
Communication and Commitment with Resource
Constraints

Raghul S Venkatesh∗

Aix-Marseille University

September 12, 2018

Abstract

I study strategic information transmission between an informed Sender and an unin-

formed Receiver when (i) both players take actions that are substitutable and, (ii) players

face resource constraints. When actions are simultaneous and in the absence of resource

constraints, there is completely truthful information revelation and both players achieve full

efficiency. The presence of resource constraints restricts communication, resulting in partial

revelation of information. The most informative equilibrium is ex-ante pareto dominant for

both Sender and Receiver, and ex-post efficient only for the sender. When the Receiver is

allowed to commit to an action ex-post communication (sequential protocol), welfare of both

players is higher compared to the simultaneous protocol. Finally, I characterize the optimal

(ex-ante) commitment mechanism for the Receiver. It exhibits two key features: maximal

resource extraction from the Sender and capping of contributions by the Receiver. The full

commitment protocol improves information revelation and provides higher welfare for both

players. This provides a novel rationale for the existence of commitment in organizations

and government bureaucracies.
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1 Introduction

A number of interactions in economics and political science typically involve the sharing of pri-
vate information by agents and strategic interdependencies in their actions. In organizations,
multiple functional teams share information regarding a project and exert effort together to im-
plement them. Countries work with each other by sharing intelligence information on security
related issues; and governments at the federal and state level often exchange information and
implement public projects by pooling resources together. An important feature in these exam-
ples is that the players contribute resources that are strategic substitutes in order to achieve a
common objective and they typically face some form of resource constraints – e.g. fiscal, human
capital, or time – that affects their capacity to contribute effectively. As a result, when there
are informational asymmetries, an informed agent has incentives to misrepresent her private
information to attract more contributions from the uninformed player. Therefore, the presence
of resource constraints imposes natural limits on truthful information revelation, resulting in
loss of information (transparency) and ensuing welfare inefficiencies.

The purpose of this paper is to precisely characterize the nature of communication and the
resulting inefficiencies in the presence of such constraints. An important question that my pa-
per seeks to address is how to mitigate some of these –informational and welfare– inefficiencies.
Specifically, I analyze and compare different decision-making protocols in terms of their effect
on transparency and welfare. In doing so, my paper provides two fundamental contributions.
First, no theoretical work before has studied the relationship between strategic communication
and action substitutability, which remains the primary focus of this paper. Second, to the best of
my knowledge, this paper provides the first intuitive characterization of the relationship between
resource constraints and information revelation in the literature.

I study the problem of information transmission between an informed Sender and unin-
formed Receiver1 with action substitutability and resource constraints. The nature of private
information is soft and communication takes the form of cheap talk –costless and non-verifiable–
messages, à la Crawford and Sobel (1982) (hereafter CS.) The baseline simultaneous protocol pro-
ceeds as follows: the informed Sender observes the state of the world and sends a message to
the Receiver. After the communication stage both players simultaneously take actions that are
substitutable.

In this setting, I completely characterize the set of pure strategy equilibria (henceforth equi-
libria) in the Sender’s messaging strategy and the subsequent actions of both players. The first
important finding is that in the absence of resource constraints, captured by the domain of

1Though I use the terminology of Sender-Receiver, the paper captures interactions between divisions within a
firm, different ministries within a cabinet, countries in an alliance, and so on.
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permissible actions, there is full information revelation by the Sender. This is in sharp contrast
to most results in the strategic communication literature, with exceptions (Kartik, Ottaviani,
and Squintani (2007)). In the presence of resource constraints, full-revelation breaks down and
there is some inefficiency in communication, leading to threshold (partial-pooling) equilibria -
the Sender reveals the true state up to a cutoff state, and pools beyond this by sending the
highest possible message. This resembles equilibria characterized by Kartik (2009), Ottaviani
and Squintani (2006) with a crucial difference. There is no inflated messaging on the separation
interval. Instead, the Sender is able to truthfully reveal the true state without having to worry
about being mimicked by lower types on the interval.

To understand the intuition behind these results, consider the incentives of the Sender to
reveal information. Since the Sender is also a decision maker along with the Receiver,she can
anticipate the posterior beliefs induced by the message (in equilibrium) and precisely predict
the Receiver’s best response. As a result, what matters for truthful communication is whether
the Sender, given the permissible set of actions, is able to best respond to the Receiver. That is,
the resources behave like incentive constraints on truth-telling for the Sender. When resource
constraints are not binding, the Sender achieves first best by truthfully revealing information
and coordinating her contributions with the Receiver. Since there is no information loss from
communication, the Receiver also achieves her first best leading to full efficiency. On the other
hand, with binding resource constraints, the Sender is unable to best respond with truthful
messaging for every possible state. Therefore, there is an incentive to inflate her message and
induce a greater contribution from the Receiver. As a consequence, the Sender’s message loses
credibility beyond some threshold resulting in partial transparency during communication.
This information loss leads to further welfare inefficiencies for both players.

My model generates multiplicity of threshold equilibria. Due to the non-verifiability of
cheap talk messages, the Sender can choose how much information to reveal in equilibrium. I
characterize the most informative equilibrium as the one with the highest threshold. Beyond this
threshold, the resource constraint is binding and no information is credibly revealed by the
Sender. That is, all types beyond the highest threshold always pool together in every equilibria
of the communication game leading to a loss of transparency.

My analysis yields other equilibria that combines both separation and partitioning of in-
formation within the most informative threshold. Under such a hybrid equilibria, the Sender
reveals certain types truthfully and pools some other types. The hybrid equilibria bears some
semblance in structure to the central pooling equilibria in the work of Bernheim and Severinov
(2003).2 Instead of central pooling, however, the hybrid equilibrium exhibits pooling on (possi-

2They characterize signaling equilibria in which there is pooling towards the middle of the spectrum of types
and separation on either ends of the type space.
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bly) both extremes, and induces separation in the middle of the type space.3

Next, I consider the efficiency properties of the equilibria. I show that they exhibit an in-
tuitive pareto ordering - the most informative equilibrium is ex-ante efficient among the set of
threshold equilibria. This contrasts findings in the literature that argue for the welfare benefits
of non-transparency (Jehiel (2014) and Prat (2005).) Instead, in the presence of action substi-
tutability and resource constraints, the ex-ante welfare of both players is monotone increasing
in transparency. Further, I establish that this equilibrium is ex-post efficient for the Sender,
but not so for the Receiver. In contrast, the most informative partition of the original CS setup
ceases to be ex-post efficient for the Sender. For example, there is always a low type Sender that
prefers the babbling equilibrium over the more informational partition. Hence, even though the
most informative partitional equilibrium is ex-ante efficient, they are never ex-post efficient.

In Section 7, I consider a sequential decision-making mechanism, namely a sequential protocol
in which the informed Sender communicates her private information and the receiver proceeds
to take an action (Stackelberg leader), followed by the Sender. I find that the most informative
equilibrium is the same as in the simultaneous protocol and hence, there is no improvement in
transparency from switching to this protocol. However, interestingly, the sequential protocol
pareto dominates the simultaneous one, providing both players a higher ex-ante welfare. This
stems from the fact that in the sequential protocol, once the Receiver’s action is sunk post com-
munication, the Sender can observe this action and correspondingly moderate her decisions.
As a result of this moderating effect, the Receiver takes a higher action compared to the simul-
taneous protocol for the same pooling message. This translates into higher ex-ante welfare for
the players.

Finally, in Section 8, I propose an alternate mechanism - the commitment protocol. In this, the
Receiver commits to a communication dependent incentive compatible decision rule (Melumad
and Shibano (1991)) that maximizes her ex-ante expected welfare. The optimal commitment
mechanism4 exhibits two key features: maximal resource extraction from the Sender and cap-
ping of contributions by the Receiver (Alonso, Brocas, and Carrillo (2013).) The rule takes an
intuitive form. The Receiver mimics the actions of the simultaneous protocol on the separating
(informative) interval. On the pooling interval, the Receiver follows a simple resource extraction
rule wherein the Sender always contributes the maximum resources available and Receiver only
contributes the residual required to satisfy the IC constraint of the Sender.

3This also gives rise to the possibility of discontinuous (possibly multiple) intervals of pooling and separating
types.

4 Alonso and Matouschek (2008) show that the commitment problem is equivalent to a delegation problem that
involves interval delegation in which the uninformed player provides a delegation set to the informed one, instead
of using a commitment rule. However, the commitment rule is a more realistic way to capture scenarios involving
action substitutability.
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This way, the Receiver commits to contributing resources that provide the Sender with first
best levels up to a threshold, and beyond this, the Receiver caps her contributions.5 This thresh-
old is higher compared to the previous two protocols, implying that there is greater transparency
under commitment. Further, the commitment rule also improves the welfare of both players, in
direct contrast to Melumad and Shibano (1991). In their work, only the uninformed Receiver
benefits while the Sender suffers a welfare loss as a result of commitment. The welfare im-
provement is driven by the maximal resource extraction rule on the pooling interval. This rule
ensures that of all contribution pairs that satisfy Sender’s IC for truth telling, the one that also
maximizes the Receiver’s utility is the one in which her own contribution is minimized. This
precisely happens when the Sender contributes all resources at her disposal.

Taken together, these results have important implications for the design of hierarchy and
transparency within organizations. When multiple teams/agents are required to interact and
take decisions that are interdependent, there is a direct impact on transparency and welfare.
Specifically, when an informed agent fails to communicate information truthfully it hurts the
ability of the uninformed agent to coordinate and take decisions in the most efficient way. As
a result, there is some welfare loss generated by this lack of transparency. One possible way
to mitigate this inefficiency is to allow teams to act sequentially. However, my result shows
that even though this increases welfare for both players, it does not improve transparency
between the teams. The commitment-to-resources mechanism is a way to address these twin issues
of loss of transparency and welfare inefficiency. My analysis therefore provides an intuitive
informational rationale for why in organizations with strict hierarchical structures there are
ex-ante commitments by uninformed parties to mitigate incentive problems associated with
information asymmetry and resource constraints.

Related Literature

This paper extends and contributes to the vast literature of theoretical and applied models on
strategic communication. For example, the role of strategic communication with complementar-
ity in actions of players (coordination incentives ) have been widely studied and applied to varied
settings (e.g. Alonso, Dessein, and Matouschek (2008); Baliga and Morris (2002); Hagenbach
and Koessler (2010); Rantakari, 2008). Barring Alonso (2007), who considers a principal-agent
setting in which an uninformed principal controls the decision rights and actions of the two
players are either strategic complements or substitutes, none of the other papers have looked
into the relationship between strategic communication and action substitutability.

5Without this capping, the Receiver would end up providing the first best levels for the Sender in all possible
states, which is equivalent to full delegation as in Dessein (2002).
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The threshold equilibria of my paper are closely related to those derived by Kartik et al.
(2007), Kartik (2009), and Ottaviani and Squintani (2006). Kartik et al. (2007) derive a fully
separating equilibrium with lying costs and the possibility of a naive Receiver. The key con-
dition driving their result is the unboundedness of the domain of private information. On the
other hand, in Kartik (2009), truthful communication is restricted by lying costs and a bounded
state space, leading to incomplete separation. Finally, Ottaviani and Squintani (2006) construct
cheap talk equilibria with naive receivers and a bounded state space in which communication
is truthful (but inflated) up to a threshold, and partitional beyond.

The key difference in my results is that it is driven by substitutability and resource con-
straints on the Sender. Resource constraints indirectly affect the capacity of the Sender to best
respond post truthful messaging, and this in turn affects the credibility of messages in equilib-
rium, resulting in incomplete separation.

The work of Melumad and Shibano (1991) characterize the optimal commitment rule for the
sender in the standard cheap talk game. Alonso and Matouschek (2008) similarly solve for the
optimal delegation problem that subsumes the earlier paper of Melumad and Shibano (1991)
by converting the problem of commitment into one where the uninformed principal delegates
the decision rights to the informed agent by providing a set of actions. In contrast, since both
players take interdependent actions in my paper, the role of delegation is not as pertinent.
My paper uses the former approach and characterizes a novel commitment mechanism for
the receiver that is welfare improving for both players, compared to the two decision making
protocols.

Finally, the optimal commitment rule characterized in my paper has similarities to the cap-
ping of resources mechanism derived by Alonso et al. (2013). Specifically, they study the prob-
lem of resource allocation over a set of tasks performed simultaneously in the brain. The opti-
mal mechanism in their model exhibits the resource capping feature similar to the one in this
paper. However, my work is different in two important aspects. First, I consider strategic inter-
dependencies in the actions of agents involved. Second, there are informational asymmetries
with respect to the state but not on the resource requirements. This changes the results in an
interesting way in that the optimal commitment rule also has an additional resource extraction
feature that is missing in Alonso et al. (2013).

The rest of the paper proceeds as follows. In Section 2, I present a simple example to show
the main intuition driving my results. Section 3 outlines the basic model and Section 4 presents
conditions for full information revelation equilibrium. Section 5 contains the results pertaining
to partial revelation threshold equilibria. In Section 5, I present efficiency properties of the
partial revelation equilibrium and analysis of sequential decision-making protocol follows in
Section 6. Finally, Section 7 contains concluding remarks.
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2 Leading Example

Consider a variant of the basic Crawford-Sobel set-up with action substitutability. An informed
player, S, receives a perfectly observable signal about the state of the world θ, drawn from an
uniform distribution [0, 1] and communicates this information through a cheap talk message
m(θ) to an uninformed player, R. Upon communication, both R and S take actions in a way
that affects both their payoffs. Let the modified utility function be the following:

UR = −
[(

xR + ηxS

1 + η

)
− θ

]2

US = −
[(

xS + ηxR

1 + η

)
− θ − b

]2

Observe the small departure from the CS set-up. Both players now are allowed to take
actions after communication, and actions are substitutes in that ∂2Ui

∂xR∂xS
< 0, where η ∈ (0, 1)

captures the degree of substitutability. Further, let the actions of players xi have a domain
[−a, a]. Given this structure, when S truthfully reveals the true state of the world through her
message, m(θ) = θ, the two players solve the following best responses:

R : xR = (1 + η)θ − ηxS

S : xS = (1 + η)(θ + b)− ηxR

To simplify the exposition, let b = 2
5 and η = 1

2 . Equilibrium actions after (truthful) messag-
ing are given by: x∗R = θ − 2

5 , x∗S = θ + 4
5 . Notice immediately that full information revelation

is possible if a > 9
5 . This is so because S is able to compensate precisely even for the highest

type, θ = 1. At the other extreme, if a < 4
5 , no information can be credibly revealed by S, since

irrespective of what the true state is, reporting the truth is never optimal for S. This stems from
her inability to sufficiently compensate even for the lowest type signal.

For example, when a = 2
5 , the equilibrium action of the sender under truthful communica-

tion is x∗S = 2
5 , irrespective of the state. However, S can inflate her signal in order to make R

play a higher action. To see this, suppose instead of m(0) = 0, S inflates and sends a message
m(0) = 2

5 . Then, R best responds by taking an action x∗R = 2
5 . But notice that S can fully

anticipate this response by R and suitably adjust her optimal action. In particular, S takes an
action x∗S = 3

5 −
1
5 = 2

5 . Though S’s action has not changed, she has managed to push R’s action
upwards, and thereby achieves a payoff of 0. But this incentive to misrepresent means that R
would never believe any message from S, and therefore communication is rendered ineffective
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θ0 1

m

1

(a) a ≥ 9
5

θ0 1
5

1

m

1

(b) a = 1

Figure 1: When a ≥ 9
5 , there are no resource constraints for the Sender, resulting in full in-

formation revelation. On the other hand, when a ∈ (4
5 , 9

5) there is only partial revelation of
information. Specifically, for all states above 1

5 , the Sender pools and sends a message m = 1.

in equilibrium.
Finally, when 4

5 < a < 9
5 , S has an incentive to reveal some information. To see this, let

a = 1. Then, for any θ ∈ [0, 1
5 ], S reveals the state truthfully since her optimal action is within

the domain of available actions (in this case x∗S(
1
5) = 1). But, for any θ > 1

5 , S cannot sustain
a truthful messaging strategy. To see this, suppose θ > 1

5 , and S reports truthfully. Then the
optimal action for S is bounded by xS = 1, while R provides the residual as demanded by her
best response function, which is xR = 3

2 θ − 1
2 . This cannot be an equilibrium since there is

under-provision as far as S is concerned: S gets a payoff of US = −
(

1+ 1
2 (

3
2 .θ− 1

2 )
3
2

− θ − 2
5

)2

6= 0

for θ > 1
5 . Therefore, S has an incentive to exaggerate her information in order to induce R to

contribute more. This precludes separation beyond θ = 1
5 .

In fact, all types above this cutoff must pool and send the highest message, m = 1. This
is primarily because the signals are (imperfectly) invertible in this environment. Any pure
message m < 1 could be interpreted as coming from one of the many possible (weakly lower)
types. For instance, when θ = 2

5 , S would want to exaggerate and send a message of at least
m ≥ 3

5 , since this would ensure that S’s action is within the bound a = 1. Say S sends m = 3
5 .

But this message could possibly come from any of the types θ ∈ (1
5 , 2

5 ], each of whom have
incentives to deviate and send m = 3

5 . Hence, R could invert the message and form beliefs
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accordingly6. But if this is the case, every type in the interval (1
5 , 1] would find it optimal

to send the highest pooling message possible, m = 1. Therefore, there is at most a partially
revealing equilibrium in which S is truthful (separates) in the range θ ∈ [0, 1

5 ] and pools her
messages for θ ∈ (1

5 , 1] by sending the message m = 1.
The example suggests a novel trade-off for information transmission with action substi-

tutability. The ability to truthfully reveal information depends on the domain of the set of
resources available to the informed player. The informed Sender is able to provide more infor-
mation regardless of the extent of the biases between the two players.

3 The Model

Consider two players, a receiver R and sender S, who decide on contributions to a joint project.
The payoff from the project is contingent on an unknown state θ ∈ Θ ≡ [0, 1], distributed
according to the density function f (.). The sender receives a perfectly observable private signal
about the state θ, while the receiver has no information.

Each player’s utility is given by U(φi(xi, x−i), θ, bi), where φi(.) is the player-specific (sym-
metric) joint contribution function.7 The contribution function φi(.) depends on player i’s ac-
tion xi, as well as the contribution of the other player, x−i. Actions of players are such that
xi ∈ V ⊆ R, where the set V is closed and compact. The contribution function is therefore a
mapping φi : V × V → R. The bias parameter bi measures the conflict of interest between the
two players.

The standard Crawford-Sobel assumptions on the utility function of players hold. Specif-
ically, U : V2 × [0, 1] × R → R is twice continuously differentiable, U1(.) = 0 for some φi,
U12(.) > 0, U13(.) > 0 and U11(.) < 0 so that U has a unique maxima for any given pair
(θ, bi). This implies that there is an unique joint contribution function φi for each player
that satisfies their maximization problem. Consequently, let φ̄S

θ ≡ arg max
φS

U
(
φS, θ, b

)
and

φ̄R
θ ≡ arg max

φR
U
(
φR, θ

)
be the first best levels of contribution for the sender and receiver for

any given θ, respectively.
The utility functions of the players satisfy the condition ∂2U

∂xixj
< 0, implying that actions of the

two players are strategic substitutes. For sake of exposition, I normalize the bias of receiver to

6For precisely a similar argument, partition equilibria of the kind developed by CS are also ruled out on the
interval ( 1

5 , 1]. Again, this is because there would not exist an indifference type in this interval, since there is a
natural propensity to inflate information. This incentive to exaggerate ensures that if there are two partitions, the
high types in the lower partition would find it profitable to deviate to the higher partition, precluding the existence
of an indifference type in the first place.

7The assumption of symmetry is not important in order to generate the main findings. However, it aides
comprehension of the same.
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0 and that of sender to b > 08. The two players therefore maximize their payoff functions given
by U(φR(xR, xS), θ) and U(φS(xS, xR), θ, b). Players have action interdependence in the sense

that each players’ action xi affects the contribution function of the other player φ−i(.). Since
b > 0 and U13(.) > 0, it implies that φS(.) > φR(.) for every θ. I make the following further
assumptions on the functional form of φi(.) to ensure an interior solution to the contribution
decision of the players:

Assumption 1 Increasing marginal contribution: ∂φi(.)
∂xi

> 0

Assumption 2 Positive spillover: ∀i, j 6= i : ∂φi(.)
∂xj

> 0

Assumption 3 Imperfect substitutability: ∀i, j 6= i :

(
∂φi
∂xi

)
(

∂φi
∂xj

) > 1

Assumption 1 ensures that the contribution function is non-decreasing in the player’s own
action, while the second assumption implies that a player’s contribution function is non-
decreasing in the other player’s action. Assumption 3 implies that the marginal contribution
effect dominates the spillover effect. Further, it rules out perfectly substitutable actions.9

Timing - Simultaneous decision-making:

Following Kartik (2009), let M =
⋃

θ Mθ be a Borel space of messages available to the Sender
such that ∀θ, θ

′ ∈ [0, 1] : Mθ
⋂

Mθ
′ = ∅. The game proceeds in two stages.

• In the first stage, the sender observes the true state θ ∈ [0, 1] and sends a message m ∈ M
to the receiver. Let this messaging strategy be defined by a mapping µ : [0, 1] → M and
the message m = µ(θ).

• In the second stage, both players simultaneously decide on contributions αS : [0, 1]×M→
V and αR : M→ V.

8The biases could be a function of θ in that b(θ) may be the extent of conflict of interest, instead of a constant b.
This, however, does not change the main results of the paper as long as single-crossing property holds, meaning
U13 > 0.

9When actions are perfect substitutes, notice that there is no guarantee of an interior equilibrium. Take the
example presented in Section 2 and substitute η = 1. The best responses are such that there is no equilibrium in
pure strategies. For this reason, I focus on imperfect substitutability of actions.
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Equilibrium

An equilibrium of the simultaneous protocol game is a Perfect Bayesian Equilibrium in pure
strategies that satisfies the following properties:

• R and S simultaneously choose actions
(
x∗R(m), x∗S(θ, m)

)
that maximizes their expected

utility according to the dual optimization problem:

x∗R(m) ≡ arg max
xR∈V

Eθ|m[U(φR(xR, x∗S(θ, m)), θ)] subject to xR ∈ V (1)

x∗S(θ, m) ≡ arg max
xS∈V

[U(φS(xS, x∗R(m)), θ, b)] subject to xS ∈ V (2)

• contribution function maximizes each players’ expected utility conditional on their infor-
mation, ie, φR∗(x∗R(m), x∗S(θ, m)) ≡ arg maxφR U(φR(xR, xS), θ) and φS∗(x∗S(θ, m), x∗R(m)) ≡
arg maxφS U(φS(xS, xR), θ, b)

• the posterior beliefs, given by a cdf P(θ | m), are updated using Bayes’ rule whenever
possible, given the messaging rule µ∗(θ)

• given the beliefs and second stage contributions xR(m) and xS(θ, m), S chooses a messag-
ing strategy that maximizes expected payoff in the first stage,

µ∗(θ) ∈ arg max
m∈M

EP(.|m)

[
U
(

φS(xS(θ, m), xR(m)), θ, b
)]

A PBE always exists in games with cheap talk. This is a babbling equilibrium in which the
sender’s message is ignored and the receiver acts based on her prior information, while the
sender anticipates this and acts accordingly. In this paper, I try to identify conditions under
which more informative equilibria emerge.

4 Full Information Revelation

In a full revelation equilibrium, the private information of the sender is completely revealed to
the receiver, meaning µ(θ) = θ for all θ ∈ [0, 1]. To see if a full revelation equilibrium10 exists,
it is important to understand the trade-offs for the sender. For truthful messaging to be an
equilibrium, the sender must be able to choose an action in the set V such that φi∗(xS(θ), x∗R(θ))

10Any messaging function µ : [0, 1] → [0, 1] that is one-to-one and onto is a fully revealing messaging strategy.
I will, however, concentrate on the most intuitive one in which if the state is θ, the sender sends a message that is
equivalent to the statement - ”The state is θ”.
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is the unique maximum for the state θ. Since sender is constrained by the lower and upper
bound on permissible actions, given by inf V = k and sup V = k̄ respectively, the size of these
bounds directly affects her ability to reveal information. If the sender’s action after truthful
communication is within the bounds, then it precludes her incentive to misrepresent. Therefore,
in some sense, the set of actions V acts as an incentive compatibility constraint for truth-telling.

Given this intuition, it is convenient to reformulate the second stage problem when the
sender has an unrestricted domain to choose her action from. The following definition does
precisely that.

Definition 1 Unconstrained best-response: Let x̃S(θ, m) be the optimal action of the sender when
i) unrestricted domain is satisfied (xS ∈ R); and ii) the sender’s message m (truthful or otherwise)
is believed by the receiver to be the true state. That is, x̃S(θ, m) is the solution to the unconstrained
optimization problem of the sender when her message is believed, i.e.,

x̃S(θ, m) solves max
xS∈R

U
(

φS(xS, x̃R(m)), θ, b
)

subject to

x̃R(m) ≡ arg max
xR∈V

U
(

φR(xR, x̃S(θ, m)), m
)

Further, when communication is truthful (m = θ), let the optimal action of players under the uncon-
strained optimization problem be x̃R(θ) and x̃S(θ) = x̃S(θ, θ).

Assumption 4 k ≤ x̃S(0) ≤ k̄

Note that Definition 1 does not necessarily prescribe the action of the sender in equilibrium,
x∗S(.). Instead, x̃S(θ, m) allows us to intuitively characterize the response of the sender when her
message is believed to be true by a naive receiver (Kartik et al. (2007), Ottaviani and Squintani
(2006)), and her actions have an unrestricted domain R. Assumption 4 ensures that the optimal
response of the sender for the lowest state is within the bounds. If not, the communication
game has no meaningful information revelation trade offs.11 Finally, the following definition
helps characterize the full information revelation equilibrium.

Definition 2 Highest type incentive compatibility (HTIC)12 : x̃S(1) ≤ k̄

Definition 2 implies that the best response of the sender, after revealing the highest state
θ = 1, is within the domain of actions V. That is, the unconstrained best-response corresponds

11 x̃S(0) ≤ k̄ provides an intuitive condition for any information transmission with action substitutability. When
this fails, no information can be credibly revealed by the sender, since the receiver always believes that the sender
is exaggerating her information.

12HTIC has no relation the No incentive to separate (NITS) condition proposed by Chen, Kartik, and Sobel (2008).
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with the equilibrium action. Because single crossing property U12 > 0, it must be that x̃S(θ) ≤ k̄
for every θ < 1.

Proposition 1 A full information revelation equilibrium exists if and only if HTIC condition is satisfied.

Proof. See Appendix A.1
The HTIC condition provides an IC constraint for full revelation. This is because the solution

to the sender’s constrained best response coincides with that of the unconstrained optimization
problem, implying that x∗S(θ) = x̃S(θ) for all θ ∈ [0, 1]. This ensures that there is no incentive
for S to deviate from truth-telling and full revelation is achieved as an equilibrium.

5 Partial Revelation under Resource Constraints

Clearly, HTIC is a strong requirement in the context of real world examples. Typically, divisions
within organizations, governments, and even private individuals who try to work jointly in
projects face constraints in terms of time or fiscal and human capital. Such resource constraints
prevent them from acting optimally and increases their incentive to misrepresent their private
information beyond some thresholds to extract more resources from others in the project. This
section focuses on the nature of equilibria that emerge in the presence of such binding resource
constraints. The following assumption ensures an intuitive characterization of equilibria with
resource constraints.

Assumption 5 k ≤ x̃S(0, 1) ≤ k̄

Assumption 5 makes upward deviations by the sender13 possible in the sense that they
would never induce an action that goes below the lower bound of the feasible action set, mean-
ing x̃S(0, m) ∈ V for all m < 1.

The starting point of the analysis is to formulate the sender’s incentive to misrepresent
her information. This happens precisely, as argued in the previous section, when the HTIC
condition fails and their are states for which truthful messages can never be credible. Let
G = {θ : x̃S(θ) > k̄} be the set of states for which truthful revelation is not possible for the
sender.

Given this set of types, observe that there must then exist a cutoff θ̄ such that x̃S(θ̄) = k̄
and θ̄ = sup{[0, 1]\G}. The set G = (θ̄, 1] represents the types for which there are incentives
to misrepresent for the sender. This is because for all types in the set G, reporting the truth

13Note that this is a stronger version of assumption 4, which concerns the feasibility of truthful communication
for the lowest type information.
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implies that the sender’s resource constraint is binding. Therefore, by misreporting her private
information θ, say by reporting m > θ, the sender can induce the receiver to take a higher
action. As a result, none of the messages in this interval are credible and will never be believed
in equilibrium.14

Lemma 1 When HTIC is violated, all types in set G pool on the same message in every equilibrium of
the communication game.

Proof. See Appendix A.2
The intuition behind Lemma 1 is the following. Suppose it was possible for the sender to

partition the set G into two - G1 = (θ̄, θ̄g] and G2 = (θ̄g, 1]. Then, there are always types that
are pooled in the first partition for whom the optimal action of the sender is constrained by
the bound k̄. This implies the sender would have an incentive to exaggerate her message and
pool with the higher types in G2, precluding the possibility of such a partition in equilibrium.
Therefore, in the presence of resource constraints, two things hold: i) at most, there is only
partial revelation of information; and ii) no credible information is conveyed beyond θ̄. The
next proposition characterizes the set of all partially revealing threshold equilibria.

Proposition 2 Under assumptions 1-5, when HTIC is violated, there are Partially Revealing Threshold
Equilibria (PRTE) such that, ∀θ∗ ∈ [0, θ̄]: m = θ if θ ∈ [0, θ∗] and m = 1 if θ ∈ (θ∗, 1].

Proof. See Appendix A.3
Proposition 2 suggests that inflated messaging occurs above the cutoff state, while every

message within the cutoff is truthful.15Further, the sender could possibly choose how much
information to reveal in equilibrium. Though the PRTE θ∗ = θ̄ is the most informative equilibrium,
it does not necessarily restrict the sender from providing less information to the receiver. In
the next section, I will establish some intuitive welfare properties of the different threshold
equilibria.

In fact, the sender could choose to partition the information within the interval [0, θ∗], in-
stead of revealing them truthfully. This is so because, under the PRTE, the resource constraints

14This resembles the credibility notion of self-signaling, identified by Aumann (1990), and Farrell and Ra-
bin (1996). When the unconstrained action is above the bound, it implies that the equilibrium action of the
sender is x∗S(θ) = k̄. Given imperfect substitutability, the receiver’s action has a positive spillover implying that
U1(φ

S∗(k̄, x∗R(θ)), θ, b) > 0 when x̃S(θ) > k̄. This ’positive spillover effect’ implies that communication ceases to be
credible, since the sender (weakly) prefers to induce a higher action from the receiver, by inflating her private
information. See Baliga and Morris (2002) for more on this point.

15This is in contrast with the result of Ottaviani and Squintani (2006). They construct a cutoff equilibrium in
which messages are revealing (albeit inflated) below the threshold, and for states above the cutoff, information
transmission is partitional in nature. The PRE expressed above is also similar to the cut-off equilibria obtained by
Kartik (2009) in which the exaggeration in communication is driven by lying costs. See also Morgan and Stocken
(2003).
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are satisfied with slack for any type in this interval. As a result, there is always a possibility
for the sender to pool any type θ ∈ [0, θ∗] with lower types within the interval such that the
incentive compatibility with respect to the resource constraints is still satisfied.

As a result, there are other partitional type equilibria that emerge. The sender chooses to
reveal some types truthfully in the interval [0, θ∗] and pools some others, giving rise to multi-
ple discontinuous partitions (Bernheim and Severinov (2003)). Notice however that in all such
equilibria, the types belonging to (θ̄, 1] are always pooled together. What is different is that in-
stead of threshold separation and pooling beyond, there are intervals of pooling and separating
types. The following proposition characterizes all such hybrid equilibria.

Proposition 3 Hybrid equilibria: Fix a PRTE with threshold θ∗. For every such θ∗ equilibrium, there
exists partitions in the separating interval [0, θ∗] such that sender pools some types and separates on
other types.

Proof. Appendix A.4
The intuition for the existence of hybrid equilibria is straightforward. The only incentive

constraint that requires to be satisfied to sustain pooling of types is that the marginal type
has no incentive to deviate. The IC requires that the resource constraint is not binding for the
highest type in the pooling message. For any such type θ ≤ θ∗, it is true that xS(θ) < k̄. As
a result, there is always a δ > 0 such that instead of revealing m = θ, if the sender sends a
pooling message mpool = (θ − δ, θ], the optimal action of the sender still satisfies the resource
constraint, implying x̃S(mpool) ≤ k̄. This ensures that the marginal type θ does not have any
incentive to deviate, thereby sustaining the pooling message in equilibrium.

6 Efficiency

As is the case with cheap talk models, there is a multiplicity of equilibria in this setup. The
previous section establishes that the sender may choose to reveal any threshold of information,
starting from a cutoff θ∗ = 0 up to a θ∗ = θ̄. An important question that arises is whether the
sender would find it in her interest to convey more information. To answer this, I first look at
the receiver’s best response to a pooling message beyond any generic threshold θ∗.

Lemma 2 The receiver’s optimal response on receiving the pooling message mθ∗
pool = (θ∗, 1] is given by

xsim
R (mθ∗

pool) that solves,

arg max
xR∈V

θ∗sim∫
θ∗

U(φR(xR, x∗S(t, mθ∗
pool)), t)dP(t | mθ∗

pool) +

1∫
θ∗sim

U(φR(xR, k̄), t)dP(t | mθ∗
pool)
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Proof. See Appendix A.5
The above lemma states that the receiver’s best response entails an important trade off.

Since the sender has an informational advantage in that she knows the true state within the
interval mθ∗

pool, the receiver takes this into account while best responding. This implies that the
receiver’s action is such that, x∗R(θ

∗) < x∗R(m
θ∗
pool) < x∗R(1). But if this were true, then it follows

that there is a measure of sender types (θ∗, θ∗sim] such that ∀θ ∈ (θ∗, θ∗sim] : x∗S(θ, mθ∗
pool) ≤ k̄ and

for all other types (θ∗sim, 1], x∗S(θ, mθ∗
pool) = k̄.

Figure 2 illustrates this point. Notice that there is non-monotonicity in the sender’s action
at θ∗ because of the discontinuity in receiver’s response upon receiving the pooling message.
Since the receiver’s action has a discontinuous jump at θ∗, the sender readjusts her action so
as to achieve first best levels of contribution, by decreasing her action just to the right of θ∗.
Further, since the receiver’s action is not high enough, there is always an interval of types
—(θ∗sim, 1] —for which the sender does not achieve first best and is constrained by the resource
constraint.

Lemma 2 clearly illustrates the benefit for sender from revealing more information. First,
it increases her welfare on the interval [0, θ∗sim] since the resource constraints are not binding.
Second, as θ∗ increases, the receiver’s best response xsim

R = x∗R(m
θ∗
pool) also increases. This further

implies that on the interval (θ∗sim, 1], where the sender is resource constrained, extracting greater
resources (a higher action) from the receiver is welfare improving for the sender.

Proposition 4 The most informative equilibrium, θ∗ = θ̄, is ex-ante efficient for both sender and re-
ceiver.

Proof. See Appendix A.6

The receiver’s welfare is increasing in the amount of information revealed. This immediately
implies that the welfare of the receiver is increasing in the threshold of partial revelation. For the
sender, compare two thresholds θ1 and θ2 (θ1 < θ2). Then, it follows from previous arguments
that θ1

sim < θ2
sim and xsim

R (m1
pool) < xsim

R (m2
pool). Therefore, a greater threshold of information

means the resource constraint is not binding (increases efficiency) for a greater measure of
types for the sender and also entails a higher action from the receiver on the pooling interval.
Both of these effects provide the sender with a greater ex-ante welfare from revealing more
information. Figure 3 shows these trade offs. On the left, under a less informative threshold,
the receivers pooling action is lower and this directly affects the extent to which the sender can
achieve first best levels of joint contributions.
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θ0 θ∗ 1

xR

xsim
R

x∗S < k̄

x∗S = k̄

θ∗sim

(a) Receiver’s action under θ∗ < θ̄

θ0 θ̄ 1

xR

xsim
R

x∗S < k̄

x∗S = k̄

θ̄sim

(b) Receiver’s action under θ̄

θ0 θ∗ 1

k̄

xS

x∗R = xsim
R

θ∗sim

(c) Sender’s action under θ∗ < θ̄

θ0 θ̄ 1

k̄

xS

x∗R = xsim
R

θ̄sim

(d) Sender’s action under θ̄

Figure 2: i) interval of separation: m(θ) = θ; ii) interval of pooling: mpool = 1

Proposition 5 Ex-post efficiency:
i) Every sender type weakly prefers a PRE with θ∗ = θ̄.
ii) The θ̄ PRTE is not interim efficient for the receiver.

Proof. See Appendix A.7
The intuition is an extension of the arguments made in the case of Proposition 4. Specifically,

every sender type on the interval [0, θ̄sim] weakly prefers the θ̄ PRTE. For types in (θ̄sim, 1], the
resource constraint is binding, ∀θ ∈ (θ̄sim, 1] : x∗S(θ, mθ̄

pool) = k̄. However, by revealing more
information, the sender ensures that the receiver’s optimal best response on the pooling interval
is also increasing. Given there is a positive spillover effect on this interval, it directly follows
that every sender type on this interval is better off inducing a higher action from the receiver.
For the receiver, on the other hand, for any cutoff θ

′
, there exists some θ ∈ (θ

′
sim, 1] for which

the equilibrium response xsim
R (mθ

′

pool) results in first best levels of contribution. But if this were

true, then for this particular θ, U(φR(xsim
R (mθ

′

pool), k̄), θ) > U(φR(xsim
R (mθ̄

pool), k̄), θ). This implies
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θ0 θ1 1

xR

xsim
R

i) [0, θ1] : m(θ) = θ

ii) (θ1, 1] : m1
pool = 1

x∗S < k̄

x∗S = k̄

θ1
sim

θ0 θ2 1

xR

xsim
R

i) [0, θ2] : m(θ) = θ

ii) (θ2, 1] : m2
pool = 1

x∗S < k̄

x∗S = k̄

θ2
sim

Figure 3: a) θ1 < θ2; b) θ1
sim < θ2

sim; c) xsim
R (m1

pool) < xsim
R (m2

pool)

that the most informative equilibrium can never be ex-post efficient for the receiver.

7 Sequential Decision-making Protocol

In a number of scenarios, it may be required of the uninformed receiver to move first (stackelberg
leader). Organizations, for example, typically have functional units that complete their task
before another downstream unit takes over the project (e.g. product development and design
teams usually move first, followed by the marketing/sales team, even though project relevant
information is held by the marketing team). In other cases, it may be required for the sender
to communicate and also make binding commitments to joint projects (e.g. federal governments
may typically commit to budget resources for infrastructure projects before the states decides).
Sequential decisions therefore enables the sender to observe the receiver’s actions and then
decide on contributions.

The sequential protocol proceeds as follows:

• The sender observes the true state θ ∈ [0, 1], sends a message m ∈ M st µ : [0, 1] → M to
the receiver

• The receiver observes the message m takes an action αR : M→ V.

• The sender observes the action choice of the receiver and decides on contribution αS :
[0, 1]×V → V
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Notice the critical difference in the sequential protocol. By moving first and revealing her
action, the receiver provides additional information to the sender. Further, the presence of
resource constraints implies that the sender is unable to credibly convey the true state be-
yond a threshold. This is driven by the earlier observations under simultaneous protocol. The
messaging strategy of the sender therefore in all the possible threshold equilibria mirrors the
simultaneous protocol. The following proposition lays out this result.

Proposition 6 Every PRTE under simultaneous protocol is also an equilibrium under the sequential
protocol.

Proof. See Appendix A.8

Simultaneous vs Sequential Protocol

Given a set of resources, under the most informative threshold equilibrium, both protocols
provide the same (ex-ante) welfare to the sender and receiver on the interval [0, θ̄). The crucial
difference between the two protocols arises on the uninformative domain of the state space,
when a pooling message mpool = (θ̄, 1] is sent by the sender. Since the receiver moves first, the
equilibrium action solves the following,

xseq
R = xseq

R (mpool) ≡ arg max
xR∈V

θ̄seq∫
θ̄

U
(

φR (xR, xseq
S (t, xR)

)
, t
)

dF +

1∫
θ̄seq

U
(

φR (xR, k̄
)

, t
)

dF (3)

Notice the difference between the two protocols. In the simultaneous move game, the sender
reacts to the receiver without observing her actions. This changes the incentives of the receiver.
In the sequential protocol, when the receiver knows that the sender observes her action, there
is an additional undoing effect ( dxS

dxR
< 0) in that the sender moderates any action of the receiver

by contributing lesser in order to achieve her first best φ̄S. This undoing effect that is present
in the sequential protocol implies that the receiver can now play a higher action on the pooling
interval.

Lemma 3 xseq
R > xsim

R

For the sender, the welfare improvement in the sequential protocol directly follows from the
above lemma. Specifically, the sender’s resource constraint is now binding for a smaller interval
of types [θ̄seq, 1] (see Figure 4), and over this interval, U1(.) > 0 because there is under-provision
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θ0 θ̄ 1

xR

xseq
R

xsim
R

x∗S < k̄ x∗S = k̄

x∗S < k̄ x∗S = k̄

θ̄seq

θ̄sim

Figure 4: i) [0, θ̄] : interval of separation; ii) (θ̄, 1] : interval of pooling

as far as the sender is concerned. Since xseq
R > xsim

R , it follows that the expected utility of the
sender is greater on this interval under the simultaneous protocol. For the receiver, the reason
is intuitive. Suppose, under the sequential protocol, the receiver were to mimic the action xsim

R .
Then, since the actions are sequential, there is an additional moderating influence of the sender’s
action upon observing xsim

R . To put it differently, if the receiver plays a slightly higher action
xsim

R + ε, the sender observes this and readjusts her action downwards under the sequential
protocol, but not so in the simultaneous one since the action of the receiver are not observed.
This readjustment is akin to an undoing effect since by moderating her action downwards, the
receiver’s payoff also increases since the over-provision is lesser, resulting in increased welfare
for the receiver.

Proposition 7 The sequential protocol provides a higher ex-ante welfare to both the sender and receiver
compared to simultaneous protocol.

Proof. See Appendix A.9

8 Optimal Commitment

From the previous section, it is clear why an uninformed receiver would rather prefer to be
a Stackelberg leader. This may be interpreted as a mandate for transparency between project
teams. That is, the decisions of one team are revealed and shared with the other under sequen-
tial decision making (transparency), while they are not under simultaneous protocol. Such
transparency is usually mandated in organizations when multiple teams work together on a
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single project. Clearly, Proposition 7 provides an efficiency rationale for the requirement of
transparency and how it improves the welfare of both players (Jehiel (2014), Prat (2005)), even
though the amount of information communicated remains the same under either protocols.

However, there is still a potential source of inefficiency for the receiver. At the beginning of
the pooling interval the sender has a non-monotonic response (see Figure 2). As a result, the
receiver fails to extract the maximum contributions possible from the sender, k̄. This implies
that the receiver is over-contributing in order to satisfy the sender’s first best φ̄S

θ on the interval
(θ̄, θ̄seq].16 By instead committing to a decision rule ex-ante, the receiver can mitigate some of
this inefficiency. This is equivalent to the receiver choosing an optimal ex-ante commitment rule
(Melumad and Shibano (1991)) contingent on the information communicated by the sender.

Let me begin by first defining the optimal commitment rule problem:

argmax
xc

R(θ)∈V

1∫
0

U
(

φR (xc
R(θ), xc

S(θ, xc
R(θ))) , θ

)
dF such that ∀θ

′
, θ
′′ ∈ [0, 1] :

U
(

φS
(

xc
S(θ

′
, xc

R(θ
′
)), xc

R(θ
′
)
)

, θ
′
, b
)
≥ U

(
φS
(

xc
S(θ

′
, xc

R(θ
′′
)), xc

R(θ
′′
)
)

, θ
′
, b
)

xc
S(θ, xc

R(θ)) ≡ argmax
xS∈V

U
(

φS(xS, xc
R(θ)), θ, b

)
From Revelation Principle, the problem for the receiver boils down to choosing a sequence of

commitments for every state θ ∈ [0, 1] such that they maximize expected utility of the receiver
conditional on the IC constraint that ensures truthful revelation for all types of sender’s pri-
vate information. Clearly, the receiver can mimic the sequential protocol actions over the type
space and guarantee an expected utility at least as much as in the sequential protocol. Such a
mimicking strategy would be incentive compatible since the sender on the separating interval
achieves first best, and on the pooling interval, cannot do any better than merely revealing her
type as the action of the receiver is fixed at xseq

R .
However, as previously discussed, the receiver can do better. Instead of taking a single

action on the pooling interval and allowing the sender to adjust her actions, the receiver can
commit to a message contingent resource contribution rule xc

R(θ) for every θ ∈ [0, 1]. I will now
state a series of claims that must be valid for an optimal commitment rule.

Claim 1 On the separating interval, the commitment rule mirrors the simultaneous (and sequential)
protocol, i.e., ∀θ ∈ [0, θ̄] : xc

R(θ) = x̃R(θ).

This follows directly from noting that the receiver and sender achieve their first best levels

16For that matter, on (θ̄, θ̄seq] under the simultaneous protocol.
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of contribution φ̄i
θ on this interval. To see this, the best response of the sender to x̃R(θ) is

x̃S(θ). Further, the pair of actions (x̃S(θ), x̃R(θ)) achieve first best for the sender and therefore
is incentive compatible. Therefore, there is no reason for the receiver to commit to some other
levels of contribution.

Claim 2 On the pooling interval mpool, there is no single flat segment such that ∀θ ∈ mpool : xc
R(θ) =

z ≥ x̃R(θ̄).

Suppose xc
R(θ) = x̃R(θ̄). Then ∀θ ∈ mpool : xS(θ) = k̄. This cannot be optimal for the receiver

since the receiver can always do better by committing a bit more and satisfying the sender’s
IC. Instead, suppose xc

R(θ) = z > x̃R(θ̄). Say, for the sake of argument that z = xseq
R , i.e. the

receiver mimics the sequential protocol action. This cannot be optimal for the receiver since
the sender’s action is less than k̄ on the interval (θ̄, θ̄seq). The receiver can always contribute
something lesser and induce the sender to contribute all her resources, whilst still satisfying
her IC. Given the imperfect substitutability property of actions, this increases the payoff to the
receiver by minimizing the extent of over-provision in this interval.

Claim 3 If xc
R(θ) is strictly increasing in any interval (θ1, θ2) within mpool, then sender must con-

tribute k̄ for all types in this interval.

Claim 3 follows from the previous arguments. Again, there are number of different ways
in which the sender’s IC can be satisfied on the increasing interval, i.e. multiple pairs (xR, xS)

satisfy ∀θ ∈ (θ1, θ2) : φS(xS, xR) = φ̄S
θ . However, of all these pairs that satisfy first best for

the sender, the one that minimizes the receiver’s over-provision is the one in which the sender
contributes all her resources, meaning xS = k̄. If this weren’t true, the receiver could increase
her expected utility by decreasing her contributions and extracting more resources from the
sender.

Claim 4 On mpool, there cannot be a flat segment followed by a strictly increasing interval.

Claim 4 is true since on a flat segment, where the receiver’s decision is independent of
communication, either the sender’s IC is satisfied for all types in that interval or there is always
inefficiency for some sender types. If it is the former, then the receiver can improve her payoff
by decreasing contributions in that interval and extracting more resources from the sender. If
it is the latter, on the other hand, the sender types that do not achieve first best can always
deviate to the strictly increasing interval and benefit from greater contributions by the receiver,
thereby violating incentive compatibility.
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S < k̄

θ̄seq

(a) Receiver’s actions

θ0 θ̄ 1

xS

xc
S = k̄
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θ

θ̄seq

(b) Sender’s actions

Figure 5: The receiver can commit to an action that is strictly lower than xseq
R on the interval

(θ̄, θ̄seq). Notice this is possible since the sender can always increase her contributions to k̄ and
still achieve first best φ̃S

θ .

Figure 5 illustrates the consequence of the above claims. Specifically, the receiver, instead
of playing a flat action on the pooling interval (θ̄, θ̄seq), pivots and provides lesser contribu-
tions thereby extracting the most resources possible from the sender. While doing so, the
sender still achieves first best levels φS(k̄, xc

R(θ)) = φ̄S
θ . For the receiver, φ̄R

θ < φR(xc
R(θ), k̄) <

φR(xseq
R , xseq

S (θ, xseq
R )) and this implies that over-provision is now minimized, leading to an in-

crease in expected utility for the receiver on this interval. Given the above arguments, the
commitment problem can be reformulated as the following:

argmax
xc

R(θ)∈V

θ̄c∫
θ̄

U
(

φR (xc
R(θ), k̄

)
, θ
)

dF +

1∫
θ̄c

U
(

φR (xc
R(θ̄c), k̄

)
, θ
)

dF such that

∀θ
′
, θ
′′ ∈ [0, 1] : U

(
φS
(

k̄, xc
R(θ

′
)
)

, θ
′
, b
)
≥ U

(
φS
(

xc
S(θ

′
, xc

R(θ
′′
)), xc

R(θ
′′
)
)

, θ
′
, b
)

xc
R(θ̄c) ≡ argmax

xR∈V
U
(

φS(k̄, xR), θ, b
)

Two important properties of the optimal commitment rule becomes clear from the above
reformulation. First, there is maximal resource extraction from the sender on the interval mpool

compared to the two protocols. Second, the receiver caps resource allocation at θ̄c by contributing
xc

R(θ̄c), but no more on the interval (θ̄c, 1]. Together, they determine the precise nature of the
optimal commitment rule, given by the following proposition.

Proposition 8 The optimal commitment rule for the receiver is given by the following:

1. ∀θ ∈ [0, θ̄] : xc
R(θ) = x̃R(θ)
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2. ∀θ ∈ (θ̄, θ̄c] : xc
R(θ) ≡ arg max

xR
U(φS(k̄, xR), θ, b)

3. ∀θ ∈ (θ̄c, 1] : xc
R(θ) = xc

R(θ̄c)

Proof. See Appendix A.10
The optimal decision rule mimics the unrestricted domain decisions on the separating in-

terval [0, θ̄]. On the pooling interval, the decision rule maintains IC by providing the first best
levels for the sender up to some higher threshold θ̄c(< 1) and then is unchanged beyond. The
optimal rule exhibits two key features. First, it is discontinuous at exactly θ̄ and nowhere else.
Second, on the interval (θ̄, θ̄c] where the receiver’s actions are strictly increasing, the sender’s ac-
tion is constant and fixed at k̄. This is driven by the imperfect substitutability of players’ contri-
bution. Out of all possible incentive compatible commitment rules, the one that maximizes the
receiver’s utility is the one that extracts the most resources from the sender. That is, ∀θ ∈ (θ̄, θ̄c],
φS(k̄, xR) = φS(k̄− ε, xR + γ) = φ̄S

θ , implies that U(φR(xR, k̄), θ) > U(φR(xR + γ, k̄− ε), θ).

Proposition 9 The optimal commitment rule provides a higher ex-ante welfare to both the sender and
receiver, compared to the sequential protocol.

Proof. See Appendix A.11
The intuition is the following. Notice that apart from choosing a sequence of contributions

xc
R(θ), the receiver must also decide the threshold θ̄c up to which there is strictly increasing

contributions. In other words, the receiver’s problem is equivalent to choosing a cutoff θ̄c and
a corresponding cap on contributions xc

R(θ̄c). The receiver could always choose a cutoff θ̄seq

and a cap xc
R(θ̄seq) that mimics the sequential protocol action on the separating interval and

satisfies maximal resource extraction on (θ̄, θ̄seq]. This guarantees the receiver at least the same
payoff as the sequential protocol (see Figure 5). Since the receiver is able to extract k̄ on the
pooling interval from the sender, the marginal utility for the receiver is strictly increasing at
(θ̄seq, xc

R(θ̄seq)). This implies that the receiver is able to provide first best for the sender up to
a threshold greater than θ̄seq, and ipso facto, the cap on contributions with commitment is also
higher. That is, θ̄c > θ̄seq and xc

R(θ̄c) > xc
R(θ̄seq) (see Figure 6).

As argued earlier, since the sender’s welfare is strictly increasing in the cutoff threshold
and therefore on the size of the cap, the optimal commitment rule is also welfare improving
for the sender since she achieves first best for the types [0, θ̄c] and on the interval (θ̄c, 1] the
contributions of the receiver under commitment is higher than in the sequential case. These
two effects lead to a greater overall welfare for the sender under commitment.
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Figure 6: The optimal mechanism exhibits two key features. On the interval (θ̄, 1], there is
maximal resource extraction from the sender (xc

S = k̄). Further, the receiver places a cap on the
contributions given by xc

R(θ̄c).

9 Discussion

The optimal commitment rule has features that are prevalent in many real world environments.
Proposition 8 could be seen as a form of binding commitment to resources by the informed
agent, prior to communication. Proposition 9 suggests a combination of transparency and
ex ante commitment in organizations can be welfare improving. This could arise in political
economy settings where governments jointly share resources required to implement a public
project (infrastructure, say). Governments typically announce budgetary allocations with a cap
on the maximum contributions to be made for the (joint) project. Alternatively, in organizations,
such commitments are usually written into contractual agreements before the start of a project.
This could be a commitment from an upstream division indicating a time schedule with the
amount of human capital resources that the division is willing to commit to, contingent on the
progress made in the project. This way, the uninformed division can achieve first best when the
quality of project is fairly low, and extract the most resources from the downstream division
when the project is of high quality.

Extensions

Lying costs

The equilibrium in both protocols exhibits some level of lying by the informed sender. Exper-
imental evidence suggests that there is an intrinsic propensity to say the truth even when the

25



information conveyed is soft (Gneezy (2005), Hurkens and Kartik (2009), and Sánchez-Pagés
and Vorsatz (2007)), suggesting an aversion to lying. The presence of lying costs (Kartik (2009))
seems relevant in the examples described earlier. For example, within organizations, misrep-
resentation of information by a department to another could lead to distrust among them.
Alternatively, it is possible for the uninformed functional unit to learn about the true project
type ex-post, leading to a loss of reputation.

Introducing lying costs in the presence of action substitutability and resource constraints
changes the incentives of the informed sender drastically. Suppose, for sake of exposition,
lying costs are minimized when the messages are truthful (i.e. µ(θ) = θ). Then, the presence
of lying costs eliminates all but the most informative equilibrium under either protocols. The
intuition is that there is now a lying cost associated with wrongful reporting for no marginal
benefit in utility. (On the interval [0, θ̄], U1

(
φS(xS(θ, θ), xR(θ)), θ, b

)
= 0 implying that truthful

reporting is indeed a solution.) That is, by lying, the sender does no better than under truthful
reporting but incurs a wasteful cost by pooling with the other types and sending m̃ = 1. This
implies that there is an unique separating equilibrium on [0, θ̄] such that µ(θ) = θ.

Proposition 10 With lying costs, there is an unique separating interval such that all the information is
revealed up to the threshold θ̄, under either protocols.

What is left to consider is the equilibrium messaging on the pooling interval, mpool = (θ̄, 1].
One way to look at my earlier results is by taking them as the limit case of lying costs. As the
intensity of lying costs goes to zero, the equilibrium messaging on the pooling interval is such
that all types send the message m = 1. Specifically, when the intensity of lying is very small,
there is an incentive to (almost) costlessly exaggerate the information, resulting in the maximal
message at the limit, lim

θ↓θ̄
µ(θ) = 1. On the other hand, when the lying costs are sufficiently

high, there is full separation as the incentives to exaggerate are counteracted by the lying costs.
The interesting case is when the lying costs are sufficiently high but not prohibitively so.

It is then possible for alternate equilibrium messaging strategies to emerge. For example, the
sender could partition the states and send the same inflated message for every type in this
partition, resulting in clustering of sender’s private information (Chen (2011)) on the interval
mpool.

Let me construct a simple two cluster example. Suppose the sender partitions the interval
into two, m1

pool = [θ̄, θ̄1] and m2
pool = (θ̄1, 1], such that ∀θ ∈ m1

pool : m1 = µ(θ) = θ̄1 and
∀θ ∈ m2

pool : m2 = µ(θ) = 1. Given this messaging strategy, the receiver correctly anticipates
the sender type given the message mi and takes an action xR(mi) that solves a problem similar
to Lemma 2. Finally, for this strategy to be incentive compatible for the sender, the marginal
type θ̄1 must be indifferent between sending m1 and m2. This gives a simple trade off between
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marginal benefits of sending a higher message m2 and marginal (lying) costs of doing so. By
sending the message m1, there are no lying costs but the receiver’s equilibrium response is
sub-optimal for the sender. By deviating and clustering with the higher types, the sender can
guarantee a higher payoff (since U1 > 0 at xS = k̄, xR = xR(m1)) but it also comes with a positive
lying cost. Depending on the intensity of cost parameter, the bias and extent of substitutability,
the indifference condition would precisely characterize the message clustering.17

Role of Delegation

The role of delegation in organizations has been widely studied since the seminal work of
Holmstrom (1978). The work of Dessein (2002) finds that delegation provides a higher welfare
(to the uninformed player) over communication when the conflicts of interest is low enough.18

When both players take substitutable actions, however, full delegation by the receiver would
imply that the sender replicates the same outcomes as in the most informative equilibrium with
communication in the interval [0, θ̄], and additionally also achieves first best (φ̄S

θ ) in the pooling
interval mpool = (θ̄, 1] by borrowing the extra resources required from the receivers contribution
set. This results in over-provision on this interval from the perspective of the receiver.

However, private firms with multiple functional teams that work together do so under the
premise of functional autonomy. For example, a marketing and sales team cannot appropriate the
decision rights from the product development team and allocate resources on their behalf. Even
in the scenario where one team is told to delegate its decision to another, the team delegating
its decision rights can do so optimally.

From Section 8, we know that the optimal commitment rule has a cap on resources given
by xc

R(θ̄c). However, Alonso and Matouschek (2008) have shown that the commitment rule
problem is equivalent to a delegation one in which the uninformed player provides a delegation
set to the informed sender. That is, instead of following the commitment rule characterized in
Proposition 8, the receiver can instead allow the sender to choose a contribution from the set
D = [k, xc

R(θ̄c)]. This form of interval delegation would provide the receiver with the same
expected utility if the sender mimics her contributions according to the commitment rule. That
is, on the pooling interval, the sender always chooses to contribute k̄ and borrows the rest from
the delegation set D.

However, in the case where both players make decisions that are substitutable, there are
multiple combinations through which to achieve the first best levels of contribution for the

17Chen (2011) finds clustering and inflated messaging in a completely different setup. In Chen’s work, there
is a small prior probability that the sender is honest (always reports truthfully) and the receiver is naive (always
believes the message). This leads to message inflation and clustering at the top end of the message spectrum.

18b < 1
4 to be specific in a quadratic utility framework.
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sender. To see this, fix a θ ∈ mpool. Let the first best levels of contribution for the sender be
φ̄S

θ . Since there is positive spillover, decreasing xS could be compensated by a corresponding
increase in xR. As a result, there are multiple pairs of (xS, xR) such that φS(xS, xR) = φ̄S

θ . If
there was an earlier stage where both players invest in resources at some marginal cost c, then
the delegation problem is not anymore equivalent to the commitment rule problem since the
receiver has incentives to strategically under-invest in resources under delegation in order avoid
free riding by the sender. The investment in resources problem introduces an additional layer
of incentive issues that are worth investigating for future research.

Verifiable Information Disclosure

So far, the analysis has focused mainly on transmission of soft information by the sender. In
many projects the nature of information is verifiable (Grossman (1981); Milgrom (1981)) by
the uninformed receiver. Project quality can be verified by the uninformed team by acquir-
ing information from outside sources, for example. Alternatively, the project contract might
specify evidence provision as a requirement for the informed party. When information can be
verified costlessly, the incentives for communication change completely. There is unraveling in
the sense that the sender would always find it optimal to reveal every state truthfully, leading
to full information transmission even in the presence of resource constraints. This is straight-
forward to observe. On the pooling interval, for the highest state θ = 1, the sender is better
off revealing. This way, xR(1) > xR(mpool) and since there is under-provision for the sender
(U1(φ

S(k̄, xR(mpool)), 1, b) > 0), it follows that revealing the highest state improves the sender’s
utility. However, this argument holds for all states below as well and there is complete un-
raveling (see Milgrom (1981)). Obviously, in case of verifiable disclosure, both sequential and
simultaneous protocols lead to full information revelation resulting in the same ex-ante welfare
for the receiver and sender.

10 Conclusion

This paper investigates the nature of cheap talk communication with (one sided) incomplete
information when actions of both players are strategic substitutes. Under simultaneous deci-
sion making protocol, with pure messaging strategies, I show that information is fully revealed
when the informed sender does not face resource constraints — defined by the permissible
domain of actions that the players choose from. Consequently, when resource constraints are
binding, communication deteriorates and there is only partial information revelation in equi-
librium. I establish an intuitive monotonic relationship between information transmission and
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resource constraints of players.
Next, I consider an alternate protocol – sequential decision making – in which the unin-

formed receiver takes an action first followed by the sender, post the communication stage.
While the total amount of information conveyed remains unchanged in the most informative
equilibrium, the two players’ ex ante welfare improves under the sequential protocol. This re-
sult elucidates the importance of transparency in decision making within organization when
projects involve multiple teams that jointly make (substitutable) contributions.

Finally, I characterize an intuitive commitment mechanism for the receiver that displays
three features: i) the receiver mimics the simultaneous protocol actions up to the informative
threshold; ii) beyond this, the receiver extracts maximal resources possible from the sender
while contributing the residual required to satisfy the sender’s incentive constraints; iii) the
receiver caps her contributions beyond a threshold. The commitment rule, interestingly, is
welfare improving for both players, compared to the two decision making protocols. This
result provides a rationale for the efficiency of ex ante commitments in the presence of action
substitutability and resource constraints.

The paper makes an important contribution in uncovering the informational inefficiencies
driven by the presence of resource constraints. There are other incentive problems associated
with resource constraints that are worth exploring. For example, when there is two sided
incomplete information, resource constraints would still affect the ability of players to share
information. In fact, as information is more dispersed, the inefficiencies emerging from re-
source constraints might worsen leading to decreased welfare. Also, even though resource
constraints were assumed to be exogenous in this paper, it could very well be that players in-
vest in resources ex-ante at some marginal cost. This investment decision might be affected
by the decision-making protocol. Alternatively, when players instead have a coordination mo-
tive with strategic complementarity in actions, resource constraints might play a similar role in
constraining the credibility of information. All such scenarios require a more detailed analysis,
and are left for future work.
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A Appendix

A.1 Proof of Proposition 1

Sufficiency

Let φ̄S
θ = φS(x̃S(θ), x̃R(θ)) be the first best levels of contribution for the sender when the state

is θ. When HTIC condition is satisfied, it implies that for every other θ ∈ [0, 1), x̃S(θ) < k̄
by single crossing property of the utility function (U12 > 0). But if this is the case, when the
sender sends a truthful message m = θ, the optimal action under both constrained optimization
and unconstrained optimization coincide for the sender. This means that for every θ ∈ [0, 1],
x∗S(θ) = x̃S(θ). Since the receiver does not face any resource constraints, it also implies that
x∗R(θ) = x̃R(θ) and φ̄S

θ = φS(x∗S(θ), x∗R(θ)) This ensures there is no inefficiency in terms of
contributions and sender always first best levels of contribution for every θ. Hence, there exists
an equilibrium in which the sender reveals her all the information truthfully.

Necessity

Suppose HTIC is violated (x̃S(1) > k̄) but there is full information revelation by sender. Then,
by definition, there exists a non-empty set G = {θ : x̃S(θ) > k̄}. When HTIC is violated, the
unconstrained actions does not coincide with the equilibrium actions that are bounded by the
resource constraint, i.e ∀θ ∈ G : x∗S(θ) = k̄ under truthful revelation.
Now take a θ

′ ∈ G. If S reports θ
′
, the optimal actions are x∗S(θ

′
) = k̄ and x∗R(θ

′
) solves

maxxR∈V U
(

φR(xR, k̄), θ
′
)

. However, given imperfect substitutability, φR(x∗R(θ
′
), k̄) < φS(k̄, x∗R(θ

′
))

< φS(x̃S(θ
′
), x̃R(θ

′
)) ≡ φ̄S

θ
′ . But, because HTIC is violated, the contribution function under

truth-telling is φS(k̄, x∗R(θ
′
)) which is clearly not optimal in the sense that U1

(
φS(k̄, x∗R(θ

′
)), θ

′
, b
)

> 0.19 From continuity, there exists an ε such that the sender by deviating to θ
′
+ ε, induces

equilibrium actions that are x∗R(θ
′
+ ε) > x∗R(θ

′
) and x∗S(θ

′
, θ
′
+ ε) = k̄. This way the sender can

guarantee a higher payoff since φS(k̄, x∗R(θ
′
+ ε)) > φS(k̄, x∗R(θ

′
)) and,

U(φS(k̄, x∗R(θ
′
+ ε)), θ

′
, b) > U(φS∗(k̄, x∗R(θ

′
)), θ

′
, b)

However, this means that the sender type θ
′

has an incentive to deviate and pretend to be a
higher type θ

′
+ ε, precluding truthful communication. This is a contradiction. QED

19This condition corresponds with the positive spillover effect at the bound.
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A.2 Proof of Lemma 1

Suppose there exists an equilibrium in messaging strategy such that some types in G = (θ̄, 1]
send a different message. Since I consider monotonic messaging equilibria, wlog, ∃θ

′ ∈ G such
that types in (θ̄, θ

′
] send a message m

′
and types in (θ

′
, 1] send a message m

′′
, where m

′
< m

′′
.

Then, from single crossing (U12 > 0) it must be that x∗R(m
′
) ≡ argmax

xR∈V
EθU

(
φR(xR, x∗S(θ, m

′
)), θ

)
and x∗R(m

′′
) ≡ argmax

xR∈V
EθU

(
φR(xR, x∗S(θ, m

′′
)), θ

)
are such that x∗R(m

′
) < x∗R(m

′′
). By a sim-

ilar argument, x∗R(θ
′
) ≡ argmax

xR∈V
U
(

φR(xR, x∗S(θ
′
)), θ

′
)

must be such that x∗R(m
′
) > x∗R(θ

′
) >

x∗R(m
′′
). x∗R(θ

′
) is simply the receiver’s equilibrium action when the sender’s message is truth-

ful and is believed by the receiver to be so (i.e. m = θ
′
, p(θ

′ |m) = 1).

But if this were the case, at m = θ
′
, x̃S(θ

′
) > k̄ =⇒ x∗S(θ

′
) = k̄. Further, for the sender, the

utility is increasing at m = θ
′
, i.e. U1

(
φS(k̄, x∗R(θ

′
)), θ

′
, b
)
> 0. This is driven by Assumption 3,

since the receiver chooses xR to achieve φ̄R
θ
′ < φ̄S

θ
′ . However, if U1

(
φS(k̄, x∗R(θ

′
)), θ

′
, b
)
> 0 and

U11 < 0, it implies that the following holds:

U
(

φS(k̄, x∗R(θ
′
)), θ

′
, b
)
> U

(
φS(k̄, x∗R(m

′
)), θ

′
, b
)

The utility for the sender from sending a truthful message at θ
′

is greater than from pooling
with some lower types and sending the message m

′
. Given Assumption 5, it holds that k <

x∗S(θ
′
, m

′′
). The sender’s equilibrium action from sending a pooling message m

′′
when the true

state is θ
′

is always within the available domain of actions. But if this is true, then there are two
possibilities.
If x∗S(θ

′
, m

′′
) = k̄, then it holds that

U
(

φS(k̄, x∗R(m
′′)), θ

′
, b
)
> U

(
φS(k̄, x∗R(m

′
)), θ

′
, b
)

If x∗S(θ
′
, m

′′
) < k̄, then φS(x∗S(θ

′
, m

′′
), x∗R(m

′′)) = φ̄S
θ
′ meaning that the sender achieves her first

best levels of contribution in which case,

U
(

φ̄S
θ
′ , θ

′
, b
)
> U

(
φS(k̄, x∗R(m

′
)), θ

′
, b
)

As a result, the sender type θ
′

would always deviate and send the higher pooling message m
′′
.

This argument holds for any θ ∈ G and for any two pooling messages of the above form. This
completes the proof. QED
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A.3 Proof of Proposition 2

Consider the following construction of PRTE for a threshold θ∗:

• If θ ≤ θ∗, m = θ; if θ > θ∗, m = 1.

• If m ≤ θ∗, p(θ | m = θ) = 1; if m = 1, p(θ | m) = f (θ)

• When m ≤ θ∗: x∗S(m) = x̃S(m) and x∗R(m) = x̃R(m)

• When m = 1:

x∗S(θ, m) ≡ arg maxxS∈V U
(
φS(xS, x∗R(m)), θ, b

)
x∗R(m) ≡ arg maxxR∈V

1∫
θ∗

U
(
φR(xR, x∗S(θ, m)), θ

)
f (θ)dθ

• When m ∈ (θ∗, 1): p(θ∗|m) = 1.

The first condition says that for all states in [0, θ∗], the sender communicates truthfully, and
for any state above, pools by sending an exaggerated message m = 1. The second condition
describes the formation of posterior beliefs. For any message on [0, θ∗], receiver believes it to be
truthful and for messages m = 1, the posterior is just the conditional prior on the state space.
The third and fourth statements indicate the equilibrium actions conditional on the message
and posterior beliefs of the receiver. The final condition rules out any profitable off-equilibrium
path deviations. For off-equilibrium path messages m ∈ (θ∗, 1), the receiver assigns the belief
θ = θ∗, that is the deviation comes from the highest possible truth-telling type.
Then, for an equilibrium with cutoff θ∗ to exist, there should be no profitable deviations for
any sender types. To check this, consider the types in (0, θ∗] and (θ∗, 1]. For any θ ∈ (0, θ∗],
sender does not have an incentive to deviate from truth telling since the sender achieves first
best levels φ̄S

θ because the resource constraints are not binding, x∗S(θ) = x̃S(θ) ≤ k̄.
For types θ ∈ (θ∗, 1], the payoff from sending m = 1 is still higher than sending any other
off-equilibrium path message. There are two cases possible for the sender.
Case i): x∗S(θ, m) < k̄
In this case, the sender achieves first best in that she can do no better than under m = 1.
Case ii): x∗S(θ, m) = k̄
Here, the sender is constrained by the bound meaning there is some under-provision for the
sender type θ (meaning U1 > 0). Notice that x∗R(m) > x∗R(θ

∗) which means that the receiver
takes an higher action upon receiving the pooling message m = 1 resulting in a discontinuity at
θ∗. However, since φS

2 (k̄, xR) > 0 and U1 > 0 for the sender at the bound, a higher contribution
from the receiver reduces this under-provision. Given that x∗R(m) > x∗R(θ

∗), it follows that
U
(
φS(k̄, x∗R(m)), θ, b

)
> U

(
φS(k̄, x∗R(θ

∗)), θ, b
)

for all such θ. This concludes the proof. QED
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A.4 Proof of Proposition 3

Take any PRTE with threshold θ∗. I make the following claim.

Claim: ∀θ
′ ∈ (0, θ∗), ∃ ε > 0 : ∀θ ∈ (θ

′ − ε, θ
′
],

U
(

φS (x∗S(θ), x∗R(θ)) , θ, b
)
= U

(
φS
(

x∗S(θ, m(θ′−ε,θ′ ]), x∗R(m(θ′−ε,θ′ ])
)

, θ, b
)

Where the message m(θ′−ε,θ′ ] simply implies that the type is in the interval (θ
′ − ε, θ

′
]. The

claim just states that for any separating type θ
′
, it is possible to find a pooling interval of types

mpool = m(θ′−ε,θ′ ] such that the indifference condition holds for all types within this interval, i.e.
each of the types in the pooling interval is indifferent between the separating message and the
pooling one. The indifference (IC) condition merely requires that the sender is able to achieve
her first best levels φ̄S

θ which is possible as long as her best responses are within the resource
constraints.
To show this, all we need to check for are the indifference conditions of the boundary types
θ
′ − ε and θ

′
,

U
(

φS
(

x∗S(θ
′
), x∗R(θ

′
)
)

, θ
′
, b
)
= U

(
φS
(

x∗S(θ
′
, m(θ′−ε,θ′ ]), x∗R(m(θ′−ε,θ′ ])

)
, θ
′
, b
)

U
(

φS
(

x∗S(θ
′ − ε), x∗R(θ

′ − ε)
)

, θ
′ − ε, b

)
= U

(
φS
(

x∗S(θ
′ − ε, m(θ′−ε,θ′ ]), x∗R(m(θ′−ε,θ′ ])

)
, θ
′ − ε, b

)
The latter condition follows from noting that any upward deviation is always within the domain
of available actions (from Assumption 5). That is, x∗R(θ

′ − ε) > x∗R(m(θ′−ε,θ′ ]) from single cross-

ing (U12 > 0) and x∗S(θ
′ − ε) < x∗S(θ

′ − ε, m(θ′−ε,θ′ ]) due to imperfect substitutability. However,

φS
(

x∗S(θ
′ − ε), x∗R(θ

′ − ε)
)
= φS

(
x∗S(θ

′ − ε, m(θ′−ε,θ′ ]), x∗R(m(θ′−ε,θ′ ])
)
= φ̄S

θ
′−ε

meaning that the

sender achieves first best levels of contributions for the type θ
′ − ε irrespective of whether the

message is a separating or pooling one.
The former condition states that the type θ

′
would pool with lower types and be indifferent

from separating. To see this, notice that x∗S(θ
′
) = k

′
< k̄ under a separating (truthful) mes-

sage. By continuity, there must exist a ε-deviation such that the x∗S(θ
′
, m(θ′−ε,θ′ ]) ∈ (k

′
, k̄].

If this were not true, then lim
ε→0

x∗S(θ
′
, m(θ′−ε,θ′ ]) = k

′
< k̄, a contradiction. As before, since

x∗S(θ
′
) < x∗S(θ

′
, m(θ′−ε,θ′ ]) it follows (from Assumption 3 and SC) that x∗R(θ

′
) > x∗R(m(θ′−ε,θ′ ])

but φS
(

x∗S(θ
′
), x∗R(θ

′
)
)
= φS

(
x∗S(θ

′
, m(θ′−ε,θ′ ]), x∗R(m(θ′−ε,θ′ ])

)
= φ̄S

θ
′ . If not, the sender can al-

ways increase her contributions up to the point where she achieves first best. Therefore, there
is always the possibility of pooling within any PRTE. This completes the proof. QED

33



A.5 Proof of Lemma 2

Take a pooling message mpool = (θ∗, 1] associated with the PRTE θ∗. Suppose, the receivers
response x∗R(mpool) is such that ∀θ ∈ (θ∗, 1) : x∗S(θ, mpool) < k̄ and x∗S(1, mpool) = k̄. This
means that the sender achieves her first best levels φ̄S

θ for every type in the interval mpool. Then
evaluating the FOC of the receiver gives us,

1∫
θ∗

U1

(
φR (x∗R(mpool), x∗S(θ, mpool)

)
, θ
)

φR
1 f (θ)dθ (4)

When the sender achieves first best levels, it must be that φS (x∗S(θ, mpool), x∗R(mpool)
)
= φ̄S

θ . But
this implies that there is over-provision for the receiver in that φR (x∗R(mpool), x∗S(θ, mpool)

)
> φ̄R

θ .
This further entails that U1

(
φR (x∗R(mpool), x∗S(θ, mpool)

)
, θ
)
< 0 on the interval (θ∗, 1]. From

this, it follows that equation 4 is less than zero. This means that the receiver’s action cannot
be such that the sender’s response is within the bound for all types in mpool. Since x∗S(θ

∗) ≤ k̄,
from continuity property, it follows that ∃θ∗sim ∈ (θ∗, 1] : ∀θ ∈ (θ∗, θ∗sim), x∗S(θ) ≤ k̄ and ∀θ ∈
[θ∗sim, 1], x∗S(θ) = k̄. This completes the proof. QED

A.6 Proof of Proposition 4

Let WR(θ
∗) and WS(θ

∗) be the ex-ante welfare of the receiver and sender respectively, repre-
sented purely in terms of the cutoff threshold θ∗.

Receiver’s ex-ante utility:

WR(θ
∗) =

θ∗∫
0

U
(

φR (x∗R(t), x∗S(t)) , t
)

f (t)dt+

1∫
θ∗

U
(

φR
(

x∗R(m
θ∗
pool), x∗S(t, mθ∗

pool)
)

, t
)

f (t)dt

Taking the derivative of receiver’s welfare with respect to θ∗,

dWR(θ
∗)

dθ∗
=[
U
(

φR (x∗R(θ
∗), x∗S(θ

∗)) , θ∗
)
−U

(
φR
(

x∗R(m
θ∗
pool), x∗S(θ

∗, mθ∗
pool)

)
, θ∗
)]

f (θ∗) > 0

for any θ∗ ≤ θ̄ since φR (x∗R(θ∗), x∗S(θ
∗)
)
= φ̄R

θ∗ ,the first best levels of contribution. Further, there
is a discontinuous jump at θ∗ following a pooling message, implying that
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∣∣∣φR (x∗R(θ∗), x∗S(θ
∗)
)
− φR

(
x∗R(m

θ∗
pool), x∗S(θ

∗, mθ∗
pool)

)∣∣∣ > 0 at θ∗.

Sender’s ex-ante utility:

Take any two cutoff equilibria θ1, θ2 ≤ θ̄, call them PRTE1 and PRTE2, such that θ1 < θ2

(wlog). Let the corresponding pooling messages associated with the PRTE be m1
pool = (θ1, 1] and

m2
pool = (θ2, 1] respectively. I will establish that sender is better off with the more informative

equilibrium θ2. Similar to arguments made in Lemma 2, for cutoff equilibria θ1, θ2 there exists
a corresponding θ1

sim and θ2
sim such that x∗S(θ

1
sim, m1

pool) = x∗S(θ
2
sim, m2

pool) = k̄.
From SC property, the receiver’s action must be higher for the pooling message m2

pool corre-
sponding to the threshold θ2, i.e. x∗R(m

2
pool) > x∗R(m

1
pool). If this is true, then θ1

sim < θ2
sim.

Suppose not, and θ1
sim > θ2

sim. Then, x∗S(θ
2
sim, m1

pool) < x∗S(θ
1
sim, m1

pool) = k̄. But x∗S(θ
2
sim, m1

pool) ≥
x∗S(θ

2
sim, m2

pool) = k̄. This is a contradiction. Therefore the claim holds. In order to prove the
result for the sender, I consider two possible scenarios.

Scenario (a): When θ1
sim < θ2. That is, θ1 < θ1

sim < θ2 < θ2
sim. The sender’s utility under the two

PRTE’s is given by,

WS(θ
1) =

θ1∫
0

U
(

φS (x∗S(t), x∗R(t)) , t, b
)

f (t)dt+

1∫
θ1

U
(

φS
(

x∗S(t, m1
pool), x∗R(m

1
pool)

)
, t, b

)
f (t)dt

WS(θ
2) =

θ2∫
0

U
(

φS (x∗S(t), x∗R(t)) , t, b
)

f (t)dt+

1∫
θ2

U
(

φS
(

x∗S(t, m2
pool), x∗R(m

2
pool)

)
, t, b

)
f (t)dt

Under PRTE1 the sender’s equilibrium action is within the bound for the interval (0, θ1
sim].

Since θ1
sim < θ2

sim, the sender’s action is also within the bound over the interval (0, θ1
sim under

PRTE2. Therefore, what is left to be checked are those states in which the resource constraints
are binding for the sender. In PRTE1, this corresponds to the interval (θ1

sim, 1]. On the same
interval, I compare the utility (ex-ante) achieved under PRTE2. I will refer to this utility as the
residual welfare that results from inefficiency, WRES

S (θ1) and WRES
S (θ1).
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WRES
S (θ1) =

θ2
sim∫

θ1
sim

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt +

1∫
θ2

sim

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt

WRES
S (θ2) =

θ2∫
θ1

sim

U
(

φS (x∗S(t), x∗R(t)) , t, b
)

f (t)dt+

θ2
sim∫

θ2

U
(

φS
(

x∗S(t, m2
pool), x∗R(m

2
pool)

)
, t, b

)
f (t)dt

+

1∫
θ2

sim

U
(

φS
(

k̄, x∗R(m
2
pool)

)
, t, b

)
f (t)dt

Taking the expression WRES
S (θ1) and expanding the first term, we get,

θ2∫
θ1

sim

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt +

θ2
sim∫

θ2

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt

Comparing the above expression with the first two terms of WRES
S (θ2),

θ2∫
θ1

sim

U
(

φS (x∗S(t), x∗R(t)) , t, b
)

f (t)dt +

θ2
sim∫

θ2

U
(

φS
(

x∗S(t, m2
pool), x∗R(m

2
pool)

)
, t, b

)
f (t)dt >

θ2∫
θ1

sim

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt +

θ2
sim∫

θ2

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt

This follows from pair-wise comparison of the terms,

θ2∫
θ1

sim

U
(

φS (x∗S(t), x∗R(t)) , t, b
)

f (t)dt >
θ2∫

θ1
sim

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt (5)

θ2
sim∫

θ2

U
(

φS
(

x∗S(t, m2
pool), x∗R(m

2
pool)

)
, t, b

)
f (t)dt >

θ2
sim∫

θ2

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt (6)
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Similarly comparing the last term of WRES
S (θ1) and WRES

S (θ2),

1∫
θ2

sim

U
(

φS
(

k̄, x∗R(m
2
pool)

)
, t, b

)
f (t)dt >

1∫
θ2

sim

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt (7)

The inequality 5 follows from noting that on the interval (θ1
sim, θ2], the sender achieves the first

best levels of contribution φ̄S
t under the higher threshold equilibrium.

∀t ∈ (θ1
sim, θ2] : U

(
φS (x∗S(t), x∗R(t)) , t, b

)
> U

(
φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
Similarly, inequality 6 is true since on the interval (θ2, θ2

sim], the sender induces the receiver to
play a higher action with message m2

pool and changes her action to achieve first best contribu-
tions φ̄S

t .

∀t ∈ (θ2, θ2
sim] : U

(
φS
(

x∗S(t, m2
pool), x∗R(m

2
pool)

)
, t, b

)
> U

(
φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
The last inequality 7 follows from noting that since x∗R(m

1
pool) < x∗R(m

2
pool), it is valid that

φS
(

k̄, x∗R(m
1
pool)

)
< φS

(
k̄, x∗R(m

2
pool)

)
and because there is a positive spillover at the bound for

the sender, i.e. U1 |t∈(θ2
sim,1]> 0,

∀t ∈ (θ2
sim, 1] : U

(
φS
(

k̄, x∗R(m
2
pool)

)
, t, b

)
> U

(
φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
Comparing the terms pairwise therefore yields the required result, WRES

S (θ2) > WRES
S (θ1).

Scenario (b): When θ1
sim > θ2. That is, θ1 < θ2 < θ1

sim < θ2
sim.

In this case, as earlier, I will look at states in which there is inefficiency generated by information
pooling and compare the residual welfare.

WRES
S (θ1) =

θ2
sim∫

θ1
sim

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt +

1∫
θ2

sim

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt

WRES
S (θ2) =

θ2
sim∫

θ1
sim

U
(

φS
(

x∗S(t, m2
pool), x∗R(m

2
pool)

)
, t, b

)
f (t)dt +

1∫
θ2

sim

U
(

φS
(

k̄, x∗R(m
2
pool)

)
, t, b

)
f (t)dt

Pairwise comparison yields,
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θ2
sim∫

θ1
sim

U
(

φS
(

x∗S(t, m2
pool), x∗R(m

2
pool)

)
, t, b

)
f (t)dt >

θ2
sim∫

θ1
sim

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt (8)

1∫
θ2

sim

U
(

φS
(

k̄, x∗R(m
2
pool)

)
, t, b

)
f (t)dt >

1∫
θ2

sim

U
(

φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
f (t)dt (9)

The inequalities 8 and 9 follow from arguments made earlier. Specifically, on (θ1
sim, θ2

sim] the
sender is able to achieve φ̄S

t with the cutoff equilibrium θ2 and is therefore strictly better
off compared to the equilibrium threshold θ1. In the interval (θ2

sim, 1], there is inefficiency
(under-provision) in that φS(.) < φ̄S

t . However, since the sender induces a higher action from
the receiver under θ2 equilibrium, x∗R(m

2
pool) > x∗R(m

1
pool), it follows that φS

(
k̄, x∗R(m

1
pool)

)
<

φS
(

k̄, x∗R(m
2
pool)

)
< φ̄S

t and given U1 > 0 on this interval,

∀t ∈ (θ2
sim, 1] : U

(
φS
(

k̄, x∗R(m
2
pool)

)
, t, b

)
> U

(
φS
(

k̄, x∗R(m
1
pool)

)
, t, b

)
Therefore, WRES

S (θ2) > WRES
S (θ1). This completes the proof. QED

A.7 Proof of Proposition 5

Sender’s ex-post efficiency:

For the sender, I will show ex-post efficiency by making pairwise comparison between two
thresholds θ̄ and any θ′ < θ̄ (wlog). From Proposition 4, we know that θ′sim < θ̄sim. As before,
there are two scenarios to consider.

Scenario (a): θ′ < θ′sim < θ̄ < θ̄sim.
In this case, every type θ ∈ [0, θ′sim], the sender is indifferent between the two threshold equi-
libria, since she achieves first best φ̄S

θ on this interval under either equilibria. However, every
θ ∈ (θ′sim, 1] strictly prefers the θ̄ threshold equilibrium. To see this, let us further divide the
interval to (θ′sim, θ̄sim] and (θ̄sim, 1]. Now, every θ ∈ (θ′sim, θ̄sim] prefers the threshold θ̄ since
x∗S(θ, m̄pool) ≤ k̄, which implies that φ̄S (x∗S(θ, m̄pool), x∗R(m̄pool)

)
= φ̄S

θ , whereas with threshold

θ′, x∗S(θ, m
′
pool) = k̄. Therefore, U

(
φS (x∗S(t, m̄pool), x∗R(m̄pool)

)
, t, b

)
> U

(
φS
(

k̄, x∗R(m
′
pool)

)
, t, b

)
.

Lastly, for types θ ∈ (θ̄sim, 1], the sender’s action is bounded by the resource constraint k̄.
However, since m̄pool induces a higher action from the receiver (x∗R(m̄pool) > x∗R(m

′
pool)), this
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means that φS (k̄, x∗R(m̄pool)
)
> φS

(
k̄, x∗R(m

′
pool)

)
. Since the resource constraints are binding,

U1 > 0 and from the positive spillover property, it follows that U
(
φS (k̄, x∗R(m̄pool)

)
, t, b

)
>

U
(

φS
(

k̄, x∗R(m
′
pool)

)
, t, b

)
for all θ ∈ (θ̄sim, 1].

Scenario (b): θ′ < θ̄ < θ′sim < θ̄sim.
A analogous set of arguments hold true for this case. In particular, every type θ ∈ [0, θ′sim]

is indifferent between the thresholds θ̄ and θ′. Every type θ ∈ (θ′sim, θ̄sim] is strictly better off
under threshold θ̄ because the resource constraints are not binding in this interval and therefore
the sender is able to achieve first best φ̄S

θ . Types θ ∈ (θ̄sim, 1] are also strictly better off under
threshold θ̄ because of the positive spillover argument made earlier. This completes the proof.

Receiver’s ex-post efficiency

For the receiver, pick any two thresholds as before, (θ1, θ2) such that θ1 ≤ θ2 ≤ θ̄. Let m1
pool

and m2
pool be the respective pooling messages and, θ1

sim and θ2
sim be the corresponding cutoffs

(see proof of Proposition 5) such that the sender’s action is bounded by the resource constraint.
Now consider the interval (θ1

sim, 1]. I make the following claim:

∃θ1
R ∈ (θ1

sim, 1] : x∗R(m
1
pool) ≡ argmax

xR∈V
U
(

φR (xR, k̄
)

, θ1
R

)
=⇒ φR

(
x∗R(m

1
pool), k̄

)
= φ̄R

θ1
R

Suppose not. Then, we know that at θ1
sim, φR

(
x∗R(m

1
pool), k̄

)
> φ̄R

θ1
sim

implying that U1 |θ∈(θ1,θ1
sim]

<

0 for the receiver. If φR
(

x∗R(m
1
pool), k̄

)
≥ φ̄R

1 , then it means that the marginal utility of the

receiver from the action x∗R(m
1
pool) is less than zero. That is, it cannot be an equilibrium action,

which is a contradiction. On the other hand, if φR
(

x∗R(m
1
pool), k̄

)
< φ̄R

1 , then by continuity,

there must exist a type t such that φR
(

x∗R(m
1
pool), k̄

)
= φ̄R

t . Therefore, the claim holds.

If there is such a θ1
R under the threshold equilibrium θ1, there must exist one similarly, θ2

R corre-
sponding to the threshold θ2. Further, since x∗R(m

1
pool) < x∗R(m

2
pool), it holds that φR

(
x∗R(m

1
pool), k̄

)
<

φR
(

x∗R(m
2
pool), k̄

)
=⇒ θ1

R < θ2
R. Finally, notice that at θ = θ1

R,

U
(

φR
(

x∗R(m
1
pool), k̄

)
, θ1

R

)
> U

(
φR
(

x∗R(m
2
pool), k̄

)
, θ1

R

)
Therefore the more informative threshold θ2 is not ex post efficient. QED
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A.8 Proof of Proposition 6

Consider the following set of messaging strategies, beliefs and action profiles under the se-
quential protocol:

1. If θ ≤ θ∗, m = θ; if θ > θ∗, m = 1.

2. If m ≤ θ∗, p(θ | m = θ) = 1; if m = 1, p(θ | m) = f (θ)

3. When m ≤ θ∗: x∗R(m) = x̃R(m) and x∗S(θ, x∗R(m)) = argmax
xS∈V

U
(
φS (xS, x∗R(m)) , θ, b

)
≡

x̃S(m)

4. When m = 1:

• x∗R(m) ≡ arg maxxR∈V

1∫
θ∗

U
(
φR(xR, x∗S(θ, xR)), θ

)
f (θ)dθ

• x∗S(θ, x∗R(m)) ≡ arg maxxS∈V U
(
φS(xS, x∗R(m)), θ, b

)
5. When m ∈ (θ∗, 1): p(θ∗|m) = 1.

Notice that the main point of departure from the simultaneous protocol arises from the sender’s
equilibrium response x∗S(θ, x∗R(m)) that takes into account the receiver’s action in the second
stage, post communication. Clearly, on the interval of separation [0, θ∗] the receiver can do no
better than play x̃S(θ). This is driven by the concavity of U(.) in that there is an unique φ̄R

θ for
every θ and this corresponds to the pair of actions (x̃S(θ), x̃R(θ)). Now, on the pooling interval
the receiver takes into account that the sender can now observe her actions and best respond to
them. Jointly, (x∗S(θ, x∗R(m)), x∗R(m))) must maximize the expected payoffs of the player.
Finally, I check to see if the sender would want to deviate from the equilibrium messaging
strategy. Suppose the sender deviates and sends an out-of-equilibrium message m ∈ (θ∗, 1).
Then, the receiver assigns the belief that it comes from the type θ∗ and plays the corresponding
action x∗R(m) = x̃R(θ

∗). The sender types m∗pool = (θ∗, 1] are at least as better off sending the
pooling message m = 1. To see this, if x∗R(m) = x̃R(θ

∗), then there exists a threshold, say
θout ≤ θ̄, such that φS (k̄, x̃R(θ

∗)
)
= φ̄S

θout
. This is true since φS (k̄, x̃R(θ̄)

)
= φ̄S

θ̄
and by continuity

there should exist such a type θout. Given this, every type in (θ∗, θout] cannot do any better
from deviating, since under the pooling message, they induce a higher action from the receiver.
This means every type t ∈ (θ∗, θout] achieves first best levels (φ̄S

t ) under the pooling message.
That is, φS

(
x∗S(t, x∗R(m

∗
pool)), x∗R(m

∗
pool)

)
= φS (k̄, x∗R(θ

∗)
)
= φ̄S

t . But notice that every type in
(θout, 1] would prefer sending the message m = 1 instead of the out-of-equilibrium one. This
is driven by the under-provision concerns that manifest as a result of the resource constraints.
More specifically,
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∀θ ∈ (θout, 1] : φS (k̄, x∗R(θ
∗)
)
< φS

(
x∗S(θ, x∗R(m

∗
pool)), x∗R(m

∗
pool)

)
≤ φ̄S

θ̄

Therefore, all sender types in (θout, 1] are strictly worse off by deviating and the types φ̄S
t are

indifferent between deviating and playing the equilibrium strategy. Given that the sender can
always induce a higher action from the receiver by sending the pooling message and subse-
quently moderate her own actions implies that the sender types can never do better by deviat-
ing, therefore precluding any deviation. This completes the proof. QED

A.9 Proof of Proposition 7

I will continue to focus on the efficient equilibrium (θ̄) under the two protocols. Again, on the
separating interval [0, θ̄], both the protocols provide the same ex ante welfare to both the sender
and receiver. So it is sufficient to focus on the pooling interval, henceforth mpool = (θ̄, 1]. Let
the receiver’s action after mpool be xsim

R and xseq
R under simultaneous and sequential protocols

respectively. To compare equilibrium welfare, it is essential to prove Lemma 3.

Lemma 3: xseq
R > xsim

R

Under simultaneous protocol, the receiver’s equilibrium response xsim
R is given by the following

FOC (from Lemma 2),

θ̄sim(xsim
R )∫

θ̄

U1

(
φR
(

xsim
R , xsim

S (t, mpool)
)

, t
)

φR
1 dF +

1∫
θ̄sim(xsim

R )

U1

(
φR
(

xsim
R , k̄

)
, t
)

φR
1 dF = 0 (10)

The the receiver’s equilibrium action under the sequential protocol is given by the FOC from
differentiating equation 3. That is, xseq

R solves,

θ̄seq(xR)∫
θ̄

U1

(
φR (xR, xseq

S (t, xR)
)

, t
)

.
[

φR
1 + φR

2 .
dxS

dxR

]
dF +

1∫
θ̄seq(xR)

U1

(
φR (xR, k̄

)
, t
)

φR
1 dF = 0

(11)
Evaluating the above equation 11 at xsim

R gives,
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θ̄seq(xsim
R )∫

θ̄

U1

(
φR
(

xsim
R , xseq

S (t, xsim
R )

)
, t
)

.
[

φR
1 + φR

2 .
dxS

dxR

]∣∣∣∣
xR=xsim

R

dF+

1∫
θ̄seq(xsim

R )

U1

(
φR
(

xsim
R , k̄

)
, t
)

φR
1 dF

(12)

But at xR = xsim
R , it holds that θ̄seq(xsim

R ) = θ̄sim(xsim
R ) and xseq

S (t, xsim
R ) = xsim

S (t, mpool). The
second expression follows from the fact that the sender’s equilibrium action mimics the simul-
taneous protocol action xsim

S (t, mpool) as there is an unique type θ for which φS(k̄, xsim
R ) = φ̄θ.

Further, this implies that when xR = xsim
R under the sequential protocol, the cutoff after which

the sender always contributes k̄ corresponds with θ̄sim(xsim
R ), resulting in the first equality. Sub-

stituting these expressions into equation 12 and rearranging gives,

θ̄sim(xsim
R )∫

θ̄

U1

(
φR
(

xsim
R , xseq

S (t, xsim
R )

)
, t
)

φR
1 dF +

1∫
θ̄sim(xsim

R )

U1

(
φR
(

xsim
R , k̄

)
, t
)

φR
1 dF

+

θ̄sim(xsim
R )∫

θ̄

U1

(
φR
(

xsim
R , xseq

S (t, xsim
R )

)
, t
)

.φR
2 .

dxseq
S

dxR

∣∣∣∣∣
xR=xsim

R

dF

However, the first two expressions are equal to the LHS of equation 10, and therefore equal to
zero. The only expression left is the last one given by,

θ̄sim(xsim
R )∫

θ̄

U1

(
φR
(

xsim
R , xseq

S (t, xsim
R )

)
, t
)

.φR
2 .

dxseq
S

dxR

∣∣∣∣∣
xR=xsim

R

dF

Notice that U1
(
φR (xsim

R , xseq
S (t, xsim

R )
)

, t
)
< 0 for the receiver on this interval since the sender

always contributes moderates her action in order to achieve first best φ̄S
t , but this results in

over-provision for the receiver, φR (xsim
R , xseq

S (t, xsim
R )

)
> φ̄R

t . Given Assumption 2, φR
2 > 0 and

from Assumption 3, dxS
dxR

< 0 implying that the above integral is always positive.

θ̄sim(xsim
R )∫

θ̄

U1

(
φR
(

xsim
R , xseq

S (t, xsim
R )

)
, t
)

.φR
2 .

dxseq
S

dxR

∣∣∣∣∣
xR=xsim

R

dF > 0 (13)

Since the expected utility for the receiver in the sequential protocol is increasing at xR = xsim
R

and U11 < 0, it follows that xseq
R > xsim

R . This completes the proof of the lemma.
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Given xseq
R > xsim

R , it is straightforward to see that equilibrium welfare is higher under the
sequential protocol. By mimicking xsim

R , the receiver’s expected utility is the same as in the
simultaneous protocol, on the pooling interval. However, from equation 13, we have established
that the expected utility is increasing at xR = xsim

R . More formally, the following equations hold:

Eθ

[
U
(

φR (xR, xseq
S (θ, xR)

)
, θ
)]∣∣∣

xR=xsim
R

= Eθ

[
U
(

φR
(

xsim
R , xsim

S (θ, mpool)
)

, θ
)]

dEθ

[
U
(
φR (xR, xseq

S (θ, xR)
)

, θ
)]

dxR

∣∣∣∣∣
xR=xsim

R

> 0

These above two equations guarantee that the receiver, by mimicking the simultaneous proto-
col action can guarantee an expected payoff equal to that under the simultaneous protocol and
therefore does better by increasing her action such that xseq

R = xsim
R .

For the sender, xseq
R > xsim

R implies that θ̄seq > θ̄sim. That is, for a greater measure of types on the
pooling interval, the sender’s resource constraint is not binding, ∀t ∈ (θ̄, θ̄seq] : xseq

S (t, xseq
R ) ≤

k̄ =⇒ φS (xseq
S (t, xseq

R ), xseq
R
)
= φ̄S

t . As before, I will write down the residual welfare on the
interval (θ̄sim, 1] under both protocols.

Wsim
S (θ̄) =

θ̄seq∫
θ̄sim

U
(

φS
(

k̄, xsim
R

)
, t, b

)
f (t)dt +

1∫
θ̄seq

U
(

φS
(

k̄, xsim
R

)
, t, b

)
f (t)dt

Wseq
S (θ̄) =

θ̄seq∫
θ̄sim

U
(

φ̄S
t , t, b

)
f (t)dt +

1∫
θ̄seq

U
(

φS (k̄, xseq
R
)

, t, b
)

f (t)dt

Pairwise comparison yields,

θ̄seq∫
θ̄sim

U
(

φ̄S
t , t, b

)
f (t)dt >

θ̄seq∫
θ̄sim

U
(

φS
(

k̄, xsim
R

)
, t, b

)
f (t)dt (14)

1∫
θ̄seq

U
(

φS (k̄, xseq
R
)

, t, b
)

f (t)dt >
1∫

θ̄seq

U
(

φS
(

k̄, xsim
R

)
, t, b

)
f (t)dt (15)

Clearly, equation 14 follows from the fact that the sender achieves the unique maximum level of
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contribution φ̄S
t under the sequential protocol on the interval (θ̄sim, θ̄seq] and therefore cannot do

better. Equation 15 holds because on the interval where there is under-provision, i.e. (θ̄seq, 1],
φS (k̄, xR

)
< φ̄S

t =⇒ U1(.) > 0 for the sender. Since xseq
R > xsim

R , from Assumption 2 it follows
that the sender is better off under the sequential protocol for all types in (θ̄seq, 1]. Therefore,
Wseq

S (θ̄) > Wsim
S (θ̄). This completes the proof. QED

A.10 Proof of Proposition 8

The key to proving this is to look at the multiple pairs of contributions that achieve the first best
for the sender, in order to satisfy her IC constraint. Given Assumption 1 and Assumption 2,
for any θ ∈ [0, 1], there are different contribution pairs (xR, xS) such that φS(xS, xR) = φ̄S

θ . I
proceed by constructing the set of φR that corresponds with all admissible pairs (xR, xS) such
that for any θ, φS(xS, xR) = φ̄S

θ . The following defines this admissible set:

∀θ ∈ [0, 1], (xS, xR) ∈ V : Aθ =
{

φR(xR, xS) : φS(xS, xR) = φ̄S
θ

}
Therefore, the commitment rule for the receiver becomes one of choosing an appropriate pair
from Aθ such that it maximizes the expected utility of the receiver.

Claim 1: From previous arguments, on the interval [0, θ̄] the incentive compatible decision rule
that maximizes the receiver’s expected utility is the one that mimics the unconstrained action
x̃R(θ). Specifically, the contribution pair (x̃R(θ), x̃S(θ)) is such that φR (x̃R(θ), x̃S(θ)) ∈ Aθ and
φR (x̃R(θ), x̃S(θ)) = φ̄R

θ ≡ argmax
φR

U(φR, θ). This proves Claim 1.

To show claims 2,3 and 4, I will impose further structure on the set Aθ for the interval mpool.
From continuity property of φR(.) and φS(.), the set Aθ is compact. Further, let supAθ =

φR
sup(θ) and infAθ = φR

in f (θ).

Definition 3 Let xin f
R (θ) be such that φS

(
k̄, xin f

R (θ)
)
= φ̄S

θ .

Lemma 4 ∀θ ∈ mpool : φR(xin f
R (θ), k̄) = φR

in f (θ)

Proof. Note that xS varies from k to k̄ and xR is just the residual contribution that ensures
φS(.) = φ̄S

θ . Applying total differentiation to φS, we get the following:

dφS =
∂φS

∂xS
.dxS +

∂φS

∂xR
.dxR
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Since φS(.) = φ̄S
θ , a constant in Aθ, dφS = 0. Substituting this in the above equation and

rearranging, ∣∣∣∣dxR

dxS

∣∣∣∣ = ∂φS

∂xS

∂φS

∂xR

> 1

Similarly,

dφR =
∂φR

∂xS
.dxS +

∂φR

∂xR
.dxR

dφR

dxS
=

∂φR

∂xS
+

∂φR

∂xR
.
dxR

dxS
=

∂φR

∂xS
−
∣∣∣∣dxR

dxS

∣∣∣∣ .
∂φR

∂xR
(16)

=⇒ dφR

dxS
<

[
∂φR

∂xR
−
∣∣∣∣dxR

dxS

∣∣∣∣ .
∂φR

∂xR

]
=

∂φR

∂xR
.
[

1−
∣∣∣∣dxR

dxS

∣∣∣∣] < 0 (17)

Equation 17 follows from imperfect substitutability in that ∂φR

∂xR
> ∂φR

∂xS
. Lemma 4 establishes that

φR is decreasing in the contribution of the sender. This implies that the infimum of the set Aθ

corresponds with the pair in which the sender contributes all her resources k̄ and the receiver,
the residual xin f

R (θ).

Lemma 5 ∀θ ∈ mpool : φR
in f (θ) > φ̄R

θ

Proof. From lemma 4 it is clear there is a ordering over φR. Specifically, φR
sup(θ) > ...... >

φR
in f (θ). Suppose φR

in f (θ) > φ̄R
θ were not true. Then, either φR

sup(θ) > ..... > φ̄R
θ > ... >

φR
in f (θ) or φ̄R

θ > φR
sup(θ) > ..... > φR

in f (θ). If the former was true, then the receiver can achieve
first best by revealing the state θ under truthful communication. That is, the sender could
have revealed truthfully up to some higher threshold θ̄, which violates the most informative
threshold equilibrium θ̄. The latter cannot be true because of the imperfect substitutability
assumption and a positive conflict of interest. Therefore it must hold that φR

sup(θ) > ...... >
φR

in f (θ) > φ̄R
θ .

From Lemma 5, it is clear that on the interval mpool, there is over-provision for the receiver
as long as the sender achieves her first best levels of contribution. However, this implies that
U1 < 0 for the receiver and therefore, the following holds:

∀θ ∈ mpool : φR
in f (θ) ≡ argmax

φR∈Aθ

U(φR, θ) (18)

That is, of all contribution pairs (xR, xS) that satisfy the sender’s IC constraint, the ones that
maximize the receiver’s utility is the one that minimizes the over-provision, which coincides
with xS = k̄. I proceed now to prove Claim 2,3 and 4.

Claim 2: Suppose the claim weren’t true and say the receiver, wlog, takes an action xc
R(θ) =
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z, ∀θ ∈ mpool. There are two possible cases to consider.

Case i) z = xc
R(θ̄) = x̃R(θ̄)

In this case, the sender contributes xS = k̄ for every possible type in mpool. If this is so, then
∀θ ∈ mpool : φR(x̃R(θ̄), k̄) = φ̄R

θ̄
< φ̄R

θ . This implies that the expected marginal utility of the
receiver is less than zero and given U11 < 0, there is an incentive for the receiver to increase her
contribution. Therefore, z 6= xc

R(θ̄).

Case ii) z > xc
R(θ̄)

If this were true, then there exists some types such that the sender contributes less than k̄ and
still achieves first best. That is,

∃T ⊂ mpool, ∀t ∈ T : xc
S(t, z) < k̄

Such a set T must exist from the continuity property of U(.) and φi(.). Specifically, when
z > xc

R(θ̄), then there is always a cutoff type θz (from Lemma 2) such that xc
S(θz, z) = k̄.

However, this implies that for all types t ∈ (θ̄, θz), it must be that xc
S(t, z) < k̄. That is T = (θ̄, θz)

exists. But if this set exists, then the receiver is not maximizing her expected utility since she
can always reduce her contribution and make the sender contribute more resources k̄. To see
this, consider the following alternate decision rule:

∀t ∈ T : xc
R(t) = xin f

R (t) such that φR(xin f
R (t), k̄) = φR

in f (t) ∈ At

∀t ∈ mpool \ T : xc
R(t) = z

Clearly, on the interval subset T, the receiver now achieves a greater expected utility since
∀t ∈ T, U

(
φR(xin f

R (t), k̄), t
)
> U

(
φR(z, xc

S(t, z)), t
)
. Further, this decision rule is also incentive

compatible in that the sender cannot do better by misreporting. Therefore, there cannot be a
flat segment on mpool such that the receiver commits to a communication independent decision.
This proves Claim 2.

Claim 3: Suppose instead there was a strictly increasing interval (θ1, θ2) ∈ mpool such that ∃t ∈
(θ1, θ2) : xc

S(t, xc
R(t)) < k̄. Then, given IC must be satisfied, φR (xc

R(t), xc
S(t, xc

R(t))
)
∈ At. But

clearly, from Lemma 4, Lemma 5 and Equation 18 the receiver can always instead choose to con-
tribute xin f

R (t) such that xc
S(t, xin f

R (t)) = k̄. This satisfies IC of the sender since φR(xin f
R (t), k̄) ∈

At and increases the payoff to the receiver since U
(

φR(xin f
R (t), k̄), t

)
> U

(
φR(xc

R(t), xc
S(t, xc

R(t))), t
)
.
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This proves Claim 3.

Claim 4: Suppose, instead there exists a flat segment followed by a strictly increasing segment
in mpool. Say, wlog, the flat segment is on (θ1, θ2] such that ∀t ∈ (θ1, θ2] : xc

R(t) = z, and let
the strictly increasing segment be on (θ2, θ3). From Claim 3, it holds that the sender must
contribute all her resources on this interval and further, her IC must be satisfied in that ∀t ∈
(θ2, θ3) : φS(k̄, xin f

R (t)) = φ̄S
t . Take the type θ2. For this type it must be that the IC is satisfied

on the flat segment, i.e. φS(xc
S(θ2, z), z) = φ̄S

θ2
. If not, the sender can always deviate and report

t ∈ (θ2, θ3) and increase her payoff. This implies that z must be such that xc
S(θ2, z) = k̄, since

otherwise the receiver is not payoff maximizing, again from previous arguments. But when the
sender contributes k̄, the receiver’s residual contribution must be in the set Aθ2 and equal to,

z = xin f
R (θ2) such that φR(xin f

R (θ2), k̄) = φR
in f (θ2) ∈ Aθ2

But clearly, if z = xin f
R (θ2), then for all types t ∈ (θ1, θ2), it must also hold that xc

S(t, z) < k̄,
from single crossing condition. However, if xc

S(t, z) < k̄, then the receiver can always decrease
her contributions on this interval, and extract more resources from the sender whilst satisfying
her IC (Lemma 4 and Lemma 5). Therefore, this violates expected utility maximization of the
receiver. This proves Claim 4.

Together, the four claims imply the following rules hold:

1. Claim 1 =⇒ On the separating interval [0, θ̄], the optimal rule mimics the simultane-
ous/sequential protocol actions, x̃R(θ).

2. Claim 2 and Claim 3 =⇒ There is an interval (θ̄, θ̄c) ∈ mpool in which the receiver’s

decisions are dependent on communication and given by xc
S(θ) = k̄ and xc

R(θ) = xin f
R (θ)

such that φS(k̄, xin f
R (θ)) = φ̄S

θ and φR(xin f
R (θ), k̄) ∈ Aθ.

3. Finally, Claim 4 =⇒ On the interval [θ̄c, 1], the receiver’s contribution is independent of
communication and is equal to xR = xin f

R (θ̄c) = xc
R(θ̄c).

This completes the proof. QED

A.11 Proof of Proposition 9

Consider the following commitment strategy. The receiver commits to a decision rule on mpool

such that:
∀t ∈ (θ̄, θ̄seq) : xc

R(t) = xin f
R (t)
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∀t ∈ [θ̄seq, 1] : xc
R(t) = xseq

R (mpool) ≡ xseq
R

This decision rule exactly replicates the sequential protocol in that it provides the sender first
best contribution levels φ̄S

t on the interval (θ̄, θ̄seq]. Clearly, this decision rule is IC for the sender
and provides the same expected welfare compared to the sequential protocol. Further, on the
interval [θ̄seq, 1], the receiver’s welfare is also the same as under the sequential protocol.
However, ∀t ∈ (θ̄, θ̄seq), the receiver actually does better since the sender now contributes all
her resources on this interval and this minimizes the over-provision for the receiver, as shown
in Lemma 4 and Lemma 5 in the proof of Proposition 8. That is,

∀t ∈ (θ̄, θ̄seq) : U
(

φR
(

xin f
R (t), k̄

)
, t
)
> U

(
φR (xseq

R , xS(t, xseq
R )
)

, t
)

Therefore by following a IC commitment rule that is strictly increasing on (θ̄, θ̄seq) and flat on
[θ̄seq, 1], the receiver achieves a higher ex-ante welfare and the sender is indifferent, compared
to the sequential protocol.
Now consider the sequence of contributions

{
xin f

R (t)
}

t∈(θ̄,θ̄seq)
and checking the marginal utility

of the receiver for each type t,

U1

(
φR (xseq

R , xS(t, xseq
R )
)

, t
)
< U1

(
φR
(

xin f
R (t), k̄

)
, t
)

(19)

Equation 19 follows from noting that utility of the receiver is decreasing in φR on this interval
and since U11 < 0 and φR (xseq

R , xS(t, xseq
R )
)
< φR

(
xin f

R (t), k̄
)
= φR

in f (t). Now, on the interval

[θ̄seq, 1], since xc
R(t) = xseq

R , the commitment rule provides the same marginal utility as the
sequential protocol for the receiver. Summing the marginal utilities under the commitment
rule with the sequence

{
xin f

R (t)
}

t∈(θ̄,θ̄seq)
and

{
xseq

R
}

t∈[θ̄seq,1], it is clear that,

θ̄seq∫
θ̄

U1

(
φR
(

xin f
R (t), k̄

)
, t
)

.
[

φR
1 + φR

2 .
dxS

dxR

]
dF +

1∫
θ̄seq

U1

(
φR (xseq

R , k̄
)

, t
)

φR
1 dF (20)

Since xc
S(t) = k̄, it follows that dxS

dxR
= 0 under the commitment rule. The above equation

simplifies to,

θ̄seq∫
θ̄

U1

(
φR
(

xin f
R (t), k̄

)
, t
)

.φR
1 dF +

1∫
θ̄seq

U1

(
φR (xseq

R , k̄
)

, t
)

φR
1 dF > 0 (21)

The above inequality follows from Equation 19. Therefore, the marginal utility of the receiver
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from following the above commitment rule that satisfies the sender’s first best up to θ̄seq is below
zero, and given U11 < 0, this further implies that under commitment protocol, the receiver can
satisfy the sender’s first best above this threshold. From Equation 21, it therefore follows that:

θ̄c > θ̄seq

Receiver’s welfare

The increase in receiver’s welfare is driven by the fact that the mimicking strategy provided
the receiver a higher expected utility under commitment and further, the marginal utility is
increasing at θ̄seq (from Equation 21). Therefore, the receiver’s expected utility from a commit-
ment sequence such that θ̄c > θ̄seq is higher compared to the sequential protocol.

Sender’s welfare

On the interval [0, θ̄c], the sender achieves first best levels of joint contribution in that ∀t ∈
[0, θ̄c] : φS(.) = φ̄S

t under the equilibrium commitment rule. Further, on t ∈ (θ̄c, 1], it must
be that xc

R(t) = xc
R(θ̄c) > xc

R(θ̄seq), since xc
R(θ̄seq) = xseq

R and θ̄c > θ̄seq. However, on this
interval, there is under-provision for the sender (U1 > 0) and therefore, it must hold that
U
(
φS (k̄, xc

R(θ̄c), t
)

, t
)
> U

(
φS (k̄, xseq

R , t
)

, t
)
. Therefore, the overall expected ex-ante welfare is

greater under the commitment protocol for the sender. This completes the proof. QED
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