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Abstract

Controlling crimes of different types to minimize social harm requires carefully targeted en-
forcement measures depending on whether the crimes are vertically linked or unrelated. Equally
important is the consideration whether the crime data can be documented or law enforcement
must rely only on detection data. Crime data is a sufficient statistic for enforcement initiatives,
whereas detection data lacks this quality. Crime deterrence budget allocation as part of an
incentive design is thus a 2× 2 combinatorial exercise.

Our main observations are as follows. For linked crimes the State should target to block
‘ground zero’, the origin on the feeder side of crimes, as a priority, thereby denying their down-
stream operations (‘Say’s Law’). An example would be that the State focuses on foiling drug
smuggling at various ports of entry than catching isolated drug transactions. But given that
ground zero enforcement does not always succeed, the State might not be able to set an absolute
priority of upstream deterrence and neglect downstream operations. In fact, on two occasions
downstream enforcement might be granted higher priorities: (i) downstream detections have
a secondary trace-back effect in discouraging upstream crime, (ii) without the culmination of
downstream crime the social harm of upstream crime is negligible.

For independent crimes, the optimal budget allocation depends critically on the availability
of crime data. Detection-based enforcement makes compliance beyond a certain level impos-
sible, whereas incentives based on a verifiable measure of crime enables the State to increase
compliance at first-best cost. This means the State may allocate more resources to prevention
of burglaries and breaking of bank tills, which only transfer values from rich to the poor, than
for the detection of drug smuggling and peddling that may destroy many young lives.
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1 Introduction

Crime is extremely diverse by its harm, nature, links and organization. Some, like shoplifting

and cybercrime, are unrelated, whereas large-scale drug smuggling across the border and disparate

small-scale drug peddling on street corners form an input-output chain. Selling drugs raises the

benefit from other crimes as well like theft or other violent crimes due to the intoxicating effects of

drugs. This diversity defies a unified approach to the budgeting and motivation of law enforcement

activities.

While it is unclear whether to set deterrence targets for independent crimes separately, curtailing

one of two interrelated crimes should clearly affect the deterrence of the other. A relevant issue

facing any government therefore is how to structure enforcement incentives for independent law

enforcement branches – through individualized incentives or a coordinated (or joint) incentives

design? Does coordination imply the performance targets of one law enforcement division also

depend on the performance of another division? That is, should the divisions be encouraged to

compete or cooperate in controlling crimes?

Every fiscal year federal and state governments branch out enormous sums to local and spe-

cialized law enforcement units, who in turn justify their budget demands by formulating verifiable

performance targets. For the central management the question is, what apparent results should

(or can) enforcement units deliver? The moral hazard problem in law enforcement has led govern-

ments to seek and develop verifiable correlates of performance, which are increasingly common and

tied to agency budgets−a trend that is expected only to grow.1 Though many of these indicators

are primarily related to detections or apprehensions, at the level of state or metropolitan police

departments one can find others based on the crime level.2 It is thus important to understand the

power and limits of enforcement incentives depending on alternative indices of crime that can be

applied in any given context.

We consider a model with two independent law enforcement agencies each responsible for con-

trolling one of two crimes. The output of each agency is an intensity of enforcement, i.e., probability

of detection, produced by unobservable effort in combination with other resources. The objective of

the State is to minimize total harm from crimes by allocating a budget of fixed size and designing

incentives that include rewards to ensure that the agencies exert appropriate efforts and use their

1See Sherman (2013), who traces the first important initiatives of statistical management in the UK in the Thatcher
era. Police agencies were ranked and assessed on whether they had met specific goals on the basis of key performance
indicators, on national and local levels. In the U.S., the Department of Justice Fiscal Years 2016-2017 priority goals
include, besides specific national and cyber security targets (disruption of 400 terrorist groups or threats, dismantling
of 1,000 cyber threat actors), five percent increases over Fiscal Year 2015 targets in the numbers of investigations
concerning sexual exploitation of children and human trafficking by September 30, 2017; see U.S. Department of
Justice (2016). In the fight against health care fraud, the department formulates its success (in collaboration with
other agencies) in monetary terms, by $7.70 to $1 return on investment for law enforcement and detection efforts in
Fiscal Year 2014.”

2For example, the Metropolitan Police Department of DC mentions ten measures: Percentage changes in the
number of homicides, violent crime and property crime, besides clearance rates for homicides, forcible rape, robbery,
aggravated assault, burglary, larceny-theft and motor vehicle theft. Data to be used consists of reported crimes.
Relevant reference to be added.
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budgets most effectively.3 The analysis distinguishes between independent crimes and two cases of

interlinked crimes. For the latter, in one variant commission of a root (cause) crime leads to an

increase in the potential criminal population of another (effect) crime, and in a second variant the

upstream crime supplies an indispensable input to a downstream crime. In this last environment,

upstream criminals may be detected before matching with their downstream partners and hence

before realizing their benefits, whereas downstream criminals commit the crime, and thus can be

detected, after matching with an upstream partner. Deterrence of one of these crimes may create

shortages on one side, reducing the matching prospect and the expected benefits for the other side.

This creates positive enforcement externalities.

The need to motivate law enforcement brings in a second layer of distinction, according to the

type of observable statistic available for that purpose, which depends on the crime. Some crimes,

like open-air drug markets, are more visible than others like sexual crimes or corruption; in the

case of the latter victims may not report the crime (e.g., in domestic abuse) for fear of retaliation.

When a crime is not directly observable and its occurrence or non-occurrence can be ascertained

by law enforcers only, the State has to rely on detection or apprehension data alone to motivate the

enforcement agency.4 On the other hand, the combat against observable or predominantly reported

crimes can admit both the crime data and the detection data.

Intuition may favor crime data over detection data in the provision of enforcement incentives

for its apparent congruence with the harm-minimization objective of the State. Our analysis con-

firms the choice, if not the intuition: Crime-based incentive systems should be preferred because

they satisfy a fundamental property for implementation of crime levels at first-best cost, namely,

monotonicity in enforcement effort. We identify crime environments in which none of the detection-

related data satisfy the effort monotonicity property. For the crime environments we consider in

this paper, crime-based performance indicators weakly dominate those that are detection-based.

The potential limitation of detection-based incentives can be understood by visualizing the

relation between total detected criminals and enforcement intensity (probability of detection), for

independent crimes. The measure of detected criminals reaches a maximum in the probability of

detection, beyond which it falls, to a minimal level in the limit if all criminals are sought to be

detected with probability one. It follows that high enforcement efforts and the corresponding high

levels of deterrence cannot be induced by setting a detection target because the agency can achieve

the same detection target with a lower effort. Nor can the State prop up deterrence by relying on

other operational supports subject to less stringent or no moral hazard constraints, for any such

3Sherman (2013) notes the need and inclination among enforcement experts to create an aggregate macro-level
measure of crime, akin to the State’s objective in our model, an index made up of harm-weighted averages of different
crimes.

4Alternatively the State could use victimization surveys that indicate the extent of the unreported crime (in the
United States, the FBI’s Uniform Crime Reports and the National Crime Victimization Survey). It goes without
saying, and we acknowledge, that the performance indicators could be subject to influence, even outright manipulation
including flexibility in crime definitions, by the enforcement agencies themselves. However, safeguards against abuse
seem to be operating with integrity, at least in the case of computerized statistics COMPSTAT (developed by William
Bratton and Jack Maple in use in NYPD since 1996), as noted by Sherman (2013), in some instances leading to arrests
of local commanders charged with manipulating crime statistics.
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attempt will be continue to be upset by the agent further adjusting efforts downwards consistent

with target detections (due to substitutability between efforts and other operational supports).

This highlights a feasibility problem in the combat against unobservable crimes for which the only

data that can be produced would be detections. In the case of an observable independent crime, if

the State has a large budget with an ambitious crime reduction objective, performance targets of

the agencies should be formulated in terms of crime levels, not detections. High deterrence levels

are not compatible with detection-based incentives, due to moral hazard, though low deterrence

levels can be induced just as effectively as under crime-based incentives.

Crime-based incentives continue to implement harm minimizing crime levels for crimes linked

by unidirectional causality or those forming a vertical input-output chain. These types of crime

environments, however, also present a richer set of implementation possibilities for detection-based

incentive systems. We allow for the possibility of tracing back criminals of root or upstream crimes

from detection of downstream crimes, in addition to other cross-detection effects of enforcement

that operate even without the possibility of backtracing. In the case of crimes that form input-

output chain, we show that first-best enforcement incentives can be restored under detection-based

systems, provided upstream-crime detection data can be decomposed into its components as those

purely owing to downstream enforcement and those due to upstream enforcement. In the case of

causal links, i.e., when one crime leads to an increase in the potential criminals of another crime,

root crime enforcement costs are first-best because, as we show, detections of the effect crime are

monotonic in root crime enforcement. However, none of the detection measures are monotonic in

downstream effect-crime enforcement effort and therefore detection-based incentive systems become

more costly for the effect crime.

The optimal budget allocation depends primarily on enforcement costs, hence on the incentive

systems and whether crime and/or detection data are available, the relative harms from crimes

and the criminal benefit distributions. In the reference case of independent crimes, it is optimal to

allocate a larger enforcement budget to the crime that causes a larger harm, as expected, provided

crime data is available for both crimes. In the interlinked case of vertical crime chains, we identify

a structural mechanism which favors concentration of enforcement efforts on the upstream/root

crime. Undeterred downstream criminals seek to match with undetected upstream criminals who

supply the instrument they need to complete the crime. Under conditions of symmetry, an equal

distribution of the enforcement budget between the two crimes produces an excess demand for the

instrument needed by undeterred downstream criminals. A fraction of these undeterred criminals

will not be able to commit the crime. This indirect deterrence effect creates a tendency for the

State to allocate a smaller budget to the downstream crime unless its social harm is substantially

larger than the upstream crime. One possible exception to the above prescription is when the

detection of downstream crime has an adversarial trace-back effect on the incentives of committing

upstream crime. There, spending a bigger proportion of the crime deterrence budget on downstream

enforcement gains grounds.5

5The exact breakdown of the enforcement budget and how law enforcers’ rewards should be designed will depend on
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The tendency to favor the upstream root crime persists in the presence of a causal link between

the crimes, qualified by the trace-back effect mentioned above. However, if crime data is not

available for incentive provision, under detection-based incentives the State has another reason to

allocate a larger budget to the root crime. Unless the enforcement budget and the target crime rate

is small, detection-based incentives for the effect crime are subject to the same feasibility problem

that plagues implementation of independent crimes.

� Related Literature. The economics literature of prime relevance to our paper, formal analysis

of incentives and budgeting in law enforcement, is small. The efficiency of crime-based incentives in

coping with moral hazard was first pointed out by Harris and Raviv (1978) in a single crime context

as an application of their agency model. Their analysis has not been extended any further than a

few applications to specific enforcement contexts. Graetz et al. (1986) is the first formal treatment

of the incentive problem in a moral hazard framework with an explicit objective for the agency

enforcing tax compliance. Besanko and Spulber (1989) study the effort commitment problem in a

game between the law enforcer and a representative criminal. A common ground of these models

and ours is inclusion of the law enforcement agency as a separate decision maker. We follow their

approach in taking criminal sanctions as exogenously given, to keep the focus on incentives and the

allocation of enforcement resources.6 Also related to our paper is Polinsky and Shavell (2001) who

study optimal incentives for corruptible law enforcers. Rewards for crime detections are determined

by the tradeoff the State faces from the possibility that crimes can be concealed in return for bribes

and the possibility of framing innocent individuals. They do not address the question as to how

detections can be used to cope with moral hazard in enforcement efforts, which we address in this

paper.

While research on the efficiency of public enforcement resources, predominantly by criminol-

ogists (e.g., Sherman, 2013, and the references therein), concentrated on allocations according to

activity type such as imprisonment, policing and prevention, the impact of crime-based re-allocation

of expenditures has been studied in one instance. Benson et al. (1995) discuss the response of law

enforcement system to incentives in a specific instance, the Comprehensive Crime Act of 1984 which

allows police agencies to keep the proceeds of assets forfeited as a result of drug enforcement ac-

tivities. They argue that the resource shift which the policy entails from non-drug crime such as

burglary to drug crimes has induced an increase in drug enforcement efforts, but with a pessimistic

whether overall detection of upstream crimes can be verifiably attributed to upstream and downstream initiatives or
such a distinction is not feasible. In either environment, the externalities that exist between upstream and downstream
deterrence can get aggravated or mitigated, if not completely internalized, based on how swiftly downstream detections
may lead to its upstream root, from zero link to a complete capture. The details of the strategic interactions between
the two layers’ enforcement efforts will be discussed in Section 4.

6Sanctions determined by the legislative branch of government can by and large be taken as exogenous for the
executive branch and its law enforcement agency. Sanctions are bounded from above by fairness principles and
constitutional requirements, but also efficiency considerations such as minimizing the costs of errors in adjudication,
coping with corruption and issues of marginal deterrence (see Polinsky and Shavell, 2000), leaving the intensity of
enforcement as the main policy instrument for the executive branch in the control of crimes. The optimal combination
of sanctions and detection probabilities has been the subject of a large literature starting with Becker (1968), followed
by Becker and Stigler (1974) and, to cite a few, Shavell (1991) and Mookherjee and Png (1992). See Shavell (1992)
and Mookherjee and Png (1994) for the analysis of marginal deterrence.
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view of the results on crime. Their results are refined in Baicker and Jacobson (2007). Anti-drug

enforcement effort has increased to the detriment of other petty crimes, leading to higher drug

prices due to shortened supply, which is consistent with the predictions of our vertical crime chain

model.

One of the environments we analyze, input-output crime chains, can be a fertile ground for

criminal organizations. In many crime chains organized and decentralized segments co-exist, for

example, specialized gangs and individual burglars who sell the guns they stole to other potential

criminals or to middlemen. The growing literature on organized crime has a branch that studies

quasi-governmental models of gangs (Garoupa, 2000, Mansour et al., 2006; Chang et al., 2013). This

branch aims at explaining the optimal enforcement policy when a criminal organization responds

by modifying its size and defensive strategy. The other branch models organized crime as networks,

with implications on its members’ detection probabilities (Ballester, Calvo-Armengol and Zenou,

2006; Baccara and Bar-Isaac, 2008; Goyal and Vigier, 2014).7 Generally, if a criminal is caught

then anyone connected to the criminal also risks being caught with a high probability in a follow-up

investigation. In contrast to these integrated crime organizations, in our decentralized crime setup

upstream criminals can be traced back with positive probability from detection of the downstream

criminal with whom they interacted whereas interception of an upstream criminal (before any

transaction) does not change the detection probability for downstream criminals. This asymmetry,

we show, has implications on budget allocation as well as the choice of the incentive system.

The core model is presented in the next section. The case of independent crimes is analyzed in

Section 3, and the interlinked crimes appear in Sections 4 and 5, followed by Conclusion.

2 Model and preliminaries

Consider two crimes, crime A and crime B. There are four actors, the State acting as the

principal, two law enforcement units, and the citizens. The State, in its executive capacity, decides

on the budgets, rules and incentives for law enforcement. Crime A and crime B are targeted by

separate units. Each unit would be composed of police staffs managed by a chief law enforcement

officer, whom we call ‘the agent ’. Agent i is delegated the task of controlling crime i = A,B. The

social harm from crime i is denoted by hi > 0.

A fixed measure of population make up the potential criminals, with one-half prone to commit-

7Ballester, Calvo-Armengol and Zenou (2006) define a key player based on a notion of intercentrality measure
reflecting network payoff externalities, whose removal should weaken significantly the network’s functionality. Baccara
and Bar-Isaac (2008) study repeated interactions between an external authority and a criminal organization. The
authority’s objective is to restrain cooperation between members, to which the organization responds by modifying
its internal information exchange structure. They show that the organization should arrange either isolate binary
cells (allowing mutual exchanges) or unlinked agents or at most one hierarchy with a central agent, whereas the
State may employ a symmetric or hierarchical scrutiny (i.e., some agents monitored more than others). In Goyal
and Vigier (2014), an attack/defense contest is framed between a single Designer and a single Attacker, with the
former considering what type of network to form and how to allocate resources between defending different parts of
the network. The Attacker then decides which subset of nodes or links to attack. The main result is that in most
situations the Designer should organize a ‘star’ network with all defence resources concentrated on the central node.
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ting crime A only and the other half, crime B only. Each group size is normalized to one.

� Crimes. Crimes will be classified according to two criteria.

(i) Observability/measurability. We say that a crime is (ex-post) observable if it leaves a physical

mark of its occurrence behind, such as a victim, a witness or a property damage. Burglary, assault,

robbery or hate speech are examples. A crime is (ex-post) non-observable otherwise; the occurrence

or non-occurrence of this kind of crimes is almost unidentifiable unless detected by law enforcers.

Bribery, smuggling, drug trafficking ensuring steady supply of drugs or taking drugs making up

the demand side, are examples. Admittedly, crimes may differ in observability along a continuum

(say, because victims are more likely to report some crimes than others); here we consider a binary

classification for simplicity.

(ii) Interdependence. The second criterion relates to whether or not the two crimes form an activity

chain. Crime A may be an indispensable input for crime B, as is transportation of illicit drugs

from production sites, including smuggling through border controls, to city ghettos for sales to final

users. Trade in unlicensed or illegal guns feeding other crimes in which they would be used, say, in

assault or murder attempt, and human traffickers who supply labor to the informal black markets

such as under-age labor, prostitution are other examples.

� Criminals. Utility of not committing a crime is normalized to zero. Potential criminals of

crime i derive a positive private benefit, b, from committing crime i only, distributed according to a

continuous cdf Fi(.) with support [0, b̄] and a continuous density function fi(.), strictly positive in

this domain. We denote by si the sanction on crime i and assume it can be administered costlessly.

� The Agents. Agent i, acting as the head of the enforcement unit specializing in crime i, deter-

mines an effort e to manage and organize his own unit. We assume that this effort is unobservable,

hence not contractible. The cost of effort, z(e), is increasing, differentiable and strictly convex in

e, with z(0) = z′(0) = 0.

The agents’ outside options are zero. An incentive system r ∈ {C,D} in enforcement remuner-

ates the agent according to a verifiable indicator, which in system r = C is the measure of crime

(or crime rate) and in system r = D the level of detections (or, apprehensions). Denoting agent i’s

rewards under system r by wri , his final utility is

wri − z(e).

Although wri cannot be conditioned on e, it will depend on the number of detections or crime data

that reflects the agent’s effort.

Data availability makes system D a more feasible option than system C, which can be used

only for (ex-post) observable crimes if all incidences are reported and recorded; alternatively, the

State may conduct periodic surveys to generate information about the level of crime and use it as

a statistic in compensating its law enforcement agent.

� The State. The State will allocate an exogenous budget R between the two enforcement agents,
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R = RA + RB. It also chooses an incentive system r ∈ {C,D} under which each agent’s expected

reward payments Ewri , together with the cost of other operational enforcement resources RXi ,

cannot exceed Ri. The State’s objective is to minimize total expected harm from crimes.

� Enforcement technology. Agent i’s law enforcement efforts together with the budget RXi
for all other enforcement resources, e.g., infrastructure, personnel, operational inputs produce an

unverifiable probability of detection per criminal, µi = µ(e,RXi ), also referred as the “intensity of

(crime i) enforcement”.
 
                𝑅𝑅𝑖𝑖𝑋𝑋 
 
 
 
 
 
 
 
 
 
 
 
             𝑅𝑅𝑖𝑖𝑋𝑋∗ 
                  𝜇𝜇′ 
 
 
          𝜇𝜇∗ 
                                           𝑅𝑅𝑖𝑖 = 𝑧𝑧(𝑒𝑒) + 𝑅𝑅𝑖𝑖𝑋𝑋 
 
 
 
                     𝑒𝑒∗          𝑒𝑒 
 
 
Figure 1.  The optimal (𝑅𝑅𝑖𝑖𝑋𝑋∗,𝑒𝑒) combination given budget 𝑅𝑅𝑖𝑖, inducing the maximal 
feasible detection probability 𝜇𝜇∗.  

Assumption 1. The detection probability, µi(e,R
X
i ), is increasing in each of its arguments and

differentiable, with µi(0, 0) = 0,
∂µi(0,R

X
i )

∂e = ∞ and ∂µi(e,0)

∂RXi
= ∞. Moreover, µi(e,R

X
i ) is strictly

concave, i.e., µi(α ∗ (e,RXi ) + (1 − α) ∗ (ẽ, R̃Xi )) > α · µi(e,RXi ) + (1 − α) · µi(ẽ, R̃Xi ) for any

(e,RXi ) 6= (ẽ, R̃Xi ) and α ∈ (0, 1).

As illustrated in Fig. 1, the upper-contour sets defined by µi-levels are strictly convex. In the

hypothetical scenario of efforts perfectly observable and contractible, for any given enforcement

budget Ri for unit i, feasible combinations (e,RXi ) are defined by the set F(Ri) = {e ≥ 0, RXi ≥
0|z(e) +RXi ≤ Ri}. Because the effort cost function z(.) is strictly convex, the boundary of this set

defined by z(e) +RXi = Ri is strictly concave.

The optimal input combination (e∗, RX∗i ) maximizing µi in the feasible set F(Ri) will be unique.

Note also that by duality, Ri is the minimum budget required to induce the detection probability

µ∗i = µ(e∗, RX∗i ), so Ri = c(µ∗i ) (= z(e∗) + RX∗i ). Now using strict concavity of µ(e,Ri) (Assump-

tion 1) and z(0) = z′(0) = 0, the following result is immediate (see, for example, Proposition 6.11,

part (ix) of Manove (2005) Lecture Notes):
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Lemma 1 (First-best enforcement). Under effort contractibility, first-best enforcement effort min-

imizing expected harm from crimes will be e∗ > 0 for all Ri > 0. The enforcement cost function

c(µi) = z(e∗) +RX∗i (1)

is increasing and strictly convex in µi, with c(0) = 0 and c′(0) = 0.

3 Independent crimes

Committing crime i yields the benefit b if undetected, b − si if detected and punished. Thus, a

potential criminal commits the crime under incentive system r ∈ {C,D} if

b > µisi = bri . (2)

There are two ways to incentivize law enforcement. Under crime-based incentives, agent i’s

reward can be made contingent on the level of (crime) deterrence :

σi = Fi(µisi). (3)

Under detection-based incentives, the reward is contingent on the level of (crime) detections:

di = µi(1− Fi(µisi)). (4)

The difference between (3) and (4) is that in the former crimes can be controlled directly by

linking higher rewards to higher µi whereas in the latter such direct linking to µi might not be

possible due to the non-monotonicity of the di(µi) function. The di(µi) curve can be of any shape

depending on the benefit distribution function Fi(·);8 see the top panel of Fig. 2a. But by Weistrass

Theorem there will be a maximal detection dmax
i , although uniqueness of a corresponding maximizer

µi cannot be guaranteed. Similarly, for any arbitrary level of detection 0 < d < dmax there will be

at least one µi if not multiple µi’s associated with it, by the Intermediate Value Theorem.

Definition 1. For any d ∈ [0, dmax
i ], let

µi(d) = min{µi|di(µi) = d}

under the incentive system D. Further, for d = dmax
i , denote

µ̂i = µi
(
dmax
i

)
.

8One can see that for Fi uniform, di(µi) is increasing with a slope 1 − 1

b−b
¯

< 1 assuming b − b
¯
> 1. A non-

monotonic di-curve can be constructed for an appropriately chosen density. See also the discussion in the Appendix
on the property of the di(·) function.
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             𝑑𝑑𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 
                                                                                                      𝑑𝑑𝐴𝐴    
                 𝑑𝑑𝐴𝐴𝑁𝑁 
 
 
 
                                                                                          
 
 
 
              
                        0                𝜇𝜇𝐴𝐴𝑁𝑁1          𝜇𝜇𝐴𝐴𝑁𝑁2           �̂�𝜇A                                                      1              𝜇𝜇𝐴𝐴 
 
          𝒄𝒄𝒓𝒓( 𝝁𝝁𝑨𝑨) 
 
 
 
 
 
             
                                        𝒄𝒄𝑫𝑫( 𝝁𝝁𝑨𝑨)      𝒄𝒄𝑪𝑪( 𝝁𝝁𝑨𝑨) 
 
 
 
 
        
         
 
              
                         0              𝜇𝜇𝐴𝐴𝑁𝑁1          𝜇𝜇𝐴𝐴𝑁𝑁2         �̂�𝜇A                                                       1           𝜇𝜇𝐴𝐴 
 
 
 
Figure 2a. Impact of multiple local maximands of 𝑑𝑑𝐴𝐴 on incentives and costs. The red 
continuous curve 𝑐𝑐𝐶𝐶( 𝜇𝜇𝐴𝐴) represents the cost under crime-based incentives. The blue broken 
curve intervals describe the implementable ranges [0, 𝜇𝜇𝐴𝐴𝑁𝑁1] and [𝜇𝜇𝐴𝐴𝑁𝑁1,𝜇𝜇𝐴𝐴𝑁𝑁2] and their costs.  
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Finally, define

b̂i = µ̂isi, and σmax
i = Fi(̂bi).

Note that under detection-based incentives the State should never target implementing any µi

in excess of µ̂i, for cost efficiency reasons.

System C. Agent i is rewarded according to some crime deterrence target set. Let us return to

Fig. 1. We already know that for any µi the cost-minimizing solution under effort contractibility

is given by the unique (e∗, RX∗i ) pair, resulting in cost c(µi) as in (1). The following simple all-

or-nothing reward mechanism will induce the agent to exert e∗ when effort is unobservable (using

(3)) :

wCi (σi) =

{
z(e∗), if σi ≥ Fi(µisi)
0, otherwise.

(5)

Failing to meet the target crime level and receiving zero reward can be interpreted as the agent

being replaced or denied a promotion. We assume the agent will break the indifference in favor of

effort e∗ in accordance with the preference of the State.

Lemma 2. Under crime-based incentives, cC(µi) = c(µi) for all µi as in (1).

Principal does not concede any moral hazard rent, and incentives based on verifiable crime

deterrence is first-best efficient. This is a standard result in contract theory – no efficiency loss in

the presence of a sufficient statistic capturing hidden agent effort (e.g., Harris and Raviv, 1978).

System D. Law enforcement officer is rewarded according to the achieved level of detections.

Unlike in system C, in system D determining implementation cost in terms of µi (for comparability

with the cost in system C) is problematic for the simple reason that di(µi) is not necessarily

monotonic as illustrated in the top panel of Fig. 2a: none of the µA’s in the interval [µN1
A , µN1

A ] are

implementable; see also the unmarked part of the cost curve in the lower panel (explanation for

this panel to come later).

Given the above observation, we first need to determine the implementable µi’s in the form of

µi(d) for all d ∈ [0, dmax
i ] using Definition 1. The remainder of the analysis of this section is

currently being rewritten.

Proposition 1 summarizes the analysis of incentives under the two systems.

Proposition 1 (Limitation of detection-based system). Consider an independent crime. There

exists a deterrence level σmax
i and a corresponding detection probability µ̂i such that:

(i) Under system C all deterrence targets σi up to min{1, Fi(si)}, and under system D deterrence

targets σi ≤ σmax
i , can be implemented at the first-best cost c(µi) as in (1).

(ii) Deterrence targets σi > σmax
i cannot be implemented under system D.
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(iii) If the sanction si is so small that Fi(si) < 1, then deterrence targets σi > Fi(si) cannot be

implemented even under system C.

Part (i) identifies when systems C and D are interchangeable – for low enforcement budgets

inducing high crime targets only. For large enforcement budgets and high deterrence targets as in

part (ii), the corresponding large detection probabilities cannot be induced through detection-based

incentives: giving it a hard try makes the actual criminal pool and, hence detections, thinner, but

a lower effort also generates the same level of detections, so conversion into actual rewards hits a

roadblock (Fig. 2b). Part (iii) makes the obvious point that if the sanction for committing a crime

is not sufficiently high, criminals with large benefits can never be deterred. Overall, a simple rule

implied by Proposition 1 is that crime-based incentives should be used to motivate law enforcement,

whenever feasible.

4 Interlinked crimes: crime A an input into crime B

“Supply creates its own demand” – the famous quote that goes under the heading called ‘Say’s

Law’ (Baumol, 1999). For crimes that form an input-output chain, it is unclear where should

enforcement start: at the top or bottom of the chain? An abundant supply of guns, one might

argue, fosters the demand for guns and gun crimes. Illegal immigrants are forced into prostitution

and slavery or working at black market wages in hazardous jobs without adequate training, or resort

to street crimes.9 Smuggling of substantial amount of banned drugs (heroin, cocaine etc.) eventually

find their ways to underground drug users and fuel drug addiction. Illegal wildlife products such

as ivory and rhino horn are sold in markets in south-east Asia, to feed which elephants and rhinos

are routinely killed by poachers.10

When one crime supplies the instrument to potential criminals of another crime, enforcement

policies become interdependent even if each crime deterrence strategy may be overseen by different

law enforcement departments, for example, the border-control department and the city police anti-

crime branch. Suppose crime A precedes crime B and, if undetected, provides the instrument for

undeterred B-criminals to act. As such there is no guarantee that a successful implementation

of crime A would culminate into a match with a B-criminal. A B-criminal must find criminal

A to execute his plan. The probability of matching, as in any decentralized market, will depend

primarily on the relative sizes of the two populations to be matched.

Apportioning social harms hA > 0 and hB > 0 separately to crime A and crime B is a way

to reflect the seriousness with which the authorities might view the distinct parts of the crime

production process. Alternatively, we could assign a single harm h > 0 on committing crime B

9See the reports on trafficking (illegal immigration) of women in the UK and women
and children in the USA; https://www.theguardian.com/uk/2005/nov/02/immigration.ukcrime and
https://www.oas.org/en/cim/docs/Trafficking-Paper%5BEN%5D.pdf (a study by Inter-American Commission
of Women, an inter-governmental agency).

10BBC report, 26 August 2018, https://www.bbc.com/news/world-africa-45288429.
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Figure 4: Crime chain; kA < kB (A on short side), kA > kB (B on short side) resulting in
min{kA, kB}-measure of the complete chain of (AB)-crimes. Given that it takes the two types
of criminals to complete the final crime, B, either end may be considered as pivotal, although
crime initiatives start with A-crime. This is particularly true in the decentralized, demand-supply,
environment with observable allocation of enforcement efforts, (RA, RB), as the only means of
coordination. B’s detection leads to A’s detection with probability 0 ≤ δ ≤ 1.

(or A) and treat the other crime as an indispensable step to crime B (or A).11 For cross-border

crimes, law enforcement has to invest in monitoring at check points, intelligence and cooperating

with the country where the supply originates, all of which we lump together under enforcement A.

Then a separate law enforcement division monitoring inside the country will detect illegal residents

and the related crimes such as prostitution, extortionary employment, street drug selling, sale of

contraband goods (ivory, brand name cigarettes, wines) etc that are undocumented. This latter we

label as enforcement B.

Before proceeding to the formal analysis we should emphasize that the approach here is very

different from the crime networks literature (e.g., Ballester, Calvo-Armengol and Zenou, 2006;

Baccara and Bar-Isaac, 2008; Goyal and Vigier, 2014). Ours is a decentralized matching (or market)

mechanism between the perpetrators of crime, whereas the network approach is predominantly

one of bilateral/far-sighted coordination among criminals. The question of optimal enforcement

response in our formulation should thus be of independent interest.12

11For instance, transporting drugs from one location to another may not per se cause much harm, except facilitating
the sales to final users, which is quite harmful. Or, if selling a rhino horn is not harmful, killing a rhino for its horn
is quite harmful.

12The distinction between decentralized matching and bilateral/far-sighted coordination can be understood in the
following example. In the latter, a player may connect to another player seeing the benefits of both the direct link
with the player and the secondary benefits derived from links to other players the connected player generates; see,
for example, Jackson and Wolinksy (1996). This way many players may be connected only to a star player, in a ‘star’
network. So enforcement by taking out the star criminal can weaken/destroy the entire criminal gang. In contrast, in
our decentralized environment taking out a single (or small fraction of) A-criminal(s) or B-criminal(s) does not de-
stabilize the matching. Instead, enforcements have to be at aggregate levels in different parts of the crime possibilities,
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� Sequence of events. Following the State’s decisions on budget allocation and enforcement

incentives that are publicly announced, various parties choose their actions in the following order

(see Fig. 4):

(i) Agent i determines effort ei, hence µi, while potential criminals choose between compliance

(deterred) and taking action to commit crime i (not deterred).

(ii) • Hatching a plan to deliver to an eventual crime down the chain (called crime B) or

preparing for it is in itself a crime, called crime A. Perpetrators of A-crime, on detection, are

removed from the crime chain and sanctioned.

• Potential B-criminals may choose to stay away from the crime. The rest are undeterred

B-criminals.

(iii) Only undetected A-criminals of measure kA and undeterred B-criminals of measure kB

search for each other to match.

(iv) Undetected A-criminals who find a B-partner realize their benefits.

(v) Undeterred B-criminals who find an A-partner commit the crime and realize their benefits.

If detected, they are sanctioned.

(vi) Detection of a B-criminal leads to a second shot at detection of the partner A-criminal with

probability 0 ≤ δ ≤ 1.

Two remarks: First, the sequence of events excludes the possibility of detection at the moment

of matching, when A-criminals and potential B-criminals meet to transfer the crime instrument

(or, sometimes pass on valuable information). A-criminals are detected in one of two stages –

(i) after committing the crime but prior to matching, (ii) after crime B has been completed –

whereas B-criminals can be detected only after a match with A-criminals and thereupon successful

execution of the crime. Second, as an alternative to the imperfect interim matching process, one

could also posit an interim crime-instrument market where the price would reflect shortages of

demand by B-criminals or of supply by A-criminals. Raising enforcement to combat crime B, for

example, would deter B-criminals and reduce the demand for the instrument and its price, thereby,

have a deterrent effect on A-criminals. This price mechanism should generate a similar qualitative

relationship between enforcement efforts and their cross-deterrence effects, as the present approach.

� Deterrence and matching. Denote by pi the probability that an i-criminal finds a j-partner,

i 6= j, i, j = A,B. These probabilities will later be determined in the overall equilibrium following

enforcement decisions by the State.

The benefit from crime A will be realized with probability

(1− µA)pA,

as opposed to thinking about the interaction between enforcement directed at certain links of the criminal network
and what equilibrium implications it might have for the emerging network. An analysis of enforcement capturing
strategic interactions between the criminal network and multiple enforcement departments with an overall budget is
certainly an interesting problem but also likely to be very challenging. The work of Ballester et al. (2006) offers a
background structure that needs to be further extended to bring in multilateral enforcements as additional players.
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and thus a potential A-criminal with benefit b will commit the crime if

(1− µA)pAb− [µA + (1− µA)pA · (µBδ)]sA > 0. (6)

An A-criminal may be detected either in the preliminary crime-A stage or in a follow-up inves-

tigation on detection of the partner criminal B. If δ = 0, A-criminals will escape untraced after

transacting with B-criminals, which can be attributed to the largeness and non-anonymity of the

decentralized, uncoordinated crime market. On the other hand if δ > 0, the detection mirrors part

of the story of a crime chain in networks. The only difference is that detection of an A-criminal in

the early stage does not lead to an apprehension of a corresponding B-criminal because the former

hasn’t yet met the latter. In the analysis to follow, we will consider δ unrestricted.

Given µA and µB, the measure of crime A is

1− FA(bA), where bA =
[µA + (1− µA)pA · (µBδ)]sA

(1− µA)pA
. (7)

On the other hand, undeterred B-criminals realize their benefits only if they find an A-partner,

when they complete the crime, thus, with probability pB. They will be detected and punished with

probability pBµB, so, a potential B-criminal will commit the crime if

pBb− µBpBsB > 0. (8)

Thus, the measure of crime B is13

[1− FB(bB)]pB, where bB = µBsB. (9)

We now turn to the determination of pi, which we relate below to the endogenous variables kA, the

measure of undetected A-criminals, and kB, the measure of undeterred B-criminals, where

kA = (1− µA)(1− FA(bA)) and kB = 1− FB(bB). (10)

Assumption 2.

pi = ρ(kj/ki)

{
= π if kj/ki ≥ 1,

∈ [0, π) if kj/ki < 1,
(11)

where 0 < π < 1 and ρ(kj/ki) is strictly concave and increasing, with 1 > ρ′(0) > 0.

The matching technology stated in (11) involves frictions. The probability pi is smaller than

kj/ki; it is increasing in kj/ki at a decreasing rate until kj = ki, whereafter it remains constant at

π. Thus, pi < 1 ⇒ pj = π, i 6= j: A criminal on the short side of the market will find a partner

13Notice the difference between (6) and (8). In (6), criminal A gets sanctioned for “killing the rhino” even if he fails
to “deliver the horn” to (match with) criminal B. In contrast, in (8), criminal B is sanctioned only when executing
his crime (marketing the horn) after matching with criminal A. The difference gets reflected in the cutoff benefits bA
and bB , with the former dependent on the matching probability pA whereas the latter is independent of pB .
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with maximal probability, π. To illustrate, if kB > kA, undetected A-criminals match and get their

private benefit with probability pA = π, whereas undeterred B-criminals complete their crime with

probability pB < π. If smaller than π, pB is increasing in kA and decreasing in kB.

Frictionless matching is obtained as a special case of Assumption 2 by setting π = 1 and

ρ(kj/ki) = kj/ki for kj/ki < 1. If the population of undetected A-criminals is 40 percent of

the population of undeterred B-criminals, under frictionless matching each undeterred B-criminal

expects to match with probability 0.4. With frictions, this probability is smaller than 0.4.

� Equilibrium analysis. Given the cost function ci(µi) = Ri and its inverse µi(Ri), an allocation

of the total enforcement budget induces a pair of crime outcomes, as formally stated in the following

lemma.

Lemma 3. Given a feasible budget allocation (RA, RB) hence a pair of enforcement intensities(
µA = µA(RA), µB = µA(RB)

)
, an induced crime equilibrium consists of a pair of cutoff criminal

types (̃bA, b̃B) satisfying (7), (9) and (10), that is,

bA =

[
µA(RA)

(1−µ(RA)).ρ
(

1−FB(bB)

(1−µA(RA))(1−FA(bA))

) + (µB(RB)δ)

]
sA,

and bB = µB(RB)sB.

(12)

A solution pair is easily guaranteed. The proof is integrated in the proof of the next proposition.

The first equation in (12) is obtained by using (10) in the definition of pA and (7). Note that the

potential cross-deterrence effect of enforcement is unidirectional, whereas the cross-crime effects

work in both directions. Deterrence of A-criminals does not marginally affect deterrence of crime

B though it can affect the measure of undeterred B-criminals who complete the crime. On the

other hand, enforcement effort by agent B will affect crime A deterrence via two potential channels

− one through pA, the probability that an A-criminal realizes his benefit, the other through δ, the

likely detection of A-criminal following criminal B’s detection.

Our first result on vertical crime chains is on the existence and uniqueness of induced crime

outcomes and the related comparative statics.

Proposition 2 (Decentralized coordination). (a) In the decentralized environment of linked crimes,

a feasible budget allocation (RA, RB) induces a unique coordinated crime equilibrium (̃bA, b̃B).

(b) In any induced equilibrium, an increase in enforcement spending on crime i lowers crime i

whereas an improvement in A’s detection through the follow-up investigation, δ, only lowers

crime A without any cross-deterrence effect on crime B:

(i) db̃A
dδ > 0, db̃B

dδ = 0,

(ii) db̃A
dµA

> 0, db̃B
dµB

> 0, d[pB(1−FB (̃bB))]
dµB

< 0.

Uniqueness of equilibrium crime levels may be surprising, especially in our decentralized match-

ing environment where greater crimes at either end enhance the attractiveness of crimes at the other
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end. The uniqueness is due to two reasons: (i) in segment B, the crime can be committed and its

benefits and potential costs be realized only after successful matching, so the matching probability

pB has no impact on the deterrence level (̃bB) and the measure of undeterred B-criminals (kB) is

uniquely determined by µB; (ii) with kB thus determined, moving back the chain only a unique pair

of (pA, bA) can satisfy (7), (10) and (11), pinning down b̃A. This holds with and without frictions

in matching.

Let us now look at the comparative statics. If the induced crime equilibrium involves pB = π,

i.e., undeterred B population is on the short side, raising enforcement intensity µB should lower

crime B by driving out the marginal criminal. However if pB < π, those still undeterred will

see their chances of completing the crime increased, which in turn tends to dilute deterrence of

B-crimes. The net impact on the measure of crime pB(1 − F (̃bB)) should be negative, that is,

the initial impetus on b̃B should dominate the opposing feedback effect through pB. Similarly,

raising the intensity of enforcement should lower crime A, but if pA < π this will also enhance the

incentives for crime A as those who escape initial detection foresee an increase in their probability of

completing the crime. The negative feedback effect, however, should not offset the initial inductor

effect, so that b̃A increases if µA increases. Since µi = 0→ b̃i = 0, Proposition 2(b)-(ii) implies that

b̃i > 0 for all µi > 0. Finally, we note that crime B deterrence is neutral to δ, but the measure of

completed crime B, pB(1− FB (̃bB)), will depend on δ through pB.

4.1 Incentives

• Crime-based incentives. Suppose data is available to set separate verifiable crime A and crime

B targets, 1 − FA(bA) and (1 − FB(bB))pB. We know from Proposition 2(b) that an increase in

the probability of detection µi lowers crime i = A,B. The monotonicity chain from enforcement

inputs ei and RXi to deterrence, coupled with verifiability of the crime level, implies that rewards

conditional on crime targets as exposed in Section 3 can successfully implement any crime level,

budget permitting, at first-best cost.

Proposition 3. Suppose crime data is available. Then any µi, i = A,B, can be implemented at

first-best cost, that is, cCi (µi) = c(µi), with corresponding deterrence levels determined by (12).

However, the picture is quite different from independent crimes under detections-based incen-

tives.

• Detection-based incentives. Contrary to the case of independent crimes where detections of

crime i depend solely on the enforcement effort by agent i, in a crime chain the agents’ efforts

produce cross-detection effects which the authorities can explore in designing incentives. Supple-

mentary detection measures become available as indicators of each agent’s enforcement effort. It

turns out that all crime levels can be implemented via first-best enforcement incentives by setting

targets based on cross-detection indicators, provided at least one of these indicators is monotonic

in the agent’s effort. We identify the indicators below and check their monotonicity in enforcement

efforts.
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Detections of crime A and crime B are now given by

dA = (µA + (1− µA)pAµBδ)(1− FA(̃bA)), and dB = µBpB(1− FB (̃bB)). (13)

The prime supplementary indicator of enforcement effort is detections of the other crime. Observe

that in (13) upstream enforcement intensity µA affects downstream detections dB through the prob-

ability pB whereas downstream enforcement intensity µB affects upstream detections dA through

both pA and δ. Thanks to this δ effect, two additional sets of detection data can be obtained by

decomposing dA according to its source, as dA = dAA + dAB, where

dAA = µA(1− FA(̃bA)), dAB = (1− µA)pAµBδ(1− FA(̃bA)). (14)

The measure dAA is owed to agent A’s enforcement, dAB to agent B’s enforcement and follow

up investigations. Let us now focus on the relationship between these detection measures and

enforcement intensities.

Lemma 4.

The signs of
d[dA]

dµA
,

d[dB]

dµB
,

d[dAA]

dµA
,

d[dAB]

dµB
and hence,

d[dA]

dµB
, are ambiguous.

However,
d[dAB]

dµA
< 0,

d[dAA]

dµB
< 0, and

d[dB]

dµA

{
> 0 if kA/kB < 1 (pB < π)

= 0 if kA/kB ≥ 1 (pB = π).

As in the independent crimes case, di is not monotonic in µi, hence, not monotonic in own

enforcement effort, ei. We know that b̃i > 0 for all µi > 0, given fixed µj . Holding thus µB constant

in (13) it is easy to verify that detections of crime A are positive and vary between the two limits,

limµA→0dA ≡ d0A = p0AδµB(1− FA(δµBsA)) and limµA→1dA = 0. (15)

Detections of crime B, on the other hand, converge to the same value dB = 0 as µB → 0 and

µB → 1, taking strictly positive values in between.

Fig. 5 illustrates the shapes of dAA and dA, which are not monotonic, and dAB, which is

monotonic in µi. Crime A detections have a maximum, dmax
A , at the enforcement intensity µ̂A =

argmax[dA]. Because enforcement effort is not contractible, the agent would exert the lowest

effort compatible with any target measure of detections. If dA data were available but not its

decomposition, it would be impossible to implement µA > µ̂A through detection targets dA < dmax
A ,

for the agent can generate the same dA by exerting lower effort.14

Regarding the cross-detection effects of enforcement, d[dB]/dµA is strictly negative when A-

criminals are at the short side of the crime chain so that pB < π. An increase in µA deters crime

A and reduces pB, which in turn deters more of crime B and reduces detections of crime B, for

14Exceptions could be the µA levels that are so high that the corresponding detections dA are smaller than even
d0A, the measure of detections owning solely to B’s enforcement while agent A exerts zero effort.
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given enforcement intensity by agent B. When pB is maximal and equal to π (which corresponds

to kB ≤ kA), however, this impact vanishes.

On the other hand, dAA is unambiguously decreasing in µB. When agent B intensifies enforce-

ment and raises µB, at constant µA agent A will see his own detections fall. This happens thanks to

the increase in the measure of A-criminals backtraced through their B-partners detected by agent

B, which deters more of crime A and reduces dAA. There is another, reinforcing, effect through

pA when B-criminals are at the short side of the crime chain: the rise in µB will reduce pA, hence

the prospective benefit from crime A, deterring crime A and reducing the measure of detections by

agent A.

The third monotonic relationship is between dAB and µA. Detections of A-criminals attributed

to B’s enforcement is unambiguously decreasing in A’s enforcement intensity, µA. Given µB, a

higher enforcement effort by agent A reduces the measure of A-criminals who can be detected in

follow-up investigations through their detected B-partners.15

The impact of an increase in µB on dAB, however, is ambiguous. Intuition may suggest that

a larger measure of A-criminals should be backtraced (the δ effect) when agent B raises µB, at

constant µA. The ambiguity arises because, first, the δ effect is dampened by rise in deterrence

of crime A, and second, the combined effect of these changes on the matching probability pA is

ambiguous.
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Figure 5. The measure of detections of crime A decomposed, 𝑑𝑑𝐴𝐴 = 𝑑𝑑𝐴𝐴𝐴𝐴 + 𝑑𝑑𝐴𝐴𝐴𝐴, as a function 
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the detection probabilities 𝜇𝜇𝐴𝐴  and 𝜇𝜇𝐴𝐴 = 0. 
  
 
 

15The rise in µA can lead to an increase in pA and partially offset the fall in crime A and own detections by agent
A. This indirect effect cannot dominate as long as the matching probability pA is concave in kB/kA, as assumed.
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To recapitulate, the detection measures dB and dAB can be used as indicators of agent A’s

enforcement effort, and dAA can be used for agent B’s enforcement effort, provided these measures

are verifiable. The State can set appropriate detection targets dB or dAB for agent A and dAA for

agent B, and implement all deterrence targets at first-best cost, as under crime-based incentives,

thanks to the monotonicity properties highlighted in Lemma 4. It is important to note that these

detection measures constitute the minimal tool set for first-best incentive provision. Other detection

measures which in general are not guaranteed to be monotonic in µi may be monotonic for specific

parameter constellations or sub-intervals of detection probabilities, thus, may also be used as such.

Proposition 4 (Costs and feasibility under system D). If crime A detection data is available

in decomposed form as dAA and dAB, given any budget allocation with Ri > 0, the equilibrium

detection probabilities {µA, µB} and deterrence levels {b̃A, b̃B} satisfying (12) can be implemented

via detection-based incentives at first-best cost, cDi (µi) = c(µi).

The number of criminals A traced and detected thanks to agent B’s efforts can be used as a

contractual target to motivate effort by agent A, because as shown in Fig. 5, dAB is monotonically

decreasing in µA. So, if a large fraction of A criminals are detected thanks to agent B’s follow up

investigations, this is taken as a signal of poor enforcement by agent A. An alternative indicator

to motive agent A’s enforcement activity is the measure of detected B-criminals, except when A

is combinations of deterrence levels such that kA < kB, i.e., pA < π. Basically, given agent B’s

enforcement effort, any deviation by agent A from the desired effort will be revealed by these

detection data.

Agent B’s detection target, on the other hand, should be based on dAA, agent A’s own detection

of A-criminals. Because dAA is monotonically decreasing in µB, a lower effort by agent B will dilute

crime A deterrence and raise crime A detections by agent A, given his own effort and µA. So, if

A’s detection of A-criminals exceeds the target this is taken as a signal that B is withholding his

enforcement effort.

Combining Propositions 3 and 4, we conclude that any combination of deterrence levels (̃bA, b̃B)

for interlinked crimes can be implemented at the same, first-best, cost c(µi) through crime- and

detection-based systems. The implementation problem that plagues the control of an independent

crime via detection-based incentives disappears thanks to a positive δ and the cross-enforcement

effects through the crime chain, the probability pA or pB, if the detection indicators dAA and dAB

are available. The monotonicity requirement is met and all levels of the two crimes in the chain are

implementable at first-best enforcement costs. If dAA and dAB data are not separately available,

system D can be used only for agent A based on the measure of crime B detections, to implement

crime targets that leave A criminals at the short side of the crime chain (kA < kB).
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4.2 Budget allocation

Given the incentive system for each agent and hence the enforcement costs c(µi), the optimal budget

allocation (R∗A.R
∗
B) minimizes the expected social harm

min{RA,RB} SH = [1− FA(bA)]hA + [1− FB(bB)]pBhB,

subject to RA +RB ≤ R, and (12).
(16)

Below we consider the symmetric case to highlight the fundamental factor that would favor an

asymmetric budget allocation, rooted in the vertical chain structure of the crimes.

� Symmetric crime environments. We say that two crimes form a symmetric crime envi-

ronment if the sanctions and the criminal benefit distributions are identical, i.e., if sA = sB, and

FA(.) = FB(.). Denote by s the common sanction and by F (.), the common distribution function.

For any budget allocation such that RA ≥ R
2 ≥ RB, the induced crime equilibrium satisfies

b̃A ≥ b̃B, by (12):

b̃A =

[
µ(RA)

(1− µ(RA)).pA
+ (µ(RB)δ)

]
s > µ(RB)s = b̃B for any pA ≤ π.

It follows that 1 − F (̃bA) < 1 − F (̃bB), hence, kA ≡ (1 − µ(RA))(1 − F (̃bA)) < 1 − F (̃bB) ≡ kB.

We have a crime equilibrium with pA = π and pB < π. An equal budget allocation in a symmetric

crime environment generates a stronger deterrence on crime A than crime B, b̃A > b̃B, even if

δ = 0, because A criminals face the risk of apprehension before matching with B partners, thus,

before realizing their criminal benefits.

We study below the impact of a small balanced budget adjustment, such that dRA = −dRB, on

the expected social harm in (16). For a clear picture, in Proposition 5 we take δ sufficiently small.

Proposition 5 (Priority: upstream). Consider a symmetric crime environment in which crime A

is an input to crime B, with δ sufficiently small. The budget allocated to upstream enforcement

should be larger than downstream enforcement, R∗A > R∗B, if

hA > hB(1− µ(
R

2
))2

[
f (̃bB)π

f (̃bA)
(pB − ρ′(.)

kA
kB

)− ρ′(.)

1− µ(R2 )
(1 +

πkA.µ(R2 )

sf (̃bA)µ′(R2 )
)

]
, (17)

that is, unless crime B is sufficiently more harmful than crime A.

There are two reasons for allotting a larger budget to the upstream enforcement agent A. The

first reason bears on the net harm-weighted deterrence impact at constant matching probabilities.

Starting from an equal budget allocation, a marginal balanced-budget shift from downstream to

upstream enforcement will raise deterrence of crime A more than it dilutes deterrence of crime B,

unless f (̃bA) is too small relative to f (̃bB). This is so, because raising the probability of detection

of crime A reduces the probability that A-criminals realize their benefit by delivering to a B-

20



partner, besides of course raising their probability of punishment, whereas deterrence of B criminals

depends on the punishment probability alone. The marginal enforcement dollar thus has a stronger

deterrence effect in the hand of agent A than agent B. Add to this the fact that the harm hA

is proportional to the measure of undeterred A criminals (upstream, the harm occurs when the

rhino is killed), whereas downstream undeterred B-criminals will complete their crime and inflict

the harm hB with probability pB (if they find an A-criminal who delivers a rhino horn). Even if

f (̃bA) = πf (̃bB) so that the net increase in overall deterrence is zero, a rise in A-deterrence coupled

with an equal fall in B-deterrence is not neutral for the objective of the state.

The second reason favoring a budget transfer to agent A relates to the impact of the transfer

on the probability that crime B will be completed. The balanced budget shift will impact on pB =

ρ( kAkB ) through three variables: the two deterrence levels b̃A and b̃B and the detection probability

of crime A, µA = µ(RA). All three induced impacts contribute to the fall in pB as captured by the

negative terms at the right hand side of (17); the rise in RA does it by increasing b̃A and µA and

hence by reducing kA, and the fall in RB, by raising b̃B and hence kB as well.

Thus, contrary to the case of independent crimes, even if the upstream and downstream crime

environments are identical in every respect, upstream law enforcement should receive a larger

budget for reasons primarily related to the vertical structure of the crime chain, unless the harm

from downstream crime is sufficiently larger than the harm from upstream crime. Raising the

budget to fight the latter will reduce expected harm from crimes.

It is worth noting that Proposition 5 can hold in vertical crime chains where hA is very small

relative to hB, or even hA = 0, if by deterring crime A the state can induce a large fall in B-

criminals’ matching probability pB. The larger is the cross-deterrence effects on pB (represented by

the negative terms in the coefficient of hB in (17)), the more likely it is that the State will allocate

a larger enforcement budget to the upstream crime even if the social harm from the upstream crime

is very small or zero.

In the symmetric opposite case hB is very small relative to hA, or in the limit, hB = 0, (17)

suggests RB = 0. Crime B, marketing the fur of a polar bear is itself harmless and crime A, killing

a polar bear for its fur, produces all the harm along the chain. The practice of enforcement in such

crime chains does not involve a corner solution; positive amount of resources are devoted to deter

clandestine fur sales contrary to the implication of condition (17) for δ = 0. It would be optimal to

spare positive enforcement effort to detect the harmless downstream activity only if δ > 0 so that

these B-criminals can help law enforcers trace their upstream harmful A-partners.

When δ is large, the positive externality from agent B’s enforcement activity can lead to a

large measure of A-detections and raise crime A deterrence. The level of crime B, however, is not

affected by changes in δ, by Proposition 2(b). Expected harm from crime will be smaller thanks to

the fall in crime A and its potential consequence, the reduction in pB.

In a symmetric crime environment with large δ and an equal budget allocation, the equilibrium

conditions in (12) continue to imply b̃A > b̃B. It is easy to verify that kB > kA holds even stronger
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under δ > 0, hence, pA = π, pB < π. Now the condition for dSH < 0 in (17) is modified as

hA

[
1

(1− µ(R2 ))2π
− δ

]

> hB

[
f (̃bB)

f (̃bA)
(pB − ρ′(.)

kA
kB

)− ρ′(.)
{µ(R2 )(1− F (̃bA))

µ′(R2 )sf (̃bA)
+ (1− µ(

R

2
))(

1

(1− µ(R2 ))2π
− δ)

}]
. (18)

The impact of δ > 0 is apparent at the left and right hand sides of (18). A marginal balanced-

budget transfer from agent B to agent A, on top of those mentioned in Proposition 5, dilutes

deterrence of crime A by reducing the backtracing effect. This is captured by the negative δ term

in the coefficient of hA at the left-hand side of (18). Second, the larger population of A-criminals

seeking a B-partner will increase pB and feed crime B. This indirect effect appears at the right

hand side with the additional δ term. Both of these effects will lead to an increase in crime B and

reduce the expected benefit from marginally shifting a budget from agent B to A. If strong enough,

these new effects can lead the State to prioritize the downstream crime.

5 Interlinked crimes: crime A causes crime B

A crime could fertilize the ground for another crime through a multitude of mechanisms. In this

section we consider a predominantly unidirectional and probabilistic causality; we say that crime

A causes crime B if it leads to an increase in the population of potential B-criminals. Crime B

does not cause, but is in part an effect of, crime A. Crime A could be child abuse and crime B,

theft, assault, or juvenile vandalism. We know that children subject to parental abuse of any form

are more likely to commit crimes than children that are not. Similarly there is ample evidence that

illegal drug sales lead to an increase in the population of potential violent criminals.

The difference between Section 4 and the present section is not confined to replacement of a

matching process by a probabilistic link. In Section 4, neither the upstream input crime A nor

the downstream output crime B can be identified as the cause of the other, but each crime needs

the other: Without crime B there would be no crime A and without crime A there would be no

crime B. What links the two crimes is an imperfect matching process through which changes in

the supply of one crime affects the supply of the other. In this section, undetected criminals don’t

need any partner to realize their benefits, so, each of the two crimes would still be committed if the

other is eradicated. However, crime A increases the pool of potential B-criminals and this creates

a positive externality from agent A’s enforcement to crime B outcome. We ask if the cause-effect

relation favors the root crime A over crime B in the allocation of enforcement resources and we

address the incentive problem in enforcement.

Consider two groups of individuals, potential A-criminals and a B-population, each of measure

one. Potential B-criminal population is partly endogenous, for crime A “affects” a fraction α of the

B-population and increases their probability of becoming potential B-criminals. Depending on the

context, the α fraction of the B-population could be victims of, deal with, or happen to interact
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with, some A-criminals. In the case of parental child abuse α could be taken equal to one (there

is a parent for each child, the B-person). If A-criminals are drug sellers and crime B is theft or

shoplifting, α would be much smaller than one. Some, but not all, shoplifters would be acting under

drug influence.

Formally, a B-person not affected by crime A becomes a potential B-criminal with probability

pL, but crime A increases this probability to pH for a fraction α of the B-population. So, when the

measure of crime A grows from zero to 1−FA(bA), the size of potential B-criminals grows from pL

to [(1−α)+αFA(bA)]pL+(1−FA(bA))αpH . The two crimes become fully independent if pL = pH ,

with equal measures of potential A- and B-criminals if pL = pH = 1.

The sequence of events is a variant of Section 4 but for the matching process. Given the budget

allocation and enforcement incentives set by the state, agent i determines effort, hence, µi. Then,

• Undeterred potential A-criminals commit crime A, realize their benefits and, if detected, are

sanctioned.

• The measure of potential B-criminals thus determined, undeterred potential B-criminals commit

the crime, realize their benefits and, if detected, are sanctioned.

• Detection of a B-crime leads to detection of its affector A-criminal with probability 0 ≤ δ ≤ 1.

The relevance of the possibility of backtracking, that originally undetected A-criminals are

detected through detection of B-criminals whom they have affected, should also be contextual. It

may be difficult to prove parental abuse by detecting the child in shoplifting but it is possible to

trace the drug seller from a criminal acting under the influence of the drug.

� Crime equilibrium. Fix a pair of enforcement intensities µA and µB and consider first a

potential B-criminal with benefit b. Committing the crime yields the expected utility b − µBsB
whereas the utility from compliance is zero. Thus a critical criminal benefit can be defined by

bB = µBsB, (19)

such that a potential B-criminal commits the crime if b > bB and complies otherwise.

Crime A, on the other hand, is detected with probability µA owing to enforcement by agent A

and possibly also by follow up investigations of affected B-criminals detected by agent B. Each

A-criminal has a B-criminal whom he has affected with probability αpH(1− F (bB)). Thus, crime

A is detected by agent B’s enforcement with probability δ(1−µA)µBαpH(1−FB(bB)). Given this,

a potential A-criminal will commit the crime if his benefit exceeds

bA = [µA + δ(1− µA)µBαpH(1− FB(bB))] sA. (20)

A crime equilibrium consists of a pair of deterrence levels (̃bA, b̃B) that satisfy (19) and (20), given

the enforcement intensities (µA, µB). It is easy to verify that the crime equilibrium is unique: µB

uniquely determines b̃B through (19), and b̃A is determined through (20) given (µA, µB) and b̃B.

Moreover, db̃i
dµi

> 0, db̃B
dµA

= 0, whereas the sign of db̃A
dµB

is in general ambiguous (except for sufficiently
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small µB where it is positive.) Also, note that db̃A
dµB
→ 0 as δ → 0.

5.1 Incentives

The measures of the two crimes are

crime A: 1− FA(̃bA); crime B:
[
pL + α(1− FA(̃bA)).(pH − pL)

]
(1− FB (̃bB)). (21)

Since db̃i
dµi

> 0, crime i is monotonically decreasing in µi. It follows that any deterrence target can

be induced at first-best cost, budget permitting, through crime-based incentives. Proposition 3

continues to hold in the case of causally linked crimes.

Consider now detections by agent A and agent B:

dA =
[
µA + δ(1− µA)µBαpH(1− FB (̃bB))

]
(1− FA(̃bA)),

dB = µB

[
pL + α(1− FA(̃bA)).(pH − pL)

]
(1− FB (̃bB)). (22)

An increase in µB has two conflicting direct effects on dB. Detections of crime B will rise at

constant level of deterrence b̃B, but deterrence will also increase and lead to a fall in crime B, hence

detections. The net change in crime B detections, positive or negative, will then impact on crime

A deterrence and detections through δ, the backtracking effect. The change in crime A will cause a

change the measure of potential B-criminals by the α effect, thereby, feed back on crime B and its

deterrence. Even in the absence of these feedback effects, the two conflicting direct effects would

suffice to jeopardize monotonicity of dB in µB.

Crime A detections dA can be decomposed into its components as in the previous section, dAA =

µA(1 − FA(̃bA)) and dAB = δ(1 − µA)µBαpH(1 − FB (̃bB))(1 − FA(̃bA)). Recall that monotonicity

of the measure of detections in µi is necessary for implementation of any level of deterrence with

first-best combination of enforcement inputs. Lemma 5 clarifies this issue.

Lemma 5. The measures of Crime A and crime B detections are not monotonic in µi, except dAB

and dB which are monotonically decreasing in µA. That is, the signs of

d[dA]

dµA
,
d[dB]

dµB
,
d[dAA]

dµA
,
d[dA]

dµB
,
d[dAB]

dµB
,
d[dAA]

dµB
are ambiguous. However,

d[dAB]

dµA
< 0,

d[dB]

dµA
< 0.

dAA, dAB and dB are monotonic in µB at sufficiently low values of µB. There exists µ̂B(X) > 0,

X ∈ {AA,AB,B}, such that the detection measure dX is monotonic in µB for µB ∈ [0, µ̂B(X)].

Crime B detection data, or crime A detection data owing purely to agent B’s enforcement, can

be used as indicators to motivate agent A’s enforcement effort. Even if agent A’s detections are

not available in decomposed form dAA and dAB, enforcement incentives for agent A can be set in

terms of total detections by agent B. Given fixed µB, higher number of B-detections indicate lower
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effort by agent A. Therefore any crime A deterrence target can be implemented at first-best cost

through detection-based incentives.

However, because the detection measures are not monotonic in µB, the moral hazard problem in

agent B’s enforcement raises implementation costs above the first-best level, except for low deter-

rence targets b̃B which can be induced with relatively low enforcement intensities µB ∈ [0, µ̂B(X)],

hence, small enforcement budgets RB. For µB in that range, the detection measures are monotonic

in µB, restoring first-best enforcement incentives based on detections data.

Let µmax
B = max{µ̂B(AA), µ̂B(AB), µ̂B(B)}. Proposition 6 summarizes the analysis of enforce-

ment costs under crime- and detection-based incentives.

Proposition 6 (Cost advantage of crime-based incentives). Any deterrence target for the cause

crime A can be implemented through crime- or detection-based incentives at first-best cost. Whereas

crime-based systems implement at first-best cost all crime B deterrence targets, detection-based sys-

tems implement at first-best cost only the deterrence levels compatible with enforcement intensities

in [0, µmax
B ]. As for µB > µmax

B , cD(µB) > cC(µB).

5.2 Budget allocation

The objective of the State in determining a budget allocation (RA, RB) under incentive system

r = C,D given the total enforcement budget R is to minimize

SH = (1− FA(̃bA)).hA +
[
pL + α(1− FA(̃bA)).(pH − pL)

]
(1− FB (̃bB)).hB (23)

subject to (19) and (20), the budget constraint R = RA + RB and the enforcement cost functions

Ri = cr(µi).

Denote the solution to this problem by (R∗A, R
∗
B). Under the optimal budget allocation the

(endogenous) measure of potential B-criminals is k∗B = pL + α(1 − FA(̃b∗A)).(pH − pL) where b̃∗A
satisfies (20), whereas the measure of potential A-criminals is kA = 1. If the two crimes were

independent as in Section (3) with kA = 1 and kB = k∗B, the social harm from crime would be

SHI = (1− FA(̃bA)).hA + k∗B(1− FB (̃bB)).hB. Under the optimal budget allocation (RIA, R
I
B) the

impact of a marginal balanced budget adjustment on SHI must be zero. Thus, (RIA, R
I
B) satisfies

the analogue of the first-order condition (??), adjusted for the differential measures of potential

criminals:
hA
hB

=
[
pL + α(pH − pL)(1− FA(̃b∗A))

] sBfB (̃bIB)µ′(RIB)

sAfA(̃bIA)µ′(RIA)
. (24)

Turning to the case where crime A causes crime B, for δ sufficiently small the optimal budget

allocation (R∗A, R
∗
B) satisfies the first-order condition

hA
hB

=
[
pL + α(pH − pL)(1− FA(̃b∗A))

] sBfB (̃b∗B)µ′(R∗B)

sAfA(̃b∗A)µ′(R∗A)
− α(pH − pL)(1− FB (̃b∗B)). (25)
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If the ratio of harms hA
hB

is larger than the right hand side of of (25), shifting some budget from

agent B to agent A will reduce the harm from crime. The last term, α(pH − pL)(1 − FB (̃b∗B)),

represents the impact of agent A’s enforcement on the measure of potential B criminals. Absent

this external effect, the two optimality conditions (24) and (25), hence their solutions, would be

identical.

It is possible to compare the optimal budget allocations (RIA, R
I
B) and (R∗A, R

∗
B) by imposing an

intuitive regularity condition on the benefit distribution functions. Namely, we shall assume that

Fi(b) is not too convex at any b, more precisely,
F ′′i (.)
F ′i (.)

< − µ′′(.)
siµ′(.)2

, so that the term fi(̃bi).µ
′(Ri) is

decreasing in Ri. In words, the marginal deterrence from an extra dollar in enforcement should be

falling.

Proposition 7 (Priority to the cause). Assume that δ is sufficiently small and that enforcement

costs are identical across the cases and crimes.

(i) The optimal budget allocations when the crimes are independent and when crime A causes

crime B compare as follows: RIA < R∗A, RIB > R∗B;

(ii) In a symmetric crime environment, R∗A = R∗B ⇒
hA
hB

= pL and RIA = RIB ⇒
hA
hB

= k∗B > pL.

The assumptions of small δ and identical enforcement costs serve to highlight the pure effect of

causal links on the budget allocation. Part (i) states that agent A receives a larger budget when

crime A causes crime B than in the case of independent crimes purely because his enforcement

impacts on the size of potential B-criminals, hence on the level of crime B. Part (ii) states an

implication of causality in symmetric crime environments. When an equal budget allocation is

optimal, the harm ratio hA/hB must be smaller when crime A causes crime B than if the crimes

are independent. Thus, if the State allocates equal budgets to the independent crimes, it should be

allocating more resources to the cause crime than the effect crime. When δ is very small, R∗A = R∗B
induces b̃∗A ≈ b̃∗B and hence F (̃b∗A) ≈ F (̃b∗B). With equal budgets and same deterrence on crime

A and crime B, however, the harm from crime A must be smaller, hA = pLhB. The enforcement

budget per potential A-criminal is then a fraction k∗B = pL + α(1− FA(̃b∗A)).(pH − pL) > pL of the

enforcement budget per potential B-criminal. On the other hand, for for independent crimes, if an

equal budget allocation is optimal the ratio of per potential criminal enforcement budgets must be

equal to the ratio of harms.

We can now relax the assumption of identical enforcement costs and incorporate the case of large

δ. The first assumption does not hold for large deterrence targets and detection-based incentives in

the case of independent crimes and, for the effect crime B in the case of causal links. In those cases,

enforcement costs are larger than first-best. As for the cause crime A, we know from Proposition 6

that all deterrence targets are induced at first-best cost through crime- and detection-based systems.

Thus, the fact that crimeB enforcement costs are larger than crime A for any same, large, deterrence

target favors an increase in the budget for agent A, which reinforces the asymmetric allocation result

in Proposition 7.

In contrast, the case of large δ favors the effect crime B: Now that agent B’s enforcement
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becomes more productive, the marginal benefit from a balanced budget shift from A to B is larger.

But the possibility of a large backtracking effect through detections of the effect crime depends on

the context. It may not cause a shift of budget when the cause crime is parental child abuse where

δ is close to zero, but it should shift some budget from deterrence of drug sales to deterrence of its

various effect crimes.

6 Conclusion

In this paper we address two issues in law enforcement, motivating enforcement units to exert

effort under moral hazard, and the related issue as to the optimal allocation of an enforcement

budget between the units. We study the moral hazard problem in various environments with

multiple, related or independent, crimes. We consider two indicators that strongly correlate with

the performance of law enforcement units, crime levels and the number of detections/apprehensions,

to motivate effort in enforcement.

The key property that determines whether an indicator can be used to implement crime deter-

rence targets at first-best cost is monotonicity of the indicator in the enforcement effort of the units.

In this respect, the analysis reveals that crime-based incentives weakly dominate detection-based

incentives. The crime level is monotonic in enforcement effort whereas detection measures in some

environments and crimes are not. If available and reliable, crime-based incentives should be used,

for they implement deterrence targets at first-best cost given any enforcement budget.

Whereas crime data may not always be available, as for unobservable crimes which can be

known only if detected by law enforcers, or measures of crime may not be of reasonable accuracy,

the number of detected/apprehended crime suspects should, in principle, be available for any crime.

However, we show that detection-based incentive systems are not as effective in coping with moral

hazard because detections are not, in general, monotonic in enforcement effort. The issue is relevant

particularly for independent crimes than interlinked crimes. In crimes interlinked through causality

or an input-output relation, cross-detections data can be explored for incentive provision. Moreover,

if upstream criminals can be backtracked through detection of their downstream partners, two sets

of upstream detection data become available, one owing purely to upstream enforcement, the other

owing to the unit fighting the downstream crime. Including these cross-detection measures we

get a rich set of detection measures, some of which are monotonic in downstream or upstream

enforcement effort.

For each of the crimes in an input-output chain, effort-monotonic detection measures can be

found to implement any level of deterrence at first-best cost. Thus, for such crimes, crime- and

detection-based systems are equally effective. This conclusion does not hold for the downstream

(effect) crime partially caused by an upstream crime, that is, in the case of causally linked crimes.

None of the detection measures is monotonic in downstream unit’s effort. Under detection-based

incentives, moral hazard in enforcement generates agency costs for the downstream unit, which

offers an additional reason for favoring the upstream unit in budget allocation.
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We identify structural mechanisms that favor larger budget allocations to the upstream (input

or cause) crime. For interlinked crimes forming an input-output chain, raising deterrence of the

upstream crime reduces the benefit from downstream crime. In addition, because undeterred up-

stream criminals complete their crimes with probability one whereas for downstream criminals this

probability is less than one, the upstream crime has some priority in the budget allocation. This

is possible even if the upstream crime generates little or no social harm. The backtracking effect,

if present and powerful enough, can shift the balance in the opposite direction, to the downstream

(output or effect) crime.

An interesting question about enforcement incentives is whether crime- and detection-based

systems can be used in conjunction, rather than separately as implied in our set-up where the

only concern is moral hazard in law enforcement. Concerns about measurement errors, relative

manipulability and lags in availability of crime and detections data, if added on top of moral

hazard, we conjecture, could lead the State to use both crime and detections data in designing

incentives for its law enforcement units.

A Appendix

� Property of di function. Note that ∂di
∂µi

= 1− Fi(.) + µi
{
− ∂Fi

∂µi

}
, which is positive at low µi

values and negative at high µi values. So µ̂i is bounded away from 1. Further, ∂
2di
∂µ2i

= −2∂Fi∂µi
−µi ∂

2Fi
∂µ2i

,

where ∂2Fi
∂µ2i

= f ′i(.)
s2i

(1−µi)4 + fi(.)
−2si

(1−µi)3 . So long as ∂2Fi
∂µ2i
≥ 0,16 di(.) will be strictly concave in µi,

because ∂Fi
∂µi

> 0 (of course it is possible that ∂2Fi
∂µ2i

< 0 and yet di(.) is strictly concave). This

would guarantee a unique global maximum dmax
i = µ̂i

(
1− Fi( µ̂isi1−µ̂i )

)
at a positive µ̂i. Marginal

detections decline and become negative at µi levels above µ̂i. ||

Proof of Proposition 2.

(a) Given RB, b̃B is uniquely determined by the second equation in (12). Consider the first

equation in (12), given RB, b̃B and RA. The right-hand side is continuous and monotonically

decreasing in bA for ρ(.) < π, constant for ρ(.) = π, with limits (under the assumption that the

upperbound b̄ of benefits is sufficiently large): µA

(1− µA)ρ
(1−FB(bB)

1−µA

) + µBδ

 sA > 0 as bA → 0;

[
µA

1− µA
+ µBδ

]
sA < b̄ as bA → b̄,

where µA = µ(RA) is bounded away from 1. The limit at bA → 0 is larger than the limit at bA → b̄.

Applying the intermediate value theorem to the difference LHS −RHS of this equation and using

monotonicity, a unique fixed-point solution, b̃A, is guaranteed.

16This will be guaranteed by (weak) log-convexity of the density fi(b).
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(b) The following signs are immediate from (12):

db̃B
dµB

= sB > 0,
db̃B
dδ

= 0. For pA = π,
db̃A
dµA

=
sA

(1− µA)2π
> 0,

db̃A
dδ

= µBsA > 0.

Suppose pB < π. We have

d[pB(1− FB (̃bB))]

dµB
= [ρ′(.)

kA
k2B

(1− FB (̃bB))fB (̃bB)− pBfB (̃bB)]
db̃B
dµB

.

This expression is negative if ρ′(.) kA
k2B

(1−FB (̃bB))−pB < 0 or, using 1−FB (̃bB) = kB, if ρ′(.) kAkB < pB,

which is equivalent to strict concavity of pB = ρ(.) for pB < π, stated in Assumption 2.

Consider equilibria with pA < π. We differentiate the first equilibrium condition in (12) com-

bined with (11):

db̃A =
sA

(1− µA)2pA
dµA + δsAdµB −

µAsA
(1− µA)p2A

dpA; (26)

dpA = ρ′(
kB
kA

)

[
(1− FA(̃bA))kB

k2A
dµA +

fA(̃bA))(1− µA)kB
k2A

db̃A −
fB (̃bB)

kA
db̃B

]
. (27)

Setting dµA = 0 and rearranging terms yields db̃A
dδ > 0, unambiguously. Setting dδ = 0 and using

kA = (1− FA(̃bA))(1− µA), we get db̃A
dµA

> 0 if pA − µAρ′(.)kBkA > 0, which holds by strict concavity

of ρ(.), i.e., pA > ρ′(.)kBkA , and the fact that µA ≤ 1. Q.E.D.

Proof of Lemma 4. We begin by differentiating the second equilibrium condition in (12) and the

expression for pB (thus completing the set, coupled with (26) and (27)):

db̃B = sBdµB, (28)

dpB = ρ′(
kA
kB

)

[
−(1− FA(̃bA))

kB
dµA −

fA(̃bA))(1− µA)

kB
db̃A +

kA
k2B
fB (̃bB)db̃B

]
. (29)

Now consider the expressions in (13) and (14), beginning with dB.

Set dµB = 0, hence by (28), db̃B = 0. Clearly, if pB = π, then d[dB ]
dµA

= 0. Suppose pB < π and

thus pA = π, hence dpA = 0. Using db̃A = sA
(1−µA)2pAdµA > 0 from (26) in the expression for dpB in

(29), we get
d[dB]

dµA
= µB(1− FB (̃bB))

dpB
dµA

< 0 because
dpB
dµA

< 0.

Set dµA = 0 and consider

d[dB]

dµB
= µB(1− FB (̃bB))

dpB
dµB

+ pB(1− FB (̃bB))− pBµBfB (̃bB)
db̃B
dµB

.

The second term is positive but the third is negative, because db̃B
dµB

> 0. Therefore, the sign of d[dB ]
dµB

is ambiguous regardless the sign of the first term (which is equal to zero if pB = π, non-zero if
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pB < π).

Now consider the components of dA, beginning with

d[dAA]

dµA
= 1− FA(̃bA)− µAfA(̃bA)

db̃A
dµA

.

By Proposition 2(b), db̃A
dµA

> 0, but the sign of the expression above is ambiguous because it depends

on the magnitude of db̃A
dµA

. Therefore, the sign of d[dA]
dµA

is also ambiguous.

Set dµA = 0 and consider the expression

d[dAA]

dµB
= −µAfA(̃bA)

db̃A
dµB

.

In the case pA = π we have dpA = 0 and thus from (26) we get db̃A
dµB

= δsA > 0. If pA < π and so

dpA 6= 0, using (27) in (26) it is easy to verify that db̃A
dµB

> 0. Thus, d[dAA]
dµB

< 0, unambiguously.

The last detection measure is dAB. Holding µB constant and differentiating the corresponding

expression in (14) yields

d[dAB]

dµA
= −µBδ

[
pA(1− FA(̃bA))− (1− µA)(1− FA(̃bA))

dpA
dµA

+ (1− µA)pAfA(̃bA)
db̃A
dµA

]
. (30)

If pA = π, the second term vanishes and thus, given ∂b̃A
∂µA

> 0, the expression of d[dAB ]
dµA

in (30) is

negative. Suppose pA < π and thus dpB = 0. Using (26) in (27) we can express the second term in

the squared brackets in (30) as

−kA
dp̃A
dµA

= −kB
kA
ρ′(
kB
kA

)

[
(1− FA(̃bA)) + fA(̃bA)

db̃A
dµA

)

]
.

By substitution, the term in the squared brackets in (30) can be written as

pA(1− FA(̃bA))− kB
kA
ρ′(
kB
kA

)

[
(1− FA(̃bA)) + (1− µA)fA(̃bA)

db̃A
dµA

)

]
+ (1− µA)pAfA(̃bA)

db̃A
dµA

,

or, grouping the terms, as

(1− FA(̃bA))[pA −
kB
kA
ρ′(
kB
kA

)] + fA(̃bA)(1− µA)
db̃A
dµA

[pA −
kB
kA
ρ′(
kB
kA

)],

which is positive because pA >
kB
kA
ρ′(kBkA ) by strict concavity of ρ(.) and db̃A

dµA
> 0 by Proposition 2(b).

Hence, d[dAB ]
dµA

< 0.
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Finally, consider

d[dAB]

dµB
= (1− µA)δ

[
pA(1− FA(̃bA)) + µB(1− FA(̃bA))

dpA
dµB

− µBpAfA(̃bA)
db̃A
dµB

]
. (31)

If pA = π and thus dpA
dµB

= 0, db̃A
dµB

= δsA > 0, implying d[dAB ]
dµB

= (1 − µA)δπ[(1 − FA(̃bA)) −
µBfA(̃bA)δsA], whose sign is ambiguous. If pA < π and thus dpA

dµB
6= 0, again no clear statement can

be made about the sign of d[dAB ]
dµB

because (see (26) and (27)) the signs of db̃A
dµB

when pA can adjust

and the sign of dpA
dµB

when b̃A can adjust are ambiguous. Q.E.D.

Proof of Proposition 4. Fix an allocation (RA, RB) such that Ri > 0, i = A,B. Fix also

µB > 0 and let ẽ(RA) denote the first-best effort input under budget RA, producing the detection

probability µA(RA) and the pair {b̃A, b̃B} through (12). Denote the resulting dAB detections by

dDAB(RA|µB) as determined by (14). Consider agent A’s incentives based on dAB, as follows:

wDA (dAB|µB) =

{
z(ẽ(RA)), if dAB ≤ dDAB(RA|µB)

0, otherwise.
(32)

Agent A has no incentive to raise effort above ẽ(RA) because effort is costly and the reward is

the same, whereas decreasing effort results in dAB > dDAB(RA|µB) and reduces the reward to zero.

Given the functional relationship between {µA, µB} and {b̃A, b̃B} through (12), any crime A level

can be implemented by appropriately adjusting RA and adjusting dDAB(RA|µB) in (32).

Similar arguments apply for Agent B’s incentives, based on dAA. Q.E.D.

Proof of Proposition 5. We know that under an equal budget allocation in a symmetric crime

equilibrium, pA = π, pB < π, and b̃A > b̃B.

Total differentiation of the state’s objective function at the induced crime equilibrium yields

dSH = −hAfA(̃bA)[db̃A]− pBhBfB (̃bB)[db̃B] + hB(1− FB (̃bB))[dpB]. (33)

Since pA = π and hence dpA = 0, equations (26)-(29) become:

db̃A =
µ′(RA)sA

(1− µ(RA))2π
dRA + µ′(RB)δsAdRB, db̃B = µ′(RB)sBdRB,

dpB = ρ′(.)

[
−µ
′(RA)(1− FA(̃bA))

(1− FB (̃bB))
dRA −

fA(̃bA))(1− µ(RA))

(1− FB (̃bB))
db̃A +

(1− µ(RA))(1− FA(̃bA))

(1− FB (̃bB))2
fB (̃bB)db̃B

]
.
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Substituting the expressions for db̃A, db̃B and dpB in (33) we get

dSH = −hAfA(̃bA)[
µ′(RA)sA

(1− µ(RA))2π
dRA + µ′(RB)δsAdRB]− pBhBfB (̃bB)µ′(RB)sBdRB

+hBρ
′(.)

[
− µ′(RA)(1− FA(̃bA))dRA +

kA
kB
fB (̃bB)µ′(RB)sBdRB

−fA(̃bA)(1− µ(RA))

(
µ′(RA)sA

(1− µ(RA))2π
dRA + µ′(RB)δsAdRB

)]
. (34)

Set RA = RB, dRA = −dRB and let Fi(.) = F (.), si = s, i = A,B (symmetric crime environment)

in (34). Rearranging the terms and simplifying (34), as δ → 0 we have dSH < 0 if

hA > hB(1− µ(
R

2
))2

[
f (̃bB)π

f (̃bA)
(pB − ρ′(.)

kA
kB

)− ρ′(.)

1− µ(R2 )
(1 +

πkA.µ(R2 )

sf (̃bA)µ′(R2 )
)

]
,

which reproduces (17). If f (̃bB)π ≤ f (̃bA), the coefficient of hB in the squared brackets is definitely

smaller than one because p̃B < 1 and ρ′(x) > 0 for x < 1. Then, (17) holds and the adjustment

dRA = −dRB > 0 at Ri = R/2 reduces SH unless hB is sufficiently larger than hA. Q.E.D.

Proof of Lemma 5. Consider first the impact of µA on the detection measures for crime A.

Because db̃A
dµA

> 0,

d[dAA]

dµA
= (1− FA(̃bA))− µAfA(̃bA)

db̃A
dµA

, sign ambiguous,

d[dAB]

dµA
= −δµBαpH(1− FB (̃bB))

[
(1− FA(̃bA)) + (1− µA)fA(̃bA)

db̃A
dµA

]
< 0.

On the other hand, The sign of d[dAA]
dµB

is ambiguous because db̃A
dµB

has an ambiguous sign.

d[dAA]

dµB
= −µAfA(̃bA)

db̃A
dµB

;

d[dAB]

dµB
= (1− µA)δpHα

[
(1− FA(̃bA))

[
1− FB (̃bB)− µBfB (̃bB)

db̃B
dµB

]
− µB(1− FB (̃bB))fA(̃bA)

db̃A
dµB

]
.

Using db̃B
dµB

= sB and db̃A
dµB

= (1 − µA)δαpH [1 − FB (̃bB) − µBsBfB (̃bB)]sA in the expression above

reveals that the sign of d[dAB ]
dµB

depends on the sign of 1−FA(̃bA)−µBfB (̃bB)fA(̃bA)(1−µA)δpHsA,

which is ambiguous.

The sign of d[dB ]
dµB

is also ambiguous; dB is in the form µBXB(1−FB (̃bB)) whereXB is the measure

of potential B-criminals and b̃B is increasing in µB. However, d[dB ]
dµA

= −αµAfA(̃bA) db̃AdµA
< 0.

For the proof of the claim that dAA, dAB and dB are monotonic in µB in a range of small µB

levels, it suffices to verify that the signs of the expressions of d[dAA]dµB
, d[dAB ]

dµB
and d[dB ]

dµB
become definite

as µB → 0. Q.E.D.
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Proof of Proposition 7. Differentiation of (23) with respect to the endogenous variables yields

dSH = −fA(̃bA)
[
hA + α(pH − pL)(1− FB (̃bB))hB

]
db̃A−

[
pL + α(1− FA(̃bA)).(pH − pL)

]
fB (̃bB))hBdb̃B.

(35)

Assume δ is sufficiently small, so that b̃B = sBdµB and, b̃A ≈ sAdµA. In a symmetric crime

environment and under an equal budget allocation RA = RB, µA ≈ µB and thus, b̃A ≈ b̃B,

fA(̃bA) ≈ fB (̃bB) and FA(̃bA) ≈ FB (̃bB). Using these facts in (35) with a negative sign for dµB and

arranging the terms yields, dSH < 0 if

f (̃bA)s
hA
hB

>
[
pL + α(1− F (̃bA)).(pH − pL)

]
f (̃bB))s− f (̃bA)α(1− F (̃bB)).(pH − pL)s.

Thus, dSH < 0 if hA > pL.hB. Q.E.D.

dSH = −fA(̃bA)
[
hA + hBρ

′(.)(1− µ(RA))
]
db̃A − hBρ′(.)µ′(RA)(1− FA(̃bA)) dRA

−hBfB (̃bB)

[
p̃B − ρ′(.)

(1− µ(RA))(1− FA(̃bA))

(1− FB (̃bB))

]
db̃B

=

[
−f (̃bA)

[
hA + hBρ

′(.)(1− µ(
R

2
))
] µ′(R2 )s

(1− µ(R2 ))2π
− µ′(R

2
)(1− F (̃bA))hBρ

′(.)

]
dRA

−
{
f (̃bA)[hA + hBρ

′(.)(1− µ(
R

2
))]µ′(

R

2
)δs

+hBf (̃bB)

[
p̃B − ρ′(.)

(1− µ(R2 ))(1− F (̃bA))

(1− F (̃bB))

]
µ′(R2 )s

(1− µ(R2 ))2

}
dRB.
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