

Yskt = b1µskt + b2µ
S
skt + γt×s + γt×k + εskt, (29)

where Yskt is aggregate output for industry k firms in state s in year t and the exposure measures are
calculated as above. The results in Table 9 show negative but statistically insignificant effects of exposure
to Duronto and spillover traffic. The magnitudes of these estimates nevertheless fall within the same range
as the implied aggregate effects from the firm level regression. In particular, the implied value of (β + χ)Ψ

from Table 7 is −0.006, while the Duronto exposure effects in Table 9, which estimate the same parameter,
range between −0.002 and −0.014.20

Taken together, the empirical results in this section show that the reduced form revenue loss owes, in large
part, to firms losing their edge against competitors, who in turn take advantage of the opportunity and
mitigate aggregate revenue loss. Still, congestion affected firms do experience a genuine disruption to their
operations and an increase in production cost, which would imply some losses in aggregate productivity if
all firms in an economy experienced a congestion increase.

6 Policy

Congestion bears on infrastructure policy for two distinct reasons. First, it has implications for traffic
management on existing infrastructure. Only with notions of capacity and congestion can we conceptualize
the economic benefits from congestion pricing and prioritization of different types of traffic. Second, decisions
about how and where to construct new infrastructure need to account for congestion. Doing so overturns
some commonly held intuitions about the form of optimal investment.

6.1 Traffic management on existing infrastructure

6.1.1 Congestion externality from running additional traffic

The first traffic management issue is how to account for congestion in setting prices or restricting quantities.
Currently, Indian Railways does not increase prices with congestion. In calculating how to set congestion
pricing, an essential input is a measure of the cost externality the running of one train imposes on other
users of the rail network. My estimated Duronto effects provide a measure of this externality. Of course,
running one Duronto train may impose externalities on the passengers in other trains, in addition to the
effects on freight-using firms. My estimates capture the effects on freight alone, and in this sense are a lower
bound on the total externality.

20Even if Duronto traffic did not produce aggregate effects on revenue, it might affect gross value added by relocating business
to less productive factories which would not have produced as much output in the absence of the congestion increase. Table 10
tests for these effects on gross value added, again finding coefficients which are negative but statistically insignificant.
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A naive way to measure firm losses from introducing one Duronto route is to look at the revenue loss for
Duronto-affected firms, relative to firms in districts unaffected by Duronto traffic. To calculate this loss, I
sum the 2008 revenue of all rail-using firms in the path of each Duronto train, and multiply by the estimated
revenue loss coefficient from Table 7. As reported in Column (1) of Table 11, the introduction of the average
Duronto route leads to a firm revenue loss of INR 461 million in the districts it passes through, plus an
additional INR 155 million in districts subject to spillover traffic, for a total loss of INR 616 million (USD
12.7 million at 2008 exchange rates). For comparison, this loss amounts to 60 percent of the estimated
INR 1,024 million annual passenger revenue from running one Duronto route.21 Railway passenger services
already operate at a loss, with operating costs twice as high as the fare revenue collected (Ministry of
Railways, 2015a), and this externality adds an additional cost on top.

At the same time, consistent with a central theme of this paper, the negative externality for certain firms
leads to a positive externality for the firms which steal their business. As Column (2) of Table 11 reports,
competitors in the same state and industry as Duronto and spillover affected firms gain a total of INR 567
million for each Duronto route introduced. Thus, the net firm revenue loss as reported in Column (3) is INR
49 million, or only about 5 percent of the route’s passenger fare revenue.

While the thought experiment so far considers the effects of running Duronto trains through some districts
but not others, it leaves open an important economic question: what would be the effects of a nationwide
increase in congestion? Apart from the economic interest in answering this question, it is also relevant to real
policies the Railways might consider, such as uniform limits on the amount of passenger traffic congesting a
given line, uniform increases in the track priority of freight relative to passenger traffic, or the construction
of the proposed nationwide network of Dedicated Freight Corridors, aiming to improve freight performance
for all firms.

The effects of such a nationwide change in congestion depend on the extent to which congestion disrupts
firm production, as reflected in the “cost effect” discussed in Section 5. The model there shows that if we
assume Duronto congestion increases production costs by some proportion 1 + τ̃ , then estimated effects on
average cost provide a lower bound on τ̃ . Under perfect competition, multiplying each firm’s cost function
by 1 + τ̃ , equivalent to multiplying aggregate supply by 1 + τ̃ , will lead to a 100 · τ̃ percent reduction in
output, and a 100 · τ̃ percent reduction in total surplus. As Column (4) of Table 11 reports, exposing all
rail-using firms to this cost shock would lead to an output loss amounting to INR 94,962 million (USD 2.0
billion). Whereas this represents the effect of exposing every rail using firm to Duronto traffic, Column (5)
reports the effect of exposing every manufacturing firm, rail-using or not, to a similar cost shock, resulting
perhaps from a Duronto-sized congestion increase on its preferred mode of transportation, whether that be
rails, roads, or otherwise. This effect amounts to INR 258,551 (USD 5.3 billion).

Of course, this extrapolation to non rail using firms assumes that these firms are as sensitive to congestion as
the rail using firms studied in my empirical analysis. While it is possible that these non rail using industries
are less sensitive to congestion, two factors suggest that, in fact, they could be more sensitive. First, in terms
of selection, the industries choosing to remain on the rails despite the high congestion are likely industries

21I do not have detailed data on fare revenues, but derive estimates by using the limited number of per-journey revenue
amounts reported in Ministry of Railways (2015b), and multiplying by the annual number of journeys for each route.
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for which this congestion is less of a problem. Second, the goods that rail-using firms ship on the railways
are typically homogeneous commodities like coal, iron, and cement. Whereas these firms might succeed in
buffering themselves against congestion by holding large inventories of the homogeneous commodities, we
might expect worse effects of congestion for other firms shipping more specialized inputs that need to arrive
quickly and predictably. So in both of these regards, my estimates of the rail-specific congestion effects are
perhaps lower bounds on the effects of congestion for the productive economy as a whole.

6.1.2 Priority of traffic

A second traffic management issue is how to prioritize different types of traffic. Daily operations on Indian
Railways are handled by managers who decide which trains are allowed to run first on an open track, and
how to accelerate or decelerate trains so they arrive at certain times. Currently, these managers’ protocol
is to give the highest priority to passenger trains, making them adhere as well as possible to their schedule.
An alternative would be to increase the priority for freight trains, either running the freight trains on fixed
schedules, or granting higher priority to a freight train once it has met a certain amount of delay. The
latter notion is the idea behind back-pressure routing (Neely, 2010), which is an approach to maximizing
throughput based on minimizing a sum of squares of units’ backlogs. By using backpressure routing or
another prioritization objective function which helps lagging traffic catch up, railways managers could reduce
the variance of travel times. Whether this strategy yields economic benefits depends on whether the variance
of travel times leads to economic costs, and my estimates indicate that it does.

6.2 New infrastructure

Congestion also factors into planners’ decisions about how and where to build new infrastructure. India,
with $12 billion in financing from the World Bank, is now in the process of constructing Dedicated Freight
Corridors, a set of higher speed railway tracks exclusively for freight shipment. Policymakers see congestion
relief as a chief goal of these projects, and argue that this relief will provide great help to manufacturing
growth (Ministry of Finance, 2015). One corridor is under construction along the west coast, between
Mumbai and Delhi, with another in progress running from Punjab to West Bengal. Several other branches
in other parts of the country are under consideration. But which of these lines to actually build remains an
open question.

To see the implications of congestion in answering this question, consider the western DFC project, which
adds a new rail line between Mumbai and Delhi. Several existing rail lines already serve Mumbai-Delhi
traffic, but these lines suffer from heavy congestion. Figure 11a depicts a stylized version of this project. In
a least-cost path approach to specifying trade costs, as is typical in the empirical literature on infrastructure
(Donaldson, 2017; Donaldson and Hornbeck, 2016), the cost of moving from M to D, τMD, is a function of
the length of the shortest path between M and D.22 If the new line and the existing shortest path between

22The approach does, often, show sophistication in allowing for different prices per distance traveled on different parts of the
network or for different modes, or might incorporate other aspects of trade costs. But the core idea of a least-cost path approach
is to find the minimum travel distance between points. Applying such a least cost path approach to the Indian Railways would
almost certainly specify costs as a function of distance, since, on the Railways, the distance determines the price.
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M and D are of similar length and quality, and we have no notion of capacity or congestion, then adding the
new line will not reduce the trade cost τMD. The new line is simply a close substitute for the existing line.

The intuition that comparable links in a transportation network serve as substitutes for one another has
a long and influential intellectual tradition, going back to Fogel (1964). Fogel’s main insight was that,
although the American railways carried large volumes of freight shipments, the railroads in fact made a
small contribution to economic growth, because even in the absence of railroads, shippers would have been
able to use a close substitute: the waterways. The intuition of substitutability between two different lines or
modes of transport is, perhaps, correct in a context like the American railroads, if there is little congestion
relative to the level of capacity.

In a congested network, however, this intuition breaks down. First, the new line between M and D shares
the traffic load with the existing line, reducing congestion and the associated trade cost between M and D.
Second, due to traffic spillovers, the new line will reduce trade costs for trips to and from the neighboring
city X. In particular, if there are some traders who previously traveled from M to D via X in order to avoid
congestion on the short path between M and D, these traders can now move to the new, less congested short
path between M and D, reducing congestion along the line passing through X. For these reasons, the new
line is not a perfect substitute for the existing lines, but acts as a sort of complement, in that it helps carry
the burden of traffic.

7 Conclusion

The example of the Duronto trains shows that while running additional traffic on a transport network benefits
those involved with that traffic, it also imposes externalities on certain other users of the transport system.
These externalities work in large part by increasing the variance of shipment times, adding uncertainty to
an already uncertain world faced by developing country firms. These uncertainty effects are difficult to
disentangle from negative shocks in most other settings, but here I show that they create a significant drag
on the productivity of the affected firms. At the same time, one firm’s loss is a competitor’s gain, which
helps to offset the affected firms’ losses in terms of congestion’s net effect.

This analysis also points to some interesting further questions. First, a full welfare analysis of the Duronto
trains would depend not only on how they affect firms in intermediate districts, but also on how they benefit
the passengers riding them between the endpoint districts, and on how they create congestion for other
passenger trains. While these effects are beyond the scope of this paper, related work studies the benefits
on the passenger side, using Railways data to study patterns of seasonal migration from rural areas to labor
markets (Firth, Forster and Imbert, 2017). Second, over the long run, firms can make locational adjustments
in response to conditions on the transportation network. For example, Gulyani (2001) reports that Indian
automakers respond to transportation problems by clustering geographically, and thus limiting their reliance
on transport infrastructure. In this light, another related paper studies how certain distortions in railway
freight pricing contributed, over the long run, to agglomeration of closely related industries in certain regions
of India (Firth and Liu, 2017).
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Figure 1: Histogram of line capacity utilization

Notes: This figure depicts the capacity utilization of the track sections on Indian Railways. The utilization
percentage is measured as the average daily number of trains passing on the section, divided by the prescribed
amount of traffic for that section, which is based on an engineering rule known as Scott’s Formula. Source:
Indian Railways Line Capacity Charts.
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Figure 2: Route-wise average freight shipment times

Notes: This figure plots cross-sectional route-wise average run times for freight shipments, against the track
distance of the route. Each point is reflects the annual average run time, in days, for an origin-destination
pair between which freight shipment takes place. These points are compared, first, against the benchmark
time it would take if shipments maintained the standard freight shipment speed of 25 kilometers per hour.
The other line is a best-fit of run time as a function of distance. The R2 from regressing run time on distance
is 0.19. Source: Indian Railways freight shipment database.
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Figure 3: Sample from scraped website with data on train routes

Notes: This figure shows a sample of the information about each train which
is scraped from the website IndiaRailInfo. For each train, data is collected
on the actual route the train follows, and the shortest possible path between
its endpoints.
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Figure 4: Goods shipped by rail in India

(a) Composition of rail freight traffic (b) Modal shares

Notes: This figure shows that a certain set of “rail goods” account for the bulk of railway freight traffic in India, and
conversely that these goods rely heavily on the rails rather than other modes of transportation. Panel (a) shows the
commodity-wise composition by weight of goods shipped by rail; the composition by value is similar. Panel (b) shows,
for each of these commodity categories with available data, the fractions of freight shipped by Rail, by Road, and by
Other modes of transport. Source: Ministry of Railways (2011).
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Figure 5: Reduced form empirical strategy, accounting for spillover effects

(a) Basic reduced form

(b) Spillovers from diversion of traffic
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Figure 6: District-wise exposure to Duronto routes

Notes: This figure depicts each district’s exposure to the Duronto treatment, defined, as in the text, as the number
of two-way Duronto shortest-path routes passing through the district. It shows the cumulative treatment as of
2012, including all trains added between 2009 and 2012. The sample is restricted to districts on the shortest path
between the major cities connected by the Duronto program, and which were therefore places that the Durontos
conceivably could have run. The out of sample areas, including the endpoint districts actually served by the
Durontos, are shaded in black.
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Figure 7: District-wise exposure to spillover routes

Notes: This figure depicts each district’s exposure to the spillover traffic from the Duronto treatment, defined, as in
the text, as the number of Duronto routes for which the district lies on a “diversion” route. It shows the cumulative
treatment as of 2012, including all trains added between 2009 and 2012. The sample is restricted to districts on
the shortest path between the major cities connected by the Duronto program, and which were therefore places
that the Durontos conceivably could have run. The out of sample areas, including the endpoint districts actually
served by the Durontos, are shaded in black.
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Figure 8: Event study for effect of Durontos

(a) Effect on ln(Revenue) (b) Effect on ln(TFPR)

(c) Effect on ln(Average Cost) (d) Effect on ln(Inventory)

(e) Effect on congestion

Notes: In panels (a) to (d), this figure shows event studies for the effect of introducing a Duronto route on each of
the four main firm outcomes of interest. Panel (e) presents a “zero-th stage event study”, showing at the track section
level, the effect of a new Duronto route on the amount of traffic running on that section.
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Figure 9: Mean and variance response to Durontos, as a function of pre-existing congestion

Notes: This figure shows how shipping times respond to increased traffic, consistent with the railway model
from operations research. Specifically, it plots the βc coefficients from the regressions

lnMdy =

160∑
c=50

βM
c (Ddy × 1[c ≤ Cd,2008 < c+ 10]) + γd + γy + εdy

lnVdy =

160∑
c=50

βV
c (Ddy × 1[c ≤ Cd,2008 < c+ 10]) + γd + γy + εdy .
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Figure 10: Event study for the effect of Ddy × Td,y=y0 on revenue

Notes: This figure shows an event study for the effect on revenue of the interaction of Duronto traffic
with district pre-existing congestion. Specifically, it plots the βy coefficients in

ln (Revenue)it =

2012∑
y=2006

βy(Dd,2012 × Td,2008 × 1[t = y]) +Ddt + Sdt + γi + γt×s + γt×k + εit
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Figure 11: Effects of two hypothetical construction projects

(a) Stylized Mumbai-Delhi corridor (b) Stylized Amaravati-Raipur corridor

(c) Map of cities involved
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Table 1: Descriptive statistics for factories in rail using industries

∆ by eventual treatment

Mean St. Dev. Duronto Spillover
(1) (2) (3) (4)

Firm variables, at factory level
Revenue (million INR) 1251.7 3096.1 29.304 15.31

(20.634) (26.368)
ln(TFPR) 2.389 0.864 -0.022* 0.001

(0.013) (0.008)
Average cost 1.013 1.136 -0.006 0.013

(0.008) (0.015)
Total inventory (million INR) 185.5 480.8 3.254 -0.713

(3.399) (4.268)
Inputs 108.9 278.2 1.713 -1.142

(2.054) (2.462)
Finished goods 76.3 190.0 1.437 0.776

(1.308) (1.759)
Input share of rail goods 0.265 0.189 -0.005* -0.003

(0.003) (0.004)
Makes rail good (dummy) 0.631 0.483 0.003 0.011*

(0.004) (0.006)
Survival until 2012 0.534 0.499 -0.011 0.002

(0.007) (0.012)

Rail traffic variables
Line capacity (trains per day) 32.4 28.2 -1.055 0.997

(2.193) (2.312)
Line capacity utilization % 95.2 11.8 0.406 0.744

(0.452) (0.539)
% passenger traffic 66.3 16.1 0.263 -0.560

(0.588) (0.582)
% freight traffic 28.1 15.3 -0.157 0.403

(0.573) (0.683)
% other traffic 5.5 4.8 -0.110 0.137

(0.076) (0.242)
Mean freight ship time, days 5.11 4.10 0.624 -0.255

(normalized to 1000km) (0.810) (0.898)
Variance of freight time, days 6.39 11.19 -0.037 -0.402

(normalized to 1000km) (0.722) (0.734)

Factories in sample 8281
Districts in sample 248
Notes: This table presents descriptive statistics for ASI factories in rail-using industries, defined as those which
either (a) produce a good commonly shipped by rail (coal, iron, steel, cement, fertilizers, food grains, mineral
oils), or (b) whose input cost share for the median firm in pre-2009 data is at least 5 percent. The rail traffic
variables are district-level measures for the rail lines in the districts containing at least one of these rail using
factories. The rail shipping time variables are calculated as a weighted average over all of the shipping routes
going to and from the district, weighted by the number of freight trains run on each route. Sources: ASI, In-
dian Railways Line Capacity data, Indian Railways, Freight Shipment data.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 2: Effects of Durontos on railway line traffic patterns

Main specification With second-order spillovers

Passenger Freight Total Passenger Freight Total
trains trains trains trains trains trains
(1) (2) (3) (4) (5) (6)

Duronto routes 0.611*** 0.0208 0.666*** 0.602*** 0.0286 0.666***
(0.131) (0.118) (0.177) (0.130) (0.120) (0.178)

Spillover exposure 0.221** 0.227** 0.408*** 0.210** 0.239** 0.411***
(alternate routes) (0.0917) (0.114) (0.152) (0.0907) (0.115) (0.154)

Second-order spillovers 0.0485 -0.0499* -0.00979
(0.0389) (0.0256) (0.0473)

Mean of dep. var. 27.43 13.6 43.57 25.83 12.71 40.97
R2 (adjusted, within) 0.042 0.006 0.031 0.040 0.007 0.030
Observations 2198 2198 2198 2494 2494 2494
Section FE X X X X X X
Yr × Sample FE for {Dur,Alt} X X X X X X
Yr × Sample FE for S-O X X X

Notes: This table presents estimates of equation (2), showing the “zero-th stage” effect of Duronto trains on railway
congestion. It is estimated at the level of the track section, where the dependent variable is the annual daily average
number of trains of each type running on the section. The first independent variable is the number of Duronto trains
(based on the shortest path between endpoints) scheduled to run on the section as of that year. The next independent
variable, spillover exposure is the number of introduced Duronto trains for which the section lies on a spillover alternate
route, as defined in the text. The second order spillovers variable, considered only in Columns (4) through (6), indi-
cates the exposure of the district to the alternate routes of these alternate routes, showing that traffic spillovers do not
extend quite this far. Standard errors in parentheses clustered by track section. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3: Reduced form effects of Duronto trains on rail using firms

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Panel A. Preferred specification
Duronto routes through district −0.0194*** −0.0111*** 0.0081** 0.0097*

(0.0050) (0.0041) (0.0032) (0.0053)

Spillover routes through district −0.0110* −0.0064 0.0072* 0.0006
(0.0063) (0.0042) (0.0042) (0.0064)

Panel B. Without spillover control
Duronto routes through district −0.0125** −0.0075* 0.0036 0.0093*

(0.0049) (0.0041) (0.0030) (0.0053)

Observations 27558 26896 21624 26618
Clusters 1 (factories) 6191 6074 5238 5964
Clusters 2 (district × year) 1932 1914 1866 1928
Notes: This table presents estimates of equation (1), for factories in rail-using industries. The dependent variables are the
four main outcomes of interest as defined in the text. The regressors are the number of two-way Duronto routes (based on
shortest path) passing through the district as of the current year, and the number of introduced Duronto trains for which
the district lies on a spillover alternate route, as defined in the text. All regressions include fixed effects for factory, year
by state, and year by NIC industry. Robust standard errors in parentheses, with clustering by factory and district-year
(Cameron, Gelbach and Miller, 2011). * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 4: Placebo effects on non rail using firms

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Panel A. Preferred specification
Duronto routes through district −0.0006 −0.0031 0.0011 0.0021

(0.0044) (0.0019) (0.0032) (0.0049)

Spillover routes through district −0.0023 −0.0024 0.0012 −0.0015
(0.0059) (0.0028) (0.0041) (0.0060)

Panel B. Without spillover control
Duronto routes through district 0.0003 −0.0019 0.0004 0.0031

(0.0044) (0.0019) (0.0033) (0.0049)

Observations 50483 48101 37688 45012
Clusters 1 (factories) 10844 10420 8664 9690
Clusters 2 (district × year) 2329 2293 2248 2305
Notes: This table presents estimates of equation (1), for factories in non rail using industries. All other details are as in
Table 3 above. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 5: First stage effects of Duronto traffic on freight shipment times

ln(Mean) ln(Variance)
(1) (2)

Duronto routes through district 0.113*** 0.039
(0.028) (0.026)

(Duronto routes)×(2008 congestion) -0.021 0.211***
(0.031) (0.042)

Observations 6896 6896
Clusters (districts) 174 174
F statistic 19.22 27.43
Control for spillovers X X

Notes: This table presents estimates of equations (7), indicating the first stage effect of Duronto traffic through a district on
the (log) mean and (log) variance of annual shipping times to and from the district. The district level shipping time measures
are calculated using the set of freight routes which remain in operation, with at least one train running in each year, through-
out the sample period. The measure of 2008 congestion is the total amount of traffic on all of the railway lines in the district,
divided by the prescribed line capacity. Both regressions include fixed effects for district and year. Robust standard errors in
parentheses, with clustering by district. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 6: 2SLS estimates of mean and variance effects

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Panel A. 2SLS
ln(Mean) −0.029 −0.025 0.001 0.032*

(0.026) (0.016) (0.018) (0.019)

ln(Variance) −0.107*** −0.033* 0.034* 0.042*
(0.031) (0.019) (0.019) (0.023)

Panel B. Reduced form
Duronto routes through district −0.007 −0.004 0.001 0.005*

(0.007) (0.003) (0.003) (0.003)

(Duronto routes)×(2008 congestion) −0.022*** −0.006 0.007* 0.008**
(0.006) (0.004) (0.004) (0.004)

Observations 6896 6682 6390 6676
Clusters 1 (factories) 3448 3341 3195 3338
Clusters 2 (district × year) 348 348 344 348
Control for spillovers, exposure X X X X

Notes: Panel A of this table presents second stage estimates of equation (4), showing the effects of mean and variance of
shipping time on the four main firm outcomes of interest. Panel B presents reduced form estimates of these outcomes on the
instruments specified in (7). All regressions include fixed effects for factory, year by state, and year by NIC industry. Robust
standard errors in parentheses, with clustering by factory and district-year. * p < 0.10, ** p < 0.05, *** p < 0.01.

49



Table 7: Model estimates of cost and competition effects

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Duronto routes through district −0.0308*** −0.0115*** 0.0079** 0.0094**
(0.0050) (0.0037) (0.0035) (0.0046)

Spillover routes through district −0.0104* −0.0079* 0.0069* 0.0004
(0.0061) (0.0046) (0.0037) (0.0064)

Exposure of (State × Industry) 0.0249** 0.0035 0.0012 0.0011
to Duronto routes (0.0106) (0.0079) (0.0110) (0.0131)

Exposure of (State × Industry) 0.0186 −0.0108 −0.0036 −0.0014
to spillover routes (0.0125) (0.0082) (0.0127) (0.0147)

Observations 27558 26896 21624 26618
Clusters 1 (factories) 6191 6074 5238 5964
Clusters 2 (district × year) 1932 1914 1866 1928
Notes: This table presents estimates of equation (28), for factories in rail-using industries. The dependent variables are the
four main outcomes of interest as defined in the text. The regressors are the number of Duronto and spillover routes pass-
ing through the district, along with the exposure of other district competitors in the same state and 4-digit NIC industry to
Duronto and spillover traffic, weighted by the 2008 industry revenue in the competing district. All regressions include fixed
effects for factory, year by state, and year by NIC industry. Robust standard errors in parentheses, with clustering by factory
and district-year. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 8: Model estimates of cost and competition effects, with elasticity interactions

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Duronto routes through district −0.0014 −0.0081** 0.0080** 0.0089**
(0.0052) (0.0039) (0.0037) (0.0041)

(Duronto routes) × σ −0.0065*** −0.0006** −0.0001 0.0002
(0.0004) (0.0003) (0.0004) (0.0006)

Spillover routes through district −0.0046 −0.0056 0.0067* 0.0004
(0.0064) (0.0052) (0.0039) (0.0073)

(Spillover routes) × σ −0.0012* −0.0003 0.0002 0.0003
(0.0007) (0.0005) (0.0005) (0.0007)

Exposure of (State × Industry) 0.0231* 0.0039 0.0022 0.0019
to Duronto routes (0.0119) (0.0084) (0.0117) (0.0140)

Exposure of (State × Industry) 0.0201 −0.0094 −0.0034 −0.0008
to spillover routes (0.0129) (0.0088) (0.0140) (0.0151)

Observations 27558 26896 21624 26618
Clusters 1 (factories) 6191 6074 5238 5964
Clusters 2 (district × year) 1932 1914 1866 1928
Notes: This table presents estimates of equation (28) for factories in rail-using industries, adding regressors capturing the
interaction between Duronto and spillover traffic and the industry elasticity of substitution coming from Broda et al. (2006).
All regressions include fixed effects for factory, year by state, and year by NIC industry. * p < 0.10, ** p < 0.05, *** p <
0.01.
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Table 9: Aggregate effects of Duronto congestion on revenue, at state-industry level

Dependent variable: lnPY

(1) (2) (3) (4)
Exposure of (State × Industry) −0.0132 −0.0020 −0.0139 −0.0028

to Duronto routes (0.0159) (0.0227) (0.0155) (0.0224)

Exposure of (State × Industry) −0.0048 −0.0051
to spillover routes (0.0097) (0.0206)

Observations 7901 7883 7901 7883
Clusters (state × industry) 1932 1914 1932 1914
State × Industry FE X X X X
Year FE X X
State × Yr FE, Ind × Yr FE X X

Notes: This table presents estimates of equation (29), showing the effect of Duronto and spillover traffic exposure on aggre-
gate sales for each state by 4-digit NIC industry. All regressions include fixed effects for year and state by industry, with
Columns (2) and (4) adding effects for year by state and year by industry. Robust standard errors in parentheses, with clus-
tering by state times industry. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 10: Aggregate effects of Duronto congestion on gross value added, at state-industry level

Dependent variable: lnGV A

(1) (2) (3) (4)
Exposure of (State × Industry) −0.0149 −0.0058 −0.0098 −0.0073

to Duronto routes (0.0164) (0.0231) (0.0160) (0.0230)

Exposure of (State × Industry) −0.0056 −0.0043
to spillover routes (0.0100) (0.0208)

Observations 7850 7831 7850 7831
Clusters (state × industry) 1909 1901 1909 1901
State × Industry FE X X X X
Year FE X X
State × Yr FE, Ind × Yr FE X X

Notes: This table presents estimates of equation (29), showing the effect of Duronto and spillover traffic exposure on aggre-
gate (log) gross value added for each state by 4-digit NIC industry. All regressions include fixed effects for year and state by
industry, with Columns (2) and (4) adding effects for year by state and year by industry. Robust standard errors in paren-
theses, with clustering by state times industry. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 11: The cost of running one Duronto train

Panel A: Cost of running one Duronto route, imperfect competition

Loss for affected firms Gain for competitors Net effect
(1) (2) (3)

Duronto direct effects -461.2 372 -89.2
Spillover effects -154.9 195.4 40.5

Total (million INR) -616.1 567.4 -48.7

Panel B: All firms experience congestion increase equivalent to one Duronto, perfect competition

Rail-using firms All manufacturing
(4) (5)

Total output loss (million INR) 94,962 258,551

Notes: All figures in this table are in millions of 2008 Indian rupees (nominal exchange rate is 48.5 INR per USD; exchange
rate at PPP is 12.9 INR per USD). Calculations are as described in the text, with Panel A reporting the estimated revenue
loss for rail-using firms of running one Duronto train, inclusive of direct losses to affected firms and gains to their competi-
tors. A point of comparison for these figures is the annual passenger fare revenue from one of these routes, which I estimate
at INR 1,024 million. Panel B reports the aggregate effects of exposing all firms to a cost shock equivalent to that estimated
for the Duronto-affected firms.
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A Additional firm outcomes

Table A1: Effects on district railway traffic

Passenger trips Freight trains

Originating Terminating Originating Terminating
(1) (2) (3) (4)

Durontos 0.0062 0.0029 −0.0081 0.0012
(0.0113) (0.0111) (0.0121) (0.0169)

Spillovers 0.0014 0.0017 −0.0058 −0.0119
(0.0122) (0.0139) (0.0151) (0.0149)

Observations 304 312 224 224
Clusters (districts) 152 156 112 112
Notes: This table presents a district level regression of passenger and freight trips, on the amount of Duronto
and spillover traffic introduced through the district. The dependent variables, all in natural logarithms, measure
the number of trips of each type either originating or terminating in the district. The regression sample includes
only 2011 to 2012, the first years for which passenger and freight traffic data are available. All regressions include
fixed effects for district, and year by state. Robust standard errors in parentheses, with clustering by district. *
p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A2: Effects on firm logistics

Input Output Transport Transport
inventory inventory expenses equipment

(1) (2) (3) (4)
Durontos 0.0173*** 0.0023 −0.0081 0.0012

(0.0052) (0.0063) (0.0124) (0.0164)
Spillovers 0.0015 0.0004 −0.0058 −0.0119

(0.0066) (0.0074) (0.0161) (0.0199)

Observations 27558 26896 21624 26618
Clusters 1 (factories) 6191 6074 5238 5964
Clusters 2 (district × year) 1932 1914 1866 1928
Notes: This table presents estimates of equation (1), for factories in rail-using industries. The dependent variables,
all in natural logarithms, provide measures of the factory’s logistical response to railway congestion. Column (1)
shows effects on holdings of input inventory, while Column (2) shows effects on holdings of finished goods inventory.
Column (3) shows effects on the firm’s “other distributional expenses”, the expense category into which shipping
expense falls. Column (4) shows effects on the amount of transport equipment owned. The regressors are the num-
ber of two-way Duronto routes (based on shortest path) passing through the district as of the current year, and the
number of introduced Duronto trains for which the district lies on a spillover alternate route, as defined in the text.
All regressions include fixed effects for factory, year by state, and year by NIC industry. Robust standard errors in
parentheses, with clustering by factory and district-year. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A3: Effects on firm product mix

Number of Time Demand Product
products made sensitivity uncertainty complexity

(1) (2) (3) (4)
Durontos −0.0114*** −0.0022* −0.0119*** −0.0057*

(0.0030) (0.0012) (0.0042) (0.0029)
Spillovers −0.0049 −0.0041** −0.0055 −0.0041

(0.0042) (0.0018) (0.0046) (0.0038)

Observations 22704 22615 23138 22614
Clusters 1 (factories) 5491 5241 5313 5241
Clusters 2 (district × year) 1825 1876 1885 1876
Notes: This table presents estimates of equation (1), for factories in rail-using industries. The dependent variables,
all in natural logarithms, provide measures of the factory’s product mix. Column (1) shows effects on the number of
distinct products produced. Column (2) shows effects on the average time sensitivity of the products made, weighed
across product by output value. As described in the text, product level measures of time sensitivity come from Hum-
mels and Schaur (2013). Column (3) shows effects on the average demand uncertainty of the products made, again
weighted by product output value. The measure of demand uncertainty is as described in the text and is as used
in Blanchard and Simon (2001). Column (4) shows effects on product complexity, measured as in Levchenko (2007)
as the (inverse) Herfindahl index of the inputs used to make the product according to US input-output tables. The
regressors are the number of two-way Duronto routes (based on shortest path) passing through the district as of the
current year, and the number of introduced Duronto trains for which the district lies on a spillover alternate route, as
defined in the text. All regressions include fixed effects for factory, year by state, and year by NIC industry. Robust
standard errors in parentheses, with clustering by factory and district-year. * p < 0.10, ** p < 0.05, *** p < 0.01.
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B Other heterogeneity

Table B1: Heterogeneity by use of rail goods as inputs, and production of rail goods as output

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Durontos −0.0040 −0.0021 −0.0029 0.0017
(0.0067) (0.0044) (0.0078) (0.0066)

(Durontos) × (Rail input share) −0.0351* −0.0287* 0.0258 0.0291**
(0.0204) (0.0165) (0.0191) (0.0145)

(Durontos) × (Makes rail good) −0.0173** −0.0124** 0.0102 −0.0011
(0.0077) (0.0056) (0.0092) (0.0084)

Spillovers −0.0099 −0.0050 0.0046 −0.0008
(0.0089) (0.0055) (0.0106) (0.0097)

(Spillovers) × (Rail input share) −0.0038 −0.0026 0.0061 0.0025
(0.0243) (0.0221) (0.0210) (0.0289)

(Spillovers) × (Makes rail good) −0.0052 −0.0030 0.0184* 0.0018
(0.0102) (0.0079) (0.0107) (0.0112)

Observations 27558 26896 21624 26618
Clusters 1 (factories) 6191 6074 5238 5964
Clusters 2 (district × year) 1932 1914 1866 1928
Notes: This table shows heterogeneity in the Duronto and spillover effects, based on whether the factory is likely to rely on
the rails for sourcing inputs or for delivering output. The rail input share is the industry’s total input cost share of the goods
typically shipped by rail in India (coal, iron, steel, cement, fertilizers, foodgrains, and mineral oils). The mean of this input
share is 0.27 in the regression sample. Makes rail good is an indicator of whether the factory produces one of the rail goods.
Its mean in the regression sample is 0.53. All regressions include fixed effects for factory, year by state, and year by NIC
industry. Robust standard errors in parentheses, with clustering by factory and district-year. * p < 0.10, ** p < 0.05, ***
p < 0.01.
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Table B2: Heterogeneity by road density

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Durontos −0.0188*** −0.0113** −0.0082** 0.0094
(0.0060) (0.0047) (0.0041) (0.0061)

(Durontos) × (Road density) 0.0031 0.0048 −0.0046 0.0025
(0.0075) (0.0060) (0.0088) (0.0090)

Spillovers −0.0117* −0.0079* 0.0076* 0.0009
(0.0061) (0.0043) (0.0043) (0.0062)

(Spillovers) × (Road density) −0.0023 −0.0073 0.0059 −0.0011
(0.0068) (0.0047) (0.0079) (0.0083)

Observations 27558 26896 21624 26618
Clusters 1 (factories) 6191 6074 5238 5964
Clusters 2 (district × year) 1932 1914 1866 1928
Notes: This table shows heterogeneity in the Duronto and spillover effects, as a function of state road density, measured
as kilometers of national highway per square kilometer of area. This road density variable is standardized so it has mean 0
and standard deviation 1. Its raw mean is 0.036 and raw standard deviation is 0.015. All regressions include fixed effects
for factory, year by state, and year by NIC industry. Robust standard errors in parentheses, with clustering by factory and
district-year. * p < 0.10, ** p < 0.05, *** p < 0.01.
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C Robustness

Table C1: Reduced form estimates, controlling for distance to cities served by Durontos

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Duronto routes through district −0.0181*** −0.0102** 0.0078** 0.0098*
(0.0057) (0.0043) (0.0036) (0.0054)

Spillover routes through district −0.0109* −0.0051 0.0074* 0.0017
(0.0065) (0.0044) (0.0043) (0.0067)

Distance to Duronto endpoint −0.0012 −0.0025 0.0036 −0.0002
(hundred km.) (0.0021) (0.0018) (0.0029) (0.0028)

Observations 27558 26896 21624 26618
Clusters 1 (factories) 6191 6074 5238 5964
Clusters 2 (district × year) 1932 1914 1866 1928
Notes: This table presents estimates of equation (1), adding a control for the distance to the nearest city with a new Duronto
train serving it in that year, measured in hundreds of kilometers. The dependent variables are the four main outcomes of in-
terest as defined in the text. All regressions include fixed effects for factory, year by state, and year by NIC industry. Robust
standard errors in parentheses, with clustering by factory and district-year. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table C2: Reduced form estimates, controlling for Duronto and spillover traffic on shipping lines

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Duronto routes through district −0.0186*** −0.0133*** 0.0071* 0.0014
(0.0061) (0.0046) (0.0039) (0.0057)

Spillover routes through district −0.0124* −0.0055 0.0079* 0.0025
(0.0071) (0.0044) (0.0042) (0.0069)

Duronto traffic −0.2422 −0.3206 0.0094 0.8749*
on shipping lines (0.5750) (0.4421) (0.3892) (0.4855)

Spillover traffic −0.4519 −0.2110 −0.1002 −0.0439
on shipping lines (0.7041) (0.5698) (0.5224) (0.6200)

Observations 21582 21034 19770 20993
Clusters 1 (factories) 3007 2986 2789 2994
Clusters 2 (district × year) 972 960 908 964
Notes: This table presents estimates of equation (1), adding a control for the amount of Duronto and spillover traffic intro-
duced along the tracks used for railway shipments to and from each district. This traffic is measured as a fraction of the
tracks’ line capacity, and averaged over all the routes used for the district’s shipments, weighted by the total number of ship-
ments, between 2011 and 2015 (which is all years with available data). The dependent variables are the four main outcomes
of interest as defined in the text. All regressions include fixed effects for factory, year by state, and year by NIC industry.
Robust standard errors in parentheses, with clustering by factory and district-year. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table C3: Reduced form estimates, controlling for changes in market access

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Duronto routes through district −0.0178*** −0.0123*** 0.0074** 0.0025
(0.0054) (0.0039) (0.0033) (0.0053)

Spillover routes through district −0.0119* −0.0056 0.0076* 0.0033
(0.0064) (0.0041) (0.0039) (0.0065)

ln(Market access) −0.0834 −0.1036 0.0036 −0.1589
(0.1588) (0.1624) (0.1622) (0.1667)

Observations 27558 26896 21624 26618
Clusters 1 (factories) 6191 6074 5238 5964
Clusters 2 (district × year) 1932 1914 1866 1928
Notes: This table presents estimates of equation (1), adding a control for the amount of Duronto and spillover traffic intro-
duced along the tracks used for railway shipments to and from each district. This traffic is measured as a fraction of the
tracks’ line capacity, and averaged over all the routes used for the district’s shipments, weighted by the total number of ship-
ments, between 2011 and 2015 (which is all years with available data). The dependent variables are the four main outcomes
of interest as defined in the text. All regressions include fixed effects for factory, year by state, and year by NIC industry.
Robust standard errors in parentheses, with clustering by factory and district-year. * p < 0.10, ** p < 0.05, *** p < 0.01.

60



Table C4: Reduced form estimates, with sample including all districts in mainland India

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Duronto routes through district −0.0193*** −0.0103*** 0.0074** 0.0099**
(0.0045) (0.0037) (0.0029) (0.0048)

Spillover routes through district −0.0103* −0.0058 0.0074* 0.0006
(0.0057) (0.0038) (0.0038) (0.0058)

Observations 37651 36708 30412 20993
Clusters 1 (factories) 8311 8150 7179 8012
Clusters 2 (district × year) 2855 2841 2772 2843
Notes: This table presents estimates of equation (1), where the sample includes all districts in mainland India as possible
controls, not only the districts located between major cities as in the preferred specification. The dependent variables are
the four main outcomes of interest as defined in the text. All regressions include fixed effects for factory, year by state, and
year by NIC industry. Robust standard errors in parentheses, with clustering by factory and district-year. * p < 0.10, **
p < 0.05, *** p < 0.01.
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Table C5: Reduced form estimates, with sample excluding “donut” around Duronto endpoints

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Duronto routes through district −0.0189*** −0.0106** 0.0081** 0.0096*
(0.0053) (0.0044) (0.0035) (0.0055)

Spillover routes through district −0.0110* −0.0062 0.0072 0.0009
(0.0066) (0.0045) (0.0045) (0.0069)

Observations 25874 25488 19760 25791
Clusters 1 (factories) 5740 5723 5286 5731
Clusters 2 (district × year) 1791 1780 1683 1775
Notes: This table presents estimates of equation (1), where the sample excludes all districts within 100km of the districts
receiving Duronto passenger train service. The dependent variables are the four main outcomes of interest as defined in the
text. All regressions include fixed effects for factory, year by state, and year by NIC industry. Robust standard errors in
parentheses, with clustering by factory and district-year. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table C6: Reduced form estimates, with narrower definition of spillover route

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Duronto routes through district −0.0194*** −0.0109** 0.0080*** 0.0097
(0.0052) (0.0047) (0.0029) (0.0063)

Spillover routes through district −0.0109* −0.0065 0.0073* 0.0034
(0.0064) (0.0041) (0.0044) (0.0059)

Observations 27558 26896 21624 26618
Clusters 1 (factories) 6191 6074 5238 5964
Clusters 2 (district × year) 1932 1914 1866 1928
Notes: This table presents estimates of equation (1), with spillover routes defined to include only those paths crossed by
trains traveling between the Duronto endpoints, instead of between any pair of points on the Duronto route. This traffic is
measured as a fraction of the tracks’ line capacity, and averaged over all the routes used for the district’s shipments, weighted
by the total number of shipments, between 2011 and 2015 (which is all years with available data). The dependent variables
are the four main outcomes of interest as defined in the text. All regressions include fixed effects for factory, year by state,
and year by NIC industry. Robust standard errors in parentheses, with clustering by factory and district-year. * p < 0.10,
** p < 0.05, *** p < 0.01.
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Table C7: Reduced form estimates, with wider definition of spillovers, including second-order

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Duronto routes through district −0.0179*** −0.0116*** 0.0074** 0.0091*
(0.0046) (0.0042) (0.0030) (0.0055)

Spillover routes through district −0.0103 −0.0063 0.0068 0.0006
(0.0069) (0.0043) (0.0043) (0.0067)

Observations 27558 26896 21624 26618
Clusters 1 (factories) 6191 6074 5238 5964
Clusters 2 (district × year) 1932 1914 1866 1928
Notes: This table presents estimates of equation (1), with spillover routes defined to include not only the standard spillover
routes as described in the text, but also the second-order spillover routes. This traffic is measured as a fraction of the tracks’
line capacity, and averaged over all the routes used for the district’s shipments, weighted by the total number of shipments,
between 2011 and 2015 (which is all years with available data). The dependent variables are the four main outcomes of in-
terest as defined in the text. All regressions include fixed effects for factory, year by state, and year by NIC industry. Robust
standard errors in parentheses, with clustering by factory and district-year. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table C8: Reduced form estimates, with spillovers restricted to 200km

ln(Revenue) ln(TFPR) ln(Avg cost) ln(Inventory)
(1) (2) (3) (4)

Duronto routes through district −0.0191*** −0.0101** 0.0076** 0.0094
(0.0055) (0.0046) (0.0033) (0.0058)

Spillover routes through district −0.0099 −0.0059 0.0068 0.0005
(0.0062) (0.0046) (0.0045) (0.0058)

Observations 27558 26896 21624 26618
Clusters 1 (factories) 6191 6074 5238 5964
Clusters 2 (district × year) 1932 1914 1866 1928
Notes: This table presents estimates of equation (1), with spillover routes restricted to include only lines within 200km of
the main Duronto route. This traffic is measured as a fraction of the tracks’ line capacity, and averaged over all the routes
used for the district’s shipments, weighted by the total number of shipments, between 2011 and 2015 (which is all years with
available data). The dependent variables are the four main outcomes of interest as defined in the text. All regressions include
fixed effects for factory, year by state, and year by NIC industry. Robust standard errors in parentheses, with clustering by
factory and district-year. * p < 0.10, ** p < 0.05, *** p < 0.01.
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D Alternate measures of exposure to Duronto congestion

D.1 Model-based measure of changes in market access

Another possible channel for the effects of Duronto traffic is through changes in a district’s “market access”
(Redding and Sturm, 2008; Donaldson and Hornbeck, 2016), or the cost, net of congestion, of sending and
receiving shipments to and from other districts with large product or input markets. Returning to the
illustration of Figure 5, even if Bokaro and all of its shipping lanes were untouched by the Durontos or by
the traffic pushed onto alternate routes, it might still experience gains or losses as a result of the Durontos
disrupting production in other areas and prices adjusting accordingly. For example, suppose Rourkela and
Bokaro compete to supply goods to some third district, Ranchi. If the Duronto train affects production in
Rourkela or disrupts Rourkela-Ranchi shipments, Bokaro firms gain an advantage supplying to Ranchi and
might thus enjoy increased sales. On the other hand, these effects might harm Bokaro rather than benefit
it. For example, if certain Rourkela firms supply inputs to Bokaro, or to Bokaro firms’ suppliers in towns
like Ranchi, then the Durontos could raise the price of these inputs.

To account for these effects, I use a measure of market access in the spirit of Donaldson and Hornbeck (2016).
Based on Eaton and Kortum (2002), the Donaldson and Hornbeck (2016) model shows that all of the positive
and negative general equilibrium welfare effects of an infrastructure project are captured in statistic termed
market access. Under symmetric trade costs, the market access of a district d is

MAd = k
∑
d′

τ−θdd′MA−1
d′ Yd′ ,

where k is a constant, d′ indexes the other districts, τdd′ is a bilateral trade cost, θ is a trade elasticity,
and Yd′ is the real output of d′. Intuitively, a district o has greater market access when it has lower costs
of trading with other districts which have large local economies but relatively little access to other districts
which might compete with o for business. Donaldson and Hornbeck (2016) show that this market access
term is highly correlated with a first-order approximation which is better suited to empirical applications.
Through a similar derivation, I arrive at the approximation

MAd ≈
∑
d′

τ−θdd′Yd′ . (30)

I parametrize τdd′ by
τdd′ ≡ (Traf)ψTdd′Dist

ψD
dd′ , (31)

where (Traf)dd′ ≡ (Trafficdd′,2008 + Durontosdd′)/Trafficdd′,2008 is the amount of Duronto traffic on the
railway lines connecting d to d′, expressed as a fraction of 2008 traffic, and (Dist)dd′ is the distance from d

to d′. The elasticity of trade costs with respect to distance is ψD. Following Ramondo, Rodríguez-Clare and
Saborío-Rodríguez (2016), I set ψD = 0.27 and θ = 4. Finally, I set ψT = 0.02, so the effect of congestion on
trade costs is assumed, conservatively, to be less than one-tenth that of distance. These parameter choices
are necessarily somewhat ad hoc, representing a limitation to using the market access approach in my setting.
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With richer data on the actual shipments firms make or on spatial price gaps, it would be possible to find
trade cost equivalents of given amounts of congestion to make these calculations more precise.

Controlling for lnMAdt captures the effect of Duronto-associated changes in market access, which are greatest
for districts which have Durontos running on the lines between them and other districts which are large or
growing.23 Table C3 shows results of factory regressions with this market access term, in addition to the
main Duronto and spillover effects. This in fact does not change the estimates of the Duronto and spillover
effects, suggesting that these variables suffice to capture most of the economic effect of the added traffic,
without having to turn to models involving notions like market access.

D.2 Traffic in shipping lanes

Another form of exposure occurs if Duronto or spillover traffic, though not traveling through a district,
nevertheless travels on the railway lines used to carry goods to or from that district. To account for these
effects, I use data on freight shipment patterns. For each district, I identify the set of routes used for its
shipments, and calculate the amount of Duronto traffic on these routes. First, for each section of track n, let

Dnt ≡
#Durontosnt

Capacityn,t=2008

be the number of Durontos running on that section as of year t, expressed as a fraction of the section’s 2008
capacity. This section might be part of one or more origin-destination shipping routes, r. A measure of
Duronto congestion on r is

Route Duronto Trafficrt ≡
∑
n

ρnrDnt

with weights ρnr equal to the length of section n divided by the total length of route r. So (Route Duronto
Traffic)rt is a weighted average of congestion on all of the sections n which make up route r. Finally, for a
district-level measure of Durontos’ effect on shipments, I take a weighted average of route congestion over
all of the routes serving the district:

District’s Duronto Shipping Exposuredt ≡
∑
r

ωrd(Route Duronto Exposure)rt,

with weights ωrd equal to the total number of route r shipments serving district d, divided by the total number
of shipments serving d. A limitation of these measures is that data on freight shipping patters is available
for only a limited number of districts. Nevertheless, Table C2 presents reduced form results incorporating
these controls for the available district, and showing again that this does not produce an additional effect
conditional on the amount of Duronto and spillover traffic passing directly through the district.

23An identification concern arises because MAdt and Yd′t are endogenously determined. However, the results to not change
substantially from following the alternate approach of Donaldson and Hornbeck (2016) which holds district output fixed at 2008
levels.
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E Inventory model

Consider a firm solving a classic economic-order quantity (EOQ) problem: the firm’s inventories deplete as it
meets customer demand, then when the inventory reaches some reorder level R, the firm places a restocking
order of quantity Q. Demand d at any instant is random, with cdf F and mean µd, variance σ2

d. Time t
is measured in years (so µd is the average annual demand). Expected inventory level varies between s and
s+Q, where safety stock s is defined as the expected inventory level just before a restocking order arrives.

s = R− µdµτ ,

where µτ is expected shipping time.

The economically relevant portion of the problem is time between the placement of the restocking order and
the arrival of the order, since this is where the stockout risk arises. To focus on this portion of the problem
and to simplify, we fix Q. A version of the problem without this simplification appears in Nahmias (2001).
Note that Q will be approximately R− s, since the firm will not want its inventory level when orders arrive
to be systematically greater than R, nor systematically less.

Stockout occurs if inventory on hand at the time of order (R) is less than total demand while the order is in
transit, denoted D. Total demand D depends on both the demand realizations at each instant, and shipping
time τ , which is random with cdf G, mean µτ , and variance σ2

τ . Denote the cdf of D by H.

Lemma. Assume F , G are independent. Then,

µD ≡ E[D] = µdµτ (32)

σ2
D ≡ V [D] = µτσ

2
d + µ2

dσ
2
τ .

Proof. See Hadley and Whitin (1963).

When stockout occurs, the firm pays penalty p for each unit of unmet demand. The expected stockout
penalty is in one reorder cycle is therefore

n(R) = p

∫ ∞
R

(x−R)h(x)dx.

The number of annual cycles is µd/Q, so the expected annual penalty is

µd
Q
n(R). (33)

Inventory holding costs depend on depend on the interest rate i. Normalizing by the price of output and
letting v be value added, the price of an input unit is 1− v, so the cost of holding it in inventory is i(1− v).
Average inventory holdings are

Ī = s+
1

2
Q = R− µdµτ +

1

2
Q.
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So expected annual holding costs are

i(1− v)(R− µdµτ +
1

2
Q). (34)

Combining expected penalty (33) with holding costs (34), total costs are

C(R) =
µd
Q
n(R) + i(1− v)(R− µdµτ +

1

2
Q). (35)

The firm choose R to minimize (35), yielding first order condition

0 = −µd
Q
p(1−H(R)) + i(1− v).

and optimum
R∗ = ρσD + µdµτ , (36)

where ρ ≡ Φ−1(1− i(1−v)
pµd

Q) is constant with respect to µτ and στ .

As (36) makes clear, average inventory level is increasing in both the mean and variance of shipping time.
Also, these effects of shipping times are larger for goods with higher value added v, higher penalty of stockout
p, and higher demand uncertainty σd:

∂2R∗

∂µτ∂v
> 0

∂2R∗

∂στ∂v
> 0

∂2R∗

∂µτ∂p
> 0

∂2R∗

∂στ∂p
> 0

∂2R∗

∂µτ∂σd
> 0

∂2R∗

∂στ∂σd
> 0.

These results serve as the basis for the predictions of heterogeneous effects, as discussed in section 3.3.3.
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F Shipping times model

Consider a single section of railway track, with a given set of K trains running eastbound and K̄ trains
running westbound. Each train i has scheduled departure and arrival times Di and Ai and a free-running
time FRi, which is the time the train would take to traverse the section without any interference from other
trains.

Interference delays arise when trains meet, because one of the trains needs to stop to let the other pass.
Let qij be the probability that trains i and j meet; naturally, qij = qji. This probability is not exogenously
specified, but will need to be solved for, given the departure times and stoppages on the line. Conditional
on i and j meeting, let Pij be the probability that train i is delayed, and assume Pij = 1−Pji. Conditional
on experiencing such a delay, train i needs to stop for dij minutes. Thus, the total delay, tij equals dij if i
and j meet, and zero otherwise. It follows that the total travel time for train i is

ti = FRi +
∑

j∈K∪K̄

tij . (37)

There are two possible sources of randomness in this expression for travel time. First, allow the actual
departure time di to be a random variable centered around Di. As in the real world, a given train might
leave later than expected, causing disruption to the schedules of other trains. This randomness in departure
time is not essential, however, as there is also another source of uncertainty, coming from the random length
of delay conditional on two trains meeting. In particular, dij is a random variable, which can depend, as in
the formulation of Petersen (1974) on the length of the track section, the availability of sidings for trains
to pull aside, the amount of time taken for trains to make this switch, and the speed differential between
meeting trains. There are different ways to specify the distribution of dij as a function of these factors
(Petersen, 1974; Chen and Harker, 1990; Harker and Hong, 1990), though the exact specification is not
important for the derivation that follows.

Taking the expectation and variance on both sides of (37), it follows that

E(ti) = FRi +
∑

j∈K∪K̄

qijE(dij) (38)

V ar(ti) =
∑

j∈K∪K̄

[qijV ar(dij) + qij(1− qij)E2(dij)] +
∑

h,k∈K∪K̄,h 6=k

Cov(tih, tik). (39)

The derivation of these expressions, related to the derivation in Chen and Harker (1990), requires solving for
the mean, variance, and covariance of tij . Since tij = dij when i and j meet and zero otherwise, it follows
that E(tij) = qijE(dij) and E(t2ij) = qijE(d2

ij). The expression for the mean in (38) follows immediately.
For the variance,

V ar(tij) = qijV ar(dij) + qij(1− qij)E2(dij), (40)

which yields first term in (39). The calculation of V ar(ti) also requires solving for the covariance of the
tij . These covariances of train meetings are the reason that travel time variance increases by so much with
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the addition of trains to an already-congested track. In particular, on a congested track, train i meeting
with train h makes it more likely that train i will also meet train k, since train i will have been stopped
and thrown off schedule by the first meeting. To help see this, we solve for these covariances, which can be
written as

Cov(tih, tik) = E(tihtik)− E(tih)E(tik). (41)

Expanding this expression requires computing the probability of train i interfering with both of trains h and
k. Doing so requires, in general, considering three possible cases: (a) i is running in one direction, with h
and k in the opposite direction, (b) i and k are running in one direction, with h in the opposite direction,
and (c) all three of i, h, and k are running in the same direction.

With uncertainty over departure times, the covariance term for each of these cases depends on the distribution
of departure times. Let gi(·), gh(·), and gj(·) be the departure time density functions and letting gh−i,k−i(·)
be the joint distribution of differences in departure time. It follows, in case (a), that the probability of i
interfering with both h and k is the probability that it meets both of them head-on, which is∫ Dk+τ

Dk−τ

∫ Dh+τ

Dh−τ

∫ Di+τ

Di−τ
gi(x)gh(y)gk(z)f1(x, y, z) dx dy dz. (42)

Here τ is the cycle window within which all trains depart–perhaps one day if we are considering a daily
schedule. The probability of i meeting both other trains given the departure times is f1(x, y, z).

In case (b), the probability of i meeting both other trains is the probability that i overtakes h and meets k
head-on, plus the probability that it is overtaken by h and meets k head-on. This yields∫ Dh−Di+τ

0

∫ Dk−Di−τ

Dk−Di−τ
gh−i,k−i(y, z)[f2(y, z) + f3(y, z)] dz dy

+

∫ 0

Dh−Di−τ

∫ Dk−Di−τ

Dk−Di−τ
gh−i,k−i(y, z)[f4(y, z) + f5(y, z)] dz dy.

(43)

Here, f2, f3, f4, and f5 give the relevant probabilities of meetings and overtakings given the departure times.

In case (c) the probability of i meeting both other trains is given by the probability that it overtakes both
of them, plus the probability both of them overtake it, plus the probability that it overtakes one and is
overtaken by the other. In particular, this probability can be written∫ Dh−Di+τ

0

∫ Dk−Di+τ

0

gh−i,k−i(y, z)f6(y, z) dz dy

+

∫ Dh−Di+τ

0

∫ 0

Dk−Di−τ
gh−i,k−i(y, z)f7(y, z) dz dy

+

∫ 0

Dh−Di−τ

∫ Dk−Di+τ

0

gh−i,k−i(y, z)f8(y, z) dz dy

+

∫ 0

Dh−Di−τ

∫ 0

Dk−Di−τ
gh−i,k−i(y, z)f9(y, z) dz dy.

(44)
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Here again, f6, f7, f8, and f9 give the probabilities of the meetings and overtakings as a function of realized
departure times. Explicit calculations of f1 to f9 appear in Chen and Harker (1990) and Harker and Hong
(1990), yielding the expression for the covariance term.

A simpler calculation follows from assuming no uncertainty in departure times, and focusing on the first two
cases for train meetings.24 To simplify notation, write the difference in train departure times as

Di(j) =


Dj −Di if |Dj −Di| ≤ τ/2

Dj −Di − τ if Dj −Di > τ/2

Dj −Di + τ if Dj −Di < −τ/2.

(45)

Note that a meeting between trains occurs if ti > |Di(j)|. Thus, qij = P (ti ≥ Di(j)) if Di(j) ≥ 0 and
qij = P (ti ≥ −Di(j)) if Di(j) < 0. Taking (41), and plugging in the probabilities from cases (a) and (b)
along with these expressions for qij , we obtain an expression for the expected travel time of train i

E(ti) = FRi +
∑

j:Di(j)<0

P (ti ≥ −Di(j))E(dij) +
∑

j:Di(j)≥0

P (ti ≥ Di(j))E(dij). (46)

Similarly, we obtain and expression for the variance:

V ar(ti) =
∑

j:Di(j)<0

P (ti ≥ −Di(j)){V ar(dij) + [1− P (ti ≥ −Di(j))]E
2(dij)}

+
∑

j:Di(j)≥0

{
P (ti ≥ Di(j))V ar(dij) + {P (ti ≥ Di(j)) ·A+ [1− P (ti ≥ Di(j))] ·B}E(dij)

}
,

(47)

where

A ≡
∑

k:Di(j)≥Di(k)≥0

[1− P (ti ≥ Di(k))]E(dik)

B ≡
∑

k:Di(k)≥Di(j)

P (ti ≥ Di(k))E(dik).
(48)

The equations (46) and (47) hold for a generic distribution of travel times. To simplify the calculation,
assume as in Chen and Harker (1990) and Harker and Hong (1990) that ti is normally distributed with mean
Ti and variance Vi. A normal distribution of travel times should be a realistic approximation on a congested
line where the number of train interferences is large, though this is not a precise application of the central
limit theorem, since it is not the case that all variables here are independent. It is now straightforward to
obtain the expression

P (ti ≥ Di(j)) =
1√
2π

∫ ∞
Di(j)

1√
2πVi

e−(t−Ti)2/2Vi dt. (49)

Substituting based on (49) in (46) and (47) and given expressions for E(dij) and V ar(dij), we obtain a
system of 2K nonlinear equations in 2K unknowns {T1, . . . , TK , V1, . . . , VK}.

24This restriction does not substantively change the results, and Chen and Harker (1990) provide an adjustment which
accounts for this additional case after finding the solution based on only the first two cases.
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Algorithms for solving these equations, such as the Newton-Raphson method, require calculating a Jacobian
matrix and applying a series of iterative approximations until convergence. Letting fTi (T,V) and fVi (T,V)

be the equations for the mean and variance of travel time i, it is straightforward to the terms of the Jacobian,
∂fTi (T,V)

∂Tj
, ∂f

V
i (T,V)
∂Tj

, ∂f
T
i (T,V)
∂Vj

, and ∂fVi (T,V)
∂Vj

, for each i and j, by plugging in the derivatives

∂P (ti ≥ Di(j))

∂Ti
=

1√
2πVi

e−(Di(j)−Ti)2/2Vi

∂P (ti ≥ Di(j))

∂Vi
=
Di(j)− Ti
2
√

2πV 3
i

e−(Di(j)−Ti)2/2Vi .

(50)

In solving these equations, I use a quasi-Newton method involving full calculation of the Jacobian only at the
first step (Broyden, 1965), which achieves the same results and faster convergence than the Newton-Raphson
and successive approximations methods used in Chen and Harker (1990) and Harker and Hong (1990).

Chen & Harker Replication

Train i E(ti) SD(ti) E(ti) SD(ti)
1 2:33 0:05 2:33 0:05
2 2:35 0:05 2:35 0:05
3 1:58 0:03 1:58 0:03
4 2:18 0:00 2:18 0:00
5 2:22 0:00 2:22 0:00
6 2:31 0:05 2:28 0:05
7 2:52 0:09 2:50 0:09
8 2:39 0:05 2:38 0:04
9 2:47 0:08 2:47 0:08
10 3:18 0:14 3:14 0:13
11 2:55 0:06 2:56 0:06
12 3:00 0:08 2:59 0:08
13 2:20 0:04 2:21 0:04
14 2:27 0:07 2:26 0:07
15 2:12 0:03 2:18 0:03
16 2:19 0:04 2:19 0:04
17 3:33 0:13 3:30 0:12
18 2:31 0:07 2:31 0:07
19 2:01 0:01 2:01 0:02
20 3:11 0:09 3:10 0:09
21 3:11 0:09 3:04 0:09
22 2:19 0:05 2:15 0:05

Table F1: Replication of Chen and Harker (1990) Figure F1: Effects of congestion on travel times

Following this procedure, I am able to nearly replicate the results of these papers. Specifically, Figure F1
shows the estimated mean and variance of travel time, in hours and minutes, for a line containing 22 trains
studied by Chen and Harker (1990). The estimates in my replication show some minor differences from their
original results, likely due to minor differences in the procedure for simplifying the meeting and overtaking
probabilities. While I could not discern this exact procedure from the details provided in their paper, the
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results do show a very close match, which suffices for practical purposes.

Figure F1 shows, then, the effect of adding trains to the line. Starting with the first five trains on the list,
I add the succeeding trains one by one, and solve the system of equations after adding each new train, to
see how this affects the travel times of the other trains. Consistent with the theoretical predictions and with
the empirical strategy as described in Section 4, there is a divergence for mean and variance of travel time
as the congestion level increases. Specifically, the effect of a new train on mean travel time is the same small
amount regardless of whether the new train is the fifth or the twenty-second on the line. For the variance,
on the other hand, there is little effect from adding the first few trains, but a far greater effect when traffic is
heavy.25 These results provide the basis for the empirical strategy using the congestion levels to instrument
separately for the mean and the variance of shipping times.

25While this escalation of the variance happens for almost all of the trains on the line, there a couple of trains (corresponding
to the lowest sequence of red triangles in the graph), for which the additional traffic has little effect on the variance. These
are the trains with highest priority on the rails, which do not need to stop and wait when they meet other trains. In reality,
of course, the freight trains on Indian Railways receive the lowest priority so they will not exhibit this pattern. Rather, the
additional traffic will increase the variance of their travel times in the manner discussed.
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