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Abstract

This paper establishes an equivalence between four incomplete rankings
of distributions of income among agents who are vertically differentiated
with respect to some other non-income characteristic (health, household
size, etc.). The first ranking is that associated with the possibility of going
from one distribution to the other by a finite sequence of income transfers
from richer and more highly ranked agents to poorer and less highly ranked
ones. The second ranking is the unanimity among utilitarian planners over
all comparisons of two distributions assuming that agents’ marginal utility
of income is decreasing with respect to both income and the source of ver-
tical differentiation. The third ranking is the Bourguignon (1989) ordered
poverty gap dominance criterion. The fourth ranking is a new dominance
criterion based on cumulative lowest incomes.

Keywords: Equalization, transfers, heterogeneous agents, poverty gap,
dominance, cumulative sums of income, utilitarianism.

JEL Codes: D30, D63, D69, I32.

1 Introduction

When can a distribution of an attribute among a group of homogeneous agents be
considered more equal than another? An important achievement of the modern
theory of inequality measurement is the demonstration made by Hardy, Little-
wood, and Polya (1952) - and popularized among economists by Dasgupta, Sen,
and Starrett (1973), Kolm (1969), Sen (1973) and Fields and Fei (1978) - that the
following four answers to this question are equivalent.
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(1) A is more equal than B if it can be obtained from B by means of a finite
sequence of bilateral Pigou-Dalton transfers.

(2) A is more equal than B if all utilitarian planners who assume that individ-
uals convert the attribute into well-being by the same concave utility function so
agree.

(3) A is more equal than B if poverty, as measured by the poverty gap, is lower
in A than in B for every definition of the poverty line.

(4) A is more equal than B if the cumulative income of the k poorest agents
is greater in A than in B whatever k is (that is, if the distribution of income in A
Lorenz dominates that in B).

This equivalence is of fundamental importance for (in)equality measurement
because it shows the congruence of four distinct approaches to the question. The
first one focuses on the elementary operation that intuitively captures the very no-
tion of inequality reduction. The second approach links inequality measurement
to a set of explicit normative principles and seeks consensus among all principles
in this set. Finally, the third and fourth approaches provide empirically imple-
mentable tests - poverty gap or Lorenz dominance - to determine whether or not
one distribution dominates another.

Remarkable as it is, this equivalence only concerns distributions of a single
attribute, often identified with income, between otherwise perfectly homogeneous
agents. Yet income is clearly not the only ethically relevant source of differentiation
between economic agents. If these agents are collectivities such as households or
jurisdictions, they differ not only by their total income but also by the number of
members among whom the income must be shared. If the agents are individuals,
they may also differ by non-income characteristics such as age, health, education
or effort. What does “being more equal” mean when applied to distributions of
an attribute among differentiated agents ? In short, how can one define equality
among unequals ? This is the basic question addressed in this paper.

Specifically, we establish an equivalence between four notions of inequality
reduction among unequals that are each is analogous, in nature, to one of the above
four notions of equality among equals. The elementary operation that we propose
to capture inequality reduction among unequals is like a Pigou-Dalton transfer, but
with the stipulation that the donor in the transfer must be both richer and more
highly ranked than the receiver. Moreover, contrary to what is usually required in
a Pigou-Dalton transfer, we do not restrict the transfer to being lower than half the
income difference between the giver and the receiver. The quantity transferred can
be as large as the full income difference. The normative principles that we examine
are those generated by comparisons of distributions by a utilitarian planner who
assumes that agents convert income into utility by the same function exhibiting a
marginal utility of income that is decreasing with respect to both income and the
source of vertical differentiation. The empirically implementable criterion that we
consider is the Bourguignon (1989) ordered poverty gap dominance criterion. This
criterion requires that poverty, measured by the income poverty gap, be smaller in
the dominating distribution than in the dominated distribution for any collection
of poverty lines that are negatively related to the agent’s vertical standing. Just

2



as in the classical case with homogeneous agents, we also introduce a “partial
cumulative sum of income” dominance criterion similar to the Lorenz one and
prove that it is equivalent to ordered poverty gap dominance.

This paper contributes to the multidimensional - in fact two-dimensional -
inequality measurement literature which has emerged in the last forty years or so.
To the best of our knowledge, no contribution to this literature has succeeded in
establishing an equivalence between an empirically implementable criterion (such
as Lorenz or poverty gap dominance), a welfarist (or otherwise) unanimity over a
class of functions that transform the attributes into achievement and an elementary
operation that captures in an intuitive way the nature of the equalization sought.

For instance, Atkinson and Bourguignon (1982) (and before them Hadar and
Russell (1974)) showed that first- and second-order multidimensional stochastic
dominance imply utilitarian dominance over a class of individual utility functions
that is specific to the order of dominance. They also suggested (without provid-
ing any proof) that there could be an equivalence between their multidimensional
stochastic dominance criteria and utilitarian unanimity over their class of individ-
ual utility functions. But they did not identify an elementary operation that could
be implied by their criteria or that could imply them. Atkinson and Bourguignon
(1987) proposed a nice interpretation of one of the Atkinson and Bourguignon
(1982) stochastic dominance criteria in the specific case of two attributes, one of
which being interpreted as an ordinal index of needs (such as household size).
Yet, they did not identify the elementary operation which, when performed a
finite number of times, would coincide with the criterion. Their criterion and
equivalence results, developed originally for distributions of attributes with iden-
tical (marginal) distribution of needs, were extended to more general situations by
Jenkins and Lambert (1993) and Bazen and Moyes (2003), but without identifying
the underlying elementary operations.

It was in the same two-dimensional context as that considered in Atkinson
and Bourguignon (1987) that Bourguignon (1989) introduced his ordered poverty
gap criterion. Bourguignon (1989) also identified the class of utility functions over
which utilitarian unanimity was equivalent to his criterion. However, he did not
identify the elementary operation that would be equivalent to it.

Elementary operations believed to lie behind the criteria proposed by Atkin-
son and Bourguignon (1982), Atkinson and Bourguignon (1987) and Bourguignon
(1989) have been discussed by various authors, including Atkinson and Bour-
guignon (1982) themselves, Ebert (1997), Fleurbaey, Hagneré, and Trannoy (2003)
and Moyes (2012) (among others). Yet none of these papers showed that perform-
ing these elementary operations a finite number of times was equivalent to the
implementable criteria. In a related vein, Muller and Scarsini (2012) established
an equivalence between a class of elementary transformations - multidimensional
transfers and correlation-reducing permutations, to be discussed below - and a
utilitarian unanimity over the class of increasing and submodular utility func-
tions.1 However, they did not succeed in identifying an implementable test - such
as Lorenz or poverty gap dominance - that coincides with either their elementary

1See e.g. Marinacci and Montrucchio (2005) for a definition of these properties.
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transformations or the utilitarian unanimity over their class of utility functions.
Progress towards establishing equivalence between an empirically implementable

criterion, a utilitarian unanimity over a suitable class of individual utility functions
and a finite sequence of elementary transformations has been made in two streams
of the literature. One of them, initiated by Epstein and Tanny (1980) (see also
Tchen (1980)), and significantly generalized by Decancq (2012), considers first-
order stochastic dominance rankings of multivariate distributions in the context
of decision making under uncertainty. In this setting, Decancq (2012) established
an equivalence between first-order dominance among multivariate distributions
with the same marginals and the possibility of going from the dominated to the
dominating distribution by a finite sequence of Frechet rearrangements. By signif-
icantly generalizing results from Lehmann (1955) and Levhari, Paroush, and Peleg
(1975), Osterdal (2010) also established an equivalence between utilitarian una-
nimity over the class of all increasing utility functions, the possibility of going from
one distribution to another by a finite sequence of improving mass transfers, and
a specific first-order stochastic dominance test that is less discriminant than the
usual multivariate one considered in Hadar and Russell (1974) and Atkinson and
Bourguignon (1982). None of these results, however, sheds light on the meaning
of income equalization in a two-dimensional context.

Progress in this direction has been made by Gravel and Moyes (2012), who
established a form of equivalence between the three following answers to the ba-
sic question of when a distribution A of income between vertically differentiated
agents is normatively better than another distribution B:

(a) When A could be obtained from B by performing a finite sequence of either
Pigou-Dalton transfers of income between agents of the same type or correlation-
reducing permutations.

(b) When A is considered better than B by all utilitarian planners who assume
that vertically differentiated agents convert income into well-being by the same
utility function whose marginal utility of income is decreasing with respect to both
income and the source of vertical differentiation.

(c) When A dominates B by the ordered poverty gap criterion.

Answer (a) combines two elementary operations. The first is the standard Pigou-
Dalton transfer performed between agents of the same “type”. The second is a
correlation-reducing income permutation between two agents, one of them being
both richer and more highly ranked than the other. A correlation-reducing permu-
tation is an operation closely related to the notion of Frechet rearrangement used
by Decancq (2012) (see also Tsui (1999), Atkinson and Bourguignon (1982) and
Epstein and Tanny (1980)). Answers (b) and (c) are of course those considered
here.

However, Gravel and Moyes (2012) did not succeed in proving that answer (c)
(or answer (b)) implies answer (a) (clearly answer (a) implies answer (b) which
in turn implies answer (c)). What they prove is that if distribution A dominates
distribution B for the ordered poverty gap criterion, then it is possible to add
dummy individuals - or phantoms - to both distributions A and B in such a
way as to be able to go from phantom-augmented distribution B to phantom-
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augmented distribution A by first, performing a finite sequence of Pigou-Dalton
transfers among agents of the same type and second, performing a finite sequence
of favourable permutations. This inability to prove the equivalence of statements
(a), (b) and (c) without resorting to phantoms is clearly disappointing. What
matters, after all, are distributions of attributes between actual agents. The fact
that these agents could make (receive) transfers to (from) non-existing phantoms
can appear of secondary importance.

In this paper, we prove an equivalence between the above answers (b) and (c)
and the possibility of going from dominated to dominating distributions by a finite
sequence of elementary transfers of income from richer and more highly ranked
agents to poorer and less highly ranked agents. We do so without resorting to
phantoms or dummies. Our notion of transfer contains as particular cases both
the correlation-reducing permutation and the within-type transfer considered in
Gravel and Moyes (2012). An additional contribution of this paper is to estab-
lish an equivalence between the Bourguignon ordered poverty gap criterion and a
Lorenz-like dominance criterion based on partial sums of incomes of the poorest
agents. A difficulty involved in the latter criterion is identifying the m poorest
agents when these agents are differentiated by a non-income characteristic. We
therefore view this paper as providing, to the best of our knowledge, the first
dominance foundation for income equalization among heterogeneous agents.

The organization of the remainder of the paper is as follows. In the next
section, we introduce notations and give the definitions of the main criteria and
elementary transformations considered. The main results are stated and discussed
in Section 3. Section 4 discusses how the results of section 3 extend to the case
where the number of agents and/or the total income to be distributed vary across
distributions and Section 5 concludes.

2 The formal setting

2.1 Notations

We consider a finite population of n agents who are vertically differentiated into
k categories or types, indexed by h. Agents in lower categories are assumed to be
more needy (or worse off) ceteris paribus than agents in higher categories. These
categories may refer to any non-pecuniary source of agent differentiation, such as
health, number of members, education level, labour effort, etc. For any category
h, we denote by N (h) the set of agents in category h and by n(h) = #N (h)
the number of those agents. Our objective is to provide a ranking of alternative
distributions of income (or any other cardinally meaningful variable) between these
differentiated agents on the basis of equality. Any such income distribution, x say,
is depicted as a collection of k vectors (xh1 , ..., x

h
n(h)) ∈ Rn(h) (for h = 1, ..., k).

The criteria used in this paper for comparing alternative distributions are all
anonymous conditional on the agent’s type. Because of this, we find convenient
to index the agents in category h (for h = 1, ..., k) according to their income and
therefore to assume that xhi ≤ xhi+1 for i = 1, ..., n(h) − 1. More compactly, we
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write x = {(xh1 , ..., xhn(h))}
n(h)
h=1 . Since we focus on pure equality considerations, we

restrict our attention to income distributions x such that

k∑
h=1

∑
i∈N (h)

xhi = I for some real number I.

We let D(I) denote the set of all such income distributions.
For any income poverty threshold t ∈ R and any distribution x, we also denote
by Px

(h, t) and Px(h, t) the (possibly empty) sets of agents of type h who are,
respectively, weakly and strictly poor for threshold t in distribution x. These sets
are defined by:

Px
(h, t) = {i ∈ N (h) : xi ≤ t} and Px(h, t) = {i ∈ N (h) : xi < t}

while the number of poor that these sets contain are denoted respectively by
px(h, t) = #Px

(h, t) and px(h, t) = #Px(h, t). Given two distributions x,y ∈
D(I), we finally denote by v(x,y) and v(x,y), respectively, their lowest and high-
est income.

We now introduce the main concepts between which an equivalence will be estab-
lished.

2.2 Elementary transformations

The main elementary transformation considered herein is the following notion of
Between-Type transfers discussed in many papers, including Ebert (1997), Atkin-
son and Bourguignon (1982), Fleurbaey, Hagneré, and Trannoy (2003), Muller
and Scarsini (2012) and Gravel and Moyes (2012).

Definition 1 (Between-Type Progressive Income Transfer) Let x and y be
two distributions in D(I). We say that x is obtained from y by means of a Between-
Type Progressive Income Transfer (BTPIT) if there are categories g and h for
which g ≤ h, two agents ig ∈ N (g) and ih ∈ N (h) for which yh

ih
> ygig and a

number α ∈]0,
yh
ih
−yg

ig

2
] such that:

(i) xgi = ygi+1 for all i ∈ N (g) such that ig ≤ i < rg+(α) (if any).

(ii) xg
rg+

(α) = ygig + α.

(iii) xhi = yhi−1 for all i ∈ N (h) such that rh−(α) < i ≤ ih (if any)

(iv) xh
rh−(α)

= yh
ih
− α.

(v) xli = yli for any other pair (i, l) where l ∈ {1, ..., k} and i ∈ N (l).

where rg+(α) := max{i ∈ N (g) : ygi < ygig + α}, rh−(α) := min{i ∈ N (h) : yhi >

yi
h

i − α}.
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Figure 1: A between-type progressive income transfer
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A BTPIT resembles a standard one-dimensional Pigou-Dalton transfer. There is
however a major difference: the beneficiary of the transfer must both be poorer
than the donor and have a (weakly) lower status. Put differently, the transfer
recipient must be deprived in both dimensions – income and status – compared
to the donor. This kind of transfer is a particular case of the equalizing trans-
formation considered by Muller and Scarsini (2012), where the transfers can be
made in all dimensions. In the current setting, it would not make much sense to
transfer the (ordinal) non-pecuniary variable by which agents differentiate them-
selves. A BTPIT is illustrated in Figure 1. Note that our definition of a BTPIT
allows the donor to be of the same type as the receiver. Hence, the standard
one-dimensional Pigou-Dalton transfer (conditional on type) is a particular case
of BTPIT. Note also that our definition of BTPIT rules out the possibility of the
amount transferred being more than half the income difference between giver and
receiver.

This restriction can be eliminated by considering the following elementary
transformation, called Favourable Income Permutation in Gravel and Moyes (2012).

Definition 2 (Favourable Income Permutation) Let x and y be two distri-
butions in D(I). We say that x is obtained from y by means of a Favourable
Income Permutation (FIP) if there are categories g and h for which g < h and
two agents ig ∈ N (g) and ih ∈ N (h) for which yh

ih
> ygig such that:

(i) xgi = ygi+1 for all i ∈ N (g) such that ig ≤ i < rg(ih) (if any).

(ii) xg
rg(ih)

= yh
ih

.

(iii) xhi = yhi−1 for all i ∈ N (h) such that rh(ig) < i ≤ ih (if any).
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(iv) xh
rh(ig)

= ygig .

(v) xli = yli for any other pair (i, l) where l ∈ {1, ..., k} and i ∈ N (l).

where rg(ih) := max{i ∈ N (g) : ygi < yh
ih
} and rh(ig) := min{i ∈ N (h) : yhi > ygig}.

An FIP consists in exchanging the income endowment of a relatively rich agent
belonging to a relatively high category with that of a poorer agent from a lower
category. It can thus be viewed as an extreme form of BTPIT in which the total
income difference between the two individuals is transferred. Figure 2 represents
an FIP where agents ih in category h and ig in category g < h exchange their
incomes, respectively equal to v and u, with v > u.

Figure 2: A favourable income permutation
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Gravel and Moyes (2012) showed that a BTPIT can always be decomposed into
a (within-type) conventional Pigou-Dalton transfer followed by an FIP provided
that a phantom individual is added. This individual must be endowed with the
income of the beneficiary and the health status of the donor prior to the transfer.
In this paper, we show that the possibility of going from a distribution y to
a distribution x by a finite sequence of transfers that include FIP as a special
(extreme) case is equivalent to the utilitarian dominance of y by x for a relatively
large class of utility functions, which we now define.

2.3 Utilitarian dominance.

This notion of dominance rides on the assumption that all agents of a given type
transform their income into some type-dependant, ethically meaningful achieve-
ment (well-being, happiness, freedom, etc.) by means of the same (utility) function
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satisfying some minimal property. Specifically, the utility achieved by agent i of
type h in distribution x is indicated by Uh(xhi ), where Uh : R→ R. The utilitarian
rule ranks the distributions on the basis of the sum of the utilities they generate.
More precisely, the utilitarian rule considers distribution x to be no worse than
distribution y if and only if

k∑
h=1

n(h)∑
i=1

Uh
(
xhi
)
=

k∑
h=1

n(h)∑
i=1

Uh
(
yhi
)
. (1)

The list of type-dependent utility functions U1, ..., Uk used by the utilitarian rule
reflects some normative evaluation of the contribution of income to every agent’s
achievement, conditional on the agent’s type. For the sake of robust normative
evaluation, the dominance approach commonly requires a consensus among a rel-
atively large class, U∗ say, of such lists of utility functions. This gives rise to the
following general notion of utilitarian dominance.

Definition 3 (Utilitarian Dominance). Let x and y be two distributions in D(I).
We say that x utilitarian dominates y for the class U∗ of collections of k utility
functions if and only if

k∑
h=1

n(h)∑
i=1

Uh(xhi ) =
k∑

h=1

n(h)∑
i=1

Uh(yhi ), ∀ (U1, ..., Uk) ∈ U∗. (2)

In this paper, we specifically consider the class U∗ of type-dependent U1, ..., Uk

such that that satisfy:

Uh(w + a)− Uh(w) ≥ Uh′(w′ + a)− Uh′(w′) (3)

for any non-negative real number a, any categories h, h′ ∈ {1, ..., k} with h ≤ h′,
and any income pair (w,w

′
) such that w ≤ w′. In words, U∗ is the class of

collections of utility functions Uh (for h = 1, ..., k) with the property that the
contribution of an additional unit of income to the individual’s advantage (as
measured by the function Uh) is decreasing with respect to both income and type.

2.4 Ordered poverty gap dominance

The ordered poverty gap criterion has been proposed by Bourguignon (1989) for
comparing income distributions between households of differing sizes. In order to
discuss this criterion in the current context, we first define set V ⊂ Rk by:

V = {(v1, ..., vk) ∈ Rk : v1 ≥ v2 ≥ ... ≥ vk} (4)

Set V comprises all combinations of poverty lines (one such line for every type)
that are weakly decreasing with respect to type. Given this set, we define the
Ordered Poverty Gap (OPG) dominance criterion as follows.
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Definition 4 (Ordered Poverty Gap Dominance). Let x and y be two distri-
butions in ∈ D(I). We say that x dominates y for the Ordered Poverty Gap
criterion, here denoted by x %OPG y, if the following holds:

k∑
h=1

∑
i∈N (h)

max(vh − xhi , 0) ≤
k∑

h=1

∑
i∈N (h)

max(vh − yhi , 0), ∀(v1, ..., vk) ∈ V (5)

In words, x dominates y for the OPG criterion if, for all possible poverty lines
that are (weakly) decreasing with respect to agent’s type, the minimum income
required to eliminate poverty defined by these lines is lower in x than in y.

While the OPG criterion requires a comparison of the poverty gap between two
distributions for all lists of ordered poverty lines in V (a non-countable set), it is
nonetheless easily implementable (see e.g. Decoster and Ooghe (2006) or Gravel,
Moyes, and Tarroux (2009)). One way of implementation is to restrict attention
to the (finite) subset of lists of poverty lines in V that are actually observed in the
two distributions under comparison. Another is to use the ingenious alternative
formulation of the OPG dominance criterion proposed by Bourguignon (1989)
(p. 74, equation (12)) via an iterative procedure based on the largest difference
in poverty gap between two distributions for all poverty lines above any arbitrary
threshold. In the next subsection, we introduce an alternative dominance criterion
that is somewhat analogous to Lorenz dominance, in that it is based on partial
sums of the income of the m poorest agents and that is also easily implementable.

Before doing so, we introduce some additional notation pertaining to the OPG
dominance criterion. Specifically, for any distribution x ∈ D(I) and (ordered)
poverty lines (v1, ..., vk) ∈ V , we denote by P x(v1, ..., vk) the Ordered Poverty Gap
of this distribution for those poverty lines defined by:

P x(v1, ..., vk) =
k∑

h=1

∑
i∈Nx(h)

max(vt − xhi , 0) (6)

2.5 Cumulative lowest incomes dominance

In the classical case of income distributions among homogeneous agents, it is well
known that poverty gap dominance is equivalent to the requirement, known as
Lorenz dominance, that the sum of the incomes of the m poorest agents is larger
in the dominating than in the dominated distribution, whatever m is. In this
subsection, we introduce a similar dominance criterion based on the sum of the m
poorest incomes among vertically differentiated agents. This is challenging because
there is no obvious way to define who the m poorest agents are when these agents
are differentiated with respect to a non-income characteristic. For example, is an
individual earning $1000 a month and working 80 hours indisputably poorer than
someone who earns $1500 and works 160 hours?

In what follows, we adopt the view, consistent with that underlying the OPG
dominance criterion, that whatever the definition of a poor agent is for a given
type, any agent who is both of a lower type and poorer than this agent must also
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be considered as poor. This means that whether or not an agent is poor is itself a
function of the agent’s type. Thus we have the following definition of set Π(x,m)
of m poorest agents in any distribution x ∈ D(I) (for any m ≤ n):

Π(x,m) =

{
(r1, ..., rk) : 0 ≤ rh ≤ n(h),

∑
h

rh = m, xhrh+1 > xh
′

rh′
∀h′ > h

}
. (7)

with the convention that xh0 = v(x,y) and xhnh+1 = v(x,y) for every h. In words,
Π(x,m) is the set of all combinations (r1, ..., rk) of type-dependent ranks of agents
in their type’s income distribution that have two characteristics. First, the ranks
must sum to m so as to identify m “poorest” agents. Second, the ranks must be
such that if an agent in a given category stands, in the income distribution of this
category, precisely at the rank assigned to the category, then any agent who is
both in a lower category and poorer than this agent must stand, in the income
distribution of his/her category, at a lower rank than that of his/her category.
Note that for any distribution x and 1 ≤ m ≤ n, the set Π(x,m) is never empty.
Indeed, given m, define the index h ∈ {1, ..., k} to be the category with the
property that nh ≥ 1 and

m ∈

{
h−1∑
g=1

ng + 1,
h−1∑
g=1

ng + 2, ...,
h∑
g=1

ng

}
.

Then the list of ranks (n1, n2, ..., nh−1,m −
∑h−1

g=1 ng, 0, ..., 0) belongs to Π(x,m).
It should be noted that, for any given m, there will typically be many lists of
type-dependent ranks in the set Π(x,m). To illustrate this point, consider again
the example of income distributions between individuals who work different num-
bers of hours. Suppose there are three categories of earners in terms of monthly
time devoted to work (ordered from worst to best): full-time, part-time, and no
time at all (rentiers). Suppose there are three individuals, each falling into one of
these three categories. Three possible distributions of their monthly income are
depicted in the following table:

Distribution Full-time Part-time Rentier
x 1500 1000 2000
y 1400 2200 900
z 1600 1700 1200

Consider first distribution x. There are two ways of defining the poorest in-
dividual as per set Π(.) in this distribution. One is to consider the full-time
earner as the poorest. This corresponds to the list of ranks (1, 0, 0). The other
is to consider the part-time earner to be the poorest. This corresponds to the
list of ranks (0, 1, 0). Note that this list of ranks satisfies the property that
x11 = 1500 > 1000 = x21 > x30 = v(x,y). Any possibility of considering the rentier
individual as the poorest, which would correspond to the list of ranks (0, 0, 1), is
ruled out by the definition of Π(.).
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While this definition of the set of m poorest agents seems appropriate when the
agents are vertically differentiated with respect to a non-income characteristic, its
use in a dominance criterion based on the sum of incomes of the m poorest agents
raises an additional difficulty: the set of m poorest agents defined by (7) may vary
across distributions. To illustrate this, consider distribution y in the table. In this
distribution, while there are also two ways to define the poorest, these ways are
different to what they are for distribution x. In y, either the full-time worker is
the poorest, or the rentier.

Using this definition of Π(x,m), we now propose the following notion of cu-
mulative lowest incomes dominance.

Definition 5 Let x and y be two distributions in ∈ D(I). We say that x domi-
nates y for the cumulative lowest incomes criterion, which we denote as x %CLI y
if, for any m ∈ {1, ..., n}, and any (r1, ..., rk) ∈ Π(x,m), there exists (r′1, ..., r

′
k) ∈

Π(y,m) such that:
h∑
g=1

r′g ≥
h∑
g=1

rg (8)

for any h = 1, ..., k and:
k∑

h=1

∑
i≤rh

xhi ≥
k∑

h=1

∑
i≤r′h

yhi . (9)

In words, income distribution x dominates income distribution y for the cumu-
lative lowest incomes criterion if, for any m, and any admissible set of m poorest
agents in x, there is an admissible set of m poorest agents in y who jointly have
a lower sum of income than the m poorest agents in x (Condition (9) and who
are such that, for every category h, the sum, over all categories below h, of the
category-specific ranks below which agents are considered poor is larger in y than
in x (Condition (8)).

To illustrate this latter condition, which does not appear in the standard uni-
dimensional Lorenz dominance criterion, consider again distributions x and y.
By considering m = 1, it is clear that x does not dominate y for the cumu-
lative lowest incomes criterion. As discussed, Π(x, 1) = {(1, 0, 0), (0, 1, 0)} (the
full-time and the part-time worker can both be the poorest in x) and Π(y, 1) =
{(1, 0, 0), (0, 0, 1)} (the full-time worker and the rentier can both be the poorest
in y). Consider the list of ranks (0, 1, 0) ∈ Π(x, 1). Then the two lists of ranks
(1, 0, 0) and (0, 0, 1) in Π(y, 1) respectively violate conditions (9) and (8). In the
other direction, it is clear that y can not dominate x by the cumulative lowest
incomes criterion, because the full-time worker in y earns strictly less than the
full-time worker in x.

However, distribution z dominates distribution x (but not distribution y) by
the cumulative lowest incomes criterion. If we first focus on the poorest individual,
there are two acceptable candidates for that position in z: the full-time worker,
or the rentier. If the full-time worker is chosen, then this worker can be chosen
as the poorest in distribution x as well, and conditions (8) and (9) hold. On the
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other hand, if the rentier is chosen as the poorest individual in z, then there is
an acceptable candidate for the poorest in x - namely the part-time worker - who
has a lower income in x than the rentier in z. Suppose that we now focus on the
two poorest individuals. There are two possible choices in z: the full-time and
part-time workers (ranks (1, 1, 0)), or the full-time worker and the rentier (ranks
(1, 0, 1)). However there is only one acceptable way to define the two poorest
individuals in x, who must be the full-time and the part-time workers. Note that
this only acceptable way satisfies Condition (8) with respect to either of the two
acceptable choices of the two poorest in z. Also, whichever pair is chosen as the
two poorest agents in z, they have a larger cumulative income than the two poorest
in x. Hence z does indeed dominate x.

The cumulative lowest incomes dominance criterion is more difficult to im-
plement empirically than its unidimensional Lorenz dominance cousin. For one
thing, it can not be implemented by simply comparing two curves drawn for each
of the two distributions in isolation. Yet the cumulative lowest incomes dominance
criterion is easy to implement through the following procedure. For any two dis-
tributions x and y, identify the lowest income in the lowest category and choose,
as a possible candidate for the dominating distribution, the distribution where
this lowest income in the lowest category is the largest. For any m = 1, ..., n,
identify then all admissible (under Condition (7)) combinations of ranks that sum
to m in the potentially dominating distribution. For any such combination, find
all admissible (under Condition (7)) combinations of ranks that sum to m in the
other distribution and that satisfy inequality (8). Select from these combinations
of ranks those associated with the smallest sum of incomes, and compare this
sum of incomes with that associated with the initial combination of ranks in the
potentially dominating distribution. If the comparison of the two sums violates
Condition (9), then there is no dominance and the procedure stops. Otherwise, the
procedure continues for all m, in which case we conclude that there is dominance.

As shown below, this dominance criterion is closely associated with the notion
of equalization linked to BTPIT and/or FIP.

3 Main result

The main theorem proved in this paper is the following.

Theorem 1 Let x and y be two distributions in D(I). Then the following four
statements are equivalent.

(i) It is possible to go from y to x by a finite sequence of BTPIT and/or FIP.

(ii) x utilitarian dominates y for the class U∗.

(iii) x %OPG y.

(iv) x %CLI y.

13



The proof of this theorem proceeds in several steps. The first, establishing
that (i) implies (ii) and that (ii) implies (iii), is easy and quite well-known (see
for example Ebert (1997) or Gravel and Moyes (2012)). It is formally stated in
Proposition 4 (See section 6.1 in the appendix) which is proved for the sake of
completeness. In section 6.2 in the appendix we state and prove the equivalence
between (iii) and (iv). We can then turn to the proof of the most difficult implica-
tion that statement (iii) implies statement (i). Proving this implication amounts
to constructing an algorithm for going from a distribution y to a distribution x
by a finite sequence of either BTPIT and/or FIP based solely on the information
that x %OPG y. In every step of the algorithm, either a BTPIT or an FIP must
be performed in such a way that the result of this elementary operation remains
dominated by distribution x. Section 3.1 is devoted to technical lemmas while
Section 3.2 establishes a very important first step in the construction of the algo-
rithm. Specifically, we prove in Section 3.2 that if x strictly dominates y as per the
OPG criterion, it is always possible to perform either an FIP or a BTPIT in a way
that preserves the OPG dominance by x of the newly created distribution. We
actually propose a diagnostic tool that can be used to determine whether an FIP
or a BTPIT should be performed. Finally, in section 3.3, we define our algorithm
and prove its finiteness, which concludes the proof of (iii)⇒ (i).

3.1 Some technical lemmas

We start tackling the most difficult implication of Theorem 1 (Statement (iii)
implies Statement (i)) by proving several auxiliary results. We assume without
loss of generality that, in the two distributions x and y under consideration, we
have xhi 6= yhj for every type h = 1, ..., k and every i, j ∈ N (h). In effect, if
this condition was not satisfied, i.e. if there was a type h for which xhi = yhj for
some i, j ∈ N (h), these two agents could be removed and we could proceed with
the remaining population. Since the OPG criterion is additively separable, such
a removal of agents with the same type and income from distributions x and y
would not affect their ranking as per the OPG criterion.

The first auxiliary result of this section is the following lemma (proved, like all
lemmas and formal claims in the Appendix) which says that if x is a distribution
that dominates y for the OPG criterion, the poorest person in the worst category
is weakly richer in x than in y and, conversely, the richest person in the best
category is poorer in x than in y.

Lemma 1 Let x and y be distributions in D(I), for which x %OPG y. Then
y11 < x11 and ykn(k) > xkn(k).

The next lemma states that, if a distribution x dominates a distribution y
by the OPG criterion, then the sum of incomes held by agents in the h lowest
categories must be larger or equal in x than in y for any h.

Lemma 2 Let x and y be two distributions in D(I) for which x %OPG y. Then
h∑
h=1

∑
i∈N (h)

xhi ≥
h∑
h=1

∑
i∈N (h)

yhi for all h = 1, ..., k.
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We next state an important lemma that provides a sufficient condition for
performing an FIP from distribution y in such a way that the distribution obtained
after making such an FIP remains dominated by x as per the OPG criterion.

Lemma 3 Let x and y be two distributions in D(I) such that x %OPG y. Assume
that

• there exist w ∈ V, i1 ∈ N (1) and h0 ∈ {2, ..., k} such that2

P y(w) = P x(w), y1i1 = w1 = ... = wh0 > wh0+1;

• there exists a category g0 such that: 2 ≤ g0 ≤ h0 and:

g0∑
h=l+1

py(h, y1i1) <

g0∑
h=l+1

px(h, y1i1) ∀ l = 1, ..., g0 − 1. (10)

Then there exists a distribution x ∈ D(I) such that x was obtained from y by an
FIP and x %OPG x.

Although this result is important, it is of limited immediate usefulness. There
are actually no obvious ways to identify the of poverty lines vector w that is
required by this lemma. We will nonetheless use Lemma 3 on two occasions in
what follows.

3.2 Identifying which elementary operation is possible: a
diagnostic tool

An important prerequisite for performing any step of the algorithm that we want
to construct is a “diagnostic tool” for determining which of the two elementary
operations - FIP or BTPIT - can be performed at any given step of the algorithm.
Our diagnostic tool is based on the critical value vc1 that is defined as follows:

vc1 := inf
{
v1 > y11 : ∃v2, ..., vk s.t. v = (v1, ..., vk) ∈ V and P x(v) = P y(v)

}
(11)

In words, vc1 is the lowest poverty threshold above the smallest income in the
lowest category in the dominated distribution y that can be part of a collection
of ordered poverty thresholds for which the ordered poverty gap in distributions
x and y is the same. It is clear that vc1 is well-defined because the set:{

v1 > y11 : ∃v2, ..., vk s.t. v = (v1, ..., vk) ∈ V and P x(v) = P y(v)
}

is not empty (it contains v(x,y)) and is also bounded from below (by v(x,y)).
Two mutually exclusive cases are possible:

(A) vc1 > y11 and:

2With the convention that wk+1 = v(x,y)
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(B) vc1 = y11.

As will now be shown, if case (A) holds, there is some margin to make a strict BT-
PIT to the poorest individual in category 1 (endowed with y11) in such a way that
the after-transfer distribution remains dominated by x as per the OPG criterion.
This however does not mean that there cannot be an FIP involving an individual
in category 1. If both an FIP and a BTPIT are possible, then our algorithmic
procedure will always choose to perform the FIP. 3 As will also be shown, if on the
other hand case (B) holds, then it is possible to involve the poorest individual of
type 1 in an FIP while preserving the OPG dominance of x over the distribution
obtained by doing so.

3.2.1 Case (A) : vc1 > y11.

In this case, vch can recursively be defined (for any h = 2, ..., k) by:

vch = inf
{
vh ≥ v(x,y) : ∃vh+1, ..., vk s.t. v = (vc1, .., v

c
h−1, vh, .., vk) ∈ V, Px(v) = Py(v)

}
(12)

For just for the same reason as for vc1, it is clear that vch is well-defined for any
h = 2, ..., k. By construction, we have vc = (vc1, ..., v

c
k) ∈ V . We refer to vector vc

as to the critical vector.
We start by establishing the following important result: if an ordered list v ∈ V

of poverty lines is such that v1 > y11 and vh0 < vch0 for some h0 ∈ {2, ..., k}, then
P x(v) < P y(v). Specifically, we prove the following result.

Lemma 4 Let x and y be two distributions in D(I) such that x %OPG y. Suppose
that vc1 > y11. Then, if v ∈ V is such that v1 > y11 and vh0 < vch0 for some
h0 ∈ {2, ..., k}, we will have P x(v) < P y(v).

We now state as a corollary of Lemma 4 the following alternative definition of
the critical vector vc.

Corollary 1 Let x and y be two distributions in D(I) such that x %OPG y.
Suppose that vc1 > y11. Then, for every h = 2, ..., k, we have:

vch = min
vh

{
∃v−h ∈ [v(x,y), v(x,y)]k−1 : v1 > y11, v = (vh, v−h) ∈ V and Px(v) = Py(v)

}
.

The next lemma establishes an important comparative statement about ad-
jacent sets of strictly and weakly poor agents in x and y when these sets are
defined with respect to the vector of ordered poverty lines vc where the poverty
lines assigned to the adjacent categories are the same. Specifically, the next lemma
establishes the following.

3We explain in detail in Section 3.3 why we make this choice.
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Lemma 5 Let x and y be two distributions in D(I) such that x %OPG y. Suppose
that vc1 > y11. Then, for any h0 ∈ {1, ..., k} and h ∈ {0, ..., k − h0} such that
vch0−1 > vch0 = vc

h0+h
> vc

h0+h+1
4, we have, for any l = 0, ..., h:

h0+l∑
h=h0

px(h, vch) ≤
h0+l∑
h=h0

py(h, vch) (13)

and:
h0+h∑
h=h0+l

px(h, vch) >

h0+h∑
h=h0+l

py(h, vch). (14)

Lemma 5 has the following important corollary, that will be quite useful in
establishing the possibility of making a non-zero BTPIT to the poorest individual
in the worst health category of distribution y when critical value vc1 is strictly
larger than the income (y11) of this individual. This corollary in fact establishes
the existence of (potential donors) individuals in a weakly larger category who
have, in distribution y, an income of vc1.

Corollary 2 Let x and y be two distributions in D(I) such that x %OPG y.
Suppose that vc1 > y11. Let h0 ∈ {0, ..., k − 1} be such that vc1 = vch0+1 > vch0+2

Then, there exists some j ∈ {1, ..., h0 + 1} for which yji = vc1, for some i ∈ N (j).

The next lemma shows that, when critical value vc1 is strictly larger than y11, we
in fact have some leeway to perform a BTPIT while preserving OPG dominance.
Specifically, the following lemma deals with ordered vectors of poverty lines that
assign to the worst category a poverty line only marginally above the lowest income
observed in that category. This lemma says, roughly, that for any such ordered
vector of poverty lines, the poverty gap in the dominated distribution must exceed
that of the dominating one by an even larger margin. The precise statement of
this lemma is as follows.

Lemma 6 Let x and y be two distributions in D(I) such that x %OPG y. Suppose
that vc1 > y11. Then, for some strictly positive but suitably small real number ε1,
we have:

P y(y11 + ε1, v2, ..., vk) ≥ P x(y11 + ε1, v2, ..., vk) + ε1,

provided (y11 + ε1, v2, ..., vk) ∈ V .

We now establish in the following proposition that if x %OPG y, then it is
possible to find a distribution x̂ that is OPG dominated by x and that was obtained
from y by a BTPIT whenever critical value vc1 is strictly larger than y11.

Proposition 1 Let x and y be two distributions in D(I) such that x %OPG y.
Suppose that vc1 > y11. Then, there exists a distribution x̂ ∈ D(I) such that:

4Using if necessary the convention that vc0 = v(x,y) and vc
k+1

= v(x,y)
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• x %OPG x̂,

• x̂ was obtained from y by a BTPIT involving some agent ij ∈ N (j) for some
category j ∈ {1, ..., k} and agent 1 ∈ N (1).

This proposition (and its proof) identifies a particular category j ≥ 1 and a
particular agent in that category (labeled ij) that can transfer a strictly positive
quantity of income to the poorest agent in category 1. Since we proved the propo-
sition with the objective of constructing a finite sequence of such transfers, it is
important for the sequence not to be unnecessarily long and, therefore, for each
transfer to be as large as possible. This leads to the following notion of a maximal
transfer .

Definition 6 Let x and y be two distributions in D(I) such that x %OPG y.
Suppose that x̂ is obtained from y by means of a BTPIT where agent ih ∈ N (h)
transfers α0 ≥ 0 to agent ig ∈ N (g) (g ≤ h) and that x̂ -OPG x. We say that this
transfer is maximal (with respect to x) if any of the following conditions holds:

(MT1) Equalizing transfer: there exist i, i′ ∈ N (h) such that x̂hi′ = xhi or there
exists some i, i′ ∈ N (g) such that x̂gi′ = xgi (that is, one of the two agents
involved in the transfer obtains the income that they will have in final dis-
tribution x).5

(MT2) Breaking transfer: for any α < α0, the transfer of amount α from agent
ih ∈ N (h) to agent ig ∈ N (g) is not equalizing. Additionally for any α > α0

the distribution obtained by making a transfer of amount α from agent ih to
agent ig is not dominated by x as per the OPG dominance criterion.

(MT3) Half transfer: α0 = (yh
ih
− ygig)/2 and, for any α < α0, the transfer of

amount α from agents ih ∈ N (h) to agent ig ∈ N (g) is not equalizing.

Note that in the settings of Definition 6, given two agents ih ∈ N (h) and
ig ∈ N (g), the amount of the maximal transfer between them is uniquely defined.

We illustrate this definition in the case where k = 2 by providing three exam-
ples of pairs of distributions x and y for which vc1 > y11 and that give rise to the
three different possibilities of maximal transfer.

Example 1 As an example of an equalizing transfer, consider the distributions
where N (1) = {1, 2} and N (2) = {1} and where:

y11 = 0, y12 = 1, y21 = 7,

x11 = 2, x12 = 4 and x21 = 2.

It is not hard to check that x %OPG y and that vc1 = 7 > y11.

5Recall that we always assume without loss of generality that, for every category h and every
i, i′ ∈ N (h), yi′ 6= xi.
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y11

yjij

x1
1

Figure 3: Equalizing transfer

It is then possible for the unique agent in N (2) to transfer 2 units of income to
agent 1 without breaking any OPG inequality, which corresponds to an equalizing
transfer (see figure 3). Note that it would have been possible to transfer even more
without breaking the OPG inequality. Yet we do not need to do so because, after
receiving 2 units of income, agent 1 of category 1 has obtained the income of target
distribution x.

Example 2 As an example of a breaking transfer, consider the distributions where
N (1) = {1, 2} = N (2) and where:

y11 = 0 = y21, y
1
2 = 7 = y22,

x11 = 5, x12 = 6, x21 = 1 and x22 = 2.

We have x %OPG y and, again, it turns out that vc1 = 7 > y11. It is possible for
individual 2 in category 2 to transfer 3 units of income to individual 1 in category
1. Making this transfer changes the distribution from y to x̂, where x̂ is defined
by:

x̂11 = 3, x̂12 = 7, x̂21 = 0 and x̂22 = 4.

As can be seen, x %OPG x̂. Yet transferring 3 + ε (for any ε ∈]0, 1/2]) would
destroy this OPG dominance of the transformed distribution by target x. See the
appendix for a formal proof. This example is shown in Figure 4.

0 1 2 3 4 5 6 7

yjij

y11

Figure 4: Breaking transfer
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Example 3 As an example of a half transfer (Figure 5), consider the distributions
where N (1) = {1, 2} = N (2) and:

y11 = 0 = y21, y
1
2 = 6 = y22,

x11 = 4, x12 = 5, x21 = 1 and x22 = 2.

As can be seen, we have x %OPG y and vc1 = 6 > x11. It is possible for agent 2
in category 2 to transfer 3 to the poorest agent in category 1 - which is precisely
half of their income difference - without breaking any of the inequalities that define
OPG dominance.

0 1 2 3 4 5 6

y11

yjij

Figure 5: Half transfer

Proposition 1 shows that a BTPIT benefiting the poorest agent in category
1 in dominated distribution y can be performed in such a way that the distribu-
tion obtained after the transfer remains dominated by x as per the OPG criterion.
However this proposition does not rule out the alternative possibility of performing
an FIP between two individuals in such a way as to preserve the OPG dominance
of the distribution obtained after performing this operation by x. In the next
proposition, we identify a circumstance which also entails the possibility of per-
forming an FIP.

Proposition 2 Let x and y be two distributions in D(I) such that x %OPG y.
Suppose that vc1 > y11. Let h0 ∈ {1, ..., k} be a category such that vch0+1 < vch0 = vc1
(with the convention that vck+1 = v(x,y)). Suppose also that

• ∀i ∈ N (1), x1i > vc1

• For any category h such that h0 ≥ h ≥ 2, we have yhi 6= vc1;

Then there exists a distribution x̂ ∈ D(I) such that x̂ was obtained from y by
an FIP and x %OPG x̂.

We observe that the receiver of the FIP in Proposition 2 is not the poorest
individual in category 1. It is another agent in category 1 whose income is equal
to vc1. We now provide an example of a situation where both a BTPIT and an
FIP are possible.
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Example 4 Let k = 2, N (1) = {1, 2, 3}, N (2) = {1, 2, 3, 4} and y and x be
defined by

y11 = 2, y12 = y13 = 3, y21 = 0, y22 = y23 = y24 = 4

and:
x11 = x12 = x13 = 4, x21 = x22 = x23 = x24 = 2.

As can be seen, x %OPG y, vc1 = vc2 = 3, and y11 = 2. According to Proposi-
tion 1, agent 2 in category 2 can transfer some income to agent 1 in category 1.
However, Proposition 2 states that an FIP is also possible. Indeed the conditions
of this proposition are satisfied since x1i = 4 > vc1 for all i ∈ N (1). We also have
that y2i 6= 3 for all i ∈ N (2). By virtue of Proposition 2, the distribution obtained
after exchanging income 4 of agent 2 in category 2 with income 3 of agent 2 in
category 1 remains dominated by distribution x The situation is illustrated in the
Figure below.

0 1 2 3 4 5 6 7

y11

y22

y12

Figure 6: Agent 2 in category 2 can exchange income with agent 2 in category 1.

3.2.2 Case (B) : vc1 = y11

We start the analysis of this case by observing that requiring (5) to hold for all
lists of poverty lines in the set V is equivalent to requiring this inequality to hold
for the subset

V ′ = {(v1, ..., vk) ∈ Rk : v(x,y) ≥ v1 ≥ v2 ≥ ... ≥ vk ≥ v(x,y)} (15)

of such lists of poverty lines, which is compact.
We also observe that, by the very definition of critical value vc1, there exists

a sequence {wm} of poverty lines vectors (with wm ∈ V ′ for every m) such that
P y(wm) − P x(wm) = 0 and wm1 = y11 + εm1 , for εm1 > 0, and εm1 → 0. By
compactness of V ′ we can assume without loss of generality6 that the sequence
wm of ordered poverty lines vectors converges to some limit w ∈ V ′. By continuity
of the poverty gap function P , we have P y(w)− P x(w) = 0.

6Taking a subsequence if necessary.
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Taking this limit vector w ∈ V ′ of ordered poverty lines, we first establish the
existence, in initial distribution y, of some agent in a category strictly larger than
1 with an income strictly larger than the lowest income observed in category 1.
This agent will be a natural candidate for exchanging his/her higher income with
that of the poorest agent in category 1. A crucial step for the identification of
such an agent is the following lemma.

Lemma 7 Let x and y be two distributions in D(I) such that x %OPG y. Suppose
that vc1 = y11. Then, there exists h0 ≥ 2 such that y11 = w1 = w2 = ... = wh0 >
wh0+1. Moreover there exists g0 ≤ h0 such that g0 ≥ 2,

g0∑
h=1

py(h, y11) =

g0∑
h=1

px(h, y11),

and:
l∑

h=1

py(h, y11) >
l∑

h=1

px(h, y11)

for all l < g0.

This lemma indeed identifies a category g0 strictly larger than 1 in which a
“potential donor” to the poorest agent in the worst category can be selected. As
we now establish, this donor can transfer to the poorest agent in category 1 the
whole income difference, while maintaining the dominance of distribution x over
the distribution created by the FIP.

Proposition 3 Let x and y be two distributions in D(I) such that x %OPG y.
Suppose that vc1 = y11. Then there exists a distribution x̂ ∈ D(I) such that x̂ was
obtained from y by an FIP and x %OPG x̂.

In the next example, we illustrate Proposition 3

Example 5 Assume that k = 2 and N (1) = N (2) = {1, 2} and consider distri-
butions y and x defined respectively by:

y11 = 3, y12 = 7 y21 = 0, y22 = 4,

and:
x11 = 5, x12 = 6, x21 = 1, x22 = 2.

It can be verified that x %OPG y and vc1 = 3 = y11. Proposition 3 states that an
FIP between an agent in category 2 and agent 1 in category 1 is possible without
breaking the OPG inequality. Indeed agent i2 = 2 can exchange his income with
agent 1 in category 1.
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Figure 7: vc1 = y11; an FIP is possible

3.3 Proof of the main result (iii)⇒ (i)

We now prove the last implication of Theorem 1.

Let x and y be as in Theorem 1. By a recursive argument on the finite set of
agents, proving implication (iii) of Theorem 1 amounts to showing that x %OPG y
implies the possibility of going from y to some distribution x ∈D(I) by a finite
sequence of BTPIT and/or FIP in such a way that:

• x %OPG x,

• there exists h ∈ {1, ..., k} for which xhi = xh
i

for some i and i ∈ N (h).

Indeed, whenever one agent in one category has reached the income level that
an agent of this category has in final distribution x, we can remove that agent from
that category and restart the procedure. Since the numbers of agents and cate-
gories are finite, this completes the proof. Let us therefore construct an algorithm
for moving from y to some distribution x as described above by a finite sequence
of BTPIT and/or FIP. We construct this algorithm by first setting x(0) := y and
by recursively defining x(n+ 1) from x(n) in the following manner. Let vc1(n) be
the critical value defined as per (11) but applied to x(n) rather than to y.

(P1) If vc1(n) = x11(n) then perform an FIP, which is possible according to Propo-
sition 3.

(P2) If vc1(n) > x11(n) and if

– ∀i ∈ N (1), x1i > vc1(n),

– For any category h such that h0 ≥ h ≥ 2, we have xhi (n) 6= vc1(n),7

then perform an FIP, as described by Proposition 2 (remembering that the
recipient of such an FIP is not the poorest individual in category 1 in that
case).

(MT ) otherwise perform the maximal transfer defined by Proposition 1 and Defi-
nition 6.

7Where h0 is the category such that vc1(n) = vch0
(n) > vch0+1(n).
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By construction, x %OPG x(n) for any n. If there exists some n∗ ∈ N+ such
that, for some category h ∈ {1, ..., k}, we have:

xhi (n
∗) = xhj

for some i, j ∈ N (h) then the algorithm ends and is said to be finite. If it does
not end, then the algorithm generates an infinite (non-stationary) sequence. The
only thing that remains to be proved is that the latter is impossible and that the
algorithm is finite, as then x := x(n∗) satisfies the property stated above. We
prove this by contradiction and therefore suppose that our algorithm generates an
infinite sequence (x(n))n∈N. We proceed by first establishing a series of claims (all
proved in the Appendix).

Claim 1 There exists some n0 ∈ N such that, for all n ≥ n0, either case (P2) or
(MT ) holds, so that x11(n) < vc1(n).

An immediate consequence of this claim is that, for any n ≥ n0, we can also
define the quantities vch(n) through expression (12).

Claim 2 Let n0 be the integer whose existence was established in Claim 1. Then,
for all n ≥ n0 and all categories h = 1, ..., k, we have vch(n+ 1) ≤ vch(n). 8

In the next claim, we establish the existence of some step in the algorithm
beyond which no FIP occurs.

Claim 3 There exists n1 ∈ N such that, for any n ≥ n1, the distribution x(n+ 1)
is obtained from x(n) by means of a maximal transfer.

We proved that, for any n ≥ n1, a maximal transfer of type (MT ) occurs
at time n. Since the algorithm is infinite, no transfer can be equalizing as per
Definition 6. Hence, the maximal transfers at every step must be either a breaking
or a half transfer of Definition 6. We next claim that at every step after n1, if
a breaking transfer is required by the algorithm, then the donor involved in the
transfer will never be the donor again in a subsequent transfer.9

Claim 4 There exists n2 ∈ N such that, for any n ≥ n2, distribution x(n + 1) is
obtained from x(n) through a half transfer.

8Note that the conclusion from this claim, that the critical value weakly decreases as n
increases, is not true for operations of type (P1), which on the contrary necessarily weakly
increase the critical value.

9While the proof of the claim is slightly cumbersome, the intuition behind it is relatively
clear. Indeed, by its very definition, a breaking transfer is such that the donor cannot give more
at this stage without breaking at least one of the OPG dominance inequalities. As n increases,
the (ordered poverty gap) difference between distribution x(n) and distribution x gets smaller
and smaller. Hence it becomes harder and harder to make a transfer without breaking some of
the OPG inequalities.
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We now establish that none of the donors involved in the half transfers that remain
after all breaking transfers have been performed can be in category 1.

Claim 5 For any n ≥ n2, the distribution x(n+ 1) is obtained from x(n) through
a half transfer whose donor is not in category 1.

We are now ready to establish a contradiction, and thus prove that the algo-
rithm is finite. As proved in Claim 5, if the algorithm is infinite, there is some
n2 ∈ N such that, for n ≥ n2, x(n + 1) is obtained from x(n) through a half
transfer, the donor of which is not in category 1. Yet once an agent in category
1 has received a half transfer from an agent of a higher category, his/her income
becomes equal to that of the donating agent . Hence, the donating agent cannot
be selected again by the algorithm to donate to that same receiving agent. Since
the number of agents is finite, this completes the proof. �

There was a real risk of generating an infinite sequence of transfers starting
from an OPG-dominated distribution y and going to a dominating distribution
x. This risk made us choose an FIP in the algorithm in the case labeled as (P2)
above, even though performing a BTPIT transfer would also be possible in that
case under Proposition 1. The problem that might arise with a maximal BTPIT in
case (P2) is that of being trapped into performing an infinite sequence of maximal
transfers, as illustrated by Example 4 above. If a BTPIT rather than an FIP were
performed in this example, the maximal transfer would clearly be a half transfer
of 1/2. Performing this transfer would yield the distribution x̂ defined by:

x̂11 = x̂12 = 5/2, x̂13 = 3, x̂21 = 0, x̂22 = x̂23 = x̂24 = 4

Note that the critical value vc1(x̂) associated with x̂ is still 3 > x̂11 = 5/2. Propo-
sition 1 indicates that agent 3 in category 1 can make a transfer to one of the
two poorest agents in that same category. The maximal transfer that agent 3 of
category 1 can transfer to either one of the two poorest agents of category 1 is a

half transfer of 1/4. If this transfer is performed, then distribution ̂̂x is obtained,

with ̂̂x defined by:

̂̂x11 = 5/2, ̂̂x12 = ̂̂x13 = 11/4, ̂̂x21 = 0, ̂̂x22 = ̂̂x23 = ̂̂x24 = 4

But from this distribution ̂̂x, the critical value vc1(x̂) is 11/4 and this would have
allowed a half transfer of 1/8 between either agent 2 or 3 in category 1 and the
poorest agent 1 in this category and so on. Systematically resorting to the transfer
allowed by Proposition 1 in that case would generate an infinite sequence of half
transfers (with the “half” becoming smaller and smaller). It is to avoid this
possibility that our algorithm imposes that the FIP allowed by Proposition 2 be
performed every time the conditions of case (P2) are verified.

25



4 Extensions

The analysis performed in the previous sections was restricted to distributions with
the same number of agents in every category and the same total income. This
restriction was motivated by our objective of defining pure equalization among
unequals. If the number of agents in the various categories and/or the total income
to be distributed vary from one distribution to the other, then inequality can not
be the only criterion by which these distributions can be compared. However, the
restriction of the analysis to distributions with the same number of agents in every
category and the same total income is clearly limitative for practical applications.
In what follow, we indicate how our analysis can be extended when the restrictions
are removed. We develop in some detail the case where the number of agents in
each category is allowed to vary across distributions, keeping constant the total
number of agents (n), and the total income to be distributed. We then briefly
indicate how these two last restrictions can be removed.

Denote by Nx(h) the set of agents in category h for distribution x and by

nx(h) = #Nx(h) the number of those agents. We write x = {(xh1 , ..., xhnx(h)
)}nx(h)
h=1 .

As mentioned, we maintain for the moment the assumption that

k∑
h=1

nx(h) = n;
k∑

h=1

∑
i∈Nx(h)

xhi = I.

We call D(I) the set of all such distributions. In order to allow for the number of
agents in a given category to vary across distributions, we introduce the following
elementary operation, that will be added to the FIP and BTPT discussed earlier.

Definition 7 (Categorical increments) Let x and y be two distributions in
D(I). We say that x is obtained from y by means of a categorical increment if
there are categories g and h for which g < h, nx(g) = ny(g)−1, nx(h) = ny(h)+1,
as well as ig ∈ Ny(g) and ih ∈ Nx(h) such that:

(i) xgi = ygi+1 for all i ≥ ig (if any).

(ii) xh
ih

= ygig .

(iii) xhi = yhi−1 for all i ≥ ih + 1 (if any)

(iv) xli = yli for any other pair (i, l).

In words, x is obtained from y by means of a categorical increment if x and
y only differ by the fact that one agent in some category in y reaches a superior
category in x while keeping his/her income. The following result extends Theorem
1 to this new setting. Note that the different dominance criteria need to be
adjusted in order to fit to the new notations. In particular we denote by U∗∗
the class of type-dependent (U1, ..., Uk) ∈ U∗ satisfying the following additional
property:

Uh′(w) ≥ Uh(w) ∀h′ ≥ h. (16)
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Theorem 2 Let x and y be two distributions in D(I). Then the following four
statements are equivalent.

(i) It is possible to go from y to x by a finite sequence of categorical increments,
BTPIT and/or FIP.

(ii) x utilitarian dominates y for the class U∗∗,

(iii) x %OPG y:

k∑
h=1

∑
i∈Nx(h)

max(vh − xhi , 0) ≤
k∑

h=1

∑
i∈Ny(h)

max(vh − yhi , 0), ∀(v1, ..., vk) ∈ V

(17)

(iv) x %CLI y, where the set of eligible definitions of the m poorest agents now
writes

Π(x,m) =

{
(r1, ..., rk) : 0 ≤ rh ≤ nx(h),

∑
h

rh = m, xhrh+1 > xh
′

rh′
∀h′ > h

}
.

Remark 1 Observe that if x dominates y with respect to any of the four criteria
then we necessarily have

g∑
h=1

ny(h) ≥
g∑

h=1

nx(h), ∀g = 1, ..., k.

Hence, first order stochastic dominance of its marginal distribution of needs is a
necessary condition for x to dominate y for any of the four criteria.

Remark 2 It is worth noticing that, when the number of agents in the different
categories is allowed to vary across distributions, OPG dominance is not equivalent
to inequality (17) for lists of ordered poverty lines of the subset V ′ defined in (15).
Consider the following simple example involving 2 categories and 2 individuals (all
in category 1 in distribution x and split between the two categories in distribution
y). Incomes are: x11 = x12 = 1 and y11 = 0, y21 = 2. Then one can easily check
that x OPG-dominates y if we restrict the poverty lines to 2 ≥ v1 ≥ v2 ≥ 0.
Nevertheless x does not dominate y for the criteria (i), (ii) and (iv). This non-
dominance can be seen by considering, say, a poverty line of 3 in category 1 and
0 in category 2.

We now briefly discuss how the results extend to the case where n (the total
number of agents) is the same but where the total income to be distributed varies.
For this sake, we need to introduce another elementary transformation, which we
call income increment. This transformation is defined as follows.

Definition 8 (Income increments) Let x and y be two distributions in D(I).
We say that x is obtained from y by means of an income increment if Nx(g) =
Ny(g) for any g, and there exists a category h, ih ≤ jh ∈ N (h) and a > 0 such
that:
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(i) xhi = yhi+1 for i = ih...jh − 1 (if any).

(ii) xhjh = yhih + a.

(iii) xli = yli for any other pair (i, l).

In words, x is obtained from y by means of an income increment if x and y
only differ by the fact that one agent in some category has an higher income in
distribution x than in distribution y.
We must also enlarge the class of utility functions over which utilitarian unanim-
ity is looked for to the following class: let U∗∗∗ be the class of type-dependent
(U1, ..., Uk) ∈ U∗∗ satisfying the following additional property:

Uh(w + a) ≥ Uh(w) ∀h, ∀a ≥ 0. (18)

We can then state the following theorem whose proof, which can easily be worked
out using standard results in one-dimensional dominance analysis and the fact
that the proof of the equivalence between (iii) and (iv) in Theorem 1 does not
assume anything about the sum of income that is distributed, is omitted.

Theorem 3 Let x ∈ D(I) and y ∈ D(J). Then the following four statements are
equivalent.

(i) It is possible to go from y to x by a finite sequence of income increments,
categorical increments, BTPIT and/or FIP.

(ii) x utilitarian dominates y for the class U∗∗∗.

(iii) x %OPG y.

(iv) x %CLI y.

Finally, the case where the total number of agents vary across distributions is
handled by appealing to the so-called Dalton principle of population replication
(see e.g. Dalton (1920)). In the present setting, this principle says that replicat-
ing any finite number of time a distribution of income among agents in different
categories is a matter of social indifference.

5 Conclusion

In this paper, we provide a workable definition of “income equalization” when per-
formed between agents who are vertically differentiated with respect to some other
characteristic. The definition of such equalization is transferring from a richer and
more highly ranked agent to a poorer and less highly ranked agent an amount
of income that does not exceed the income difference between the two agents. If
the transfer does not exceed half the income difference between the donor and
the receiver, then such a transfer is called a BTPIT. If the transfer is larger than
half the income difference, then the transfer can be viewed as a combination of a
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BTPIT of less than half the income difference and an FIP. The paper has identi-
fied the normative foundations of this notion of equalization. Specifically, it has
shown that the smallest transitive ranking of distributions consistent with this
notion of equalization is the unanimity of all utilitarian planners’ rankings consid-
ering that the marginal utility of income for every agent is decreasing with respect
to both income and type. The paper has also identified two empirically imple-
mentable criteria - the Ordered Poverty gap criterion, and the cumulative lowest
incomes criterion - each of which is equivalent to this notion of equalization. While
Gravel and Moyes (2012) showed that the ordered poverty gap dominance of one
distribution over another is equivalent to the possibility of going from a phantom-
augmented dominated distribution to the phantom-augmented dominating one by
a finite sequence of Pigou-Dalton transfers (between agents of a given type) and/or
FIP, these authors could not establish the equivalence without resorting to dummy
or phantom agents. The present paper is therefore, to the best of our knowledge,
the first to provide an equivalence between a notion of normative dominance, an
elementary principle of equalization, and two empirically implementable criteria
that applies to distributions of a cardinally meaningful attribute among vertically
differentiated agents.

It is our hope that the implementable criteria that we have justified in this
fashion - the Bourguignon (1989) criterion and its equivalent formulation in the
form of the cumulative smallest income dominance criterion - will be used with
increasing confidence by practitioners evaluating inequalities among vertically dif-
ferentiated agents.

6 Appendix

6.1 Proof of (i)⇒ (ii)⇒ (iii)

Proposition 4 Let x and y be two distributions in D(I). Then, in Theorem 1, State-
ment (i) implies Statement (ii) and Statement (ii) implies statement (iii).

Proof. (i)⇒ (ii) We must prove that both BTPIT and FIP increase the sum of utilities
for any collection of utility functions {Uh}kh=1 ∈ U∗.

BTPIT : Assume that x has been obtained from y by a BTPIT. Then, using Definition 1,
there are categories g and h satisfying g ≤ h, agents ig ∈ N (g) and ih ∈ N (h) satisfying
ygig < yh

ih
and a number α ∈ [0, (yh

ih
− ygig)/2] for which we have:

k∑
j=1

n(j)∑
i=1

(U j(xji )− U
j(yji ))

= Ug(xg
rg+(α)

)− Ug(ygig) + Uh(xh
rh−(α)

)− Uh(yhih)

= Ug(ygig + α)− Ug(ygig)− [Uh(yhih)− Uh(yhih − α)]

≥ 0 (if the functions U1, ..., Uk belong to U∗)

29



FIP : Assume that x has been obtained from y by an FIP. Then, using Definition 2,
there are categories g and h satisfying g < h, agents ig ∈ N (g) and ih ∈ N (h) satisfying
ygig < yh

ih
for which we have:

k∑
j=1

n(j)∑
i=1

(U j(xji )− U
j(yji )) = Ug(xg

rg(ih)
)− Ug(ygig) + Uh(xhrh(ig))− U

h(yhih)

= Ug(yhih)− Ug(ygig) + Uh(ygig)− U
h(yhih)

= Ug(yhih)− Ug(ygig)− [Uh(yhih)− Uh(ygig)]

≥ 0 (if the functions U1, ..., Uk belong to U∗)

Repeating the arguments (for the FIP and/or the BTPIT) for any finite sequence of
distributions of income completes the proof of the first implication for the theorem.

(ii)⇒ (iii). Let x and y be two distributions in D(I) for which the inequality:

k∑
h=1

n(t)∑
i=1

Uh(xhi )−
k∑

h=1

n(t)∑
i=1

Uh(yhi ) ≥ 0 (19)

holds for all lists of utility functions {Uh}kh=1 in U∗. Choose any vector v = (v1, ..., vk)
in the set V and define the k functions Uh : R−→R (for h = 1, ..., k) by Uh(w) =
min[w − vh, 0]. Let us show that the collection of k functions {Uh}h=1,...,k satisfies
inequality (3) for any vector v = (v1, ..., vk) in V, and therefore belongs to U∗. Consider
any u ≥ 0, w ≤ w′ and h ≤ h′. First note that the quantities Uh(w + u) − Uh(w) and
Uh
′
(w′ + u)− Uh′(w′) belong to [0, u].
If w ≥ vh then w + u ≥ vh and w′ + u ≥ w′ ≥ vh′ . Thus (3) holds with both sides

equal to zero.
If w ≤ vh then Uh(w) = w− vh and Uh(w+u)−Uh(w) = min(u, vh−w). Note also

that:
Uh
′
(w′ + u)− Uh′(w′) ≤ −Uh′(w′) ≤ vh′ − w′ ≤ vh − w.

Hence Uh
′
(w′ + u) − Uh′(w′) ≤ min(u, vh − w) and inequality (3) holds for that case

also. We have therefore proved that the collection of functions {Uh}h=1,...,k belongs to
the class U∗ for all v = (v1, ..., vk) ∈ V. Since inequality (19) holds for all such functions
so that we have:

k∑
h=1

n(h)∑
i=1

min[xhi − vh, 0] ≥
k∑

h=1

n(h)∑
i=1

min[yhi − vh, 0]

⇐⇒
k∑

h=1

n(h)∑
i=1

max[vh − xhi , 0] ≤
k∑

h=1

n(h)∑
i=1

max[vh − yhi , 0]

for all v = (v1, ..., vk) ∈ V, as required by the OPG criterion.

6.2 Proof of (iii)⇔ (iv)

Proposition 5 Let x and y be two distributions in D(I). Then x %OPG y if and only
if x %CLI y.

30



Proof. Assume first that x %CLI y, and consider any v ∈ V. We must show that
Px(v) ≤ Py(v). Let the vector of ranks (r1, ..., rk) be defined, for any h ∈ {1, ..., k} by:

rh = max{i ∈ N (h) : xhi ≤ vh}, if {i ∈ N (h) : xhi ≤ vh} 6= ∅
= 0 otherwise

Clearly, rh ∈ {0, ..., nh} for any h. Let m =
∑

h rh. We first show that (r1, ..., rk) ∈
Π(x,m). By contradiction, assume that (r1, ..., rk) /∈ Π(x,m). By definition of Π(x,m)
(Expression (7)), there exist categories h and h′ satisfying h′ > h such that xhrh+1 ≤ xh

′
rh′

.

By definition of rh, we have that xh
′
rh′
≥ xhrh+1 > xhrh ≥ v(x,y) (at least under the

convention that xh0 = v(x,y)). This means that xh
′
rh′

= vh
′
> vh = xhrh (if rh ≥ 1) and

xh
′
rh′

= vh
′
> vh (if rh = 0 and vh < xh1). But this contradicts the fact that v ∈ V.

Observe that:

Px(v) =
k∑

h=1

rhvh −
k∑

h=1

∑
i≤rh

xhi

Let (r′1, ..., r
′
k) ∈ Π(y,m) be any vector of ranks such that

∑h
g=1 r

′
g ≥

∑h
g=1 rg for any h

and
∑k

h=1

∑
i≤rh x

h
i ≥

∑k
h=1

∑
i≤r′h

yhi . Such a vector of ranks exists because x %CLI y.

We then have:

Py(v) =
k∑

h=1

∑
i∈N(h)

max{0, vh − yhi } ≥
k∑

h=1

∑
i≤r′h

max{0, vh − yhi }

≥
k∑

h=1

∑
i≤r′h

(vh − yhi ) =
k∑

h=1

r′hvh −
k∑

h=1

∑
i≤r′h

yhi .

Note that

k∑
h=1

r′hvh =
k∑

h=1

rhvh +
k−1∑
h=1

(vh − vh+1)(
h∑
g=1

r′g −
h∑
g=1

rg) ≥
k∑

h=1

rhvh.

(because
∑h

g=1 r
′
g ≥

∑h
g=1 rg and (vh − vh+1) ≥ 0 for any h). It follows that Py(v) ≥

Px(v), as required.

Assume now that x %OPG y. Take any integer m ∈ {1, ..., n} and any (r1, ..., rk) ∈
Π(x,m). Define the set F (y, r1, ..., rk) by:

F (y, r1, ..., rk) =

(i1, ..., ik) ∈ Π(y,m) :

h∑
g=1

ig ≥
h∑
g=1

rg ∀h,
k∑
g=1

ig = m


This set is non-empty. Indeed, if m ∈ {

∑h−1
g=1 ng + 1, ...,

∑h
g=1 ng} for some h = 1, ..., k,

then the combination of ranks (i1, ..., ik) := (n1, n2, ..., nh−1,m −
∑h−1

g=1 ng, 0, ..., 0) be-
longs to Π(y,m) by construction. Moreover, we have

ĥ∑
g=1

ig =

ĥ∑
g=1

ng ≥
ĥ∑
g=1

rg ∀ ĥ = 1, ..., h− 1
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and ̂̂
h∑
g=1

ig = m ≥
̂̂
h∑
g=1

rg ∀
̂̂
h = h, ..., k.

Hence (i1, ..., ik) ∈ F (y, r1, ..., rk). The non-empty set F (y, r1, ..., rk) thus contains all
admissible (as per set Π) lists of ranks for distribution y that satisfy Inequality (9)
of Definition 5 vis-à-vis the list of ranks (r1, ..., rk). Define now the vector of ranks
(r′1, ..., r

′
k) ∈ {0, ..., n1} × ...× {0, ..., nk} by:

(r′1, ..., r
′
k) ∈ arg min

(i1,...,ik)∈F (y,r1,...,rk)

k∑
h=1

∑
i≤ih

yhi , (20)

Hence, the list of ranks (r′1, ..., r
′
k) are those that define a set of m “poorest” agents in

situation y, under the constraint that
∑h

g=1 r
′
g ≥

∑h
g=1 rg for any h. Consider now the

vector of poverty lines v defined as follows (for any h = 1, ..., k)10:

vh := max

{
{ylrl : l ≥ h} ∪ {ygrg : g < h and

j∑
e=1

r′e >

j∑
e=1

re ∀j = g, ..., h− 1}

}
.

This vector v is well-defined because, for every h, at least one of sets {ylrl : l ≥ h} or

{ygrg : g < h and
∑j

e=1 r
′
e >

∑j
e=1 re ∀j = g, ..., h − 1} is not empty. Let us first check

that v ∈ V. This amounts to showing that if h and h′ are two categories such that h < h′,
then vh ≥ vh′ . But this is an immediate consequence of the fact that, for any h and h′

such that h < h′, set {ylrl : l ≥ h}∪{ygrl : g < h and
∑j

e=1 r
′
e >

∑j
e=1 re ∀j = g, ..., h−1}

contains set {ylrl : l ≥ h′} ∪ {ygrl : g < h′ and
∑j

e=1 r
′
e >

∑j
e=1 re ∀j = g, ..., h′ − 1} as

a subset. As a result, the maximum taken over the larger set cannot be smaller than
the maximum taken over the subset. We now prove that, for any h = 1, ..., k, we have
vh ∈ [yhrh , y

h
rh+1]. By definition of vh, the only inequality that needs to be established

is vh ≤ yhrh+1. By contradiction, assume that vh > yhrh+1. Since (r′1, ..., r
′
k) ∈ Π(y,m),

we have yj
r′j
< ygr′g+1 for every two categories g and j such that g < j. Hence the

fact that vh > yhrh+1 may only be due to the existence of a category g < h such that∑l
e=1 r

′
e >

∑l
e=1 re ∀l = g, ..., h − 1 and ygr′g

> yhr′h+1. Consider then the list of ranks

(r′′1 , ..., r
′′
k) ∈ {0, ..., n1}× ...×{0, ..., nk} defined by r′′e = r′e for e 6= g, h, r′′h = r′h + 1 and

r′′g = r′g − 1 Observe that (r′′1 , ..., r
′′
k) ∈ F (y, r1, ..., rk). Now:

k∑
h=1

∑
i≤r′′h

yhi =
k∑

h=1

∑
i≤r′h

yhi + yhr′h+1 − y
g
r′g
<

k∑
h=1

∑
i≤r′h

yhi (21)

(because ygr′g
> yhr′h+1). But this contradicts the definition of (r′1, ..., r

′
k) provided by (20).

Since yhr′h+1 ≥ vh ≥ y
h
r′h

for all h, we have:

Py(v) =

k∑
h=1

∑
i≤r′h

(vh − yhi ) =

k∑
h=1

r′hvh −
k∑

h=1

∑
i≤r′h

yhi .

10Again with the convention that, if r′h = 0, then yhr′h
= v(x,y).
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and:

Px(v) =

k∑
h=1

∑
i∈N (h)

max{0, vh − xhi } ≥
k∑

h=1

∑
i≤rh

max{0, vh − xhi }

≥
k∑

h=1

∑
i≤rh

(vh − xhi ) =
k∑

h=1

rhvh −
k∑

h=1

∑
i≤ih

xhi .

Now, as established above:

k∑
h=1

r′hvh =
k∑

h=1

rhvh +
k−1∑
h=1

(vh − vh+1)(
h∑
g=1

r′g −
h∑
g=1

rg).

Let h ≤ k−1. By construction of the vector of poverty line v, if
∑h

g=1 r
′
g >

∑h
g=1 rg then

vh = vh+1. Indeed let g0 be the category such that
∑g

e=1 r
′
e >

∑g
e=1 re for g = g0, ..., h

and
∑g0−1

e=1 r′e =
∑g0−1

e=1 re. Then vh = vh+1 = maxg≥g0 y
g
ig

. It follows that
∑k

h=1 r
′
hvh =∑k

h=1 rhvh. By assumption, Py(v) ≥ Px(v). Hence

k∑
h=1

∑
i≤r′h

yhi =
k∑

h=1

r′hvh − Py(v) ≤
k∑

h=1

rhvh − Px(v) ≤
k∑

h=1

∑
i≤rh

xhi ,

which proves the result.

6.3 Proof of the results of section 3.1

6.3.1 Lemma 1.

For the first statement, assume by contraposition that y11 > x11. Consider then the vector
of poverty lines (y11, v(x,y), ..., v(x,y)) ∈ V. One has:

Py(y11, v(x,y), ..., v(x,y)) = 0 and:

Px(y11, v(x,y), ..., v(x,y)) ≥ y11 − x11 > 0

so that x %OPG y does not hold, as required. The second statement holds by a mirror
argument. �

6.3.2 Lemma 2.

For any type h = 1, ..., k, the vector of poverty lines vh ∈ Dk defined by:

vh = (v(x,y), ..., v(x,y)︸ ︷︷ ︸, v(x,y), ..., v(x,y)︸ ︷︷ ︸)
h k − h

33



clearly belongs to V. Hence, since x %OPG y, we have:

Px(vh) ≤ Py(vh)

⇐⇒
h∑
h=1

n(h)v(x,y)−
h∑
h=1

∑
i∈N (h)

xhi ≤
h∑
h=1

n(h)v(x,y)−
h∑
h=1

∑
i∈N (h)

yhi

⇐⇒
h∑
h=1

∑
i∈N (h)

xhi ≥
h∑
h=1

∑
i∈N (h)

yhi �

6.3.3 Lemma 3.

By inequality (10) there exists at least one agent with income strictly larger than y1i1 in
one of the categories {2, ..., g0}. Define γ ∈ {2, ..., g0} and iγ ∈ N (γ) by

γ = min{g ≥ 2 : ∃i ∈ N (g) such that ygi > y1i1}, iγ = min{i ∈ N (γ) : yγi > y1i1}

We now prove that for any v ∈ V, we have:

Py(v)− Px(v) ≥ min{yγiγ , v1} −max{y1i1 , vγ}; (22)

If either v1 ≤ y1i1 or vγ ≥ yγiγ , inequality (22) trivially holds (because min{yγiγ , v1} −
max{y1i1 , vγ} ≤ 0 in this case). Hence we suppose that v1 > y1i1 and vγ < yγiγ . We
establish the result by considering three different cases.

Case (i): y1i1 ≤ vg0 ≤ v1 ≤ y
γ
iγ

.

By definition of yγiγ , we have that that:

py(h,w) = py(h,w′)

for h = 2, ..., g0 and any w and w′ ∈ [y1i1 , y
γ
iγ

[. Indeed, the number of poor in categories
2, .., g0 at distribution y does not change when we move the poverty line applicable to
all these categories from y1i1 to yγiγ ). Combining this with inequality (10) and the fact
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that px(h,w) is non-decreasing with respect to w, we have:

g0∑
g=2

∑
i∈N (g)

[max(v1 − ygi , 0)−max(v1 − xgi , 0)]

≤
g0∑
g=2

∑
i∈N (g)

[max(vg − ygi , 0)−max(vg − xgi , 0)]

+

g0∑
g=2

[py(g, vg)− px(g, vg)](v1 − vg)

=

g0∑
g=2

∑
i∈N (g)

[max(vg − ygi , 0)−max(vg − xgi , 0]

+

g0∑
h=2

g0∑
g=h

[py(g, vg)− px(g, vg)](vh−1 − vh)

≤
g0∑
g=2

∑
i∈N (g)

[max(vg − yi, 0)−max(vg − xi, 0] + vg0 − v1

Hence:

Py(v)− Px(v) = Py(v1, ..., v1, vg0+1, ..., vk)− Px(v1, ..., v1, vg0+1, ..., vk)

−
g0∑
g=2

∑
i∈N (g)

[max(v1 − ygi , 0)−max(v1 − xgi , 0)]

+

g0∑
g=2

∑
i∈N (g)

[max(vg − ygi , 0)−max(vg − xgi , 0)]

≥ Py(v1, ..., v1, vg0+1, ..., vk)

−Px(v1, ..., v1, vg0+1, ..., vk) + v1 − vg0
≥ v1 − vg0 (because (v1, ..., v1, vs0+1, ..., vk) ∈ V)

≥ v1 − vγ
= min{yγiγ , v1} −max{y1i1 , vγ}.

as required.

Case (ii): v1 > yγiγ and vg0 ≥ y1i1 .

In this case, there exists some h ∈ {1, ..., γ − 1} such that v1 ≥ ... ≥ vh > yγiγ ≥ vh+1 ≥
... ≥ vk. Let ṽ = (yγiγ , ..., y

γ
iγ
, vh+1, ..., vk). Then ṽ belongs to case (i) and, consequently:

Py(ṽ)− Px(ṽ) ≥ ṽ1 − ṽγ = y1i1 − vγ .

Moreover denoting v̂ := (v1, ..., vh, v
c
h+1, ..., v

c
k), we have, by definition of vc :

(Py(ṽ)− Px(ṽ))− (Py(v)− Px(v)) = (Py(vc)− Px(vc))− (Py(v̂)− Px(v̂))

= Px(v̂)− Px(v̂)

≤ 0
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Hence we have:

Py(v)− Px(v) ≥ Py(ṽ)− Px(ṽ) ≥ yγiγ − vγ = min{yγiγ , v1} −max{y1i1 , vγ}

as required.

Case (iii): vg0 < yi1 .(without any assumption on the relative standing of v1 vis-à-vis
yγiγ )

In this case, there exists some h < {1, ..., g0 − 1} such that vh ≥ y1i1 > vh+1 ≥ ... ≥ vk.
We first note that:

k∑
g=h+1

∑
i∈N (g)

[max(vg − ygi , 0)−max(v1 − xgi , 0)]

≥
k∑

g=h+1

∑
i∈N (g)

[max(wg − ygi , 0)−max(w1 − xgi , 0)]

because assuming otherwise would imply that:

Py(w1, ..., wh, vh+1, ..., vk)− P
x(w1, ..., wh, vh+1, ..., vk) < Py(w)− Px(w)

= 0,

and this inequality contradicts the statement that x %OPG y (since the vector of poverty
lines (w1, ..., wh, vh+1, ..., vk) belongs to V ).
Let ṽ := (v1, ..., vh, wh+1, ..., wk) ∈ V. Observe with care that the vector ṽ so defined
corresponds either to case (i) (if v1 ≤ yγiγ ) or to case (ii) (if v1 > yγiγ ). Observe also

that max{y1i1 , ṽγ} ≤ max{y1i1 , vγ}. Indeed if ṽγ ≤ y1i1 there is nothing to prove. If on the

other hand ṽγ > y1i1 , then ṽγ = vγ by definition of h and the inequality max{y1i1 , ṽγ} ≤
max{y1i1 , vγ} also holds. Collecting these observations, we obtain that

Py(v)− Px(v) ≥ Py(ṽ)− Px(ṽ)

≥ min{yγiγ , v1} −max{ṽγ , y1i1} (by cases (i) or (ii))

≥ min{yγiγ , v1} −max{y1i1 , vγ}

which proves (22) in that last case.

Let us now establish the existence of a distribution x ∈ D(I) that has been obtained
from y by an FIP and that is such that x %OPG x. Let x be the distribution obtained
from y by means of an FIP from agent iγ ∈ N(γ) to agent i1 ∈ N(1). Let us show that
x %OPG x. Consider any vector v ∈ V of ordered poverty lines. If vγ ≥ yγiγ or v1 ≤ y1i1 ,
it is clear that Px(v) = Py(v) ≥ Px(v). If on the other hand vγ < yγiγ and v1 > y1i1 , by
straightforward computations11:

Px(v) = Py(v)−max{yγiγ − vγ , 0} −max{y1i1 − v1, 0}
+ max{y1i1 − vγ , 0}+ max{yγiγ − v1, 0}

= Py(v)− yγiγ + vγ + max{y1i1 − vγ , 0}+ max{yγiγ − v1, 0}
= Py(v)− (yγiγ −max{yγiγ − v1, 0}) + (vγ −max{y1i1 − vγ , 0})
= Py(v)−min{yγiγ , v1}+ max{y1i1 , vγ}.

11Some of them using the fact that max{a, b} = b + max{a − b, 0} and min{c, d} =
c−max{c− d, 0}
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Using the inequality (22) proved above, this implies that:

Px(v)− Px(v) ≥ Py(v)− Px(v)−min{yγiγ , v1}+ max{y1iγ , vγ} ≥ 0.

which proves the result. �

6.4 Proof of the lemmas, claims and corollaries of Section
3.2

6.4.1 Lemma 4.

Define the two vectors of poverty lines v− and v+ by:

v−h = min(vh, v
c
h) and,

v+h = max(vh, v
c
h).

It is clear that v− and v+ both belong to V. By definition of v− and v+, we have:

Px(v+)− Py(v+) + Px(v−)− Py(v−)

= Px(vc)− Py(vc) + Px(v)− Py(v) (23)

By definition of vc, we have Px(vc) − Py(vc) = 0. Assume therefore by contradiction
that Px(v)− Py(v) = 0 so that, using equality (23), we have:

Px(v+)− Py(v+) + Px(v−)− Py(v−) = 0

As there exists h0 such that vh0 < vch0 , we must have v−h0 = vh0 < vch0 . Moreover

v−1 = min(v1, v
c
1) > y11. Consequently, by the recursive definition of vc, we must have

that:
Px(v−)− Py(v−) < 0

But this implies that:
Px(v+)− Py(v+) > 0

a contradiction of the fact that x %OPG y and that v+ belongs to V. �

6.4.2 Corollary 1.

Using the recursive definition of the vector vc provided by (4), it is clear that:

vch ≥ min
vh

{
∃v−h : v1 > y11, v = (vh, v−h) ∈ V and Px(v) = Py(v)

}
.

for all h. To prove that:

vch ≤ min
vh

{
∃v−h : v1 > y11, v = (vh, v−h) ∈ V and Px(v) = Py(v)

}
.

we simply note that, thanks to Lemma 4, any vector v ∈ V such that v1 > y11 and
Px(v)− Py(v) = 0 must also satisfy vh ≥ vch for all h ∈ {2, ..., k}. �
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6.4.3 Lemma 5.

We first note that, for any sufficiently small strictly positive number ε, the vector of
poverty lines:

(vc1, ..., v
c
h0−1, v

c
h0 + ε, ..., vch0 + ε︸ ︷︷ ︸, vch0 , ..., vch0︸ ︷︷ ︸, vch0+h+1

, ..., vck)

l − h0 h− l

belongs to the set V. Hence, since x %OPG y, we have:

Px(vc) + ε[

h0+l∑
h=h0

px(h, vch)]

= Px(vc1, ..., v
c
h0−1, v

c
h0 + ε, ..., vch0 + ε, vch0 , ..., v

c
h0 , v

c
h0+h+1

, ..., vck)

≤ Py(vc1, ..., v
c
h0−1, v

c
h0 + ε, ..., vch0 + ε, vch0 , ..., v

c
h0 , v

c
h0+h+1

, ..., vck)

= Py(vc) + ε[

h0+l∑
h=h0

py(h, vch)]

which, when combined with the fact that Px(vc)−Py(vc) = 0 by definition of vc, implies
inequality (13). Similarly the vector of poverty lines:

(vc1, ..., v
c
h0−1, v

c
h0 , ..., v

c
h0︸ ︷︷ ︸, vch0 − ε, ..., vch0 − ε︸ ︷︷ ︸, vch0+h+1

, ..., vck)

l − h0 h− l

belongs to the set V for a small enough ε. By the recursive definition of vc, we have:

= Px(vc1, ..., v
c
h0−1, v

c
h0 , ..., v

c
h0 , v

c
h0 − ε, ..., v

c
h0 − ε, v

c
h0+h+1

, ..., vck)

< Py(vc1, ..., v
c
h0−1, v

c
h0 , ..., v

c
h0 , v

c
h0 − ε, ..., v

c
h0 − ε, v

c
h0+h+1

, ..., vck)

and, therefore:

Px(vc)− ε[
h0+h∑
h=h0+l

px(h, vch)]

= Px(vc1, ..., v
c
h0−1, v

c
h0 , ..., v

c
h0 , v

c
h0 − ε, ..., v

c
h0 − ε, v

c
h0+h+1

, ..., vck)

< Py(vc1, ..., v
c
h0−1, v

c
h0 , ..., v

c
h0 , v

c
h0 − ε, ..., v

c
h0 − ε, v

c
h0+h+1

, ..., vck)

= Py(vc)− ε[
h0+h∑
h=h0+l

py(h, vch)]

which, when combined with Px(vc)− Py(vc) = 0, implies inequality (14). �

6.4.4 Corollary 2.

If vc1 > vc2, we can apply Lemma 5 to the case where h0 = 1 and h = 0. In this case,
Inequalities (13) and (14) write:

px(1, vc1) ≤ py(1, vc1)
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and:
px(1, vc1) > py(1, vc1).

Hence, there must exist an agent i ∈ N(1) such that y1i = vc1. More generally, if
vc1 = vc2 = ... = vck+1 > vck+2, one applies Lemma 5 to the case where h0 = 1 (taking

l = h in (13) and l = 0 in (14)) which gives

h+1∑
h=1

px(1, vc1) ≤
h+1∑
h=1

py(1, vc1)

and:
h+1∑
h=1

px(1, vc1) >
h+1∑
h=1

py(1, vc1).

One then obtains the existence of some j ∈ {1, ..., h + 1} and some i ∈ N(j) such that
yji = vcj = vc1. �

6.4.5 Lemma 6.

Given x and y two distributions, define the income support of these two distributions:

I(x,y) = {a : ∃h ∈ {1, ..., k}, i ∈ {1, ..., n(h)} such that xhi = a or yhi = a}.

Then choose the strictly positive number small enough as to satisfy:

ε1 < min
a,b∈I(x,y),a 6=b

|a− b| (24)

and
ε1 < vc1 − y11. (25)

Consider then any numbers v2, ..., vk such that v = (y11 + ε1, v2, ..., vk) ∈ V and
let h0 ∈ {1, ..., k} be such that vh > y11 for all h ∈ {1, ..., h0} and vh ≤ y11 for all
j ∈ {h0 + 1, ..., k} (if there are such j). One can then write the vector v as:

v = (y11 + ε1, y
1
1 + ε2, ..., y

1
1 + εh0 , vh0+1, vh0+2, ..., vk)

for some (possibly empty) list ε2, ..., εh0 satisfying ε1 ≥ ε2... ≥ εh0 > 0. Let us prove
that:

Py(v) ≥ Px(v) + ε1

Clearly, for ε1 satisfying (24) and (25), we have:

Py(v) = Py(y11, ..., y
1
1, vh0+1, vh0+2, ..., vk) +

h0∑
h=1

εhp
y(h, y11),

and:

Px(v) = Px(y11, ..., y
1
1, vh0+1, vh0+2, ..., vk) +

h0∑
h=1

εhp
x(h, y11),

and, therefore:

Py(v)− Px(v) = Py(y11, ..., y
1
1, vh0+1, ..., vk)− Px(y11, ..., y

1
1, vh0+1, ..., vk)
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+

h0∑
h=1

εh[py(h, y11)− px(h, y11)] (26)

If
Py(y11, ..., y

1
1, vh0+1, ..., vk) > Px(y11, ..., y

1
1, vh0+1, ..., vk)

then there is nothing to prove. Indeed, from Lemma 1 and the assumption that y1i 6= x1i
for all i ∈ N (1), we have that py(1, y11) ≥ 1 and px(1, y11) = 0. Hence:

Py(y11, ..., y
1
1, vh0+1, vh0+2, ..., vk)− Px(y11, ..., y

1
1, vh0+1, vh0+2, ..., vk)

+ε1[p
y(1, y11)− px(1, y11)]

> ε1

for any ε1 satisfying (24) and (25). Because of this, we can choose ε1 sufficiently small
so as make the numbers ε2, ..., εh0 sufficiently small for the inequality:

Py(y11, ..., y
1
1, vh0+1, vh0+2, ..., vk)− Px(y11, ..., y

1
1, vh0+1, vh0+2, ..., vk)

+ε1[p
y(1, y11)− px(1, y11)] +

h0∑
h=2

εh[py(h, y11)− px(h, y11)]

≥ ε1

to hold. Suppose now that:

Py(y11, ..., y
1
1, vh0+1, vh0+2, ..., vk) = Px(y11, ..., y

1
1, vh0+1, vh0+2, ..., vk)

In that case, it follows from (26) that:

Py(v)− Px(v) =

h0∑
h=1

εh[py(h, y11)− px(h, y11)]

This equality can equivalently be written as:

Py(v)− Px(v) =

h0∑
h=1

[εh − εh+1]
h∑
g=1

[py(g, y11)− px(g, y11)] (27)

using the convention that εh0+1 = 0. Note that, by definition of vc1, we must have
Py(v)− Px(v) > 0 if ε1 satisfies (25). Note also that, for all h ∈ {1, ..., h0}, we have:

h∑
g=1

[py(g, y11)− px(g, y11)] ≥ 1 (28)

Indeed, by definition of vc1, we have for every strictly positive δ ≤ ε1 :

Py(y11 + δ, ..., y11 + δ︸ ︷︷ ︸, y11, ..., y11︸ ︷︷ ︸, vh0+1, vh0+2, ..., vk)

h h0 − h
> Px(y11 + δ, ..., y11 + δ︸ ︷︷ ︸, y11, ..., y11︸ ︷︷ ︸, vh0+1, vh0+2, ..., vk)

h h0 − h
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Yet,

Py(y11 + δ, ..., y11 + δ︸ ︷︷ ︸, y11, ..., y11︸ ︷︷ ︸, vh0+1, vh0+2, ..., vk)

h h0 − h

= Py(y11, ..., y
1
1, vh0+1, vh0+2, ..., vk) + δ

h∑
g=1

py(g, y11)

and:

Px(y11 + δ, ..., y11 + δ︸ ︷︷ ︸, y11, ..., y11︸ ︷︷ ︸, vh0+1, vh0+2, ..., vk)

h h0 − h

= Px(x11, ..., x
1
1, vh0+1, vh0+2, ..., vk) + δ

h∑
g=1

px(g, y11)

Hence, under the assumption that:

Py(y11, ..., y
1
1, vh0+1, vh0+2, ..., vk) = Px(y11, ..., y

1
1, vh0+1, vh0+2, ..., vk)

we have:

Py(y11 + δ, ..., y11 + δ, y11, ..., y
1
1, vh0+1, vh0+2, ..., vk)

−Px(y11 + δ, ..., y11 + δ, y11, ..., y
1
1, vh0+1, vh0+2, ..., vk)

= δ
h∑
g=1

[py(g, y11)− px(g, y11)] > 0

which establishes Inequality (28). Together with (27), this leads to the conclusion that:

Py(v)− Px(v) ≥ ε1 − εh0+1 = ε1.

as required. �

6.4.6 Proposition 1

There exists some h0 ∈ {1, ..., k} such that vc1 = vc2 = ...vch0 > vch0+1 (using, if necessary,
the convention that vck+1 = v(x,y)). Then, using Corollary 2, we conclude that there

is some category j ∈ {1, ..., h0} and some individual ij ∈ N (j) such that yj
ij

= vc1 and

∀h ∈ {j, j + 1, ..., h0}, i ∈ N (h), yhi 6= vc1 (that is, j is the highest category in the set
{1, ..., h0} for which there is an individual in distribution y whose income is equal to
vc1.). It is important to note that we do not preclude the possibility that j = 1. Let us
show that there exists a distribution x̂ ∈ D(I) such that x %OPG x̂ and x̂ was obtained
from y by a BTPIT. For any strictly positive integer m, let x̂m be the distribution
obtained from distribution y by performing a BTPIT of an amount of 1/m from agent
ij ∈ N (j) to agent 1 ∈ N (1). We claim that there exists some m sufficiently large that
x %OPG x̂m. Assume by contradiction that no such m exists. This implies the existence
of a sequence of ordered poverty lines vectors vm ∈ V ′ such that P x̂m(vm) < Px(vm).
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Note that, for every strictly positive real integer m, and whatever the ordered vector of
poverty lines v ∈ V ′ is, we have:

P x̂m(v) = Py(v)− 1/m if v1 ≥ y11 + 1/m and vj ≤ yjij − 1/m, (29)

= Py(v)−max(v1 − y11, 0) if v1 < y11 +
1

m
, vj ≤ yjij −

1

m
(30)

= Py(v) + min(vj − yjij , 0) if v1 ≥ y11 +
1

m
, vj > yj

ij
− 1

m
. (31)

Because of this, we can assume without loss of generality that vm1 ≥ y11 + 1/m and
vmj ≤ vc1−1/m. By compactness of V ′, vm admits a subsequence that converges to some
vector of ordered poverty lines v ∈ V ′. By continuity, we must have Py(v) = Px(v).
Hence, by definition of critical value vc1, either:
(i) v1 = y11 or
(ii) v1 ≥ vc1

• If case (i) holds, then we have:

P x̂m(vm) ≥ Py(vm)− 1/m by (29)-(31)

≥ Px(vm)− 1/m+ vm1 − y11 by Lemma 6, taking vm1 − y11 = ε1

≥ Px(vm)

which is a contradiction.

• Now, if case (ii) holds and v1 ≥ vc1 then by Corollary 1, we must have vh ≥ vch for
h = 2, ..., k. In particular, since vmj ≤ vc1 − 1/m and vm admits a subsequence that
converges to v, we must have vj = vcj = vc1. We can actually assume without loss
of generality that, for every h = 1, ..., h0, v

m
h ∈ {vc1 − 1/m, vc1} (for large enough m,

vc1 − 1/m and vc1 are the only two incomes observed in distributions y, x̂m and x for
poverty lines vmh relevant for categories h = 1, ..., h0). Hence, for some g ∈ {1, ..., j}, we
have: vmg = ... = vmj = ...vmh0 = vc1 − 1/m, vm1 = vm2 = ... = vmg−1 = vc1. Since:

h0∑
h=g

px(h, vc1) >

h0∑
h=g

py(h, vc1)

we have:

h0∑
h=g

∑
i∈Py(h,vmh )

[vmh − yhi ]−
h0∑
h=g

∑
i∈Px(h,vmh )

[vmh − xhi ]− 1/m

≥
h0∑
h=g

∑
i∈Py(h,vc1)

[vc1 − yhi ]−
h0∑
h=g

∑
i∈Px(h,vc1)

[vc1 − xhi ]

and, therefore:

Py(vm)− Px(vm)− 1/m

≥ Py(vc1, ..., v
c
1, v

c
h0+1, ..., v

c
k)− Px(vc1, ..., v

c
1, v

c
h0+1, ..., v

c
k) ≥ 0

Finally P x̂m(vm) ≥ Py(vm)− 1/m ≥ Px(vm), a contradiction.

42



6.4.7 Example 2

Consider distribution x̂ε defined by:

x̂ε11 = 3 + ε, x̂ε22 = 4− ε, x̂ε12 = x̂12 = 7 and x̂ε21 = x̂21 = 0.

Then, using the ordered vector v = (3 + ε, 3 + ε) of poverty lines, we have:

P x̂ε(3 + ε, 3 + ε) = max(3 + ε− (3 + ε), 0) + max(3 + ε− 7, 0)

+ max(3 + ε− 0, 0) + max(3 + ε− (4− ε), 0)

= 3 + ε (if ε ∈]0, 1/2])

< Px(3 + ε, 3 + ε)

= max(3 + ε− 5, 0) + max(3 + ε− 6, 0)

+ max(3 + ε− 1, 0) + max(3 + ε− 2, 0)

= 3 + 2ε

6.4.8 Proposition 2

We prove this proposition using Lemma 3. We note first that, since x1i > vc1 ∀i ∈ N (1),
we must have vc1 = vc2. Suppose by contradiction that vc1 > vc2. This means that, for any
number ε such that vc1 − vc2 > ε > 0, we have that (vc1 − ε, vc2, ..., vck) ∈ V and

Py(vc1 − ε, vc2, ..., vck)− Px(vc1 − ε, vc2, ..., vck)
= −εpy(1, vc1) + εpx(1, vc1) + Py(vc1, v

c
2, ..., v

c
k)− Px(vc1, v

c
2, ..., v

c
k)

= −εpy(1, vc1)

< 0

since px(1, vc1) = 0 = Py(vc1, v
c
2, ..., v

c
k) − Px(vc1, v

c
2, ..., v

c
k) (by definition of vc) and

py(1, vc1) ≥ 1. But this is a contradiction of the fact that x %OPG y. It then fol-
lows that h0 ≥ 2 and that the second bullet statement of the proposition (e.g. “For
any category h such that h0 ≥ h ≥ 2, we have yhi 6= vc1”) is not empty. This fact and
Corollary 2 establish the existence of an agent i1 ∈ N (1) for which y1i1 = vc1. Hence
vector of poverty lines vc is just like vector w in the antecedent clause of Lemma 3. It
then follows from Lemma 5 that:

h0∑
h=l+1

py(h, y1i1) =

h0∑
h=l+1

py(h, y1i1) <

h0∑
h=l+1

px(h, y1i1) ≤
h0∑

h=l+1

px(h, y1i1)

for l = 1, ..., h0−1, which implies that Inequality (10) in the antecedent clause of Lemma
3 holds. The existence of a distribution x̂ ∈ D(I) such that x̂ was obtained from y by
an FIP and x %OPG x̂ then immediately follows from this lemma.

6.4.9 Lemma 7.

Let w be the vector of ordered poverty lines that is the limit of the sequence {wm}
of ordered poverty lines vectors satisfying wm1 = y11 + εm1 with εm1 → 0 and Px(wm) −
Py(wm) = 0 for all m that was mentioned in Case (B) of section 3.2. We first show that
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w1 = w2. By contradiction, suppose that w2 < w1. Then, there exists a large enough m
for which wm2 < w1 = y11. Also, for a large enough m, we have that:

wm1 p
x(1, wm1 )−

∑
i∈Px

(1,wm1 )

x1i = w1p
x(1, y11)−

∑
i∈Px

(1,y11)

x1i = 0

thanks to Lemma 1 and the fact that y11 6= x11. Moreover we have:

wm1 p
y(1, wm1 )−

∑
i∈Py

(1,wm1 )

y1i = (εm1 + y11)py(1, y11)−
∑

i∈Py
(1,w1)

y1i

> y11p
y(1, y11)−

∑
i∈Py

(1,w1)

y1i = 0

because py(1, y11) ≥ 1. Hence:

Py(wm)− Px(wm) = wm1 p
y(1, wm1 )−

∑
i∈Py

(1,wm1 )

y1i +
k∑

h=2

Py(h,wmh )

−[wm1 p
x(1, wm1 )−

∑
i∈Px

(1,wm1 )

x1i +
k∑

h=2

Px(h,wmh )]

= 0

> y11p
y(1, y11)−

∑
i∈Py

(1,w1)

y1i +
k∑

h=2

Py(h,wmh )

−[w1p
x(1, y11)−

∑
i∈Px

(1,y11)

x1i +
k∑

h=2

Px(h,wmh )]

= Py(y11, w
m
2 , ..., w

m
k )− Px(y11, w

m
2 , ..., w

m
k )

a contradiction. We now show that wm2 > y11. Indeed, for m large enough, we have:

Py(wm) = Py(y11, w
m
2 , ..., w

m
k ) + εm1 p

y(1, y11)

and:
Px(wm) = Px(y11, w

m
2 , ..., w

m
k ) + εm1 p

x(1, y11)

Moreover, by Lemma 1 and because,y1i 6= x1i ,we have that

py(1, y11) ≥ 1 > 0 = px(1, y11).

Hence, we have:

Py(wm)− Px(wm) = 0

≥ Py(y11, w
m
2 , ..., w

m
k )− Px(y11, w

m
2 , ..., w

m
k ) + εm1

Because of this (and the fact that εm1 > 0), assuming that wm2 ≤ y11 and, therefore, that
the vector of poverty lines (y11, w

m
2 , ..., w

m
k ) belongs to V would be contradictory with the

fact that x %OPG y. We also know that wmh0+1 < y11. Let l := min{h ≥ 1 : wmh ≤ y11}.
As we have just shown 3 ≤ l ≤ h0 + 1. For h = 1, ..., l, we have wmh = y11 + εmh with
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εm1 ≥ εm2 ≥ ... ≥ εml > 0. We know already that py(1, y11) ≥ 1 > 0 = px(1, y11). Suppose
that the main claim of the lemma was false. In that case, we would have:

h∑
g=1

py(g, y11) >
h∑
g=1

px(g, y11)

for all h = 1, ..., h0. Yet:

0 = Py(wm)− Px(wm)

= Py(y11, ..., y
1
1, w

m
l+1, ..., w

m
k )− Px(y11, ..., y

1
1, w

m
l+1, ..., w

m
k )

+
l∑

h=1

[py(h, y11)− px(h, y11)]εmh

= Py(y11, ..., y
1
1, w

m
s+1, ..., w

m
k )− Px(y11, ..., y

1
1, w

m
l+1, ..., w

m
k )

+
l−1∑
h=1

(εmh − εmh+1)
h∑
g=1

[py(g, y11)− px(g, y11)] + εml

l∑
g=1

[py(g, y11)− px(g, y11)]

≥
s−1∑
h=1

(εmh − εmh+1)

h∑
g=1

[py(g, y11)− px(g, y11)] + εml

l∑
g=1

[py(g, y11)− px(g, y11)]

≥ εml > 0

a contradiction. �

6.4.10 Proposition 3

We base the argument on Lemma 3. We must therefore prove that the limit vector
of poverty lines w satisfies the conditions imposed on vector w of this lemma. From
Lemma 7, we have that y11 = w1 = w2 = ... = wh0 > wh0 + 1 for some h0 ≥ 2. We also
know from Lemma 7 that there is a category g0 ≤ h0 satisfying g0 ≥ 2 for which we
have:

g0∑
h=1

py(h, y11) ≤
g0∑
h=1

px(h, y11),

and
l∑

h=1

py(h, y11) >
l∑

h=1

px(h, y11)

for all l = 1, ..., g0 − 1. As a consequence we have:
g0∑

h=l+1

py(h, y11) <

g0∑
h=l+1

px(h, y11)

for l = 1, ..., g0 − 1. and the conclusion of the proposition follows from Lemma 3.

6.4.11 Claim 1

Once an agent of a category higher than 1 has been involved in an FIP defined as in
Proposition 3, his/her income becomes weakly smaller than that of the poorest income
observed in category 1. Since the income of an agent in any category h ≥ 2 never
increases through the algorithm described above, and since the number of agents in
categories higher than 1 is finite, it follows that the the number of FIP of type (P1) in
the algorithm is bounded above by the number of agents in categories 2, ..., k. �
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6.4.12 Claim 2

By definition of the algorithm and the critical vector vc(n), we have Px(n)(vc(n)) =
Px(vc(n)) which directly implies that :

Px(n)(vc(n)) = Px(n+1)(vc(n)) = Px(vc(n)) (32)

We first observe that if the distribution x(n + 1) is obtained from x(n) through a
maximal transfer (MT), the donor’s income is equal to vc1(n) and therefore the recipient
being the poorest agent in category 1, we necessarily have x11(n + 1) < vc1(n). On the
other hand, if distribution x(n+ 1) is obtained from x(n) through an FIP of type (P2),
the recipient has an income equal to vc1(n) > x11(n), so that x11(n) = x11(n+ 1) < vc1(n).
Hence, in either case, we have x11(n+ 1) < vc1(n). Now by definition of vc1(n+ 1) as an
infimum, identity (32) and the fact that x11(n+ 1) < vc1(n), we have vc1(n+ 1) ≤ vc1(n).

Now combining Px(vc(n)) = Px(n+1)(vc(n)) and Px(vc(n+1)) = Px(n+1)(vc(n+1))
on the one hand and Corollary 1 on the other, it follows that vch(n + 1) ≤ vch(n) holds
for all h as well.

6.4.13 Claim 3

We first observe that px(n)(1, vc1(n)) is weakly decreasing for n ≥ n0, where n0 is the
integer whose existence was established in Claim 1. Indeed vc1(n) is weakly decreasing
for n ≥ n0 and an agent in category 1 can be designated as the donor at step n only if
the algorithm prescribes a maximal transfer and his/her income is equal to vc1(n). This
proves that the number of agents in category 1 of distribution x(n) whose income is
weakly smaller than vc1(n) necessarily weakly decreases as n increases.

Assume now that at some stage n ≥ n0 we are in case (P2). In that case, the
receiving agent’s income is equal to vc1(n). Hence px(n+1)(1, vc1(n + 1)) < px(n)(vc1(n)).
As a result, there can be at most n(1) operations of type (P2) in the algorithm after
step n0.

6.4.14 Claim 4

Let n1 be as in Claim 3. We need to establish that there can only be finitely many
breaking transfers after stage n1. Consider any n ≥ n1 and suppose that x(n + 1) is
obtained from x(n) through a breaking transfer of amount α > 0 from agent jh ∈ N (h)
(with h ≥ 1) to agent 1 ∈ N (1). Let r1+(α) ∈ N (1) and rh−(α) ∈ N (h) be as in Definition
1: that is x1

r1+(α)
(n+ 1) = x11(n) + α and xh

rh−(α)
(n+ 1) = xhjh(n)− α.

Let δ > 0. By definition of a breaking transfer, there exists v(δ) ∈ V ′ such that:

Px(n+1)δ(v(δ)) < Px(v(δ)),

where x(n+ 1)δ denotes the distribution that would be obtained if the transfer at time
n was equal to α+ δ rather than α. By compactness of V ′, we may assume without loss
of generality that limδ→0 v(δ) = v∗ ∈ V ′. By continuity, we then have Px(n+1)(v∗) =
Px(v∗). Note that without loss of generality, we can assume that v1(δ) ≥ x11(n) + α.
This implies that v∗1 ≥ x11(n) + α.

We now show that v∗1 > x11(n+ 1). By contradiction assume that v∗1 ≤ x11(n+ 1). Then,
since x11(n + 1) ≤ x11(n) + α, we necessarily have v∗1 = x11(n) + α = x11(n + 1), that is,
the poorest agent in category 1 remains the poorest agent after receiving α at step n.
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Thus at next step (step n + 1) the algorithm identifies him as the recipient again. Let
h′ ≥ 1 and jh′ ∈ N (h′) be the donor at next step n + 1 and suppose he/she transfers
δ > 0. Since v∗h′ ≤ v∗1 = x11(n+ 1) < xh

′
jh′

(n+ 1), we have

Px(n+2)(v(δ)) = Px(n+1)δ(v(δ)) < Px(v(δ)),

a contradiction.

Since v∗1 > x11(n+ 1), we must have vch(n+ 1) ≤ v∗h for any h by Corollary 1. By Claim
2, this implies that vch(m) ≤ v∗h for any m ≥ n+ 1.
We now claim that for m > n, if the donor at step m is in category h, his/her income can
not be equal to xh

rh−(α)
(n+ 1). Given the finiteness of the population, this will conclude

the proof, because it will exclude the donor at stage n from donating again at a future
step. Suppose, to the contrary, that there exists m ≥ n + 1 and lh ∈ N (h) such that
vc1(m) = vch(m) = xhlh(m) = xh

rh−
(n + 1), and that agent lh transfers δ0 > 0 to agent

1 ∈ N (1) at stage m. We then have

x11(m) < xhlh(m) = xh
rh−(α)

(n+ 1) = vc1(m) ≤ v∗1.

Assume without loss of generality that δ0 is small enough so that x11(m) ≤ v1(δ0)− δ0.
Then

Px(m+1)(v(δ0))− Px(m)(v(δ0)) = Px(n+1)δ0 (v(δ0))− Px(n+1)(v(δ0))

(both quantities are equal to −δ0+max{0, vh(δ0)−(xh
rh−(α)

(n+1)−δ0)}−max{0, vh(δ0)−
xh
rh−(α))

(n+ 1)}).

Since Px(m)(v(δ0)) ≤ Px(n+1)(v(δ0)), we have

Px(m+1)(v(δ0)) ≤ Px(n+1)δ0 (v(δ0)) < Px(v(δ0)),

a contradiction.

6.4.15 Claim 5

Let n ≥ n2. We proved already that the operation at stage n is necessarily a half
transfer. Let h0 be the category such that vc1(n) = vch0(n) > vch0+1(n). Suppose by
contradiction that the algorithm designates i ∈ N (1) to be the donor at stage n. By
Proposition 1, it implies that ∀h ∈ {2, ..., h0}, ∀i ∈ N (h), we must have xhi (n) 6= vc1(n)
because, otherwise, an agent in category h > 1 would be the donor. Note also that, by
the very definition of a maximal transfer, we must have x1i > vc1(n) for any i ∈ N (1)
because assuming otherwise would make the transfer equalizing, which it can not be.
Consequently the conditions of (P2) hold, which is a contradiction.

6.5 Proof of Theorem 2

(i)⇒ (ii) follows from the proof in the homogeneous settings, along with the fact that
Uh
′ ≥ Uh for h′ ≥ h to handle the categorical increments.

(ii)⇒ (iii) the proof of the corresponding implication in Section 6.1 can be applied here
without any change.
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(iii)⇒ (i) This implication is not trivial. Suppose that (iii) holds:

∆(v) ≤ 0 ∀v ∈ V,

where ∆(v) :=
k∑

h=1

∑
i∈Nx(h)

max(vh − xhi , 0)−
k∑

h=1

∑
i∈Ny(h)

max(vh − yhi , 0). Then we claim

that
g∑

h=1

ny(h) ≥
g∑

h=1

nx(h), ∀g = 1, ..., k.

Let us prove this claim. Suppose that there exists some g∗ such that
∑g∗

h=1 ny(h) <∑g∗

h=1 nx(h). For any α ≥ v(x,y) let v(α) ∈ V be given by v(α)h := v(x,y) for
h = g∗ + 1, ..., k and v(α)h = α for h = 1, ..., g∗. We then have

k∑
h=1

∑
i∈Nx(h)

max(v(α)h − xhi , 0) =

g∗∑
h=1

∑
i∈Nx(h)

(α− xhi ) = α

g∗∑
h=1

nx(h)−
g∗∑
h=1

∑
i∈Nx(h)

xhi

As a consequence

∆(v(α)) = α

 g∗∑
h=1

nx(h)−
g∗∑
h=1

ny(h)

+

g∗∑
h=1

 ∑
i∈Ny(h)

yhi −
∑

i∈Nx(h)

xhi

 .

As α goes to +∞, the right-hand side term goes to +∞, which contradicts (iii), and
proves the claim.

If
∑g

h=1 ny(h) =
∑g

h=1 nx(h), ∀g = 1, ..., k then there is nothing to prove. Let us
assume that this is not the case and let h∗ ∈ {1, ..., k − 1} be the lowest category such
that

∑g
h=1 ny(h) >

∑g
h=1 nx(h). Let y be the distribution obtained from y through

an increment of agent yh
∗

ny(h∗)
to category h∗ + 1. We claim that y -OPG x. This will

conclude the proof by induction. Let v ∈ V. If vh∗ ≤ yh
∗

ny(h∗)
then Px(v) − Py(v) =

Px(v)− Py(v) ≤ 0. If vh∗ > yh
∗

ny(h∗)
then

Py(v)− Py(v) = vh∗ − yh
∗

ny(h∗)
−max{0, vh∗+1 − yh

∗

ny(h∗)
}.

On the other hand, let ṽ := (v1, ...,max{yh∗ny(h∗)
, vh∗+1}, vh∗+1, ...vk). Clearly ṽ ∈ V and

Py(v)− Px(v) ≥ Py(ṽ)− Px(ṽ) + (ny(h∗)− nx(h∗))(vh∗ −max{yh∗ny(h∗)
, vh∗+1})

≥ vh∗ −max{yh∗ny(h∗)
, vh∗+1}

= vh∗ − yh
∗

ny(h∗)
−max{0, vh∗+1 − yh

∗

ny(h∗)
}

= Py(v)− Py(v)

Consequently Py(v) ≥ Px(v), which concludes the proof.
(iii) ⇔ (iv): the proof of the corresponding implication in Section 3.2 can be applied
here without any change. �
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