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Abstract

This paper examines effect of outdoor air pollution on child health in India by

combining satellite PM2.5 data with geo-coded Demographic and Health Survey of

India(2016). Pollution levels vary due to seasonal open biomass burning events (like

crop-burning and forest fires) which are a common occurrence. Our identification

strategy relies on spatial and temporal differences in these biomass burning events to

identify the effect air pollution on child health. Our results indicate that children ex-

posed to higher levels of PM2.5 during their first trimester and during the post-natal

period of first three months after birth have lower Height-for-age and Weight-for-age;

the effect is not limited to just rural areas, but prominent for Northern states of India

which have higher incidence of such events.
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Early Life Exposure to Pollution:

Effect of Seasonal Open Biomass Burning on Child

Health in India

[PRELIMINARY DRAFT]

1 Introduction

Pollution in any form air or water poses an environmental risk to the health of the exposed

population. Literature from both developing and developed nations informs about health

effects that air (Chay and Greenstone, 2003) and water pollution (Brainerd and Menon,

2014) have on children. In spite of enormous evidence about ill effects of pollution there

is little effective management or regulation present to curtail activities which contribute to

high levels of pollution in developing nations.

According to WHO global air pollution database, out of 15 most polluted cities in the

world 14 belong to India. Another recently published report by Health Effects Institute on

air pollution in India (2018) reports that air pollution was responsible for 1.1 Million deaths

in India in 2015. The major contributors to air pollution in India are household burning

emissions, coal combustion, agricultural burning and transport. In presence of ineffective

pollution regulating policies air pollution levels reach alarming levels in various parts of India.

This warranties a closer look at the air pollution problem from the standpoint of welfare of

the younger generation currently being exposed to harmful pollutants with possible long

lasting effect on their health.

This paper examines the effect of outdoor air pollution on child health in India. Partic-

ularly we study the effect of early life exposure to air pollution (as measured by PM 2.5)

on child’s underweight and stunting measures. We use gridded satellite data on PM2.5 and

combine it with the DHS-4, 2016 round for India. Using GPS locations of sampled clusters

we are able to produce rich geo-spatial information about local pollution levels in the place of

residence of the child. The pollution levels are affected by the open biomass burning events
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(we call them fire events) like crop burning and forest fires. These open biomass burning

events are seasonal in nature as they are driven by cropping patterns and climatic condi-

tions. Most of the crop burning activity is attributable to rice crop residue burning which

happens in the months of October and November (Wheat crop residue burning is another

major contributor which takes place in the months of April and May). Forest fires also form

a big component of open biomass burning in India and it mainly takes place in the dry and

hot months of March to May. We are able to link the occurrence of these fire events to

local pollution levels using geo-coded NASA’s data on global fire-events. In a regression of

child health on local pollution level, household income and behavioural choices are omitted

variables which make local pollution levels endogenous. We use neighbouring (or non-local)

fire-events as an instrument for local pollution levels as they are not related to household

behavioural choices or local economic activity, but they affect local pollution levels as smoke

and pollutants from these neighbouring fire events can travel long distances. We exploit

spatial and temporal variation in these fire-events to identify the effect of outdoor pollution

on child health.

Our analysis shows that air pollution negatively affects children’s health. Exposure to

air pollution during the first trimester decreases both Height-for-age and Weight-for-age

for children aged below 5 years. Similar effect on child health is also seen for exposure to

pollution during first three months after birth. The effect is present for both urban and rural

areas, with Northern states being more vulnerable due to high incidence of fire events and

consequent high pollution levels in the areas.

Evaluating this link between poor air quality and child health is important as many

regions in India have very high pollution levels which breach the safe standards often. Since

stunting is affected by early life exposure to pollution so it can have long lasting effect

on life earnings of a child due to poor cognition and it also increases the vulnerability

towards hypertension and diabetes. In absence of proper regulation regarding crop burning

or effective forest fire management policies in India the problem will only grow in magnitude

overtime.

The literature linking air pollution to child health has mostly focused on child mortality.
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We instead steer our analysis towards child’s growth indicators conditional on child’s survival.

Most of the studies for developing nations lack rich geo-spatial data for analysis and relies

on pollution measures which are estimated for a large area (hence they are riddled with

measurement error). To the best of our knowledge this is the first study for India which

links child health with local pollution levels and occurrence of fire events. Also open biomass

burning problem is well known in India but understudied in terms of its effect on child health,

our study is an attempt to bridge this gap.

The paper follows the following structure. The next section provides a literature overview

of effect of pollution on child health. Section 3 focuses on the pattern and reasons behind of

biomass burning in India. Section 4 describes the various datasets (like NASA’s fire events

data, satellite pollution data) that we use in our analysis. The next section presents the

empirical methodology that we follow and it is followed by results in Section 6. Lastly

section 7 concludes with an estimate of the extent of the problem and discusses current state

of policies regarding biomass burning in India.

2 Previous Literature

Our work is motivated by the “fetal origins” hypothesis (Douglas and Currie, 2011), which

states that the in-utero period of a child critically determines mortality outcomes, disease

prevalence and future health outcomes, abilities and earnings. The health of a child is a

function of both genetic (nature) and non-genetic (nurture) factors. Our genes constantly

interact with the environment and exposure to pollution can mutate the genetic coding.

These mutations due to interaction with environment are called epigenetic changes and the

normal functioning of a gene is altered by these changes. During early phase of a pregnancy

an embryo contains stem cells which are “coded” to later on develop into different body

organs/parts like lung cells, liver cells, teeth etc. Exposure to pollution at this stage can

trigger a series of epigenetic changes due to which future health outcomes of a child can be

negatively affected.

The intrauterine period has been the focus of many studies in economics literature which
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have linked occurrence of early life shocks to multiple outcomes. Early life shocks studied in

economics literature include incidence of a) disastrous events (like famines, war, drought);

b) nutritional shocks (like introduction of iodized salt, pregnancy during Ramadan) and

c) pollution (air or water). Currie and Vogl (2013) provide a review of these early life

shocks (a and b) on various outcomes; broadly summarized these shocks negatively affect

adult cognition, years of schooling, literacy status, adult height and stunting measures; and

increase the likelihood of presence of birth defects, prevalence of heart disease and obesity.

The focus of our study is in-utero exposure to air pollution and Currie et. al (2014)

reviews landmark studies which have been done in this area. Most of these studies are

from developed nations with few exceptions. Similar to previous studies a major part of

the literature focuses on learning outcomes (test-scores) and earnings which are negatively

affected due to in-utero exposure to pollution (Bharadwaj et al., 2013; Isen et al., 2013 &

Sanders, 2012).

The strand of literature which is most relevant for our study has mainly looked at the

effect of in-utero or early life exposure to air-pollution on infant mortality and birth weight.

Few papers in this area have used natural experiments to causally identify the effect of

air pollution on infant survival, for example Chay and Greenstone (2003a and 2003b) use

introduction of environmental regulations under Clean Air Act, 1970 and recession in 1981-82

in United states to show that reduction in pollution levels led to reduction in infant mortality.

Currie and Walker (2011) show that introduction of congestion reducing automated toll

payment systems in United States (which reduced number of idle vehicles emitting harmful

pollutants) reduced pre-mature and low birth-weight births. Currie and Neidell (2005) uses

spatial and temporal variation in CO levels to analyse the effect of CO levels on infant

mortality.

The paper by Greenstone and Hanna (2014) is one of the landmark studies which analyses

the effect of water and air pollution regulation policies on infant mortality in a developing

nation context (India). Another study from a developing nation includes Foster et al. (2009)

which uses Mexico’s clean industry certification program to study its effect on pollution (we

use a similar measure of pollution i.e. satellite data on Aerosol Optical Depth to infer PM2.5
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levels) and resulting respiratory related infant deaths. Wildfires and their negative health

effects (like increase in infant mortality, reported asthma cases, pre-term births etc) have also

been studied in context of Indonesian wildfire of 1997 (Jayachandran, 2009; Rukumnuaykit,

2003; Kunii et al., 2002; Frankenberg et al., 2005 & Barber and James, 2000), California

wildfires (Holstius et al.,2012) and Australian wildfires (O’Donnell and Behie, 2015). Two

studies on India inform about the effect of water pollution on child health. Brainerd and

Menon (2014) have focused on use of fertilizers in India during crop sowing season which

increases concentration of harmful chemicals in water. They find that exposure to these

pollutants during the month of conception increases infant mortality and reduces Height-for-

age and Weight-for-age for children. Do et al. (2018) have shown that regulation targeting

industrial pollution in the Ganga River, led to reduction in water pollution levels and infant

death.

In case of India literature has shown how air pollution can affect infant mortality but no

study has focused on post-natal growth outcomes for surviving children. Also due to lack of

local air pollution monitoring systems which cover the entire nation, there has been no study

which calculates local pollution levels and assesses its effect on health outcomes. To the best

of our knowledge our study is the first one to use satellite data to calculate local pollution

levels (mean pollution levels in 50 km radius) during the in-utero period of a child and study

its effect on Height-for-age and Weight-for-age measures in the developing country setting.

3 Background

India has a substantial amount of land under cultivation( 60%) and under forest cover( 25%),

with majority biomass burning events taking place in these areas. Over the past few decades

Indian agriculture has been marked with expansion of irrigation facilities, adoption of high

yield variety seeds and increased mechanisation (like use of combine harvester). A combi-

nation of these factors led to adoption of multi-cropping system by farmers which leaves

little time in between the harvest of one crop and sowing of another. In this scenario crop

residue burning thus emerged as the quickest and cheapest way to get the farm ready for
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the next crop. Cereals are the prime contributor to crop burning activity in India, with rice

and wheat crop residue burning forming the major chunk of residue burning process (Jain

et al, 2014). Two major residue burning seasons are thus related to crop harvest seasons:

kharif crop harvest (rice stubble burning) which takes place in the months of October and

November; and rabi crop harvest (wheat straw burning) which happens in the months of

March to May.

Biomass burning in India is not limited to just crop residue burning, it covers forest

fires as well. Forest fires or wildfires are caused by various factors acting in conjunction

with each other. These factors together form the basis of a concept called “Fire Triangle”

according to which mainly three factors are needed to start a wildfire: fuel (biomass in form

of vegetation growth), oxygen and appropriate climatic conditions (high temperature, low

pressure, windy conditions). In most cases wildfires start in scrub area as a surface fire

with low intensity, but with enough fuel build up their intensity increases and they spread

quickly to other areas. Rising ground fires posit a threat to tall trees which upon catching

fire burn with higher intensity. This is called a ladder effect in which ground fires climb

surface fuels to spread to canopy and result in an even bigger fire called Crown fires. Forest

Survey of India lists vulnerable months for each state when forest fires are most likely to

happen, which mainly span the high temperature months from March to June. Wildfires

happen due to both intentional and unintentional human activity. In North Eastern states

and in states along the Eastern ghats slash and burn activity is rampant wherein vegetation

in forests is cut (slashed) and then burned to clear the piece of land for human use. In alot

of cases unintentional human activities like leaving active cigarette butts behind in open

forests lead to forest fires. Other natural factors which cause forest fires include lightening

which produces a spark to start a fire in dry vegetation.

In western countries forest fires are mainly responsible for the carbon content release due

to biomass burning however in case of India (and other South Asian countries) crop residue

burning contributes the most to total carbon release. Figure 1 shows that in South Asia,

India stands out both in terms of total area burned (4.5 Million hectares burned in 2015) and

in terms of total carbon content (1.5 million metric tonnes) released due to biomass burning
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(we also include China for comparison, which does worse than India in terms of open biomass

burning). Figure 2 provides details about biomass burning events in India (data for years

2010-2016). A raw count of biomass burning events in India shows that roughly both crop

residue burning and forest fires contribute equally (50% each). However if we weigh these

events based on the population density 4 of the area in which these events occur then we

see that crop burning events contribute more to the total biomass burning events (65%).

This mainly happens because residue burning activities happen in more populated areas as

against forest fires which happen in low density areas. Figure 3 provides the population

weighted split between forest fires and crop residue burning in few selected states in India.

As can be seen in this graph, with an exception of Punjab almost all other states are affected

by both forest fires and residue burning.

Biomass burning is a major source of pollution as it releases harmful pollutants like Car-

bon Dioxide(CO2), Carbon Monoxide (CO), Sulphur Oxides and particulate matter (PM) in

the atmosphere. The release of harmful pollutants in the atmosphere is captured by aerosol

loading 5 in the region. Studies have found that aerosol loading increases in the downwind

regions and in the vertical direction as well. Kaskaoutis et. al (2014) find that crop burning

in Punjab has an effect on aerosol properties of the Indo-Gangetic Plains, also particulate

matter (PM2.5) concentrations increase near ground surface and the concentration of pollu-

tants fall as we move from west to east India. To summarize, fine particulate matter released

during biomass burning incidents have long range travel properties and affect not just the

local areas but far away regions as well.

In Figure 4 we plot mean PM2.5 and mean number of biomass burning events (mean

for all India across all sampled clusters) for each month-year from 2010 to 2016. The fire

events graph (dotted line) shows two clear peaks in the summer months (March to May) and

winter months (October and November) due to forest fires and crop burning activities which

4Geo-coded fire events have been projected onto land mask cover for India to categorize each fire event

as an event which happens in a forest area vs cropped area. This data is then projected onto density map

of India, to get the density of the population in which these events take place.
5Aerosol loading is the suspensions of solids and/or liquid particles in the air that we breathe. Dust,

smoke, haze are also part of aerosol loading
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happen during these times. The solid line corresponding to mean PM2.5 values follow a

similar pattern with higher pollution levels for months with higher fire events incidence and

lower pollution levels during the rainy period in monsoon season 6. We use this relationship

between PM2.5 and fire-events to identify the effect of pollution on child health.

4 Data

4.1 Demographic Data

The demographic data we use comes from the fourth round of Demographic and Health

Survey (2015-16) for India. The DHS is representative at the national and regional level,

it contains detailed information about birth history of each woman who was interviewed.

In this latest DHS round for India 601,509 households were interviewed, which included 0.7

million eligible women in the age group 15-49 and 0.22 million children aged below 5 years for

whom anthropometric measures of health were collected. The DHS-IV sample is a stratified

two-stage sample and the primary sampling units (PSUs) correspond to villages in rural

areas and blocks in urban areas. The overall sample comprises of around 28000 clusters and

the GIS data for all these clusters is also available.

We use anthropometric measures like Height-for-age and Weight-for-age (WHO standard

z-scores) to measure the health effect that outdoor pollution has on child health. We also

make use of child characteristics like birth order, age and gender. As informed by previous

literature mother’s characteristics can also affect child’s health and hence we control for the

age at which she had the child and her education level. DHS data also contains information

about source of water, method of cooking and toilet facility of the dwelling, all of these

characteristics have important bearing on health of a child and we include them in our

analysis as well. An important feature of the DHS data is the birth history of a woman,

the month and year of every child ever born to a woman is recorded. We use the location

6Climatic conditions determine pollution levels to a great extent, for example pollution levels tend to be

higher during winters as the air is heavier due to low temperature with little or no winds because of which

pollutants tend to settle near the ground surface
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of the cluster and birth date of a child to construct measures of exposures to fire events at

different points of time for the child (first three months after birth and in-utero exposure in

the three trimesters separately). We make an important assumption that the place of birth

(and place of stay of mother when the child was in-utero) is same as the same of current

residence of a child 7.

We provide summary statistics of our analysis sample in Table 1. 52% of children in our

full sample are males with mean age around 30 months (2.5 years old) and the mean birth

order of children is 2.2. The average age of at which mothers have children is 24.5 years.

Mother’s had on an average 6 years of education and 97% of fathers are literate. Three-

fourth of our sample consists of rural households and the same proportion of households

report their religion to be Hindu and the mean household size is 6.5. 88% of the households

are headed by a male member and the average age of household head is 44.5 years. 85% of

the households have an electrical connection, only 23% of the households use piped water as

their source of drinking water, 28% of our sample uses clean source of cooking fuel like LPG

or bio-gas and the mean open defecation rate in a cluster is 43%.

The mean Height-for-age and Weight-for-age Z scores for our sample is -1.48 and -1.53

respectively (mean weight-for-height is -0.96 for our sample). Height-for-age is a measure

of stunting and it represents the effect of early life shocks that a child receives. Stunting

generally occurs before age two and its effects are largely irreversible. It is associated with an

underdeveloped brain, with long-lasting harmful consequences, including diminished mental

ability and learning capacity, poor school performance in childhood, reduced earnings and in-

creased risks of nutrition-related chronic diseases such as diabetes, hypertension, and obesity

in future. Weight-for-age (underweight measure) reflects body mass relative to chronological

age. It is influenced by both the height of the child (height-for-age) and his or her weight

(weight-for-height). Deaton and Dreze (2009) emphasize on the use of Weight-for-age as

the health status indicator for children as its a comprehensive measure which captures both

7This assumption is a standard assumption which is employed by many papers which used DHS data for

analysis. In our sample the mean number of years for which the interviewed family has stayed at the place

of residence is around 15 years. See Brainerd & Menon, 2014
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stunting and wasting. The mean level of PM2.5 is above 40ug/m3 during all critical windows

of development.

4.2 Pollution Data

In India, ground-based PM2.5 measurement started post 2009 under the national ambient air

quality monitoring program maintained by Central Pollution Control Board. The network

has slowly expanded to around 90 sites across 35 cities over the years, which leaves majority

of India unmonitored. Amongst these cities, only Delhi has greater than 20 monitoring sites

while most of the cities have a single monitoring site. Furthermore, most of the sites do

not have continuous temporal data. To address the paucity in ground-based PM2.5 data in

India, we estimate PM2.5 exposure using satellite data (van Donkelaar et al., 2010). We

convert aerosol data retrieved from MISR (Multiangle Imaging SpectroRadiometer) to PM2.5

using a conversion factor. The inferred PM2.5 are regridded at 0.1 * 0.1 degree resolution

(10km*10km grid) using spline interpolation technique. The low bias in satellite-derived

PM2.5 data is corrected using regression method described in our previous work (Dey et al.,

2012). Previously we used this database to estimate premature mortality burden at district

level. Here PM2.5 statistics are generated at monthly scale for its use in the regression

model. We use cluster location from DHS data and calculate mean PM2.5 in the 50km

radius for three month periods at 4 different points of time over life cycle of a child (as fetus:

3 trimesters and post-natal: first 3 months after birth). The data for pollution levels in

first trimester are missing for 3.5% of our observations, these missing observations are due

to missing satellite retrievals due to cloud covers.

4.3 Fire incidents Data

Our source of biomass burning events (called fire incidents) is NASA’s Fire Information for

Resource Management System (FIRMS) data which captures real-time active fire locations

across the globe. The FIRMS data that we use is called MODIS (shortform for MODerate

Resolution Imaging Spectro radiometer) data and it records fire incidents at pixel level where

11



each pixel is identified by a latitude and longitude reading. Each latitude (and longitude)

is the center of a 1 km fire pixel (1 km X 1 km in size). This data records not just the

location of a fire but also the brightness temperature of fire (in Kelvin units) and date

and time when the incident was picked by the Terra satellite. An observation for a fire

incident in MODIS data for a latitude and longitude does not necessarily mean that the

size of the fire is 1 square kilometre, but it means that atleast one fire is located within

this fire pixel (under good conditions the satellite can detect fires as small as 100m2). The

MODIS data is available on a daily basis since November 2000 and NASA reports that the

fires captured by this dataset are mostly vegetation fires. NASA data on fire incidents also

provides a variable “confidence”, which depicts the quality of the observations and it ranges

from 0-100. Following ecological literature which has explored this dataset, observations with

medium confidence level (value greater 70) have been selected for our analysis8 . We provide

our analysis with an even higher cut-off value of 85 and our results essentially remain stable

9. NASA’s FIRMs data can also have some missing values attributable to satellite sensor

outage however major incidents reported for sensor outage happened in years 2001-2003

which precedes our analysis period.

We use the cluster GIS information from DHS data and calculate the total number of all

fire events which took place in a) 50km radius (we call this local exposure) and b) between

75 and 50 km radii (non-local exposure) for 3 month periods at 4 different points of time

over life cycle of a child. To ensure respondent confidentiality, all clusters in the DHS data

are displaced from their true location. The displacement is done by displacing an urban

cluster by 2km and a rural cluster by 5km with 1% of the rural clusters being displaced by

10km. The displacement can take place in any direction but the cluster remains within the

country boundary, within the same state and district. We take the radius for our analysis

to be 50 km which is large enough so that the true location of the cluster is contained

within the 50km radius circle, additionally a large radius ensures that both near and far fire-

incidents get captured (as smoke from fire-incidents which do not happen in the immediate

8See Srivastava and Garg, 2013
9We also conduct alternative analysis with confidence value as 0 and 85, all our results still hold
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neighbourhood can also travel long distances).

The exposure to fire-events and mean PM2.5 variables essentially contain the spatial and

temporal variation in our data. They are constructed for each child using information about

conception location (cluster c) and date (quarter q and year t, back calculated using date

of birth). Fire events in the neighbourhood affect the local PM2.5 levels. We show this link

in Figure 5 an Figure 6. Figure 5 shows a descriptive relationship between PM2.5 levels and

fire incidents. We calculate mean number of fire incidents and PM2.5 for each month in 50

km radius for each state and then produce a linear fit of the relationship between the two.

As is evident there is a positive relationship between the variables and for comparison we

plot few observations as well. Punjab which is depicted by a triangle has the highest number

of fire incidents in October (the time of rice crop harvest and wheat sowing season) and

correspondingly very high pollution level as well. Manipur (represented by square figure)

which is one of North Eastern states has lesser number of fire incidents than Punjab in its

peak fire season and lower level of pollution. Other states (Kerala-circle, Madhya Pradesh-

diamond) have relatively very low number of fire incidents and much lower PM2.5 levels. In

Figure 6 we plot the relationship between local mean PM2.5 and non-local total number of

fire-events (which lie between 75 and 50 km radii around cluster location). This shows that

open biomass burning events happening in the surrounding areas is positively correlated

with local pollution levels. We now link pollution levels during the in-utero period with

anthropometric measures for children in figure 7. The descriptive graph shows a negative

relationship between Height-for-age and exposure to pollution, we explore this relationship

in greater detail later in section 5.

We now focus on the temporal and spatial variation in fire-events. Figure 8 shows the

mean number of fire-events across all sampled clusters in India (average for data from year

2010 to 2016). The graph shows the seasonal pattern in our data, in the dry and hot months

from March to May the number of fire-events increase due to more incidents of forest fires

but also because this period coincides with wheat crop residue burning. The months of

June to September is the monsoon period when almost no fire-events are captured. October

and November are the rice crop harvest months. The rice crop residue burning is primarily
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responsible for biomass burning during these months. Hence we see a seasonal pattern which

is dictated by both weather and crop cycles. Figure 9 shows a similar pattern for select states,

the North Eastern states of Assam and Manipur have highest number of fire incidents in the

first quarter, Haryana and Punjab show an uptick in fire incidents in quarter 2 and 4 which

correspond to the harvest season of wheat crop and rice crop. The southern states have very

low number of fire incidents across all months.

Figure 10 shows the spatial variation in our data at the district level (although it should

be noted our empirical strategy uses the spatial variation at a much smaller level of a

PSU). The figures shows total fire incidents that happen in a district in a year (average

for years 2010 to 2016). Districts in Punjab and some in North Eastern states (Assam,

Meghlaya, Tripura, Manipur and Mizoram) are high intensity areas. The Western and few

parts of Southern of India are almost unaffected by fire incidents while few districts in Central

India (Madhya Pradesh and Chattisgarh) and states along the eastern ghats(like Odisha and

Andhra Pradesh) show medium intensity of fire-incidents. 10

5 Methods

We begin by investigating whether early life exposure to outdoor pollution has an impact on

child health. We focus on in-utero exposure to outdoor pollution during the first trimester.

Formally, we estimate a fixed effects regression as described below :

Hicqt = θ1PMcqt + βXicqt + γc + δt + λq + ρ
1
ct + ρ

2
qt + εicqt (1)

where PMcqt captures the mean PM2.5 in the 50km radius for the first trimester for a

child who is conceived in cluster c. Quarter q and year t correspond to quarter and year

of conception. Different clusters (villages or blocks) can have different levels of development

(health infrastructure) which can affect health of a child hence we include cluster fixed effects

10As discussed in section 3 each state has a different mix of open biomass burning, which comprises of

crop-burning and forest-fires. Punjab has all reported fires as crop fires, and other states like Assam, Madhya

Pradesh, Chattisgarh etc have around 50-65% of total fires as crop fires and the rest are forest fires.
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in our specification. We also include quarter fixed effects and year fixed effects to account for

any heterogeneity present at this level. We next introduce two more interactive fixed effects:

cluster into year, ρ1ct and quarter into year, ρ2qt. These fixed effects capture the spatial and

temporal variation in our data. Our identification comes from these fixed effects, that is

essentially we compare children who are born in the same cluster and year but in different

quarters. The children being compared thus have varying exposure to outdoor pollution as

some quarters have a high levels pollution while others have low pollution. Simultaneously

we also compare children across different clusters but who are born in the same quarter and

year, this exploits the spatial variation in pollution levels across clusters.

Our main outcomes of interest (Hicqt) are z-scores for Height-for-age (stunting measure)

and Weight-for-age (underweight measure) for children below 5 years of age. We also control

for other confounding factors in the vector Xicqt which includes gender, birth order and age

of child, mother’s and father’s educational status, mother’s age at birth, age and gender of

household head, dummy for whether household has pipedwater, has clean cooking source,

whether household practices open defecation and the fraction of households who practice

open defecation in the cluster (excluding self).

It is essential to define a local area for a household which corresponds to the region of

economic activity that a household depends on and also affects based on its behavioural

decisions. The economic activity of a household determines key inputs (like income) which

feed into the production function of health of a child. An example of this can be dependence

of a household on nearby forest resources for fuel-wood consumption or for livelihood (if it

sells these resources in a market). In this case the choice of use of fuel-wood by household

affects the pollution level in the region. Additionally the forest cover is affected by the

demand for forest resources (like fuel-wood) in the market, which in turn affects the pollution

level in the area where they are finally consumed. A similar logic holds true for crop residue

burning as well, its a conscious decision taken by a household which impacts local pollution

levels and at the same time affects farmers income which is a determinant of child health.

This essentially points towards the fact that local pollution level is endogenous in the region

of economic activity of the household.
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In India a little over 40% of households use wood as their source of fuel for cooking

(NFHS-4 Report for India) 11. An active fuel-wood market exists in India and Foster and

Rosenzweig (2003) discuss that forest cover will depend on geographic scope of the market

for forest products. This geographic scope of the fuel-wood market can inform us about the

area of economic activity of households which sell fuel-wood. Chakravorty et. al (2014) show

that fuel-wood collection is likely driven not only by rural household demand but especially

by demand from towns in close proximity (geographic scope of fuel-wood market). As the

proximity to nearest town increases the number of sellers of fuel-wood decreases sharply,

the average distance to town for these sellers in their sample from IHDS is around 15 km.

We choose a large enough radius of 50km (we also show results for a smaller 30km radius)

around the household location to ensure that this local fuel-wood market is contained in it.

The household behavioural choice of collecting fuel-wood or crop-burning and household

income are omitted variables in our specification hence the local pollution variable is endoge-

nous. To solve this endogeneity problem we rely on an instrumental variable which in our

case is the number of fire-events which happen in non-local areas. In precise terms these are

the fire-events which happen between 75 and 50km, they impact local mean PM2.5 levels

but they are not affected by household behavioural choices. The IV that we use has been

explained diagrammatically in Figure 11, where the light gray center denotes the cluster lo-

cation, the white circle forms the 50 km radius around the cluster and the grey ring are the

fire-events which take place between 75 and 50 km radii around the cluster. Our endogenous

variable is the mean PM2.5 variable which is calculated for the white circle and the number

of fire-events in the grey ring form the IV. We choose the fire-events in non-local far away

areas (75 to 50km radius) to ensure that they belong to a region which is not a part of

economic activity area of a household. This essentially removes the effect of dependence on

crop-burning or nearby forest resources (or farmlands) for livelihood or fuel-consumption. By

capturing fire-events in this ring, we ensure that we only capture the part which contributes

to the local pollution levels but is not correlated with household behavioural choices.

11This fuel-wood is obtained from forests and the demand for fuel-wood depends on household’s income

(Chaudhuri et. al, 2002).
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Formally our first stage is the following:

PMcqt = θ2Firecqt + ηc + σt +ωq +Ω
1
ct +Ω

2
qt + εicqt (2)

In equation (2) all variables are same as the ones which are used in equation(1) 12. Firecqt

is our IV which is the number of fire-events which happen between 75 and 50km 13. In this

2SLS methology, the fitted values of local PM2.5 are obtained from equation (2) and then

plugged in equation (1) to get unbiased effect of local outdoor pollution on child health.

Using this IV we are able to purge the effect of other polluting activity (whose spatial and

temporal patterns are not same as the pattern for biomass burning events) and focus on

pollution due to non-local fire-events which is independent of household behavioural choices.

There are two main limitations of our study, first we are only able to capture big fire-

events as satellite recordings for fire-events fail to capture smaller fires which happen in

smaller farms. The satellite can only capture fires which burn brightly enough (big enough

to be quite intensive which guarantees that they get captured) to be recorded below the tree

canopy or cloud cover. The estimates we thus get can be considered as the lower-bound effect

of outdoor pollution due to non-local fire-events on child health. Secondly the perfect IV is

the one which captures all non-local fire-events in the downwind direction with high enough

wind speed. However since we lack a rich enough ecological model which tags each fire-event

as a downwind fire-event with high enough wind speed that it affects local pollution levels,

so our model is the second best model by which we capture the effect of non-local fire-events

on local pollution levels.

A recent paper by Agarwal et al.(2017) cautioned against using month of birth data from

DHS due to uneven measurement timing across the interview year which induces differential

mean age at measurement across birth month. This differential age at measurement gets

translated into a difference in height-for-age (or any other anthropometric measure which is

age dependent). To carefully account for this difference in age at measurement we introduce

multiple controls for age of a child like linear, quadratic or cubic control and dummies for

12Also included are the child, mother , household level controls which are a part of Xicqt in equation (1)
13In our robustness checks we show that our results are robust to alternate radii specifications.
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child age. Agarwal et at. (2017) also show that there might be some measurement error in

the month of birth, we address this problem by not focusing on a single month but rather

we look at quarter of conception and additionally we don’t have any reason to believe that

this measurement error will be different across high and low intensity regions (in terms of

pollution levels).

6 Results

6.1 Pollution and Child Health

Table 2 presents the estimates for the first stage of 2SLS methodology outlined in the previous

section. Columns 1 and 2 presents the results for the first stage of our 2SLS methodology

using our main IV variable, that is number of fire-events which lie between 75 to 50 km radius.

We introduce quarter, year and cluster fixed effects and their interactions to account for any

omitted variables at these levels. As expected the relationship between the endogenous

variable - local PM2.5 in 50km radius and our IV is positive and highly significant. This

is in line with our hypothesis that particulate matter from fire-events far away affect local

pollution levels. The first stage F-stat is also greater than 10 (rule of thumb). These results

represent that local PM2.5 variation is affected by the seasonality present in biomass burning

events happening in non-local adjacent areas. In columns 3 and 4 we show the effect of local

fire-events which happen within 50km radius on local pollution level. We don’t believe

that this second IV meets the exclusion restriction as fire-events happening locally represent

household behavioural choices, also these fire-incidents can destroy local resources which

households rely on for their livelihood which in turn can impact their income and hence can

have an effect on the inputs which are important determinants for child health.

Table-3 presents the OLS and IV results of effect of outdoor pollution in the first trimester

on outcomes. As explained in the previous section the OLS regression of outdoor pollution on

child health (equation (1)) is riddled with endogeneity problem, hence the estimates that we

see in columns 1 and 2 are biased. We next move to the second stage results obtained using
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2SLS strategy. We first note that our rk-LM statistic is highly significant. We find that both

weight-for-age and height-for-age are negatively affected by outdoor pollution experienced

in-utero during the first trimester. The mean magnitude of the effect of a 10% increase in

outdoor pollution in first trimester on HFA-Z(WFA-Z) is -0.013(-0.010) standard deviation

units 14. This is similar to the results which were found by Brainerd and Menon(2014) owing

to exposure to water pollutants in the month of conception.

We next provide results for child health outcomes with alternative controls for age of a

child since HFA-Z (and WFA-Z) is a function of child’s age. Children who are born in the

same year are measured at different ages in the DHS sample hence this exercise of modelling

WFA-Z (and HFA-Z) with alternate age controls becomes important (Agarwal et.al, 2017).

In Table 4 from column 1 to 4 we present WFA-Z results (column 5 to 8 for HFA-Z) with

linear, quadratic, cubic and dummy variable controls for child’s age. The coefficient of

the pollution variable remains significant and quite stable across all the four alternative

specifications.

Literature informs that variation in concentration of pollutants is highly correlated as

they often emanate from same sources. So although the focus of this study has been on

outdoor pollution as captured by PM2.5 but the results that we see might represent the

effect of other pollutants as well (like CO, CO2 and Sulphur Oxides etc).

6.2 Robustness Checks

In this section we provide multiple robustness checks for our results. Local weather condition

like rainfall can play an important role as rainfall makes the ash and other pollutant particles

settle on the ground thereby reducing pollution levels. In Table 5 (columns 1 and 2) we

provide our original result (effect of exposure to outdoor pollution in first trimester on HFA-

Z and WFA-Z) but with extended control for local rainfall level in the 50km radius around

the cluster. The number of observations is slightly smaller than before due to few random

missing rainfall information. Our original results still hold and the magnitude of the effect

14Mean effect on HFA of a 10% increase in 1st Trimester = θ1*0.1* (Mean PM2.5) = -0.307*0.1*0.4248

= -0.013
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is larger after controlling for rainfall.

In our identification strategy in equation(1) we define quarter as the quarter which corre-

sponds to the month in which the child was conceived and the exposure to outdoor pollution

of a foetus started, in our first robustness check we change the way we assign quarter to each

child. We alternatively define quarter as the quarter in which the three month exposure

to outdoor pollution ended. For example we previously we defined quarter as follows: if a

child was conceived in month of Feb then the quarter was first, we now alternatively assign

quarter as second corresponding to month April that is when the three month exposure

period ended for the child. Table 5 (columns 3 and 4) presents the IV results corresponding

to this exercise and we see that the effect of outdoor pollution on HFA-Z and WFA-Z is still

negative and significant.

The analysis uptil now used fire-events happening in 75 to 50km radius as the IV for local

mean PM2.5 in the 50km radius around the cluster location. We now provide results for

alternate radii specifications to test the sensitivity of our model. In Table 6, columns 1 and

2 the IV being used is the total number of fire-events in 100 to 50 km radius (the gray ring

area has been expanded in Figure 11). In columns 3 and 4 the IV being is the total number

of fire-events in 50 to 30 km radius for local mean PM2.5 in the 30km radius (compressing

the white inner circle in Figure 11). We find that our results are of similar magnitude and

still remain significant. Lastly in columns 5 and 6, we drop the observations corresponding

to state Punjab which records highest number of fire-events15. This has been done to ensure

that our results are not driven in any way by the state of Punjab which is affected by high

levels of pollution corresponding to highest level of recorded fire-events in India. Our results

become larger in magnitude and are more significant after dropping the state of Punjab.

We check whether our instrument meets exclusion restriction in Table 7. We regress

various characteristics of a household (and its members) on our IV, essentially an insignificant

result shows that there is no systematic relationship between our IV and household (and its

member’s) characteristics. The level of education of mother and literacy status of father is

not systematically related to our IV. The asset ownership of a household and rich-poor status

15Almost 25% of total fire-events in India take place in Punjab.
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of a household is also unrelated to our IV. The household size is also not significantly related

to fire-intensity in non-local areas. The only exception is the result for polio vaccination,

where the children living near high-intensity fire areas are more likely to be vaccinated. Pre-

term births are also associated with exposure to pollution, however in our sample we find

no such relationship.

Do mothers plan conception?

An important threat in our analysis can be avoidance behaviour by mothers, that is if mothers

purposely avoid particular months for conception due to their concern about future child

health related to seasonal biomass burning activities. We test this by looking at birth history

of mothers for last five years, we calculate the number of conceptions in each month for each

mother living in cluster c. For example if a mother conceived two kids in two different years

in the month of February then the count will be 2 for this variable corresponding to the

month of February and it will zero for all other months. We regress this variable (number

of conceptions per month) on mean of local and non-local fire-events to see if there is any

systematic relationship between the two. We also control for mother’s education, father’s

literacy level, characteristics of household head and wealth index of the household. Month

and cluster fixed effects are also introduced to account for any time related and region related

heterogeneity. We present these results in Table 8. We find that neither local (fire events

in 50 km radius) nor non-local (fire events between 75 and 50 km radii) has any impact on

mother’s conception behaviour.

6.3 Heterogeneity

We provide disaggregated regressions for height-for-age for the following sub-samples: Rural-

Urban and North-South. By splitting our sample into rural and urban sample (see Table 8)

we find that the effect is present in both rural and urban areas, with marginal effect being

larger for children living in urban areas. This can possibly be due to the fact children in rural

households are already disadvantaged and marginal effect of exposure to outdoor pollution

is not as large. In comparison the urban kids who live in households with better base level
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health standard (cleaner cooking fuels as well) have larger marginal effects corresponding

to exposure to outdoor pollution. We also provide results by splitting our sample into

Northern-Southern states and find that most of the effects that we see are limited to North

India.

We now focus on other time windows of critical development, that is second, third

trimester and the post-natal period of first three months after birth. Table 10 summa-

rizes our results, we find that in-utero exposure to outdoor pollution which is experienced

by the mother (and her foetus) in her second and third trimester has no impact on Height-

for-age, but some negative effect is present on Weight-for-age corresponding to exposure in

second trimester. Exposure to outdoor pollution during post-natal period also affects child

growth negatively. The number of observations is lower as only children above 3 months of

age have been retained for analysis. Both height-for-age and weight-for-age are adversely af-

fected by outdoor pollution experienced during first three months after birth, a 10% increase

in outdoor pollution decreased HFA-Z and WFA-Z by 0.011 and 0.015 standard deviation

units.

7 Conclusion

Outdoor pollution in India breaches safe standards in many areas. We link outdoor pollution

to biomass burning which is a significant source of carbonaceous aerosols, it plays a vital role

in atmospheric chemistry, air quality, ecosystems, and human health. Our analysis shows

that outdoor pollution is affected by neighbouring biomass burning events; which are used

to causally infer the effect of outdoor pollution (as measured by PM2.5) on child growth

indicators. We find that a ten percent increase in PM2.5 levels during first trimester lead

to a reduction in Height-for-age (HFA-Z, stunting measure) and Weight-for-age (WFA-Z,

underweight measure) by 0.015 and 0.010 standard deviation units respectively. Our weight-

for-age estimate are quite similar in magnitude to the effect which was found in Brainerd

and Menon (2014) of exposure to water pollutants during the month of conception. We

also find that post-natal exposure during first three months after birth to outdoor pollution

22



reduces HFA-Z (WHA-Z) by 0.012 (0.016) standard deviation units. Figure 12 summarizes

our results graphically, exposure to outdoor pollution during different critical windows of

growth of a child is associated with worse child health outcomes. All the estimates are

negative with significant effect present for exposure to pollution during first trimester, second

trimester (only WFA-Z measure) and post-natal period.

The above results establish that exposure to pollution is linked to stunting in childhood.

We now provide an estimate of this problem on GDP of India using a back of an envelope

calculation based on Galasso et al. (2016) study. This study does a literature review of effect

of stunting on GDP. Stunting affects GDP of a nation via three channels: lower returns to

lower education, lower returns to lower height and lower returns to lower cognition. For India

where 66% of the workforce was stunted in childhood, this study estimates that a complete

elimination of stunting would have increased GDP by 10% 16. We use a point estimate

of probability of being stunted due to outdoor pollution, and find that a 10% increase in

outdoor pollution leads to a 0.036% reduction in GDP.

India needs effective policies regarding regulation and management of outdoor pollution,

since the current policies are currently ineffective. For example the budget allocation for

effective management of forest fires is really small and remains unused in every financial

year. Similarly the government has committed itself to subsidizing the use of happy-seeder

technology (this is an alternative to combine harvester, it leaves rice residue in form of a

mulch on farm which doesn’t hamper wheat crop sowing and hence doesn’t require burning),

however the uptake of this policy remains quite low due to high initial investment in the

machine (Gupta and Somnathan, 2016). Increasing the subsidy will go a long way in pre-

venting crop residue burning as residue banning has largely remained ineffective and harmful

biomass burning continues undeterred.

16This is an average figure for South Asia
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Tables and Figures

Figure 1: Total area burned and carbon content released due to biomass burning in South

Asia and China for year 2015.

Figure 2: Biomass burning events categorization into forest fires, crop burning events and

miscellaneous events. Raw proportion and population weighted proportion for all fire events

which took place in India between 2010-2016.

29



Figure 3: Population weighted split of all biomass burning events which took place from

2010-2016 for select states.
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Figure 4: Weighted PM2.5 and Number of fire-events (in 50km radius) for each month in

every year from 2010 to 2016. Figure represents mean over all sampled clusters in DHS-4

for India.

Figure 5: Relationship between mean PM2.5 and mean number of fire-events (in 50 km

radius). Unit of observation is state-month, shaded area is 95% confidence interval. Mean

values correspond to data from 2010 to 2016.
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Figure 6: Relationship between mean PM2.5 (in 50 km radius) and Number of fire-events

between 75 and 50 km radius(Non-local fire-events). Unit of observation is a child, shaded

area is 95% confidence interval.

Figure 7: Linear fit plot for relationship between Height-for-age Z scores and weighted mean

PM2.5. Unit of observation is a child, shaded area is 95% confidence interval
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Figure 8: Temporal variation in fire-events: All India mean number of fire-events in 50 km

radius for each month. Mean calculated over all sampled clusters from DHS-4. Fire-events

data used spans years 2010 to 2016.

Figure 9: Temporal variation in fire-events (shown here for select states): State level mean

number of fire-events in 50 km radius for each month. Mean calculated over all sampled

clusters from DHS-4 contained within a state. Fire-events data used spans years 2010 to

2016.
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Figure 10: Spatial variation in fire-events: Total fire-events in each district in a year (mean

across years 2010-2016).
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Figure 11: Identification Methodology: Center (smallest grey circle) represents the cluster

location, White circle corresponds to 50km radius circle around the cluster location, Grey

ring corresponds to area between two circles (75 and 50 Km radii circles) with cluster location

as the center. Mean pollution level is calculated for the white circle, we call this local

pollution level for cluster C. Local pollution level is instrumented using non-local biomass

burning events which take place in the grey ring.
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Figure 12: Coefficient of 2SLS regression of outcomes(HFA-Z and WFA-Z) on outdoor air

pollution for different critical windows of development of a child. Vertical lines represent 95

% confidence intervals.
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Table 1: Summary Statistics

variable Mean Std Dev

Outcomes

Height-for-age Z score -1.48 1.68

Weight-for-age Z score -1.53 1.22

Child characteristics

Dummy for male child 0.52 0.50

Birth order 2.27 1.47

Child’s age (in months) 30.00 16.99

Pregnancy duration 9.02 0.47

Parents characteristics

Mother’s age at birth of child 24.54 4.97

Mother’s number of education years 6.22 5.13

Dummy for literate father 0.97 0.17

Household characteristics

Dummy for rural 0.76 0.43

Age of head of household 44.55 15.14

Dummy for head of household being male 0.88 0.33

Dummy for Hindu 0.73 0.45

Household size 6.56 2.86

Owns Fridge 0.24 0.43

Owns TV 0.58 0.49

Owns Car 0.06 0.23

Owns Motorcycle 0.36 0.48

Dummy for electricity connection 0.85 0.36

Dummy for source of water: Pipedwater 0.23 0.42

Dummy for using clean cooking fuel 0.28 0.45

Dummy for open defecation (OD) 0.46 0.50

Fraction of HHs who practice OD in a

cluster
0.43 0.35

Pollution measures

Trimester-1 : Mean weighted PM2.5 42.48 33.63

Trimester-2 : Mean weighted PM2.5 41.20 31.99

Trimester-3 : Mean weighted PM2.5 42.62 33.64

Post-natal : Mean weighted PM2.5 43.06 33.55
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Table 2: First-stage regression

Weighted mean PM2.5 in 50km radius

(1) (2) (3) (4)

IV1: Number of fire events between 75 and 50km radius 0.249*** 0.379***

(0.011) (0.009)

IV2: Number of fire events in 50km radius 0.235*** 0.358***

(0.012) (0.011)

First Stage F-stat 483 1608 366 893

R-square 0.03 0.55 0.03 0.55

Observations 216064 216064 216064 216064

Includes other controls from 2nd stage Yes Yes Yes Yes

Includes FEs for Quarter, Year, Cluster

and their interactions
No Yes No Yes

Note: Standard errors in parentheses are clustered by DHS cluster. Notation for p-values *** is p < 0.01, ** is

p < 0.05 & * is p < 0.1. Regressions include controls for gender, birth order and age of child, mother’s years of

education, mother’s age at birth and its square, age and gender of household head, dummy for whether household has

pipedwater, has clean cooking source, whether household practices open defecation and fraction of the village who

practice open defecation(excluding self). Fire-events variable has been scaled by 10−3 and PM2.5 has been scaled by

10−2.
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Table 3: Instrumental variable regression of outcomes on weighted PM2.5

Fire events between 75

and 50 Km radius

OLS IV

(1) (2) (3) (4)

WFA-Z HFA-Z WFA-Z HFA-Z

Trimester-1: Weighted mean PM2.5 in 50km radius -0.0173 -0.0254 -0.240** -0.307**

(0.0171) (0.0232) (0.105) (0.135)

rk LM statistic 1221.58 1221.58

Observations 216064 216064 216064 216064

Mean PM2.5 (unscaled) 42.48

Includes Child, Mother and

Household characteristics
Yes Yes Yes Yes

Includes FEs for Quarter,

Year, Cluster and their interactions
Yes Yes Yes Yes

Note: Standard errors in parentheses are clustered by DHS cluster. Notation for p-values *** is p < 0.01,

** is p < 0.05 & * is p < 0.1. Each coefficient corresponds to an individual 2SLS regression of HFA-Z

or WFA-Z on weighted mean PM2.5 in first trimester. Regressions include controls for gender, birth

order and age of child, mother’s years of education, mother’s age at birth and its square, age and gender

of household head, dummy for whether household has pipedwater, has clean cooking source, whether

household practices open defecation and fraction of the village who practice open defecation(excluding

self). Fire-events variable has been scaled by 10−3 and PM2.5 has been scaled by 10−2.
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Table 5: Robustness Check - 1:

i) Including rainfall

ii) Changing “Quarter” definition to quarter as per month at the end of 3 month exposure

(1) (2) (3) (4)

WFA-Z HFA-Z WFA-Z HFA-Z

Trimester-1: Weighted mean PM2.5 in 50km radius -0.296** -0.387** -0.249** -0.300**

(0.124) (0.160) (0.104) (0.134)

Mean rainfall -0.0921** -0.134***

(0.0364) (0.0472)

Observations 212349 212349 216064 216064

Includes Child, Mother and

Household characteristics
Yes Yes Yes Yes

Fixed Effects:

Cluster Yes Yes Yes Yes

Year of conception Yes Yes Yes Yes

Quarter of conception Yes Yes No No

Quarter (as per the end of 3 month exposure ) No No Yes Yes

Year * Quarter Yes Yes Yes Yes

Cluster * Year of conception Yes Yes Yes Yes

Note: Standard errors in parentheses are clustered by DHS cluster. Notation for p-values *** is p <

0.01, ** is p < 0.05 & * is p < 0.1. Each coefficient corresponds to an individual 2SLS regression of

HFA-Z or WFA-Z on weighted mean PM2.5 in first trimester. Regressions include controls which are

same as the ones mentioned in the notes for table 2. Fire-events and rainfall have been scaled by 10−3

and PM2.5 has been scaled by 10−2. Rainfall variable corresponds to mean rainfall level in the 50km

radius around a cluster.
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Table 8: Do mothers plan conception?

(1) (2)

Number of conceptions each month

Mean number of fire events in 50 km radius -0.000255

(0.00310)

Mean number of fire events between 75 and 50km radius 0.00462

(0.00294)

Observations 22,89,564 22,89,564

Cluster FE Yes Yes

Month FE Yes Yes

Standard errors in parentheses are clustered by DHS cluster. Notation for p-values *** is p < 0.01,

** is p < 0.05 & * is p < 0.1. Regressions include controls for mother’s years of education, literacy

status of father, age and gender of household head and wealth index of household. Fire-events have

been scaled by 10−3. Unit of analysis is mother-month, dependent variable is number of conceptions

that a mother has in each month for all births that happened in last 5 years.
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Table 9: Heterogeneity

2SLS regression: Height-for-age Z score

Rural Urban North South

(1) (2) (3) (4)

Trimester-1: Weighted mean -0.287* -0.485* -0.307** -0.842

PM2.5 in 50km radius (0.156) (0.262) (0.129) (1.040)

Observations 164300 51764 164481 51583

Includes Child, Mother and

Household characteristics
Yes Yes Yes Yes

Includes FEs for Quarter,

Year, Cluster and their interactions
Yes Yes Yes Yes

Each coefficient corresponds to an individual regression of HFA-Z on on

weighted mean PM2.5 in first trimester. Standard errors in parentheses are

clustered by DHS cluster. Notation for p-values *** is p < 0.01, ** is p <

0.05 & * is p < 0.1. Regressions include controls which are same as the ones

which are mentioned in the notes for table 2. Fire-events have been scaled by 10−3.

North Indian states: Arunachal Pradesh, Assam, Bihar, Chandigarh, Gujarat,

Haryana, Himachal Pradesh, Jammu and Kashmir, Jharkhand, Madhya Pradesh,

Manipur, Meghalaya, Mizoram Nagaland, Delhi, Punjab, Rajasthan, Sikkim,

Tripura, Uttar Pradesh and Uttarakhand.

South Indian states: Andhra Pradesh, Karnataka, Kerala, Maharashtra, Chhat-

tisgarh, Odisha, Telangana, West Bengal, Lakshwadeep Islands, Andaman and

Nicobar Islands, Dadar and Nagar Haveli, Daman and Diu, Puducherry and Goa.
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Table 10: Instrumental variable effects:

Impact of weighted PM2.5 in 2nd Trimester to Post-natal period

IV

(1) (2)

WFA-Z HFA-Z

Trimester-2 : Weighted meanPM2.5 in 50km radius -0.196* -0.0144

(0.100) (0.138)

Observations 219847 219847

Trimester-3 : Weighted meanPM2.5 in 50km radius -0.127 -0.157

(0.121) (0.161)

Observations 219844 219844

Post-natal : First 3 months after birth -0.357*** -0.272*

Weighted mean PM2.5 in 50km radius (0.111) (0.141)

Observations 213116 213116

Includes Child, Mother and

Household characteristics
Yes Yes

Includes FEs for Quarter,

Year, Cluster and their interactions
Yes Yes

Standard errors in parentheses are clustered by DHS cluster. Notation for

p-values *** is p < 0.01, ** is p < 0.05 & * is p < 0.1. Each coefficient cor-

responds to an individual 2SLS regression of HFA-Z or WFA-Z on weighted

mean PM2.5 in different time windows. Regressions include controls which

are same as the ones mentioned in the notes for table 2. Fire-events variable

has been scaled by 10−3 and PM2.5 has been scaled by 10−2.

46


	Introduction
	Previous Literature
	Background
	Data
	Demographic Data
	Pollution Data
	Fire incidents Data

	Methods
	Results
	Pollution and Child Health
	Robustness Checks
	Heterogeneity

	Conclusion

