Sentimental Business Cycles

Andresa Lagerborg, Evi Pappa, Morten O. Ravn IMF, UC3M, UCL, CEPR and CfM

Delhi, December 2018

LaPaRa (U(C,L))

Sources of fluctuations in the economy: Much work estimates impact of '**fundamental shocks**' on the economy:

- Technology shocks, investment specific shocks.
- Monetary/fiscal/credit/trade policy shocks.
- Oil price shocks, commodity price shocks.
- TFP uncertainty shocks, policy uncertainty shocks.

Other shocks: Large share of the variances of macro aggregates remains unaccounted for:

- News (about fundamentals) shocks.
- Animal spirits / expectational shocks / non-fundamental shocks.

Key Challenge: How to estimate causal effects?

- News and sentiments non-observed and hard to translate into observables
- News: Use either information from asset prices or structural models
- Multiple equilibria: Some attempts using structural models.
- Animal spirits:
 - Barsky and Sims (2012),
 - Levchenko and Pandalai-Nayar (2018), Forni et al. (2013)
 - Mian, Sufi and Khouskou (2015), Benhabib and Spiegel (2016), Feve and Guay (2018), Lagerborg (2017)
- None of the latter produce direct causal evidence on impact of sentiments

- 1. Empirics: Estimate the dynamic causal effects of sentiment shocks:
 - Propose IV strategy for estimation.
 - Combine IV with SVAR to estimate dynamic causal effects.
- 2. Theory: Build model and apply it for structural analysis:
 - Incomplete information and Bayesian learning.
 - Heterogeneous Agents New Keynesian (HANK) model.
 - Search and Matching in labor market (SAM).
 - HANK&SAM provides amplification mechanism.
- 3. Quantification: Estimate key structural parameters:
 - Simulation based estimates of structural parameters.

Sentiments: Draw data from University of Michigan Survey of Consumer Confidence:

- Conducted since late 1940's;
- Monthly since 1977 (quarterly since 1952);
- 500 randomly drawn persons are interviewed per month;
- Asked about own situation and about US economy;

Three broad indices:

- Index of Consumer Sentiment (ICS): A mix of:
- Index of Current Economic Conditions (ICC), and
- Index of Consumer Expectations (ICE).

ICE is derived from answers to three questions (each given 1-5 score):

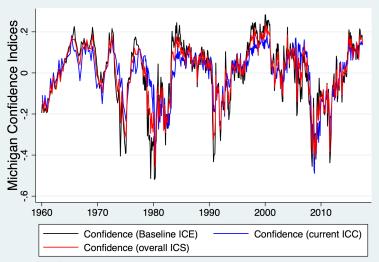
PEXP: "Now looking ahead-do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"

- PEXP: "Now looking ahead-do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"
- BUS12: "Now turning to business conditions in the country as a whole-do you think that during the next 12 months we'll have good times financially, or bad times, or what?"

- PEXP: "Now looking ahead-do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"
- BUS12: "Now turning to business conditions in the country as a whole-do you think that during the next 12 months we'll have good times financially, or bad times, or what?"
- BUS5: "...which would you say is more likely-that in the country as a whole we'll have continuous good times during the 5 years or so, or that we will have periods of widespread unemployment or depression, or what?"

- PEXP: "Now looking ahead-do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"
- BUS12: "Now turning to business conditions in the country as a whole-do you think that during the next 12 months we'll have good times financially, or bad times, or what?"
- BUS5: "...which would you say is more likely-that in the country as a whole we'll have continuous good times during the 5 years or so, or that we will have periods of widespread unemployment or depression, or what?"
 - Responses tend to be bimodal (either 1 or 5).

- PEXP: "Now looking ahead-do you think that a year from now you (and your family living there) will be better off financially, or worse off, or just about the same as now?"
- BUS12: "Now turning to business conditions in the country as a whole-do you think that during the next 12 months we'll have good times financially, or bad times, or what?"
- BUS5: "...which would you say is more likely-that in the country as a whole we'll have continuous good times during the 5 years or so, or that we will have periods of widespread unemployment or depression, or what?"
 - Responses tend to be bimodal (either 1 or 5).
 - ICE computed as 100 + "% positive respondents" "% negative respondents" (normalized to 1966 base).

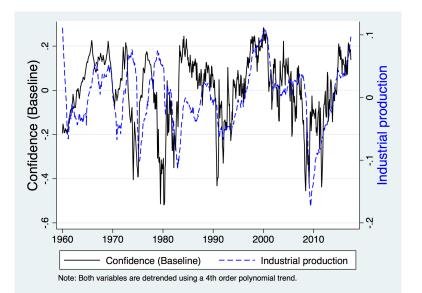


Note: Both variables are detrended using a 4th order polynomial trend.

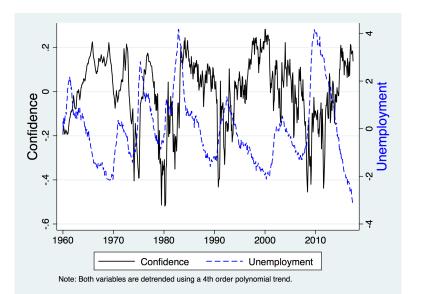
LaPaRa (U(C,L))

- 一司

ICE ICE B...



ICE ICE B...



LaPaRa (U(C,L))

Delhi, December 2018 9 ,

9 / 64

• Matsusaka and Sbordone (1995): ICS Granger causes GDP.

- Matsusaka and Sbordone (1995): ICS Granger causes GDP.
- **Carroll, Fuhrer and Wilcox** (1994): ICS has predictive power for consumption growth on top of the information incorporated in income and other control variables.

- Matsusaka and Sbordone (1995): ICS Granger causes GDP.
- Carroll, Fuhrer and Wilcox (1994): ICS has predictive power for consumption growth on top of the information incorporated in income and other control variables.
- Ludvigson (2004): ICE has predictive power for aggregate consumption growth (but not robust to allowing for control variables such as the consumption-wealth ratio).

- Matsusaka and Sbordone (1995): ICS Granger causes GDP.
- **Carroll, Fuhrer and Wilcox** (1994): ICS has predictive power for consumption growth on top of the information incorporated in income and other control variables.
- Ludvigson (2004): ICE has predictive power for aggregate consumption growth (but not robust to allowing for control variables such as the consumption-wealth ratio).
- **Problem**: Predictive power / Granger causality may simply be due to confidence data reflecting news about future fundamentals and not necessarily due to sentiments.

CI = F (fundamentals, news, noise, sentiments)

• How can one isolate the expectational/non-fundamental component?

CI = F (fundamentals, news, noise, sentiments)

- How can one isolate the expectational/non-fundamental component?
- Barsky and Sims: Estimate VAR:

$$\begin{aligned} \mathbf{X}_t &= \begin{bmatrix} \mathbf{C} \mathbf{I}_t \\ \mathbf{C}_t \\ \mathbf{Y}_t \end{bmatrix} \\ \mathbf{X}_t &= \mathbf{A} \left(L \right) \mathbf{X}_{t-1} + \mathbf{u}_t \end{aligned}$$

CI = F (fundamentals, news, noise, sentiments)

- How can one isolate the expectational/non-fundamental component?
- Barsky and Sims: Estimate VAR:

$$\begin{aligned} \mathbf{X}_t &= \begin{bmatrix} \mathbf{C} \mathbf{I}_t \\ \mathbf{C}_t \\ \mathbf{Y}_t \end{bmatrix} \\ \mathbf{X}_t &= \mathbf{A} \left(L \right) \mathbf{X}_{t-1} + \mathbf{u}_t \end{aligned}$$

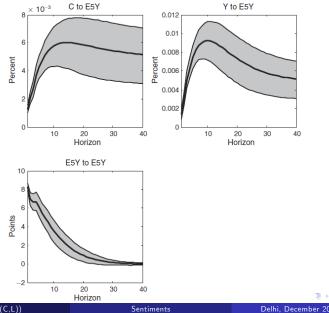
• Look at response to *innovation* to \mathbf{CI}_t .

CI = F (fundamentals, news, noise, sentiments)

- How can one isolate the expectational/non-fundamental component?
- Barsky and Sims: Estimate VAR:

$$\begin{aligned} \mathbf{X}_t &= \begin{bmatrix} \mathbf{C} \mathbf{I}_t \\ \mathbf{C}_t \\ \mathbf{Y}_t \end{bmatrix} \\ \mathbf{X}_t &= \mathbf{A} \left(L \right) \mathbf{X}_{t-1} + \mathbf{u}_t \end{aligned}$$

- Look at response to *innovation* to \mathbf{CI}_t .
- Do not claim causality



LaPaRa (U(C,L))

Delhi, December 2018

э

Barsky and Sims: Construct NK model with imperfect information.

• TFP follows:

$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \mathbf{\varepsilon}_{\mathbf{a},t} \\ \mathbf{g}_t &= (1 - \rho_{\mathbf{a}}) \, \mathbf{g}^* + \rho_{\mathbf{a}} \mathbf{g}_{t-1} + \mathbf{\varepsilon}_{\mathbf{g},t} \end{aligned}$$

Barsky and Sims: Construct NK model with imperfect information.

• TFP follows:

$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \mathbf{\varepsilon}_{\mathbf{a},t} \\ \mathbf{g}_t &= (1 - \rho_{\mathbf{a}}) \, \mathbf{g}^* + \rho_{\mathbf{a}} \mathbf{g}_{t-1} + \mathbf{\varepsilon}_{\mathbf{g},t} \end{aligned}$$

• $\varepsilon_{a,t}$: Technology shocks.

Barsky and Sims: Construct NK model with imperfect information.

• TFP follows:

$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \mathbf{\varepsilon}_{\mathbf{a},t} \\ \mathbf{g}_t &= (1 - \rho_{\mathbf{a}}) \, \mathbf{g}^* + \rho_{\mathbf{a}} \mathbf{g}_{t-1} + \mathbf{\varepsilon}_{\mathbf{g},t} \end{aligned}$$

- $\varepsilon_{a,t}$: Technology shocks.
- $\varepsilon_{g,t}$: News shocks.

Barsky and Sims: Construct NK model with imperfect information.

• TFP follows:

$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \mathbf{\varepsilon}_{\mathbf{a},t} \\ \mathbf{g}_t &= (1 - \rho_{\mathbf{a}}) \, \mathbf{g}^* + \rho_{\mathbf{a}} \mathbf{g}_{t-1} + \mathbf{\varepsilon}_{\mathbf{g},t} \end{aligned}$$

- $\varepsilon_{a,t}$: Technology shocks.
- $\varepsilon_{g,t}$: News shocks.
- Agents observe:

$$s_t = g_t + \varepsilon_{s,t}$$

Barsky and Sims: Construct NK model with imperfect information.

• TFP follows:

$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \mathbf{\varepsilon}_{\mathbf{a},t} \\ \mathbf{g}_t &= (1 - \rho_{\mathbf{a}}) \, \mathbf{g}^* + \rho_{\mathbf{a}} \mathbf{g}_{t-1} + \mathbf{\varepsilon}_{\mathbf{g},t} \end{aligned}$$

- ε_{a,t} : Technology shocks.
- $\varepsilon_{g,t}$: News shocks.
- Agents observe:

$$s_t = g_t + \varepsilon_{s,t}$$

• $\varepsilon_{s,t}$: Sentiments/animal spirits (pure expectational shocks).

Barsky and Sims: Construct NK model with imperfect information.

• TFP follows:

$$\begin{aligned} \mathbf{a}_t &= \mathbf{a}_{t-1} + \mathbf{g}_{t-1} + \mathbf{\varepsilon}_{\mathbf{a},t} \\ \mathbf{g}_t &= (1 - \rho_{\mathbf{a}}) \, \mathbf{g}^* + \rho_{\mathbf{a}} \mathbf{g}_{t-1} + \mathbf{\varepsilon}_{\mathbf{g},t} \end{aligned}$$

- $\varepsilon_{a,t}$: Technology shocks.
- $\varepsilon_{g,t}$: News shocks.
- Agents observe:

$$s_t = g_t + \varepsilon_{s,t}$$

- ε_{s,t} : Sentiments/animal spirits (pure expectational shocks).
- Barsky-Sims model-equivalent of **CI**_t is:

$$\mathbf{CI}_{t} = \zeta_{1} \left(\mathbf{a}_{t} - \mathbf{a}_{t-1} - \mathbf{g}_{t|t-1} \right) + \zeta_{2} \left(\mathbf{g}_{t|t} - \rho_{\mathbf{a}} \mathbf{g}_{t|t-1} \right) + \zeta_{2} \varepsilon_{c,t}$$

Theory: Barsky and Sims

	h = 1	<i>h</i> = 4	h = 8	<i>h</i> = 16	h = 20
News					
E5Y	0.52	0.71	0.75	0.77	0.77
С	0.11	0.25	0.36	0.47	0.49
Y	0.02	0.11	0.31	0.46	0.49
Animal spirits					
E5Y	0.25	0.09	0.06	0.05	0.04
С	0.06	0.01	0.00	0.00	0.00
Y	0.01	0.01	0.00	0.00	0.00
Technology					
E5Y	0.01	0.01	0.00	0.00	0.00
С	0.43	0.48	0.50	0.48	0.47
Y	0.13	0.54	0.57	0.50	0.48
Noise					
E5Y	0.22	0.19	0.19	0.18	0.18

TABLE 3—MODEL VARIANCE DECOMPOSITION

• Confidence innovations are news shocks, animal spirits don't matter.

$$CI = F($$
 fundamentals, news, noise, sentiments)

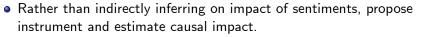
• Rather than indirectly inferring on impact of sentiments, propose instrument and estimate causal impact.

instrumented

$$CI = F($$
 fundamentals, news, noise, sentimeters

- Rather than indirectly inferring on impact of sentiments, propose instrument and estimate causal impact.
- We adopt Proxy SVAR estimator (Mertens & Ravn, AER, 2013).

$$CI = F($$
 fundamentals, news, noise, sentiments)



- We adopt **Proxy SVAR** estimator (Mertens & Ravn, AER, 2013).
- The idea is to identify structural shocks using external instruments.

instrumented

CI = F(fundamentals, news, noise, <u>sentir</u>

- Rather than indirectly inferring on impact of sentiments, propose instrument and estimate causal impact.
- We adopt **Proxy SVAR** estimator (Mertens & Ravn, AER, 2013).
- The idea is to identify structural shocks using external instruments.
- Can be estimated with 2SLS or 3SLS.

Assume that the dynamics of observables is:

$$\mathbf{X}_{t} = \mathbf{A}(L) \mathbf{X}_{t-1} + \mathbf{u}_{t}$$

$$\mathbf{u}_{t} = \mathbf{B} \underbrace{\varepsilon_{t}}_{\text{structural shocks}}$$

• Structural shocks not observed.

Assume that the dynamics of observables is:

$$\mathbf{X}_{t} = \mathbf{A}(L)\mathbf{X}_{t-1} + \mathbf{u}_{t}$$

•

- Structural shocks not observed.
- We want to identify the relevant column of **B**.

Assume that the dynamics of observables is:

$$\mathbf{X}_{t} = \mathbf{A}(L) \mathbf{X}_{t-1} + \mathbf{u}_{t}$$
 innovations

- Structural shocks not observed.
- We want to identify the relevant column of **B**.
- Order **CI** (wlog) first

Identification

• Aim: Identify structural shock to CI and its effects

э

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t a \text{ proxy} \text{such that:}$

$$\begin{split} & \mathbb{E}\left(s_t \varepsilon_{\mathsf{CI},t}\right) &= \varphi \neq 0 \qquad \qquad (\text{relevance}) \\ & \mathbb{E}\left(s_t \varepsilon_{\neq \mathsf{CI},t}\right) &= 0 \qquad \qquad (\text{exogeneity}) \end{split}$$

Identification

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t a \text{ proxy} \text{such that:}$

$$\begin{split} & \mathbb{E}\left(s_t \varepsilon_{\mathsf{CI},t}\right) &= \varphi \neq 0 \qquad \qquad (\text{relevance}) \\ & \mathbb{E}\left(s_t \varepsilon_{\neq \mathsf{CI},t}\right) &= 0 \qquad \qquad (\text{exogeneity}) \end{split}$$

 \Rightarrow s_t identifies ε_{1t} and **B**_{CI} column.

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t a \text{ proxy} \text{such that:}$

$$\begin{split} & \mathbb{E}\left(s_t \varepsilon_{\mathsf{CI},t}\right) &= \varphi \neq 0 \qquad \qquad (\text{relevance}) \\ & \mathbb{E}\left(s_t \varepsilon_{\neq \mathsf{CI},t}\right) &= 0 \qquad \qquad (\text{exogeneity}) \end{split}$$

- \Rightarrow s_t identifies ε_{1t} and **B**_{CI} column.
 - From this can compute identified impulse responses etc.

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t a \text{ proxy} \text{such that:}$

$$\begin{split} &\mathbb{E}\left(s_t \varepsilon_{\mathsf{CI},t}\right) &= & \varphi \neq 0 \qquad \qquad (\text{relevance}) \\ &\mathbb{E}\left(s_t \varepsilon_{\neq \mathsf{CI},t}\right) &= & 0 \qquad \qquad (\text{exogeneity}) \end{split}$$

- \Rightarrow s_t identifies ε_{1t} and **B**_{CI} column.
 - From this can compute identified impulse responses etc.
 - Implements IV with external instrument in a VAR

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t a \text{ proxy} \text{such that:}$

$$\begin{split} &\mathbb{E}\left(s_t \varepsilon_{\mathsf{CI},t}\right) &= & \varphi \neq 0 \qquad \qquad (\text{relevance}) \\ &\mathbb{E}\left(s_t \varepsilon_{\neq \mathsf{CI},t}\right) &= & 0 \qquad \qquad (\text{exogeneity}) \end{split}$$

- \Rightarrow s_t identifies ε_{1t} and **B**_{CI} column.
 - From this can compute identified impulse responses etc.
 - Implements IV with external instrument in a VAR
 - Proxy only needs to be *correlated* with true shock but not necessarily identically equal to it

- Aim: Identify structural shock to CI and its effects
- External instruments: $\exists s_t a \text{ proxy} \text{such that:}$

$$\begin{split} &\mathbb{E}\left(s_t \varepsilon_{\mathsf{CI},t}\right) &= & \varphi \neq 0 \qquad \qquad \text{(relevance)} \\ &\mathbb{E}\left(s_t \varepsilon_{\neq \mathsf{CI},t}\right) &= & 0 \qquad \qquad \text{(exogeneity)} \end{split}$$

- \Rightarrow s_t identifies ε_{1t} and **B**_{CI} column.
 - From this can compute identified impulse responses etc.
 - Implements IV with external instrument in a VAR
 - Proxy only needs to be *correlated* with true shock but not necessarily identically equal to it
 - Allows for measurement errors and one can correct for scaling issues

• mass shootings = shootings with 4 fatalities or more (perpetrator excluded), carried out by lone shooter in a public space.

- mass shootings = shootings with 4 fatalities or more (perpetrator excluded), carried out by lone shooter in a public space.
- **Source**: MotherJones 1982-2017, extended with Wikipedia data to 1960 90 separate events, 15 had more than 10 fatalities.

- mass shootings = shootings with 4 fatalities or more (perpetrator excluded), carried out by lone shooter in a public space.
- **Source**: MotherJones 1982-2017, extended with Wikipedia data to 1960 90 separate events, 15 had more than 10 fatalities.
- Alternative source: Duwe (2007), 1960-2017 more incidents but more serious ones are identical.

- mass shootings = shootings with 4 fatalities or more (perpetrator excluded), carried out by lone shooter in a public space.
- **Source**: MotherJones 1982-2017, extended with Wikipedia data to 1960 90 separate events, 15 had more than 10 fatalities.
- Alternative source: Duwe (2007), 1960-2017 more incidents but more serious ones are identical.
- Mass shootings are unpredictable over time.

- mass shootings = shootings with 4 fatalities or more (perpetrator excluded), carried out by lone shooter in a public space.
- **Source**: MotherJones 1982-2017, extended with Wikipedia data to 1960 90 separate events, 15 had more than 10 fatalities.
- Alternative source: Duwe (2007), 1960-2017 more incidents but more serious ones are identical.
- Mass shootings are unpredictable over time.
- Each event unlikely to bear much in terms of direct costs.

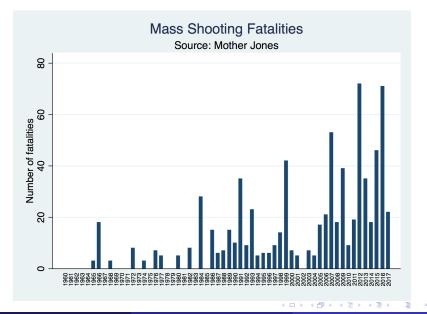
Mass Shootings with 10 or More Fatalities

Incident	Location	Date	Fat.	Inj.
U. of Texas Tower shooting	Austin, Tx	Aug 1966	18	31
San Ysidro's McD massacre	San Ysidro, Cal	Jul 1984	22	19
U.S. Postal Service shooting	Edmond, Okl	Aug 1986	15	6
GMAC massacre	Jacksonville, Fla	Jun 1990	10	4
Luby's massacre	Killeen, TX	Oct 1991	24	20
Columbine High massacre	Littleton, Col	Apr 1999	13	24
Red Lake massacre	Red Lake, Minn	Mar 2005	10	5
Virginia Tech massacre	Blacksburg, VA	Apr 2007	32	23
Binghampton shootings	Binghampton, NY	Apr 2009	14	4
Fort Hood massacre	Fort Hood, TX	Nov 2009	13	30
Aurora Theatre shooting	Aurora, Col	Jul 2012	12	70
Sandy Hook massacre	Newtown, Conn	Dec 2012	28	2
Wash. Navy Yard shooting	Washington, D.C.	Sep 2013	12	8
San Bernadino mass shooting	San Bernadino, Cal	Dec 2015	14	21
Orlando Nightclub massacre	Orlando, Fla	Jun 2016	49	53

LaPaRa (U(C,L))

Sentiments

Fatalities in Mass Shootings



LaPaRa (U(C,L))

20 / 64

Incident	Year	Articles	Words		
Sandy Hook	2012	130	118,354		
Shooting of Gabrielle Clifford	2011	89	91,715		
Fort Hood military base sh.	2009	36	35,097		
Virginia Tech shooting	2007	36	33,473		
Aurora Co. movie theatre sh.	2012	31	23,715		
Red Lake massacre	2005	19	18,519		
Santana High School sh.	2001	17	14,045		
University of Alabama-High sh.	2010	12	12,872		
Northern Illinois Univ. shooting.	2008	12	7,524		
Binghampton, NY shooting	2009	11	10,729		
(source: Schildkraut, Elsass and Meredith, 2017)					

• In addition to electronic news coverage.

3

• Lexis Nexis: 182 articles on Fort Hood massacre (TX, 2009), 156 on Newtown school shooting (Conn., 2012).

- Lexis Nexis: 182 articles on Fort Hood massacre (TX, 2009), 156 on Newtown school shooting (Conn., 2012).
- Lankford (2018): Mass killers (7 biggest shootings since 2012) received more news coverage than top sports stars and celebrities.

- Lexis Nexis: 182 articles on Fort Hood massacre (TX, 2009), 156 on Newtown school shooting (Conn., 2012).
- Lankford (2018): Mass killers (7 biggest shootings since 2012) received more news coverage than top sports stars and celebrities.
- Towers (2015): Mass shootings contagious.

- Lexis Nexis: 182 articles on Fort Hood massacre (TX, 2009), 156 on Newtown school shooting (Conn., 2012).
- Lankford (2018): Mass killers (7 biggest shootings since 2012) received more news coverage than top sports stars and celebrities.
- Towers (2015): Mass shootings contagious.
- Pappa, Lagerborg and Ravn (2018): Mass shootings contagious for school shootings.

- Lexis Nexis: 182 articles on Fort Hood massacre (TX, 2009), 156 on Newtown school shooting (Conn., 2012).
- Lankford (2018): Mass killers (7 biggest shootings since 2012) received more news coverage than top sports stars and celebrities.
- Towers (2015): Mass shootings contagious.
- Pappa, Lagerborg and Ravn (2018): Mass shootings contagious for school shootings.
- **Conclusion**: Many (most) Americans would be aware of mass shooting events.

- Lexis Nexis: 182 articles on Fort Hood massacre (TX, 2009), 156 on Newtown school shooting (Conn., 2012).
- Lankford (2018): Mass killers (7 biggest shootings since 2012) received more news coverage than top sports stars and celebrities.
- Towers (2015): Mass shootings contagious.
- Pappa, Lagerborg and Ravn (2018): Mass shootings contagious for school shootings.
- **Conclusion**: Many (most) Americans would be aware of mass shooting events.
- Mass shootings impact on psychological well-being: PTSD symptoms (Hughes et al, 2011), subjective well-being (Clark and Stancanelli, 2017) - potential for direct impact on confidence.

Implementation: US time series data:

• Monthly data.

æ

Implementation: US time series data:

- Monthly data.
- Sample period 1960:1 2017:6.

э

Implementation: US time series data:

- Monthly data.
- Sample period 1960:1 2017:6.
- Estimate VAR with 18 lags.

Implementation: US time series data:

- Monthly data.
- Sample period 1960:1 2017:6.
- Estimate VAR with 18 lags.
- Benchmark VAR:

$$oldsymbol{X}_t = \left(egin{array}{cc} CI_t & (\log \ {
m consumer \ confidence}) & Y_t & (\log \ {
m industrial \ production}) & U_t & (unemployment \ {
m rate}) & P_t & (\log \ {
m CPI}) & R_t & ({
m Federal \ funds \ rate}) & Y_t & T_t & T_$$

Implementation: US time series data:

- Monthly data.
- Sample period 1960:1 2017:6.
- Estimate VAR with 18 lags.
- Benchmark VAR:

$$oldsymbol{X}_t = \left(egin{array}{cc} CI_t & (\log \ {
m consumer \ confidence}) \ Y_t & (\log \ {
m industrial \ production}) \ U_t & (unemployment \ {
m rate}) \ P_t & (\log \ {
m CPI}) \ R_t & ({
m Federal \ funds \ rate}) \end{array}
ight)$$

• Detrend all apart from R_t with 4th order time polynomial.

Implementation: US time series data:

- Monthly data.
- Sample period 1960:1 2017:6.
- Estimate VAR with 18 lags.
- Benchmark VAR:

$$oldsymbol{X}_t = \left(egin{array}{cc} CI_t & (\log \ {
m consumer \ confidence}) \ Y_t & (\log \ {
m industrial \ production}) \ U_t & (unemployment \ {
m rate}) \ P_t & (\log \ {
m CPI}) \ R_t & ({
m Federal \ funds \ rate}) \end{array}
ight)$$

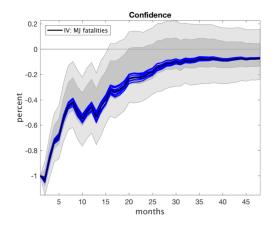
- Detrend all apart from R_t with 4th order time polynomial.
- Instrument: Detrended fatalities.

r tests for Alternative Connuence multes					
Instrument	Mass fatalities coefficient	IV exclusion F- statistic			
MotherJones Fatalities					
ICE	-1.73***	10.83			
ICS	-1.07***	7.35			
BUS5	-1.40***	3.35			
BUS12	-0.86**	4.35			
PEXP	-0.27**	4.25			

F tests for Alternative Confidence Indices

æ

∃ ► < ∃</p>

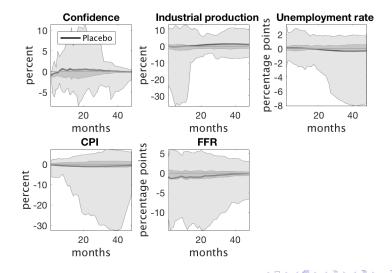


• Significant drop in ICE for approximately 2 years. • Relevance \surd

LaPaRa (U(C,L))

Placebo: Random Reshuffling of Shootings

IV with random reshuffling of mass fatalities



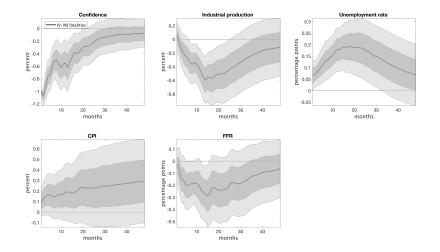
• IV so normalization needed: 1 percent drop in consumer confidence.

- IV so normalization needed: 1 percent drop in consumer confidence.
- Look at benchmark VAR.

- IV so normalization needed: 1 percent drop in consumer confidence.
- Look at benchmark VAR.
- Augment with other variables.

- IV so normalization needed: 1 percent drop in consumer confidence.
- Look at benchmark VAR.
- Augment with other variables.
- Compare with Choleski factorization results (Barsky and Sims).

- IV so normalization needed: 1 percent drop in consumer confidence.
- Look at benchmark VAR.
- Augment with other variables.
- Compare with Choleski factorization results (Barsky and Sims).
- Look at relationship to other shocks.



æ

• Long-lived slump in output.

э

- Long-lived slump in output.
- Persistent increase in unemployment.

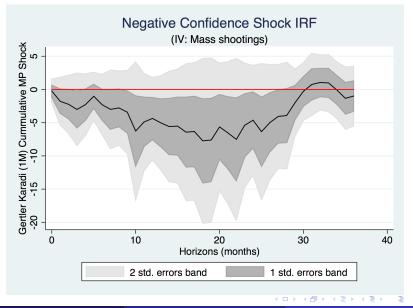
- Long-lived slump in output.
- Persistent increase in unemployment.
- Rise in price level.

- Long-lived slump in output.
- Persistent increase in unemployment.
- Rise in price level.
- Drop in nominal interest rates.

- Long-lived slump in output.
- Persistent increase in unemployment.
- Rise in price level.
- Drop in nominal interest rates.
- Increase in price level and drop in interest rates: Suggests monetary policy shock accompanying the drop in sentiments.

- Long-lived slump in output.
- Persistent increase in unemployment.
- Rise in price level.
- Drop in nominal interest rates.
- Increase in price level and drop in interest rates: Suggests monetary policy shock accompanying the drop in sentiments.
- Check this with local projection of Gertler-Karadi MP shock on identified sentiment shock.

Impact on Gertler-Karadi MP Shock



LaPaRa (U(C,L))

Delhi, December 2018 30 / 64

• Robust to 12 lags instead of 18.

- Robust to 12 lags instead of 18.
- Robust over time.

More Results

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.

More Results

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to individual big shootings.

More Results

Dynamic Causal Effects: Robustness and impact on other variables:

- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to individual big shootings.

Other variables:

• Drop in consumption.

- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to individual big shootings.

- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.

- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to individual big shootings.

- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.
- Capacity utilization drops.

- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to individual big shootings.

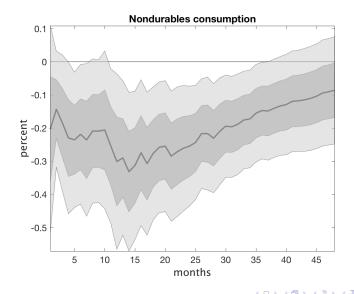
- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.
- Capacity utilization drops.
- Nominal exchange rate depreciates.

- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to individual big shootings.

- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.
- Capacity utilization drops.
- Nominal exchange rate depreciates.
- TFP: No impact.

- Robust to 12 lags instead of 18.
- Robust over time.
- Robust to detrending fatalities.
- Robust to individual big shootings.

- Drop in consumption.
- Labor market variables: Hours worked down, tightness down.
- Capacity utilization drops.
- Nominal exchange rate depreciates.
- TFP: No impact.
- Relationship to uncertainty: Slight delayed increase.

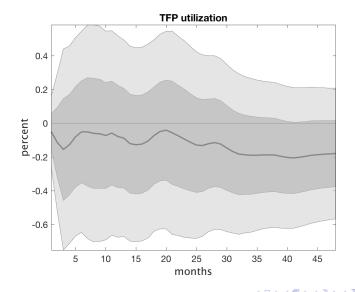


LaPaRa (U(C,L))

Delhi, December 2018

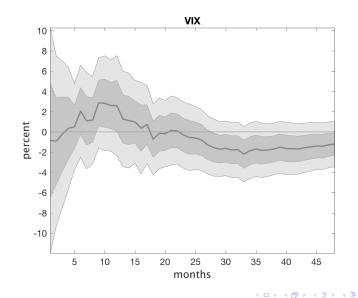
æ

Fernald Capacity Util. Adj. TFP



LaPaRa (U(C,L))

Delhi, December 2018 33 / 64



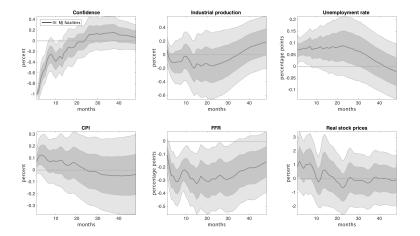
LaPaRa (U(C,L))

Delhi, December 2018

/ 64

æ

Controlling for Stock Prices



Contribution to Business Cycles:

	Variable					
Horizon	СІ	Υ	U	Р	R	Q
1	42.5	0.6	23.2	12.6	8.3	5.8
2	37.5	1.2	22.4	12.6	11.5	4.8
3	36.4	1.4	21.5	11.2	12.8	4.0
6	31.5	1.3	17.5	7.4	17.4	4.3
12	25.9	1.1	12.6	4.3	18.0	2.8
24	19.6	1.6	10.0	1.7	20.2	1.8
48	18.5	1.9	6.6	0.8	21.9	1.2
120	18.0	3.5	6.4	1.1	21.4	1.0

• sizeable contribution!

Theory

Households:

- Search for jobs.
- Face uninsurable unemployment risk.
- Save in bonds and equity.

Firms:

- Monopolistically competitive.
- Face Rotemberg (1982) quadratic price adjustment costs.
- Hire labor in frictional matching market.

Monetary Authority:

• Sets short term nominal interest rate.

Fundamental Shocks:

- Persistent aggregate productivity shocks.
- Transitory aggregate productivity shocks.
- Monetary policy shock.

Information:

• Imperfect common information: Only sum of productivity shocks observed.

Non-fundamental shock:

• Noisy signal about persistent productivity shock.

(filtering)
Noise shock(-)
$$\rightarrow$$
 Confused with $\mathbf{A}^P \downarrow$

$$\begin{array}{ccc} (\mathsf{filtering}) \\ \mathsf{Noise \ shock}(\text{-}) & \rightarrow & \mathsf{Confused \ with \ } \mathbf{A}^P \downarrow \\ & \downarrow \\ & & \downarrow \\ & & \mathsf{goods \ demand \ } \end{array}$$

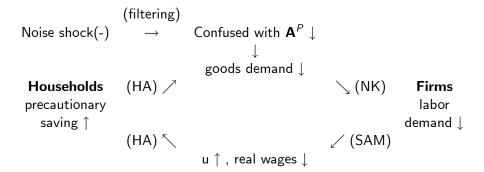
æ

∃ → (∃ →

Image: Image:

(filtering)
Noise shock(-)
$$\rightarrow$$
 Confused with $\mathbf{A}^P \downarrow$
 \downarrow
goods demand \downarrow
 \searrow (NK) Firms
labor
demand \downarrow

3



Composition: Continuum of single-member households. **Preferences**:

$$\mathcal{V}_{it} = \max \widehat{\mathbb{E}}_t \sum_{s=t}^{\infty} \beta^{s-t} \left(\frac{\mathbf{c}_{i,s}^{1-\mu} - 1}{1-\mu} - \zeta \mathbf{n}_{i,s}
ight),$$

Consumption:

$$\mathbf{c}_{i,s} = \left(\int \left(c_{i,s}^{j}\right)^{1-1/\gamma} dj\right)^{1/(1-1/\gamma)}$$

Employment Status and Earnings:

 $\mathbf{n}_{i,s} = \begin{cases} 0 \text{ if not employed at date } s, \text{ home production } \vartheta\\ 1 \text{ if employed at date } s, \text{ earns wage } w_{i,s} \end{cases}$

Technology - Production and Hiring

Technology:

$$\mathbf{y}_{j,s} = \exp\left(\mathbf{A}_{s}
ight) \left(\mathbf{z}_{js}\mathbf{k}_{js}
ight)^{ au} \mathbf{n}_{j,s}^{1- au}$$

Employment Dynamics:

$$\mathbf{n}_{j,s} = (1-\omega)\mathbf{n}_{j,s-1} + \mathbf{h}_{j,s}$$

Hiring:

$$\mathbf{h}_{j,s} = \mathbf{q}_s \mathbf{v}_{j,s}$$

• $v_{j,s} \ge 0$, flow cost $\kappa > 0$ per unit.

Capital accumulation:

$$\mathbf{k}_{j,s+1} = (1 - \delta\left(\mathbf{z}_{j,s}
ight))\mathbf{k}_{j,s} + \mathbf{i}_{j,s}$$

Matching technology

Timing: (i) job losses, (ii) hiring, (iii) production.

Matching function:

$$\mathbf{M}_s = \overline{m} \mathbf{u}_s^{lpha} \mathbf{v}_s^{1-lpha}$$

 $\mathbf{v}_s = \int_j \mathbf{v}_{j,s} dj$

Matching rates: Let $\theta_s = \mathbf{v}_s / \mathbf{u}_s$ denote labor market tightness:

job finding rate :
$$\eta_s = \frac{M_s}{u_s} = \overline{m}\theta_s^{1-\alpha}$$

vacancy filling rate : $q_s = \frac{M_s}{v_s} = \overline{m}^{1/(1-\alpha)}\eta_s^{-\alpha/(1-\alpha)}$

Prices, Wages, Interest Rates

Price Setting: Monopolistically competition firms, price adjustment costs:

$$\max \widehat{\mathbb{E}}_{t} \sum_{s=t}^{\infty} \Lambda_{j,t,s} \left[\frac{\mathbf{P}_{j,s}}{\mathbf{P}_{s}} \mathbf{y}_{j,s} - \mathbf{w}_{s} \mathbf{n}_{j,s} - \kappa \mathbf{v}_{j,s} - \mathbf{i}_{j,s} - \frac{\phi}{2} \left(\frac{\mathbf{P}_{j,s} - \mathbf{P}_{j,s-1}}{\mathbf{P}_{j,s-1}} \right)^{2} \mathbf{y}_{s} \right]$$

subject to:

$$\begin{aligned} \mathbf{y}_{j,s} &= \exp\left(\mathbf{A}_{s}\right)\left(\mathbf{z}_{j,s}\mathbf{k}_{j,s}\right)^{\mathsf{T}}\mathbf{n}_{j,s}^{1-\mathsf{T}} \\ \mathbf{n}_{j,s} &= \left(1-\omega\right)\mathbf{n}_{j,s-1}+\mathbf{h}_{j,s} \\ \mathbf{k}_{j,s+1} &= \left(1-\delta\left(\mathbf{z}_{j,s}\right)\right)\mathbf{k}_{j,s}+\mathbf{i}_{j,s} \\ \mathbf{y}_{j,s} &= \left(\frac{\mathbf{P}_{j,s}}{\mathbf{P}_{s}}\right)^{-\gamma}\mathbf{y}_{s} \end{aligned}$$

• $\Lambda_{j,t,s}$: firm owners' intertemporal discount factor.

Wages, Interest Rates, Asset Markets

Wages: Wage function:

$$\mathbf{w}_{s}=\overline{\mathbf{w}}\left(rac{oldsymbol{\eta}_{s}}{\overline{oldsymbol{\eta}}}
ight)^{\chi}$$

- Simplifies marginally by avoiding having wealth dependent wages.
- Correspond to Nash bargaining solution depending on parameters.

Monetary Policy: Interest Rate Rule:

$$\mathbf{R}_{s} = \mathbf{R}_{s-1}^{\delta_{R}} \left(\overline{R} \left(\frac{\Pi_{s}}{\overline{\Pi}} \right)^{\delta_{\pi}} \right)^{1-\delta_{R}} \exp\left(\mathbf{e}_{s}^{R} \right)$$

Assets and Borrowing Constraints: Limited participation Bonds: $b_{i,s}$ - in zero net supply. Equity: $x_{i,s}$ - positive net supply - only held by small subset of rich entrepreneurs

Tractable Equilibrium

Euler Equations:

$$\begin{split} \mathbf{c}_{r,s}^{-\mu} &\geq & \beta \widehat{\mathbb{E}}_{s} \frac{\mathbf{R}_{s}}{\Pi_{s+1}} \mathbf{c}_{r,s+1}^{-\mu}, \\ \mathbf{c}_{u,s}^{-\mu} &\geq & \beta \widehat{\mathbb{E}}_{s} \frac{\mathbf{R}_{s}}{\Pi_{s+1}} \left(\left(1 - \eta_{s+1} \right) \mathbf{c}_{u,s+1}^{-\mu} + \eta_{s+1} \mathbf{c}_{e,s+1}^{-\mu} \right), \\ \mathbf{c}_{e,s}^{-\mu} &\geq & \beta \widehat{\mathbb{E}}_{s} \frac{\mathbf{R}_{s}}{\Pi_{s+1}} \left(\omega \left(1 - \eta_{s+1} \right) \mathbf{c}_{u,s+1}^{-\mu} + \left(1 - \omega \left(1 - \eta_{s+1} \right) \right) \mathbf{c}_{e,s+1}^{-\mu} \right), \end{split}$$

- Entrepreneurs face no idiosyncratic risk.
- Asset poor unemployed will be in a corner.
- Asset poor employed will be on their Euler equation.
- Asset poor employed price the bonds.

Shocks and Information

Technology: Sum of persistent and transitory component:

$$\begin{array}{lll} \mathbf{A}_{s} & = & \mathbf{A}_{s}^{P} + \varepsilon_{s}^{T}, \ \varepsilon_{s}^{T} \sim \operatorname{nid}\left(\mathbf{0}, \sigma_{T}^{2}\right) \\ \mathbf{A}_{s}^{P} & = & \rho_{A}\mathbf{A}_{s-1}^{P} + \varepsilon_{s}^{P}, \ \varepsilon_{s}^{P} \sim \operatorname{nid}\left(\mathbf{0}, \sigma_{P}^{2}\right) \end{array}$$

Information: Imperfect common information.

• $\mathbf{A}_s \in I_s$ but \mathbf{A}_s^P , $\varepsilon_s^T \notin I_s$.

Monetary Policy:

$$\mathbf{e}_{s}^{R}=arphiarepsilon_{s}^{S}+arepsilon_{s}^{R}$$
, $arepsilon_{s}^{R}\sim {
m nid}\left(0,\sigma_{R}^{2}
ight)$

Shocks and Information

Technology: Sum of persistent and transitory component:

$$\begin{aligned} \mathbf{A}_{s} &= \mathbf{A}_{s}^{P} + \varepsilon_{s}^{T}, \ \varepsilon_{s}^{T} \sim \operatorname{nid}\left(0, \sigma_{T}^{2}\right) \\ \mathbf{A}_{s}^{P} &= \rho_{A}\mathbf{A}_{s-1}^{P} + \varepsilon_{s}^{P}, \ \varepsilon_{s}^{P} \sim \operatorname{nid}\left(0, \sigma_{P}^{2}\right) \end{aligned}$$

Information: Imperfect common information.

•
$$\mathbf{A}_s \in I_s$$
 but \mathbf{A}_s^P , $\varepsilon_s^T \notin I_s$.

• Agents receive a signal on \mathbf{A}_s^P :

$$\Psi_{s}=\mathbf{A}_{s}^{P}+arepsilon_{s}^{S},\ arepsilon_{s}^{S}\sim ext{nid}\left(0,\sigma_{S}^{2}
ight)$$

Monetary Policy:

$$\mathbf{e}_{s}^{R}=arphiarepsilon_{s}^{S}+arepsilon_{s}^{R}$$
, $arepsilon_{s}^{R}\sim {
m nid}\left(0,\sigma_{R}^{2}
ight)$

Shocks and Information

Technology: Sum of persistent and transitory component:

$$\begin{aligned} \mathbf{A}_{s} &= \mathbf{A}_{s}^{P} + \varepsilon_{s}^{T}, \ \varepsilon_{s}^{T} \sim \operatorname{nid}\left(0, \sigma_{T}^{2}\right) \\ \mathbf{A}_{s}^{P} &= \rho_{A}\mathbf{A}_{s-1}^{P} + \varepsilon_{s}^{P}, \ \varepsilon_{s}^{P} \sim \operatorname{nid}\left(0, \sigma_{P}^{2}\right) \end{aligned}$$

Information: Imperfect common information.

•
$$\mathbf{A}_s \in I_s$$
 but \mathbf{A}_s^P , $\varepsilon_s^T \notin I_s$.

• Agents receive a signal on \mathbf{A}_s^P :

$$\Psi_{s} = \mathbf{A}_{s}^{P} + \varepsilon_{s}^{S}, \ \varepsilon_{s}^{S} \sim \operatorname{nid}\left(0, \sigma_{S}^{2}\right)$$

• ε_s^S : sentiment / expectational shock.

Monetary Policy:

$$\mathbf{e}_{s}^{R}=arphiarepsilon_{s}^{S}+arepsilon_{s}^{R}$$
, $arepsilon_{s}^{R}\sim {
m nid}\left(0,\sigma_{R}^{2}
ight)$

Shocks and Information

Technology: Sum of persistent and transitory component:

$$\begin{aligned} \mathbf{A}_{s} &= \mathbf{A}_{s}^{P} + \varepsilon_{s}^{T}, \ \varepsilon_{s}^{T} \sim \operatorname{nid}\left(0, \sigma_{T}^{2}\right) \\ \mathbf{A}_{s}^{P} &= \rho_{A}\mathbf{A}_{s-1}^{P} + \varepsilon_{s}^{P}, \ \varepsilon_{s}^{P} \sim \operatorname{nid}\left(0, \sigma_{P}^{2}\right) \end{aligned}$$

Information: Imperfect common information.

•
$$\mathbf{A}_s \in I_s$$
 but \mathbf{A}_s^P , $\varepsilon_s^T \notin I_s$.

• Agents receive a signal on \mathbf{A}_s^P :

$$\Psi_{s} = \mathbf{A}_{s}^{P} + \varepsilon_{s}^{S}, \ \varepsilon_{s}^{S} \sim \mathsf{nid}\left(0, \sigma_{S}^{2}\right)$$

• ε_s^S : sentiment / expectational shock.

Monetary Policy:

$$\mathbf{e}_{s}^{R}=arphiarepsilon_{s}^{S}+arepsilon_{s}^{R}$$
, $arepsilon_{s}^{R}\sim {
m nid}\left(0,\sigma_{R}^{2}
ight)$

• Sentiments impact directly and indirectly on monetary policy.

LaPaRa (U(C,L))

50 / 64

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R}\widehat{\mathbb{E}}_{s}\widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t}\widehat{\Pi}_{t+1} - \beta \overline{R}\Theta^{F}\mathbb{E}_{t}\widehat{\eta}_{t+1}\right)$$

O Discounting: $\hat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R}\widehat{\mathbb{E}}_{s}\widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t}\widehat{\Pi}_{t+1} - \beta \overline{R}\Theta^{F}\mathbb{E}_{t}\widehat{\eta}_{t+1}\right)$$

O Discounting: $\hat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.

Incomplete markets wedge:

$$\Theta^{F} \equiv \underbrace{\omega \eta \left((\vartheta/w)^{-\mu} - 1 \right)}_{\text{unemployment risk}} - \underbrace{\chi \mu \omega \left(1 - \eta \right)}_{\text{wage risk}}$$

LaPaRa (U(C,L))

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R}\widehat{\mathbb{E}}_{s}\widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t}\widehat{\Pi}_{t+1} - \beta \overline{R}\Theta^{F}\mathbb{E}_{t}\widehat{\eta}_{t+1}\right)$$

Objectively Discounting: $\hat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.

Incomplete markets wedge:

$$\Theta^{F} \equiv \underbrace{\omega \eta \left((\vartheta/w)^{-\mu} - 1 \right)}_{\text{unemployment risk}} - \underbrace{\chi \mu \omega \left(1 - \eta \right)}_{\text{wage risk}}$$

• procyclical if $\Theta^F < 0$: Stabilization

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R}\widehat{\mathbb{E}}_{s}\widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t}\widehat{\Pi}_{t+1} - \beta \overline{R}\Theta^{F}\mathbb{E}_{t}\widehat{\eta}_{t+1}\right)$$

Discounting: $\hat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.

Incomplete markets wedge:

$$\Theta^{F} \equiv \underbrace{\omega\eta\left(\left(\vartheta/w\right)^{-\mu} - 1\right)}_{\text{unemployment risk}} - \underbrace{\chi\mu\omega\left(1 - \eta\right)}_{\text{wage risk}}$$

• procyclical if $\Theta^F < 0$: Stabilization

• countercyclical if $\Theta^{F} > 0$: Amplification/Propagation

Endogenous earnings risk: log-linearized Euler equation:

$$-\widehat{c}_{e,t} + \beta \overline{R}\widehat{\mathbb{E}}_{s}\widehat{c}_{e,t+1} = \frac{1}{\mu} \left(\widehat{R}_{t} - \mathbb{E}_{t}\widehat{\Pi}_{t+1} - \beta \overline{R}\Theta^{F}\mathbb{E}_{t}\widehat{\eta}_{t+1}\right)$$

Discounting: $\hat{c}_{e,s+1}$ enters with coefficient $\beta \overline{R} < 1$.

Incomplete markets wedge:

$$\Theta^{F} \equiv \underbrace{\omega\eta\left(\left(\vartheta/w\right)^{-\mu} - 1\right)}_{\text{unemployment risk}} - \underbrace{\chi\mu\omega\left(1 - \eta\right)}_{\text{wage risk}}$$

- procyclical if $\Theta^F < 0$: Stabilization
- countercyclical if $\Theta^{F} > 0$: Amplification/Propagation
- acyclical if $\Theta^F = 0$: No endogenous risk feedback.

LaPaRa (U(C,L))

• Countercyclical risk: Amplification

• Countercyclical risk: Amplification

 recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.

Countercyclical risk: Amplification

- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.
- Can also generate inflationary impact of technology shocks.

Countercyclical risk: Amplification

- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.
- Can also generate inflationary impact of technology shocks.
- Procyclical risk: Stabilization

• Countercyclical risk: Amplification

- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.
- Can also generate inflationary impact of technology shocks.
- Procyclical risk: Stabilization
- recession ⇒ lower real wage ⇒ less precautionary savings demand ⇒ demand expands at the current real interest rate ⇒ stabilization.

Countercyclical risk: Amplification

- recession ⇒ lower job finding rate ⇒ higher precautionary savings demand ⇒ demand contracts at the current real interest rate ⇒ real interest rate must decline ⇒ inflation must decline ⇒ marginal costs must decline ⇒ firms post fewer vacancies ⇒ job finding rate declines - diabolical loop.
- Can also generate inflationary impact of technology shocks.

• Procyclical risk: Stabilization

- recession ⇒ lower real wage ⇒ less precautionary savings demand ⇒ demand expands at the current real interest rate ⇒ stabilization.
- Hence, key to the endogenous risk channel is whether unemployment risk or wage risk matters most.

• Θ_1 : Calibrated.

3

- $\bullet \ \Theta_1: \ Calibrated.$
- Θ_2 : Estimated by a simulation estimator:

$$\widehat{\Theta}_{2} = \arg\min_{\Theta_{2}} \left[\left(\widehat{\Lambda}_{T}^{d} - \Lambda_{T}^{m}\left(\Theta_{2}|\Theta_{1}\right) \right)^{\prime} \Sigma_{d}^{-1} \left(\widehat{\Lambda}_{T}^{d} - \Lambda_{T}^{m}\left(\Theta_{2}|\Theta_{1}\right) \right) \right]$$

- Θ_1 : Calibrated.
- Θ_2 : Estimated by a simulation estimator:

$$\widehat{\Theta}_{2} = \arg\min_{\Theta_{2}} \left[\left(\widehat{\Lambda}_{T}^{d} - \Lambda_{T}^{m} \left(\Theta_{2} | \Theta_{1} \right) \right)^{\prime} \Sigma_{d}^{-1} \left(\widehat{\Lambda}_{T}^{d} - \Lambda_{T}^{m} \left(\Theta_{2} | \Theta_{1} \right) \right) \right]$$

• $\widehat{\Lambda}^d_T$: Moments that are matched:

$$\widehat{\Lambda}_{T}^{d} = [\mathbf{F} - \mathbf{stat}, \sigma_{\mathbf{Solow}}^{2}, \mathbf{IRF}_{nfore}]$$

$$\mathbf{IRF}_{nfore} = [\text{identified impulse resp. to sentiments}]_{1}^{nfore}$$

- Θ_1 : Calibrated.
- Θ_2 : Estimated by a simulation estimator:

$$\widehat{\Theta}_{2} = \arg\min_{\Theta_{2}} \left[\left(\widehat{\Lambda}_{T}^{d} - \Lambda_{T}^{m} \left(\Theta_{2} | \Theta_{1} \right) \right)^{\prime} \Sigma_{d}^{-1} \left(\widehat{\Lambda}_{T}^{d} - \Lambda_{T}^{m} \left(\Theta_{2} | \Theta_{1} \right) \right) \right]$$

• $\widehat{\Lambda}^d_T$: Moments that are matched:

$$\widehat{\Lambda}_{T}^{d} = [\mathbf{F} - \mathbf{stat}, \sigma_{\mathbf{Solow}}^{2}, \mathbf{IRF}_{nfore}]$$

$$\mathbf{IRF}_{nfore} = [\text{identified impulse resp. to sentiments}]_{1}^{nfore}$$

• $\Lambda_T^m(\Theta_2|\Theta_1)$: Model equivalents of $\widehat{\Lambda}_T^d$ obtained by simulation.

Simulate model to generate:

$$\mathbf{X}_{t}^{theory} = \left(egin{array}{cc} CI_t & (\log \ {
m consumer \ confidence}) \ Y_t & (\log \ {
m industrial \ production}) \ U_t & ({
m unemployment \ rate}) \ P_t & (\log \ {
m CPI}) \ R_t & ({
m Federal \ funds \ rate}) \end{array}
ight)$$

э

Simulate model to generate:

$$\mathbf{X}_{t}^{theory} = \left(egin{array}{cc} CI_t & (\log \ {
m consumer \ confidence})\ Y_t & (\log \ {
m industrial \ production})\ U_t & ({
m unemployment \ rate})\ P_t & (\log \ {
m CPI})\ R_t & ({
m Federal \ funds \ rate}) \end{array}
ight)$$

2 Add measurement error to $\widetilde{\mathbf{X}}_{t}^{theory} = \mathbf{X}_{t}^{theory} + m_{1,t}$, detrend.

Simulate model to generate:

$$\mathbf{X}_{t}^{theory} = egin{pmatrix} CI_t & (\log ext{ consumer confidence}) \ Y_t & (\log ext{ industrial production}) \ U_t & (ext{unemployment rate}) \ P_t & (\log ext{CPI}) \ R_t & (ext{Federal funds rate}) \end{pmatrix}$$

Add measurement error to X̃^{theory}_t = X^{theory}_t + m_{1,t}, detrend.
 Use ε^S_t + m_{2,t} as proxy for sentiment shock.

Simulate model to generate:

$$\mathbf{X}_{t}^{\textit{theory}} = \left(egin{array}{cc} CI_t & (\log ext{ consumer confidence})\ Y_t & (\log ext{ industrial production})\ U_t & (ext{unemployment rate})\ P_t & (\log ext{CPI})\ R_t & (ext{Federal funds rate}) \end{array}
ight)$$

- Add measurement error to X̃^{theory}_t = X^{theory}_t + m_{1,t}, detrend.
 Use ε^S_t + m_{2,t} as proxy for sentiment shock.
- Setimate Proxy SVAR on theory data and obtain $\Lambda_T^m (\Theta_2 | \Theta_1)_i$.

Simulate model to generate:

$$\mathbf{X}_{t}^{theory} = \left(egin{array}{cc} CI_t & (\log ext{ consumer confidence})\ Y_t & (\log ext{ industrial production})\ U_t & (ext{unemployment rate})\ P_t & (\log ext{CPI})\ R_t & (ext{Federal funds rate}) \end{array}
ight)$$

- Add measurement error to X̃^{theory}_t = X^{theory}_t + m_{1,t}, detrend.
 Use ε^S_t + m_{2,t} as proxy for sentiment shock.
- Ose $c_t + m_{2,t}$ as proxy for sentiment shock.
- Stimate Proxy SVAR on theory data and obtain $\Lambda_T^m (\Theta_2 | \Theta_1)_i$.
- Repeat N times and average:

$$\Lambda_T^m\left(\Theta_2|\Theta_1\right) = \frac{1}{N}\sum_{i=1}^N \Lambda_T^m\left(\Theta_2|\Theta_1\right)_i$$

Calibrated parameters (monthly)

Parameter	Meaning	Value
ū	st.st. unemployment rate	6 percent
$\overline{\eta}$	st.st. job finding rate	34 percent
$(\kappa / \overline{\mathbf{q}}) / (3 \overline{\mathbf{w}})$	st.st. hiring cost	4.5 percent
$\overline{\mathbf{R}}/\overline{\Pi}$	st.st. gross real rate	$1.04^{1/12}$
$\overline{\Pi}$	st.st. gross inflation rate	1
δ_R	interest rate smoothing	0.25
σ_m	st. dev., monetary pol. shock	0.1 percent
γ	elasticity of substitution	8
μ	CRRA parameter	2
α	matching function parameter	0.5
τ	output elasticity to capital	0.35
$\xi_{\delta,z}$	elast. of depr. rate to cap.ut.	1
δ	depreciation rate (annually)	7.1 percnet
$(c_e - c_u) / c_e$	st.st. cons. drop upon unempl.	12 percent

æ

Parameter	Meaning	Estimate
ϕ	price adj. cost	282.9
χ	real wage elasticity	0.016
$ ho_A$	persistence of TFP shocks	0.987
δ_{Π}	interest rate resp. to infl.	2.09
ψ	impact of noise on mon.pol.	0.145
β	implied disc. factor (annually)	0.892
Θ^F	implied risk wedge	0.0026>0
ξ	average price contract length	6.62 months

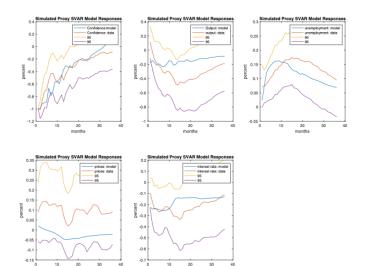
æ

Parameter	Meaning	Estimate
σ_T	std., transitory TFP shock	0.50 percent
σ_P	std., innov. to perst. TFP	0.05 percent
σ_{S}	std., sentiment shock	0.19 percent
ρ_{CI}	confidence persistence	0.960
ϑ_1	confidence parameter	1.019
ϑ_2	confidence parameter	7.968
σ_{CI}	measurement error, confidence	0.15 percent
σ_{m_2}	measurement error, proxy	1.6 percent

3

Matched VAR IRFs - Preliminary

months

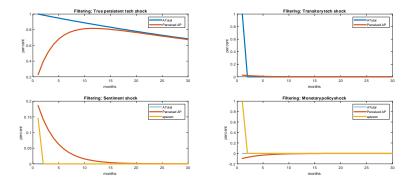


LaPaRa (U(C,L))

months

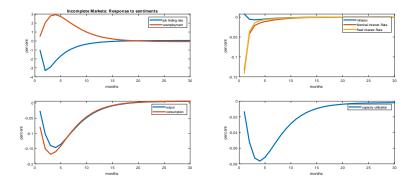
< □ > < 部 > < き > < き >

True Model IRFS - Preliminary



< □ > < ---->

True Model IRFS

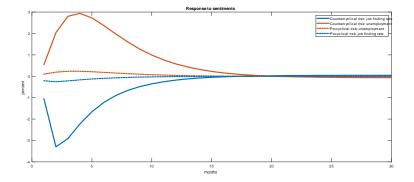


→ Ξ →

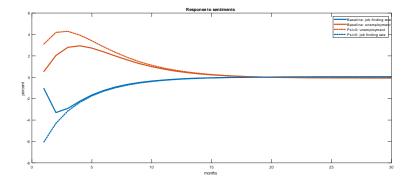
Image: A matrix

э

The Role of Countercyclical Risk - Preliminary



The Role of Monetary Policy - Preliminary



Contribution to Business Cycles: Forecast error variance decomposition Variable Horizon Υ V П С U η 1 1.5 0.0 0.3 0.3 0.3 0.6 3 3.4 2.8 1.2 4.1 0.1 1.7 6 6.0 6.7 0.4 3.7 6.2 2.3 12 9.7 1.5 8.1 6.4 8.9 5.4 24 5.0 1.3 5.13.1 4.2 5.7 No Monetary Response ($\psi = 0$) 1 13.3 0.2 9.3 9.3 9.3 2.13 18.5 0.9 14.0 17.6 16.5 4.5 6 22.1 2.0 18.1 18.5 21.6 7.0 12 22.3 4.0 21.9 13.5 20.6 12.2 24 9.8 2.8 11.1 6.3 8.8 11.3

LaPaRa (U(C,L))

• Proposed dynamic causal estimation of consumer sentiment shocks

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings
- Find large and persistent effects of confidence shocks account for up to 20 percent of variance of unemployment

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings
- Find large and persistent effects of confidence shocks account for up to 20 percent of variance of unemployment
- Interaction with monetary policy

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings
- Find large and persistent effects of confidence shocks account for up to 20 percent of variance of unemployment
- Interaction with monetary policy
- Proposed HANK&SAM model with imperfect information to account for this

- Proposed dynamic causal estimation of consumer sentiment shocks
- Identification: Shock to confidence proxied by fatalities in mass shootings
- Find large and persistent effects of confidence shocks account for up to 20 percent of variance of unemployment
- Interaction with monetary policy
- Proposed HANK&SAM model with imperfect information to account for this
- Find countercyclical risk wedge to be important