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Abstract

This study investigates the causal link between electrification and the adoption of
modern (and cleaner) cooking fuels, more specifically Liquefied Petroleum Gas (LPG).
We exploit an instrumental variables approach that allows us to capture the part of the
variation in electrification which is not related to factors that are also likely to affect a
household’s choice of cooking fuel. Our instrument interacts state-level supply shifts in
hydro-electric power availability with the initial level of electrification of each district (11
years before the beginning of our sample). The results seem to contradict the predictions
of the traditional energy ladder hypothesis. We find that electrification leads to an increase
in the probability of adoption of biomass fuels and a decrease in the probability of adoption
of modern cooking fuels. These results are statistically significant only for the poorest 50%
of households in our sample, while they become statistically insignificant when we move
to the richest 50%. The same is true for the share of expenditure in a specific fuel over
total fuel expenditures. These results seem to indicate that electrification by creating an
additional strain on households’ finances pushes them back on the energy ladder.
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1 Introduction

A large literature on households’ energy transition has focused on the energy ladder hypoth-

esis. This hypothesis explains the substitution of traditional fuels with modern ones through

increases in income and in the socio-economic status of the household (Bruce et al., 2000;

Hosier & Dowd, 1987; Leach, 1992; van der Kroon et al., 2013). The traditional view of the

energy ladder sees energy transitions as a series of disjointed steps. Yet, more recently, a grow-

ing body of literature (for instance Heltberg, 2004; Masera et al., 2000; Ruiz-Mercado, 2015),

has shown that instead of switching from one fuel to the other, households simultaneously use

multiple fuels. This is known as fuel stacking.

The fuel choice of households for everyday activities, such as cooking and heating, impacts

on several factors influencing general wellbeing, from health to time use and exposure to

financial risks (see for instance Bruce et al., 2000; Dherani et al., 2008; Khandker et al., 2013;

Kishore & Spears, 2014; Peters & Sievert, 2016; Po et al., 2011; van de Walle et al., 2017).

In India, electricity is rarely used for cooking. The benefits of electricity consist primarily

in improved lighting and in providing power for consumer appliances. Yet, only 19% of the

rural households uses Liquified Petroleum Gas (LPG) as a primary fuel for cooking, while the

majority of the rural population still cooks with biofuels such as fuelwood and crop residues.

Therefore, it is not surprising that emissions from domestic fires are the largest contributor

to emissions of black carbon in South Asia (Bond et al., 2013). Black carbon is the second

most important greenhouse agent after carbon dioxide. About 400,000-550,000 premature

deaths occur annually in India from indoor air pollution exposures to children under five

and adult women (Smith, 2000). The average particle level in these households ranges from

1000-2000 µg/m3 of PM10 (particulate mass of particles smaller than 10 micron diameter,

Smith, 2000). This is 10-20 times higher than the national ambient air quality standard of

PM10 set by the government of India. It is therefore crucial to understand the determinants

of fuel choice and stacking and the role played by the electrification status of a household in

spurring adoption of modern cooking fuels.

We investigate the existence of a causal link between electrification and the adoption of

2



modern (and cleaner) cooking fuels, like LPG. Following the traditional energy ladder theory,

and results from Chakravorty et al. (2014), Lipscomb et al. (2013), and Dinkelman (2011), our

hypothesis is that the increase in income generated by electrification should push households

to increase their use of LPG, a normal good, and decrease their use of fuelwood, dung and

crop residues, inferior goods. In order to achieve our goal, we use a nationally representative

panel of rural households constructed from three waves of the National Sample Survey (NSS),

2004, 2009 and 2011. This exercise may allow us to identify another important effect of

electrification. This additional channel may play a role in the design of new policies aimed at

increasing the uptake of modern cooking fuels such as LPG.

Identifying the impact of electrification on modern fuel use presents a number of empirical

challenges. These challenges are common in the literature that identifies casual effects of big

infrastructure projects (see for instance Allcott et al., 2016; Duflo & Pande, 2007; Röller &

Waverman, 2001; Aschauer, 1989; Garcia-Mila & McGuire, 1992; Holtz-Eakin, 1993). Elec-

trification, like other infrastructure investments, is not randomly assigned. Governments, for

instance, may aim infrastructure investment to areas which are already growing faster and,

therefore, electrification may always depend on a range of unobservable or omitted variables.

We tackle this problem of endogeneity by using an instrumental variables approach.

The use of an instrumental variable allows us to capture the part of the variation in

electrification which is not related to factors that are also likely to affect the household’s

choice of cooking fuel. Our instrument is constructed starting from the work of Allcott et al.

(2016). In their paper, they instrument electricity shortages with state-level supply shifts

in hydro-electric power availability. Following Bartik (1994) and Chakravorty et al. (2014),

we then multiply state level shifts in hydro-electric power availability by the initial level of

electrification of each district. In other words, we weight the supply shifts by the initial level

of electrification of each district. The initial level of electrification is going to be defined as

the district’s electrification level 11 years before the beginning of our sample. We measure a

district’s initial electrification rate using the mean light intensity emanating from it, measured

using satellite data. Besides controlling for a variety of household characteristics, such as size,
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land owned, characteristics of its head, religion and caste, we also control for fuel prices (LPG

and fuelwood) and for an array of unobservable characteristics that may affect fuel choice

by including district and year fixed effects. We analyse both the intensive and the extensive

margin of decision regarding the choice of cooking fuel. The extensive margin focuses on

the adoption decision to use a given cooking fuel. Hence our outcome of interest is a binary

indicator variable indicating whether a household uses a particular cooking fuel or not. The

extensive margin denotes the intensity of use of a given fuel. We measure the intensity of use

by calculating the share of expenditure on a given fuel type over total monthly expenditure

by a household. We separately examine the choice of Liquified Petroleum Gas (LPG) and

fuelwood. Finally, we jointly investigate the extensive and the intensive margin, using a tobit

specification.

The results from the main specification are rather surprising. Electrification leads to

an increase in the probability of adoption of fuelwood and a decrease in the probability of

adoption of LPG. This seems to go against our working hypothesis and the predictions of the

energy ladder models. For this reason, we push the exercise further and discover that these

effects are statistically significant only for the poorest 50% of households in our sample, while

they become statistically insignificant when we move to the richest 50%. The same is true

for the intensive margin. Several hypotheses may explain these results. First, it seems that

for poor households, receiving an electricity connection and, therefore, facing a new monthly

expenditure creates an additional strain on their budget. As a consequence, in order to enjoy

electric light they reduce expenses on the more costly modern cooking fuels and revert to the

use of biomass. Another hypothesis, somehow related to the first, is related to the quality

of the power supply. Having a poor quality power supply, as found in Chakravorty et al.

(2014), has a much smaller impact on income then a high quality power supply, therefore,

not allowing households’ income to increase sufficiently to push them to the next step of the

energy ladder.

Precise estimations are crucially important for policymakers when taking decisions related

to rural electrification. These electrification initiatives are very expensive and, therefore, have
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historically occurred mainly in places near the main axes of communication or the existing

power grid. The cost to extend the power grid to a village which is more than 15km away

from the existing infrastructure is estimated at around 150,000 dollars (Greenstone et al.,

2014). That is why, in order to justify these important expenses, it is important to provide

accurate figures on the benefits of a new connection. As noted above, this paper focuses on a

potential additional benefit of a connection to the grid that has been previously neglected.

The remainder of the paper is organized as follows. Section 2 presents the data used.

Section 3 focuses on the empirical strategy adopted and Section 4 discusses the results. Section

5 describes a few robustness test and, finally, section 6 draws some conclusions.

2 Data

Data on households expenditures are taken from surveys conducted by the National Sample

Survey Organisation (NSSO). These data are representative of the rural and urban population

of India and are collected every 5 years. For our analysis, we use data for the rural sample

for the years 2004-2005 (61st Round), 2009-2010 (66 st Round) and 2011-2012 (68th Round).

These three datasets give us a sample containing 197,231 households.1

Table 1 reports summary statistics for the variables used in the paper. Panel A reports

statistics for the dependent variables, Panel B for the variable of interest and the instruments

used and, finally, in Panel C we present all the control variables.

Only 19% of households use LPG for cooking in rural India, and 70% of rural households

still rely on fuelwood.2.

NSS asks households to recall expenditures incurred and quantities purchased of almost all

items of domestic consumption over the last month. Total expenditure on any item includes

money spent on purchase and value of consumption out of home production. The latter is

valued at the average retail prices prevailing in the village of residence of the household.

We use this data to calculate expenditure shares of all fuel items for each household. Panel

1After dropping outliers.
2The remaining 11% is divided in the following way: 7.68% in biomass; 2.29% in other category; 0.89% use

kerosene; 0.55% has no cooking arrangement; and 0.07% uses electricity
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A of Table 1 shows that while households using LPG spend roughly 1% of their monthly

expenditures on it, fuelwood constitute 5.1% of the expenditures of fuelwood consuming

households. This big difference is probably explained by the fact that households using LPG

are on average richer than households using fuelwood as primary cooking fuel.

The survey also collects information on several household-level demographic and economic

characteristics such as household size, religion, caste and occupation, which we use as house-

hold level controls. We also obtain prices paid by households for the various items purchased

by dividing expenditures by the number of unit bought. Since many households do not con-

sume some of the fuel items in which we are interested – such as Liquified Petroleum Gas

(LPG) – we use the average price of the item in the state of residence of the household as a

proxy for the price. To account for differences in quality, we control for fuel prices prevailing

in the village of residence of the household. In order to make prices and expenditure compa-

rable across the three rounds of the NSS we use state level poverty lines as reported by the

Planning Commission of India from the three time periods to deflate all 2009 and 2011 values

to 2004 equivalent values.

Panel C of Table 1 shows the large difference in price between fuelwood and LPG. The

rest of the control variables concern the socio-economic status of each household, measured

through its land holdings, its religion, the age and the education level of its head and whether

the household belong to a schedule caste/tribe or another backward caste.

72% of the households in our sample have a connection to the power grid, yet we have

no information about the quality of the power supply they receive. Panel B also presents

statistics for the instrument used. As exposed above, the instrument we use in this paper is

composed by two separate variables that we interact. The first variable comes from Allcott

et al. (2016) and is predicted hydro generation as a share of predicted electricity demand

at the state level. These shocks, related to hydro generation, represent on average 13% of

predicted electricity demand, yet there is a lot of variation across states. The shocks are

then interacted with the initial electrification status of each district. As mentioned above, the

initial electrification status of a district is measured by the level of light intensity emanating

6



from the district 11 years before the beginning of our sample, i.e. in 1993.

The database on night light for India has been constructed by the University of Michigan

in collaboration with the World Bank, using images taken by the Defense Meteorological

Satellite Program (DMSP), run by the U.S. Department of Defense. This satellite program

took pictures of the earth at night for 20 years, 1993 to 2013. These images have a resolution

of 30 arc-seconds (i.e. roughly 1 square km at the equator). Each pixel is assigned a value

between 0 and 63, where 0 indicates no light output and 63 is the highest level of light

output. Based on these images, the India Lights API data is freely available for each district

and month from 1993 to 2013.3 Figure 1 shows district averages for the reference year (1993),

used in the construction of our instrument. Darker shades represent a higher light output.

It is easy to identify the biggest cities as the poles of highest light intensity, Delhi, Mumbai,

Kolkata, Bangalore and Chennai to name a few. The interaction between this variable and

the predicted shift variable takes into account the fact that districts that already had more

electricity connections benefit more from the positive hydro shocks than districts with lower

degrees of electrification. No district reaches the maximum light output of 63. The maximum

observed over the sample is of 55.44. The average light intensity is low, at 2.56.

3 Empirical Strategy

The question of interest here is whether an electricity connection affects the probability to

switch to a more modern cooking fuel, such as LPG. In order to study this question, we use

the following specification

yhdst = α+ βEhdst + γ1Xhdst + γ2Vdst + δd + δt + εhdst (1)

where y represents different outcome variables. First, we will investigate the impact of

an electric connection on the extensive margin of adoption of LPG. In this case, the outcome

3http://india.nightlights.io/#/nation/2006/12
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variable is binary and takes value 0 if a household does not use LPG and 1 otherwise. Second,

we will investigate the intensive margin impact, i.e. does the fact of having an electricity

connection increase the amount a household spends on LPG. In this case, we use the relative

share of expenditures on LPG out of expenditures on cooking fuels (such as fuelwood, dung or

crop residue). Subscripts h, d, s and t denote household, district, state and time, respectively.

E is the electrification status of a household and X includes time-varying household specific

controls, i.e. household size, religion and total land owned, information on the household

head, age, sex and education and finally whether the household belongs to a scheduled caste

or tribe or another backward caste. V is a matrix of village level controls, and it contains

the price of fuelwood and the price of LPG. δd and δt denote district and year fixed effects,

respectively. Finally, ε is the error term.

Fuel choice and the presence of an electricity connection could depend on a variety of

unobservable factors. If this were the case, equation (1) cannot be interpreted casually. As

said before, establishing causality in the case of important infrastructure investments presents

important econometric challenges. These challenges are mainly due to the endogeneity in the

placement of infrastructure. In order to tackle this endogeneity and to establish causality going

from electrification to the adoption of modern cooking fuels, we use a standard instrumental

variable approach.

A series of factors may hide behind the decision to electrify some areas rather than others.

Governments generally reserve new investment in infrastructure to areas already experiencing

more growth. Other unobservable economic trends may also influence investment decisions.

For example, a richer village may have a higher probability of being connected than a poor

village. The probability of connection may also depend on the proximity to a major city or

the density of the population in a certain area. For all these reasons, it is difficult to isolate

the effects of infrastructure investments on development measures. This issue has been widely

discussed in the literature, for example, Allcott et al. (2016), Duflo & Pande (2007), Röller &

Waverman (2001), Aschauer (1989), Garcia-Mila & McGuire (1992) and Holtz-Eakin (1993),

just to mention a few.

8



Our instrument is constructed starting from the work done by Allcott et al. (2016). In

their paper, they instrument electricity shortages with state-level supply shifts in hydro-

electric power availability. One of the advantages of this instrument is that it also captures

the quality of the supply of electricity. By capturing variations in electricity supply, this

instrument actually captures shortages. If shortages are too frequent and, therefore, the

quality of the power supply is low, households may assume not to have electricity even though

they do have a connection. Since they cannot use for instance a fridge or other appliances

that need a regular supply of electricity.

Allcott et al. (2016)’s instrument is constructed at the state level. Following Bartik (1994)

and Chakravorty et al. (2014), we multiply state level shifts in hydro-electric power availability

by the initial level of electrification of each district in order to obtain a district-level instru-

ment. This is equivalent to weighting the shifts by the initial level of electrification of each

district. The importance that the shifts measured by Allcott et al. (2016) will play in each

district is likely contingent on its initial level of electrification. A higher initial level of elec-

trification allows us to use more effectively the positive shifts, while no initial electrification

would render them useless. Along the same narrative, negative shifts would have a bigger

impact on districts with a lower initial level of electrification and a smaller one on districts

with a higher initial level of electrification. The initial level of electrification is going to be

defined as the district’s electrification level 11 years before the beginning of our sample. We

measure a district’s initial electrification rate using the mean light intensity emanating from

it. The mean light intensity is measured as the average of the light intensity of each pixel

composing the district. Light intensity varies between 0 and 63.

This instrument constructed by Allcott et al. (2016) consists of state level supply shifts

from hydroelectric generation.4 Given the low marginal costs of hydroelectric power plants,

their annual output depends mainly on water availability. The instrument constructed in

4Allcott et al. (2016) is interested in quantifying the impact of power outages on industrial production in
Indian states. Yet, power outages and industrial production may be correlated. For instance, if a state is
growing faster and, consequently, its energy demand is higher, it may experience more power outages. In order
to eliminate this endogeneity problem, Allcott et al. (2016) looks for an instrumental variable (the use of an
instrumental variable also solves for the possible measurement error coming from the way in which shortages
are measured). For this reason, the authors need an instrument affecting shortages but not affecting industrial
production, or better, that affects industrial production only through its impact on power shortages.
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Allcott et al. (2016) is predicted hydro generation as a share of predicted electricity demand.

Allcott et al. (2016) divides predicted hydro generation by predicted demand in order to

obtain the relative share of hydro generation across the different states.

Actual demand could be affected by shortages and, for this reason, the instrument is not

based on actual demand but on predicted demand. Demand is predicted using the average

share demanded by a given state between 1992 and 2010 multiplied by electricity demand in

all other states.5 Computing predicted electricity demand in this way minimizes fluctuations

due to important shortages.

Allcott et al. (2016) also needs to use predicted hydro generation, because – since water

can be kept in reservoirs – in years of low industrial demand less hydro energy will be produced

and, therefore, industrial production and hydro generation may be correlated. For this reason,

they use a prediction instead of actual generation. Predicted generation capacity is computed

in a similar way as predicted demand, and is based on reservoirs inflow and run-of-river plants.

The first element needed is the “state predicted annual hydrogeneration capacity” (C), which

is computed in the same way as predicted demand. This term is then multiplied by a “state

average capacity factor”. The capacity factor depends on two main elements. First, on the

“share of output of a given reservoir which is contractually allocated to the state” and, second,

on the “demeaned inflow predicted capacity factor for a given reservoir in a given year”. This

last element is computed individually for each reservoir-year couple. Allcott et al. (2016)

first regresses generation on inflow (for each reservoir) in order to produce inflow-predicted

generation, which is then divided by the generation capacity of the reservoir (capacity x 8,760

hours in a year).

5Denoting by s and t the state and year at hand, respectively and r other states and y years, predicted
electricity demand D̃st is defined as

D̃st =
∑
r 6=s

Drt ·
2010∑

y=1992

Dsy∑
r 6=s Dry

(2)

The second multiplicative term computes the electricity demand/consumption in a given state s as a share of
total electricity demand/consumption in all other states and takes the average of this share over the period
1992 to 2010. Once obtained this average share, it is multiplied by total consumption in all other states in the
year of interest, obtaining in this way a prediction of consumption for that particular year.
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The first stage of our specification takes the following form

Ehdst = α+ β1(Hst ∗ Lsd0) + β2Hst + γXhdst + δd + δt + uhdst (3)

where L represents a district’s light intensity and H is Allcott et al. (2016)’s state-level

instrument. δd and δt denote district and year fixed effects, respectively. Hst ∗ Lsd0 is our

instrument, the interaction between the Allcott et al. (2016) instrument and a district’s initial

light intensity.6 Finally X is a matrix of time-varying household specific controls and u is the

error term.

Table 2 reports results for first stage estimations. The table is organized as follows,

columns (1) and (2) contain first stage estimations for the whole sample, first with only the

instrument and the relevant fixed effects and then with the full set of household controls. Col-

umn (3) shows the first stage estimation for individuals whose household’s per adult equivalent

monthly expenditure is below the median level (of roughly 600 Rs), while column (4) shows it

for households whose income is above the median level. Standard errors are clustered at the

district level. Let us focus on the effect of the interaction, i.e. our instrument. Its impact is

positive and statistically significant at the 1% level across all specifications. This means that

a hydro shock combined with a higher level of initial electrification in the district increases the

probability of electrification by roughly 11 percentage points. The direction of this coefficient

is the one expected. The negative value on Lag Hydro cannot be interpreted on its own, it

has to be interpreted together with the coefficient on the interaction term. In the rare cases

where the initial level of electrification is zero, we may observe a negative impact of hydro on

the probability of receiving an electricity connection. Yet, as the initial level of electrification

increases this negative effect decreases and becomes positive. When running the first stage

6The condition which needs to be satisfied in order for our identification to be consistent is that
E[Lds0 ∗ Hst ∗ εidst] = 0. We can easily verify this by taking the limit over districts and states
limD,S→∞

1
D∗S

∑
d

∑
s (Lds0 ∗Hst ∗ εidst) = 0. Since Hst does not depend on the district, we can extract

it from the sum and re-write it as limD,S→∞
1

D∗S
∑

s Hst

∑
d (Lds0 ∗ εidst) = 0. In order for this to be verified

we only need to argue that limD→∞
1
D

∑
d (Lds0 ∗ εidst) = 0, or equivalently that E[Lds0 ∗ εidst] = 0. This

means that shocks in cooking fuels decisions in 2004, 2009 and 2011 need not to be correlated with the district
light intensity in 1992. While the trend in cooking fuel choices may be related to the initial level of electrifica-
tion of a district, shocks to the path are highly unlikely to be related to initial electrification. For this reason,
we are confident in claiming that this condition is satisfied.
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on the whole sample, we obtain an F statistic of 13.2, above the critical level of 10. When

we split the sample the value of the F statistic decreases to 9.83 and 3.89, respectively. This

means that our instrument is weak when applied to the two subsamples. In order to insure

the robustness of our inference, we compute the Anderson-Rubin F statistics for weak instru-

ments, which in both cases rejects the hypothesis that the coefficients of interest may be equal

to zero. Therefore, although the instrument becomes weaker, the inference stays robust.

4 Results

First, we present an extensive margin analysis, i.e. we focus on the adoption of LPG as

a cooking fuel versus fuelwood. Second, we look at the intensive margin. The intensive

margin analysis measures the impact of electrification on spending in LPG versus fuelwood.

Eventually, we look at a tobit estimation, in order to account for the intensive and extensive

margin at the same time. This allows us to correct for the large amount of zeros in the dataset.

Extensive margin

Table 3 reports results for the extensive margin estimations, i.e. adoption. For each

estimation we report OLS and IV coefficients of a linear probability model. Columns (1) and

(2) show results for LPG, while (3) and (4) for fuelwood. Standard errors are clustered at the

district level in all specifications.

Let us focus on the IV results for this linear probability model. The results on the variable

of interest, Electricity, are all statistically significant at least at the 5% level. These coeffi-

cients are negative for LPG and positive for fuelwood. This implies that when a household

gets connected to the power grid, the probability that it will use LPG for cooking decreases

by 63.6 percentage points, while the probability that it will use fuelwood increases by 70.7

percentage points. These results go against conventional theories. One would expect that

electricity constitutes a push towards modernization and, therefore, towards the adoption of

more modern and less polluting cooking fuels. The signs of the coefficients on the control
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variables, instead, are all as expected. The price of fuelwood has a positive impact on the

adoption of modern fuels and a negative one on the adoption of biomass, while the price of

LPG has the opposite effect. Bigger households tend to be poorer and, therefore, use more

biomass and less modern (and usually more expensive) fuels. A male, more educated and

older head of household is usually associated with a higher economic status, and this is ex-

actly what we find in our data. This typology of household will use modern fuels more often

than biomass. Belonging to a lower caste also means a higher probability of cooking using

biomass.

Why are these results counterintuitive? Why does a connection to the grid decrease the

probability of adoption of modern cooking fuels? The story lying behind these results is prob-

ably linked to a financial constraint. Cooking with LPG is more expensive than with biomass.

Biomass, consisting mainly of fuelwood, dung and crop residue, can easily be collected, while

LPG has to be bought. Households connected to the grid have to pay for the electricity they

consume, and this extra expenditure leaves a smaller disposable budget for cooking fuels. In

order to verify whether this is what is happening, we split our sample in two. The split is

based on the median monthly per capita expenditures. In the median household, the monthly

per capita expenditure is of roughly 600 Rs (the exact value is 603.5 Rs). Therefore, in the

first sub-sample we keep households characterized by a monthly per capita expenditure lower

than 600 Rs, while in the second sub-sample we keep richer households, with expenditures

per capita higher than 600 Rs.

Tables 4 presents results for this test, which seems to confirm our hypothesis. Columns

(1) through (4) present results for LPG and fuelwood adoption for households whose monthly

per capita expenditures are below 600 RS., while columns (5) through (8) present them for

households situated above the 600 Rs. threshold. The coefficients obtained are slightly bigger

in magnitude and negative for the poorer households, while they are not statistically signif-

icant for the richer households. It seems that a power connection allows poor households to

have better lighting, yet puts an additional constraint on their tight energy budget, pushing

them to revert to fuelwood for cooking. Instead richer households do not suffer from the
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additional financial strain. For them, obtaining a power connection does not have an impact

on the choice of cooking fuel.

Intensive margin

Table 5 presents the intensive margin results, i.e. how do spending in LPG and fuelwood

evolve as a consequence of electrification. Columns (1) and (2) show results for LPG, while

columns (3) and (4) report fuelwood results. The picture presented here is quite similar to

the one on the extensive margin.

A new electrical connection not only decreases the probability of adoption of LPG as

a cooking fuel, but seems also to decrease the share of spending households dedicate to it.

When focusing on fuelwood we observe the opposite pattern, exactly as for the extensive

margin, a new electrical connection increases spending in fuelwood. The fact that the results

follow the same pattern for the extensive and the intensive margin of the analysis reinforces

our believe in an explanation related to the budget constraint. In order to investigate this

claim, we proceed as before and split the sample according to the median monthly per capita

expenditure.

Results for this can be found in table 6. Columns (1) through (4) present results for

households with monthly per capita spending above the 600 Rs. threshold, while columns (5)

through (8) present results for households with spending below it. As in the extensive margin

analysis, results are statistically significant only for the poorer 50% of households. These

households, when faced with the expenditures related to electrical power have to cut back

on expenditures in other expensive fuels and, therefore, we observe a decrease in the share

dedicated to LPG and an increase in the share dedicated to fuelwood, the cheaper alternative.

Tobit

Table 7 shows results for a tobit estimation over the whole sample.
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The interest of a tobit model lies in accounting for data censoring, in our case for left

censoring since our database contains many zero values as the majority of the households do

not spend on LPG. In our case, the tobit model weakens the results obtained for the intensive

margin. The IV result for LPG is not statistically significant anymore, while the one for

fuelwood becomes statistically significant only at the 10% level. As before, when moving on

and splitting the sample according to income – in Table 8 – we observe that this effect on

fuelwood becomes stronger, i.e. larger in magnitude and statistically significant at the 5 %

level. Yet, the effect on LPG remains statistically insignificant. As before, richer households

do not seem to react to electrification.

5 Robustness

In order to further verify our claim, we perform several robustness checks. First, we split the

sample into quartiles instead of just focusing on the median income. Second, we measure the

economic status of a household according to state-specific and country-specific poverty lines.

Finally, we verify our claim that electricity puts further stress on the poorest households’

budget by looking at the impact of electrification on their energy budget.

First, we analyze the evolution of the coefficient on an electricity connection across quar-

tiles of monthly per capita spending. This evolution is shown in Figure 2 and Figure 3. When

splitting the sample four-ways, the coefficients become less precise. Yet, we observe the same

patterns found before. Let us start with Figure 2. This figure compares the coefficients ob-

tained when regressing adoption of LPG as a cooking fuel on access to electricity by quartile

of monthly per capita expenditures. These are all instrumental variable regressions with er-

rors clustered at the district level. The figure shows the same result we obtained earlier, in

response to a connection to the power network poorer households abandon modern cooking

fuels in favour of solid ones, or simply have a lower probability of adoption, while richer house-

holds do not seem to be affected by it. Figure 3 instead focuses on the adoption of fuelwood

as a cooking fuel. Again, we observe the same story as before. Results for the bottom of

the income distribution are statistically stronger, and point towards a higher probability of
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adoption of fuelwood following a connection to the grid.

Second, instead of splitting the sample across the median or quartiles, we split the sample

according to state-specific poverty lines calculated by Rangarajan et al. (2014).7 The poverty

lines are defined as the per capita monthly household expenditure that needs to be incurred

to achieve a minimum standard of living. Any household that fails to meet this level of

consumption expenditure can be treated as a poor household. Using this definition, we classify

each household in the sample as poor and non-poor. The results are shown in Table 9. The

first thing we notice when splitting the sample along the poverty line is that we end up

with two unbalanced samples. Over 150,000 households are above the poverty line, while

only 44,000 are below. This fact is going to have an impact on our results. While we find

a statistically significant, positive impact on the probability of adoption of fuelwood as a

cooking fuel only for households below the poverty line, the impact on the adoption of LPG is

negative and statistically significant for both groups. These results seem at odds with those

presented above, yet once we take into account how stringent is the definition of the poverty

line, we should not be surprised by them.

Finally, if a new connection to the power grid poses an extra constraint on people’s budget,

we should be able to pick this up. In Table 10, we regress the share of fuel expenditures out

of a household’s total expenditures on access to a connection to the power grid. Columns (1)

and (2) show the OLS and IV results for the whole sample and seem to indicate, as expected,

an increase in the share of income that is dedicated to energy. When we split the sample

between households below and above the median monthly per capita expenditure we find an

additional argument strengthening our claim. Poorer households already spend a larger share

of their income on energy (on average 17% of their expenditures are dedicated to energy), and

the new power connection increases this share in a significant way, by 16 percentage points

on average, and this result is statistically significant at the 5% level. If instead we move to

the richer half of the sample, that on average dedicates 14% of its expenditures to energy,

the coefficient becomes statistically insignificant. Therefore, it seems that the new connection

7If instead of using a state-wise poverty we use the national poverty line the results are unchanged. These
results are available upon request.
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does not put any additional financial stress on richer households.

6 Conclusions

In this paper, we investigate the impact of the fact that a household in rural India is connected

to the power grid on its choice of cooking fuel. The ideas, coming from the energy ladder

literature, is that electrification, via an increase in income, should push households to the next

step on the energy ladder. According to the fuel stacking literature, this may not be a clear

jump, but we should observe the appearance of modern fuels together with the persistence of

biomass.

Our results are surprising and, for this reason, important from a policy perspective. We

observe that, while electrification has basically no impact on the choice of a cooking fuel for

richer households, its impact is the opposite of what one would want for poorer households.

Poorer households, when faced with the possibility of having access to electric light, they will

take it. Yet, probably because of their tight budget constraint, in order to be able to afford

electricity, they cut back on other energy related expenses, reverting from modern cooking

fuels to biomass.
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7 Tables

Table 1: Summary Statistics of Variables used in the QAIDS Model

Variable Mean SE Min Max

Panel A

Share of LPG 0.19 0.39 0 1

Share of fuelwood 0.70 0.46 0 1

Percent share of LPG expenditure 1.02 2.16 0 27.82

Percent share of Fuelwood expenditure 5.09 4.62 0 65.75

Panel B

Share of electricity 0.72 0.45 0 1

Nightlights 1993 2.56 3.24 0 55.44

Lag Hydro Instrument 0.13 0.19 0 0.93

Interaction Hydro Instrument 0.30 0.59 0 4.91

Panel C

Price Fuelwood (Rs./Kg) 1.23 2.74 0.01 625

Price LPG (Rs./ Kg) 15.65 11.99 5 654.48

HH Size 4.93 2.42 1 43

Total land owned (Hectares) 1.10 30.39 0 9120.27

Education head of HH (Years) 4.77 3.28 1 13

Sex head of HH 0.89 0.31 0 1

Age head of HH 46.54 13.33 0 108

Hindu 0.77 0.42 0 1

Scheduled tribe 0.16 0.37 0 1

Scheduled caste 0.18 0.38 0 1

Other backward caste 0.39 0.49 0 1

Notes: Percent shares of expenditures are computed over the last 30 days.
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Table 2: First stage results

Dep. variable: electricity
Full sample Below Above
(1) (2) (3) (4)

Lag Hydro −0.453∗∗∗ −0.417∗∗∗ −0.480∗∗∗ −0.150∗

(0.083) (0.085) (0.111) (0.078)

Lag Hydro*Initial elec 0.132∗∗∗ 0.113∗∗∗ 0.120∗∗∗ 0.060∗∗∗

(0.032) (0.031) (0.038) (0.022)

Price Fuelwood 0.001 0.0005 0.00003
(0.001) (0.002) (0.001)

Price LPG −0.0004 0.0003 −0.001∗∗

(0.001) (0.001) (0.001)

HH size 0.010∗∗∗ 0.017∗∗∗ 0.013∗∗∗

(0.001) (0.001) (0.001)

Total land owned 0.0002 0.00002 0.0005
(0.000) (0.000) (0.001)

Education head of HH 0.024∗∗∗ 0.024∗∗∗ 0.015∗∗∗

(0.001) (0.001) (0.001)

Sex of head of HH −0.017∗∗∗ −0.009 −0.020∗∗∗

(0.004) (0.006) (0.004)

Age head of HH 0.002∗∗∗ 0.002∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000)

Hindu 0.008 0.006 0.002
(0.006) (0.008) (0.005)

Scheduled tribe −0.124∗∗∗ −0.122∗∗∗ −0.084∗∗∗

(0.011) (0.012) (0.011)

Scheduled caste −0.072∗∗∗ −0.066∗∗∗ −0.049∗∗∗

(0.005) (0.007) (0.005)

Other backward caste −0.028∗∗∗ −0.030∗∗∗ −0.019∗∗∗

(0.004) (0.006) (0.004)

Year F.E. yes yes yes yes
District F.E. yes yes yes yes

Observations 196,181 195,272 96,741 98,531
F-stat 16.68 13.20 9.83 3.89
AR F-stat 21.74 34.34 36.92 13.16

Notes: All regressions contain a constant. Standard errors in parentheses are
robust and clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Baseline results – extensive margin

Dep. variable:
LPG Fuelwood

OLS IV OLS IV
(1) (2) (3) (4)

Electricity 0.082∗∗∗ −0.636∗∗∗ −0.074∗∗∗ 0.707∗∗

(0.005) (0.154) (0.007) (0.296)

Price Fuelwood 0.003∗∗ 0.004∗∗ −0.005∗∗∗ −0.006∗∗∗

(0.001) (0.001) (0.002) (0.002)

Price LPG −0.001 −0.001∗∗ 0.001 0.002∗∗

(0.001) (0.001) (0.001) (0.001)

HH size −0.003∗∗∗ 0.005∗∗∗ 0.005∗∗∗ −0.003
(0.001) (0.002) (0.001) (0.003)

Total land owned 0.0001 0.0002 −0.0000 −0.0002
(0.000) (0.000) (0.000) (0.000)

Education head of HH 0.038∗∗∗ 0.055∗∗∗ −0.035∗∗∗ −0.054∗∗∗

(0.001) (0.004) (0.001) (0.007)

Sex of head of HH −0.048∗∗∗ −0.060∗∗∗ 0.046∗∗∗ 0.059∗∗∗

(0.004) (0.006) (0.004) (0.008)

Age head of HH 0.003∗∗∗ 0.004∗∗∗ −0.002∗∗∗ −0.003∗∗∗

(0.000) (0.000) (0.000) (0.001)

Hindu 0.003 0.009 0.001 −0.006
(0.006) (0.009) (0.007) (0.010)

Scheduled tribe −0.086∗∗∗ −0.175∗∗∗ 0.105∗∗∗ 0.202∗∗∗

(0.008) (0.022) (0.009) (0.038)

Scheduled caste −0.084∗∗∗ −0.136∗∗∗ 0.080∗∗∗ 0.136∗∗∗

(0.005) (0.012) (0.006) (0.022)

Other backward caste −0.055∗∗∗ −0.076∗∗∗ 0.045∗∗∗ 0.067∗∗∗

(0.004) (0.007) (0.005) (0.010)

Year F.E. yes yes yes yes
District F.E. yes yes yes yes

Observations 195,272 195,272 195,272 195,272
F-stat 13.20 13.20
AR F-stat 34.34 34.34

Notes: All regressions contain a constant. Standard errors in parentheses are
robust and clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Baseline results – intensive margin

Dep. variable:
LPG Fuelwood

OLS IV OLS IV
(1) (2) (3) (4)

Electricity 0.611∗∗∗ −1.699∗∗ −1.487∗∗∗ 5.569∗

(0.029) (0.792) (0.067) (3.284)

Price Fuelwood 0.017∗∗ 0.019∗∗ 0.126∗∗∗ 0.118∗∗

(0.007) (0.008) (0.047) (0.048)

Price LPG −0.008∗∗ −0.009∗∗∗ −0.015∗ −0.010
(0.003) (0.003) (0.008) (0.009)

HH size −0.041∗∗∗ −0.017∗∗ −0.188∗∗∗ −0.262∗∗∗

(0.003) (0.009) (0.008) (0.037)

Total land owned −0.001 −0.0003 −0.005 −0.007
(0.000) (0.000) (0.004) (0.006)

Education head of HH 0.168∗∗∗ 0.224∗∗∗ −0.326∗∗∗ −0.497∗∗∗

(0.004) (0.020) (0.009) (0.083)

Sex of head of HH −0.282∗∗∗ −0.322∗∗∗ −0.196∗∗∗ −0.074
(0.023) (0.031) (0.052) (0.087)

Age head of HH 0.013∗∗∗ 0.017∗∗∗ −0.012∗∗∗ −0.026∗∗∗

(0.001) (0.002) (0.001) (0.007)

Hindu 0.095∗∗∗ 0.113∗∗∗ −0.031 −0.086
(0.031) (0.039) (0.061) (0.088)

Scheduled tribe −0.473∗∗∗ −0.757∗∗∗ 1.202∗∗∗ 2.072∗∗∗

(0.045) (0.107) (0.109) (0.442)

Scheduled caste −0.446∗∗∗ −0.612∗∗∗ 0.939∗∗∗ 1.445∗∗∗

(0.025) (0.059) (0.059) (0.241)

Other backward caste −0.271∗∗∗ −0.334∗∗∗ 0.374∗∗∗ 0.569∗∗∗

(0.022) (0.031) (0.042) (0.101)

Year F.E. yes yes yes yes
District F.E. yes yes yes yes

Observations 196,344 196,344 196,283 196,283
F-stat 13.41 13.37

Notes: All regressions contain a constant. Standard errors in parentheses are
robust and clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Baseline results – tobit

Dep. variable:
LPG Fuelwood

OLS IV OLS IV
(1) (2) (3) (4)

Electricity 1.159∗∗∗ 0.544 −1.041∗∗∗ 4.926∗

(0.033) (1.238) (0.048) (2.608)

Price Fuelwood 0.016∗∗∗ 0.016∗∗∗ 0.075∗∗∗ 0.061∗∗

(0.006) (0.006) (0.029) (0.027)

Price LPG −0.005∗ −0.006∗∗ −0.008 −0.003
(0.003) (0.003) (0.006) (0.007)

HH size −0.005∗∗ 0.001 −0.103∗∗∗ −0.155∗∗∗

(0.002) (0.013) (0.005) (0.029)

Total land owned 0.001∗ 0.001 −0.003 −0.004
(0.001) (0.001) (0.002) (0.004)

Education head of HH 0.167∗∗∗ 0.181∗∗∗ −0.258∗∗∗ −0.377∗∗∗

(0.005) (0.028) (0.007) (0.066)

Sex of head of HH −0.307∗∗∗ −0.316∗∗∗ −0.070∗ 0.038
(0.022) (0.027) (0.038) (0.065)

Age head of HH 0.015∗∗∗ 0.016∗∗∗ −0.009∗∗∗ −0.020∗∗∗

(0.001) (0.002) (0.001) (0.005)

Hindu 0.038 0.042 −0.042 −0.084
(0.028) (0.030) (0.048) (0.067)

Scheduled tribe −0.615∗∗∗ −0.685∗∗∗ 0.921∗∗∗ 1.562∗∗∗

(0.051) (0.151) (0.077) (0.349)

Scheduled caste −0.504∗∗∗ −0.544∗∗∗ 0.739∗∗∗ 1.094∗∗∗

(0.025) (0.081) (0.044) (0.193)

Other backward caste −0.220∗∗∗ −0.234∗∗∗ 0.328∗∗∗ 0.461∗∗∗

(0.018) (0.034) (0.033) (0.080)

Year F.E. yes yes yes yes
District F.E. yes yes yes yes

Censored Observations 144,936 144,936 28732 28732
Uncensored Observations 49940 49940 166,078 166,078
P-value of Wald Test of Exogeneity 0.63 0.02

Notes: All regressions contain a constant. Standard errors in parentheses are
robust and clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 10: Robustness: share of fuel expenditures

Dep. variable: Share fuel expenditures
Full sample Below median Above median
(1) (2) (3) (4) (5) (6)

Electricity 1.35443∗∗∗11.092∗∗ 2.208∗∗∗ 16.034∗∗ 1.752∗∗∗−13.350
(0.089) (4.845) (0.097) (6.264) (0.121) (9.463)

Price Fuelwood 0.174∗∗ 0.163∗∗ 0.237∗∗∗ 0.233∗∗∗ 0.169∗∗ 0.170∗∗

(0.071) (0.071) (0.078) (0.089) (0.075) (0.077)

Price LPG −0.044∗∗∗ −0.038∗∗∗ −0.035∗∗∗−0.039∗∗ −0.025∗∗∗ −0.047∗∗

(0.011) (0.014) (0.011) (0.018) (0.009) (0.019)

HH size −0.764∗∗∗ −0.865∗∗∗ −1.031∗∗∗−1.271∗∗∗ −0.889∗∗∗ −0.670∗∗∗

(0.013) (0.055) (0.018) (0.114) (0.016) (0.119)

Total land owned −0.013 −0.015 −0.003 −0.003 −0.041∗∗∗ −0.034∗∗

(0.010) (0.013) (0.002) (0.004) (0.013) (0.014)

Education head of HH −0.407∗∗∗ −0.644∗∗∗ −0.137∗∗∗−0.472∗∗∗ −0.251∗∗∗ −0.019
(0.011) (0.122) (0.012) (0.155) (0.012) (0.144)

Sex of head of HH −1.277∗∗∗ −1.107∗∗∗ −1.728∗∗∗−1.594∗∗∗ −1.040∗∗∗ −1.345∗∗∗

(0.084) (0.132) (0.105) (0.149) (0.093) (0.220)

Age head of HH −0.0004 −0.019∗∗ 0.026∗∗∗ 0.004 0.020∗∗∗ 0.035∗∗∗

(0.002) (0.010) (0.003) (0.010) (0.002) (0.010)

Hindu 0.100 0.022 0.076 −0.006 0.191∗∗ 0.220∗

(0.083) (0.118) (0.096) (0.156) (0.090) (0.122)

Schedued tribe 1.014∗∗∗ 2.222∗∗∗ 0.307∗ 2.006∗∗ 0.521∗∗∗ −0.741
(0.152) (0.675) (0.169) (0.865) (0.154) (0.798)

Scheduled caste 1.294∗∗∗ 1.994∗∗∗ 0.631∗∗∗ 1.542∗∗∗ 0.514∗∗∗ −0.237
(0.092) (0.368) (0.104) (0.446) (0.096) (0.475)

Other backward caste 0.490∗∗∗ 0.762∗∗∗ 0.171∗ 0.592∗∗ 0.254∗∗∗ −0.033
(0.067) (0.157) (0.090) (0.232) (0.069) (0.197)

Year F.E. yes yes yes yes yes yes
District F.E. yes yes yes yes yes yes

Observations 195,099 195,099 96,645 96,645 98,454 98,454
F-stat 13.15 9.71 3.96

Notes: All regressions contain a constant. Standard errors in parentheses are robust and clustered at
the village level. *** p<0.01, ** p<0.05, * p<0.1.
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8 Figures

Figure 1: District wise night light intensity, 1993
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Figure 2: Coefficients on LPG adoption by quartile
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Figure 3: Coefficients on fuelwood adoption by quartile
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