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Abstract

We study random voting mechanisms and establish an equivalence relation between

ordinal Bayesian incentive compatible (OBIC) random mechanisms and dominant strategy

incentive compatible (DSIC) random mechanisms. We show that if a random social choice

function on a domain is lower contour monotonic and locally OBIC with respect to strict

generic priors, then it is also locally dominant strategy incentive compatible. Strict generic

priors are strict subsets of generic priors as defined in Mishra (2016). The Lebesgue measure

of the set of such priors is 1, in other words, every prior is almost surely strictly generic. We

further show that under OBIC with strict generic priors, unanimity implies lower contour

monotonicity on unrestricted domains. It follows from our results that almost every (with

probability 1) OBIC and elementary monotonic (as defined Mishra (2016)) random rule on

unrestricted, single-peaked, single-crossing, single-dipped domain is DSIC. Further, if one

defines appropriate notion of locality for multi-dimensional separable domains, the same holds

for such domains when the marginals are unrestricted, single-peaked, single-crossing, single-

dipped. Thus, our result generalizes the result in Mishra (2016) in two ways: (i) by considering

random rules, and (ii) by allowing domains that are not connected through adjacent locality.

1. INTRODUCTION

In this paper, we consider two notions of strategic manipulation, namely, ordinal Bayesian

incentive compatibility (OBIC) and dominant strategy incentive compatibility (DSIC) and study
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their equivalence in case of random rules. We say that a voting mechanism is OBIC if for

every agent, his expected outcome probability vector from truth-telling first-order stochastically-

dominates any expected outcome probability vector obtained by misreporting. Similarly, a

voting mechanism satisfies DSIC if for every agent, outcome probability vector from truth-

telling first-order stochastically-dominates any outcome probability vector by deviating for every

given collection of preferences of other agents. d’Aspremont and Peleg (1988) introduce the

notion of OBIC which is weaker than that of DSIC as they claim that the latter notion is ”very

restrictive”. This is demonstrated by the classical Gibbard-Satterthwaite theorem (Gibbard (1973)

and Satterthwaite (1975)) which states that dictatorship is the only DSIC and unanimous voting

mechanism in the unrestricted domain. Majumdar and Sen (2004) shows that if the domain

of preferences under consideration is unrestricted, then for priors that are generic in the set of

independent beliefs, a social choice function is OBIC only if it is DSIC. In case of deterministic

voting mechanisms, the equivalence of OBIC with generic and independent beliefs and DSIC

for a large class of preference domains (including the unrestricted domain, the single-peaked

domain, the single-dipped domain, and some single-crossing domains) is established in Mishra

(2016). He shows that if deterministic voting mechanisms are OBIC for generic and independent

priors and also satisfy an additional condition called elementary monotonicity, then they are also

DSIC. If we consider two preferences where only a pair of adjacent alternatives have switched

their positions, then elementary monotonicity says that the outcome probability of the alternative

which after the swap is at a relatively better position must not fall.

In this paper we establish an equivalence relationship between OBIC and DSIC in case of

random social choice functions (RSCFs). In case of random voting mechanisms, genericity of

priors and elementary monotonicity do not guarantee the equivalence between OBIC and DSIC.

We show that an RSCF, ϕ that satisfies elementary monotonicity and is OBIC with generic for

ϕ priors is also DSIC for a large class of domains. We consider agents can manipulate only

via adjacent preferences and consider rules to prevent such manipulations. As in the existing

literature, we use the terms locally OBIC (LOBIC) and locally DSIC (LDSIC) to refer to this

weakened notion of OBIC and DSIC respectively. Gabriel (2012) and Sato (2013) identify domains

where local incentive compatibility is equivalent to incentive compatibility. Such domains include

the unrestricted domain, single-peaked, single-dipped and many such domains. Thus, for all

these domains we establish an equivalence relationship between OBIC and DSIC by drawing an

equivalence relationship between LOBIC and LDSIC.
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We further show that in case of unrestricted domain an RSCF, ϕ that is unanimous and OBIC

with generic for ϕ priors also satisfies elementary monotonicity. Hence, under unrestricted

domain, an RSCF, ϕ that is unanimous and OBIC with generic for ϕ priors is DSIC. This result

can be viewed as an extension of Majumdar and Sen (2004).

2. PRELIMINARIES

Let A be the set of alternatives and let D be an arbitrary domain. Let G = 〈D, E〉 be a graph over

D. Throughout this paper, we assume that G is arbitrary but fixed.

For P, P̄ ∈ D such that (P, P̄) ∈ E, we define δ(P, P̄) = {(a, b) | aPb and bP̄a} as the set of

(ordered) pairs of alternatives that change their relative ordering from P to P̄.

Definition 2.1. A random social choice function (RSCF) is a map ϕ : DN → ∆A.

Definition 2.2. For an agent i, a preference Pi ∈ Di, a prior µi of i, and an RSCF ϕ : DN → ∆A,

define interim expected outcome of agent i, denote by ϕµ(Pi), as a probability distribution over A

such that for all a ∈ A,

ϕµ(Pi)(a) = ∑
P−i∈D−i

µ(P−i|Pi)ϕa(Pi, P−i).

For Pi ∈ Di and a ∈ A, we define U(a, Pi) = {b ∈ A | bRia}. For a preference P, by P(k) we

denote the k-th rank alternative, that is P(k) = a if and only if |{b ∈ A | bPa}| = k− 1.

Definition 2.3. For given Pi ∈ Di and ν, ν′ ∈ ∆A, ν is said to stochastically dominate ν′, denoted

by νRsd
i ν′, if ν(U(a, Pi)) ≥ ν′(U(a, Pi)) for all a ∈ A.

Definition 2.4. An RSCF ϕ : DN → ∆A is locally dominant strategy incentive compatible (LDSIC)

if for every i ∈ N, every Pi, P′i ∈ Di such that (Pi, P′i ) ∈ E, and every P−i ∈ D−i,

ϕ(Pi, P−i)Rsd
i ϕ(P′i , P−i), (1)

and is dominant strategy incentive compatible (DSIC) if (1) holds for all Pi, P′i ∈ Di.

Definition 2.5. An RSCF ϕ : DN → ∆A is locally ordinal Bayesian incentive compatible (LOBIC)

with respect to a profile of priors (µi)i∈N if for every i ∈ N, every Pi, P′i ∈ Di such that (Pi, P′i ) ∈ E,

we have

ϕµ(Pi)Rsd
i ϕµ(P′i ), (2)
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and is ordinal Bayesian incentive compatible (OBIC) with respect to a profile of priors {µi}i∈N if

(2) holds for all Pi, P′i ∈ Di.

Definition 2.6. For an RSCF ϕ : DN → ∆A, a profile of priors (µi)i∈N is called generic for ϕ if for

all i ∈ N, all Pi, P′i ∈ Di, and all a ∈ A,

∑
P−i

µ(P−i|Pi)(ϕa(Pi, P−i)− ϕa(P′i , P−i)) = 0

implies ϕa(Pi, P−i)− ϕa(P′i , P−i) = 0 for all P−i.

Note that if µi is generic, then µi is generic for every deterministic SCF f .

Definition 2.7. An RSCF ϕ : DN → ∆A is called elementary monotonic if for all i ∈ N, all

Pi, P′i ∈ Di with (Pi, P′i ) ∈ E, and all P−i ∈ D−i, ϕa(PN) ≥ ϕa(P′i , P−i) for all a ∈ A such that

(x, a) ∈ δ(Pi, P′i ) for some x ∈ A.

For P, P′ ∈ L(A), we define POP′ as the set of alternatives that change their relative ordering

with some alternative from P to P′, that is, POP′ = {x | there exists y ∈ A such that [xPy and yP′x] or

[yPx and xP′y]}.

Definition 2.8. An RSCF ϕ : DN → ∆A satisfies lower contour monotonicity if for every i ∈ N,

for every Pi, P′i ∈ D, we have for every P−i ∈ D−i,

ϕL(PN) ≤ ϕL(P′i , P−i)

for all strict lower contour sets L of P restricted to POP′.

3. RESULTS

Theorem 3.1. Let ϕ : DN → ∆A satisfy lower contour monotonicity and let (µi)i∈N be strictly generic

for ϕ. Then, ϕ is LOBIC with respect to (µi)i∈N implies ϕ is LDSIC.

The proof of Theorem 3.1 is relegated to Appendix A.

Theorem 3.1 together with the fact that strictly generic priors have measure 1 yields the

following corollary.

Corollary 3.1. Almost every lower contour monotonic and LOBIC rule is LDSIC.

4



Theorem 3.2. Suppose |A| ≥ 3 and ϕ : L(A)n → ∆A is LOBIC with respect to (µi)i∈N where (µi)i∈N

is strictly generic for ϕ. If ϕ satisfies unanimity, then it satisfies elementary monotonicity.

The proof of Theorem 3.2 is relegated to Appendix B.

Corollary 3.2. Almost every unanimous and OBIC random rule on the unrestricted domain is random

dictatorial.

4. CONCLUSION

In this paper we have shown that when priors are strictly generic for ϕ, then any RSCF which

is OBIC and satisfies lower contour monotonicity is also LDSIC for a large class of domains

including the unrestricted domain, single-peaked domain, single-crossing domain, single-dipped

domain, etc. Also the requirement on priors to be strictly generic for the RSCF is rather weak

as such priors occur with probability 1. Thus, our result establishes an almost sure equivalence

between the OBIC and the DSIC random rules, and thereby they generalize the results in Mishra

(2016) and Majumdar and Sen (2004).

A. PROOF OF THEOREM 3.1

Definition A.1. An RSCF ϕ : DN → ∆A satisfies block monotonicity if for every i ∈ N, for every

Pi, P′i ∈ D, where (Pi, P′i ) ∈ E, we have for every P−i ∈ D−i,

ϕx(PN) = ϕx(P′i , P−i)

for all x /∈ POP′

To prove Theorem 3.1, we first prove the following Lemma.

Lemma A.1. Let ϕ : DN → ∆A be an RSCF and let (µi)i∈N be generic for ϕ. If ϕ is LOBIC with respect

to (µi)i∈N, then it must satisfy block monotonicity.

Proof. Let ϕ : DN → ∆A be an RSCF and let (µi)i∈N be generic for ϕ. Further, let ϕ be LOBIC

with respect to (µi)i∈N. We show that ϕ satisfies block monotonicity. Consider an agent i ∈ N

and two preferences Pi and P′i be such that P′i is an (a, b) swap of Pi. By definition Pi(k) = a,

Pi(k + 1) = b and P′i (k) = b, P′i (k + 1) = a for some k and Pi(l) = P′i (l) for all l /∈ {k, k + 1}.
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Take x ∈ A \ {a, b} such that Pi(k′) = P′i (k
′) = x where k′ < k. We show that ϕx(Pi, P−i) =

ϕx(P′i , P−i) for all P−i ∈ Di. If k′ = 1, as Pi(k′′) = P′i (k
′′) for all k′′ < k, LOBIC implies that

∑
P−i

µ(P−i|Pi)ϕPi(1)(Pi, P−i) ≥∑
P−i

µ(P−i|Pi)ϕPi(1)(P′i , P−i) (3)

and

∑
P−i

µ(P−i|Pi)ϕPi(1)(Pi, P−i) ≥∑
P−i

µ(P−i|Pi)ϕPi(1)(P′i , P−i) (4)

Combining (3) and (4), we get for all P−i ∈ D−i

∑
P−i

µ(P−i|Pi)ϕPi(1)(Pi, P−i) = ∑
P−i

µ(P−i|Pi)ϕPi(1)(P′i , P−i).

As (µi)i∈N is generic for ϕ, this means ϕPi(1)(Pi, P−i) = ϕPi(1)(P′i , P−i) for all P−i ∈ D−i.

Now suppose the claim is true for all k′′ < k′. Note that U(x, Pi) = U(x, P′i ). Applying LOBIC

to the top k′ alternatives in Pi and P′i we get

∑
P−i

µ(P−i|Pi)ϕU(x,Pi)
(Pi, P−i) ≥∑

P−i

µ(P−i|Pi)ϕU(x,Pi)
(P′i , P−i)

and

∑
P−i

µ(P−i|Pi)ϕU(x,P′i )
(Pi, P−i) ≥∑

P−i

µ(P−i|Pi)ϕU(x,P′i )
(P′i , P−i)

Combining the above inequalities, we have

∑
P−i

µ(P−i|Pi)ϕU(x,P′i )
(Pi, P−i) = ∑

P−i

µ(P−i|Pi)ϕU(x,P′i )
(P′i , P−i).

Using the induction hypothesis, we have for all k′′ < k′, ϕPi(k′′)(Pi, P−i) = ϕPi(k′′)(P′i , P−i) for

all P−i ∈ D−i.

Hence, we get

ϕx(Pi, P−i) = ϕx(P′i , P−i) for all P−i ∈ D−i.

Next we show that ϕ{a,b}(Pi, P−i) = ϕ{a,b}(P′i , P−i) for all P−i ∈ D−i. Applying LOBIC, we get

∑
P−i

µ(P−i|Pi)(ϕU(b,Pi)
(Pi, P−i)) ≥∑

P−i

µ(P−i|Pi)ϕU(b,Pi)
(P′i , P−i))
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and

∑
P−i

µ(P−i|Pi)(ϕU(a,P′i )
(Pi, P−i)) ≥∑

P−i

µ(P−i|Pi)ϕU(a,P′i )
(P′i , P−i))

As U(b, Pi) = U(a, P′i ), we get

ϕ{a,b}(Pi, P−i) = ϕ{a,b}(P′i , P−i) for all P−i ∈ D−i.

Finally, consider an alternative x ∈ A \ {a, b} such that Pi(k′) = P′i (k
′) = x where k′ > k + 1.

Using the same argument as in the case when k′ < k, we obtain

ϕx(Pi, P−i) = ϕx(P′i , P−i) for all P−i ∈ D−i.

Thus, for every P−i ∈ D−i, we have ϕx(Pi, P−i) = ϕx(P′i , P−i) for all x /∈ {a, b}. �

Proof of Theorem 3.1. Let ϕ : DN → ∆A be an RSCF satisfying local contour monotonicity and

let (µi)i∈N be generic for ϕ. Further, let ϕ be LOBIC with respect to (µi)i∈N. We show that ϕ is

also LDSIC. By Lemma A.1, we know that ϕ satisfies block monotonicity. Take i ∈ N ,P−i ∈ D−i

and Pi, P′i ∈ Di such that P′i is an (a, b)-swap of Pi, where Pi(k) = a, Pi(k + 1) = b and P′i (k) = b,

P′i (k + 1) = a for some k. Let Pi(k′) = x for some 1 ≤ k′ ≤ |A|. If k′ < k or k′ > k + 1 then

U(x, Pi) = U(x, P′i ) = U(x). By block monotonicity we have ϕU(x)(Pi, P−i) = ϕU(x)(P′i , P−i).

Thus, agent i cannot manipulate at (Pi, P−i) via P′i or at (P′i , P−i) via Pi. If k′ = k, then x = a and

by block monotonicity ϕU(Pi(k−1),Pi)
(Pi, P−i) = ϕU(Pi(k−1),Pi)

(P′i , P−i). Moreover, as ϕ satisfies local

contour monotonicity, ϕa(Pi, P−i) ≥ ϕa(P′i , P−i). This means ϕU(a,Pi)
(Pi, P−i) ≥ ϕU(a,Pi)

(P′i , P−i).

Thus, i cannot manipulate at (Pi, P−i) via P′i . Now, take k′ = k + 1. In this case x = b. By block

monotonicity ϕ{a,b}(Pi, P−i) = ϕ{a,b}(P′i , P−i). As P′i is an (a, b)− swap of Pi, we have U(Pi(k−

1), Pi) = U(P′i (k− 1), P′i ) and U(Pi(k′), Pi) = U(P′i (k
′), P′i ) = U(Pi(k− 1), Pi)∪{a, b} = U(P′i (k−

1), P′i ) ∪ {a, b}. Hence, ϕU(x,Pi)
(Pi, P−i) = ϕU(x,Pi)

(P′i , P−i). This means i cannot manipulate at

(Pi, P−i) via P′i . This completes the proof of the theorem. �

B. PROOF OF THEOREM 3.2

First we show that an RSCF ϕ that is unanimous and LOBIC with respect to (µi)i∈N, then ϕ is

Pareto efficient.
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Lemma B.1. Let ϕ : L(A)n → ∆A be an RSCF and let (µi)i∈N be generic for ϕ. Then, if ϕ is unanimous

and LOBIC with respect to (µi)i∈N, then ϕ is Pareto efficient.

Proof. Let ϕ : L(A)n → ∆A be unanimous and LOBIC with respect to (µi)i∈N where (µi)i∈N is

generic for ϕ. We show that ϕ is Pareto efficient. Assume for contradiction that it is not Pareto

efficient. For this, we consider a profile PN ∈ L(A)n such that ϕb(PN) > 0 and there exists a ∈ A

such that aPib for all i ∈ N. Consider an agent i ∈ N such that Pi(k) = a and k 6= 1. Suppose

Pi(k− 1) = x. Consider P′i ∈ L(A) such that P′i is an (x, a)-swap of Pi. By Lemma A.1, we know

that ϕ satisfies block monotonicity. This means ϕb(P′i , P−i) > 0. Similarly, by such repeated swaps

we reach a preference P′′i for agent i such that P′′i (1) = a and ϕb(P′′i , P−i) > 0. Note that as aPib

such swaps are independent of b. Now we can repeat this procedure for every agent j such that

Pj(k) = a and k 6= 1 and arrive at a profile P′′N such that P′′i (1) = a for all i ∈ N and ϕa(P′′N) < 1.

This contradicts the fact the ϕ is unanimous. �

Proof of Theorem 3.2. Let ϕ : L(A)n → ∆A be unanimous and LOBIC with respect to (µi)i∈N

where (µi)i∈N is generic for ϕ. By Lemma B.1, ϕ is Pareto efficient and by Lemma A.1 ϕ satisfies

block monotonicity. We show that ϕ satisfies elementary monotonicity. Consider an agent i ∈ N,

a preference profile P−i ∈ D−i of other agents, and Pi, P̄i ∈ Di such that P̄i is an (a, b)-swap of Pi.

Notice that there are some agents in P−i who prefer a to b and some who prefer b to a. We show

that ϕb(Pi, P−i) = ϕb(P̄i, P−i).

By block monotonicity, ϕ{a,b}(Pi, P−i) = ϕ{a,b}(P̄i, P−i). Assume for contradiction that ϕb(Pi, P−i) >

ϕb(P̄i, P−i). We carry out the proof in the following steps.

P1
N

. . . . . . . . . . . .

. . . . . . . . . . . .

a b a x

. . . . . . . . . b

. . . . . . . . . . . .

b a x . . .

x x b a

. . . . . . . . . . . .

. . . . . . . . . . . .

Table 1

Step 1: We modify the profile (Pi, P−i) to bring one of the alternatives not in {a, b} just below
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{a, b} for all agents. Let x /∈ {a, b} be some alternative. If aPjx and bPjx for some j ∈ N, then

we can do a series of swaps to lift x up such that it is just below b if aPjb or just below a if bPja

(note that none of these swaps will involve b). By block monotonicity, the probability that the

outcome at the new profile is b is unchanged. Using a similar argument, if bPjx and xPja for some

j ∈ M, then we can come to a preference where x is just below a maintaining the probability of

the outcome being b.

Now, consider j ∈ N, such that xPjb. If x and b are not consecutive in Pj, then again we can

do a series of swaps to come to a preference such that x is just above b (note again that none

of these swaps will involve b). Let us denote this new profile by P1
N. By block monotonicity,

ϕb(P1
N) = ϕb(Pi, P−i). So, we have reached a profile P1

N, where for every j ∈ N, either x is just

above b in P1
j or [x is just below b if aP1

j b and x is just below a if bP1
j a]. Table 1 shows the profile

P1.

Consider P2
j ∈ Dj such that P2

j is (x, b)-swap of P1
j for every j ∈ N such that x is just above b in

P1
j (Columns 3 and 4 in Table 1) and P2

j ∈ Dj such that P2
j = P1

j for others. By block monotonicity

ϕ{x,b}(P2
N) = ϕ{x,b}(P1

N). But b is preferred to x by all the agents, and hence, Pareto efficiency

implies that ϕb(P2
N) = ϕ{x,b}(P1

N). For every j belonging to Column 4 in Table 1, we then do a

sequence of swaps to get x just below a. Denote this new preference by P3
j and this new profile by

P3
N. By block monotonicity, ϕb(P3

N) = ϕb(P2
N).

Now, consider the (a, b)-swap of P3
i and denote this preference as P̄3

i . By an analogous

argument ϕb(P̄3
i , P3
−i) = ϕ{x,b}(P̄i, P−i). This means, ϕb(P̄3

i , P3
−i) < ϕb(P3

i , P3
−i) The two profiles

(P̄3
i , P3
−i) and (P3

i , P3
−i) are shown in Table 2.

P3
i P3

−i P̄3
i P3

−i

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

a b . . . a . . . b b . . . a . . .

b . . . . . . a . . . . . .

x a . . . b . . . x a . . . b . . .

. x . . . x . . . . x . . . x . . .

. . . . . . . . . . . . . .

Table 2

Step 2: In this step, we modify the profile (P̄3
i , P3
−i) in a particular way. First, we look at an
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agent j ∈ N, such that aP3
j b and bP3

j x. Consider the profile P4
N such that P4

j is (b, x)-swap of P3
j

for each of these agents and P4
j = P3

j otherwise. The new profile is shown in Table 3. By block

monotonicity, ϕ{b,x}(P4
N) = ϕ{b,x}(P3

N). But since a is ranked higher than x for all the agents,

Pareto efficiency implies ϕb(P4
N) = ϕ{b,x}(P3

N).

Agent i Other agents

. . . . . . .

. . . . . . .

a b . . . a . . .

x . . . . . .

b a . . . x . . .

. x . . . b . . .

. . . . . . .

Table 3: New profile in Step 2 (P4
N)

Step 3: In this step, we modify the profile in Table 3 further. In particular, we lift x just above

a. For agent i and for all j 6= i such that x is just below a, this can be done by a (a, x)-swap. For

all other agents, this requires a series of swaps which can be done by not involving b. The new

profile denoted by P5
N is shown in Table 4. Since none of the swaps involve b, block monotonicity

implies that ϕb(P5
N) = ϕb(P4

N).

Agent i Other agents

. . . . . . .

. . . . . . .

x b . . . x . . .

a . . . . . .

b x . . . a . . .

. a . . . b . . .

. . . . . . .

Table 4: New profile in Step 3 (P5
N)

Step 4: In this step, we modify the profile in P5
N by changing only agent is preference. We do

this by doing an (a, b)-swap of the preference of agent i in the profile shown in Table 4. The new

profile denoted by P6
N is shown in Table 5. By block monotonicity, ϕ{a,b}(P6

N) = ϕ{a,b}(P5
N). But x
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is better than a for all agents, and hence, Pareto efficiency implies that ϕb(P6
N) = ϕ{a,b}(P5

N).

Agent i Other agents

. . . . . . .

. . . . . . .

x b . . . x . . .

b . . . . . .

a x . . . a . . .

. a . . . b . . .

. . . . . . .

Table 5: New profile in Step 4 (P6
N)

Step 5: In this step, we modify the profile P6
N by changing the preferences of those agents who

prefer x to a and a to b(the third column of agents in Table 5). We perform a series of swaps to

bring x just one position above b. The new profile P7
N is shown in Table 6. By block monotonicity,

ϕb(P7
N) = ϕb(P6

N).

Agent i Other agents

. . . . . . .

. . . . . . .

x b . . . a . . .

b . . . . . .

a x . . . x . . .

. a . . . b . . .

. . . . . . .

Table 6: New profile in Step 5 (P7
N)

Step 6: Now, we perform an (x, b)-swap of preferences of those agents who rank x just above b in

the profile in Step 5 this will be agent i and agents in the third column in Table 6. The new profile

P8
N is shown in Table 7. By block monotonicity, ϕ{x,b}(P8

N) = ϕ{x,b}(P7
N). But b is preferred to x

for all the agents. Hence, Pareto efficiency implies ϕb(P8
N) = ϕ{x,b}(P7

N).

Step 7: Finally, we perform a (x, a)-swap for the preferences of all agents in the profile in Step 6

who rank x just above a this will include agent i and agents in the second column of Table 7. The

new profile denoted by P9
N is shown in Table 8. By block monotonicity, ϕb(P9

N) = ϕb(P8
N) . But
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Agent i Other agents

. . . . . . .

. . . . . . .

b b . . . a . . .

x . . . . . .

a x . . . b . . .

. a . . . x . . .

. . . . . . .

Table 7: New profile in Step 6 (P8
N)

the profile shown in Table 8 is exactly the profile (P̄3
i , P3
−i)(see Table 2) and we had assumed that

ϕb(P̄3
i , P3
−i) < ϕb(P3

i , P3
−i). So we have ϕb(P̄3

i , P3
−i) < ϕb(P3

i , P3
−i) ≤ ϕb(P9

N) = ϕb(P̄3
i , P3
−i). This is

a contradiction. Hence, ϕ satisfies elementary monotonicity.

Agent i Other agents

. . . . . . .

. . . . . . .

b b . . . a . . .

a . . . . . .

x a . . . b . . .

. x . . . x . . .

. . . . . . .

Table 8: New profile in Step 7 (P9
N)

Now, applying Theorem 3.1, we can say that ϕ LDSIC.

�
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