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Abstract

We study the size-power tradeoff in commonly employed tests of re-

turn predictability. We provide conditions under which short-horizon

dividend-growth tests and long-horizon return tests are asympotically

more powerful than short-horizon return tests. Monte Carlo results

show that the asymptotic power advantages carry over to small sam-

ples, although the reasons are different. Asymptotically, dividend-

growth tests are close to uniformly most powerful. In small samples,

dividend-growth tests and long-horizon tests have similar power.
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Empirical tests of market efficiency—defined, in the context of stocks,

as the proposition that asset prices equal the discounted value of expected

dividends—have a long history. In his classic paper, Fama (1970) reported

empirical tests of the implication of market efficiency that asset returns are

unforecastable (Samuelson (1965)). He concluded in favor of market effi-

ciency. However, analysts subsequently observed that asset price volatility

appeared to exceed the volatility consistent, under market efficiency, with

the volatility of dividends (Shiller (1981)). Also, analysts reversed Fama’s

original conclusion, finding that asset returns are forecastable (Fama and

French (1988)). The return forecastability appeared to be negligible at short

horizons, but was evaluated as being much stronger at longer horizons, like

several years.1

The fact that different tests of the same null hypothesis appear to have

different outcomes suggests that some tests have greater power than others:

how likely is it that different tests will reject market efficiency under some

alternative—power—holding constant the rejection probability if markets are

efficient—size? Possible differences in power have been discussed in the asset

pricing literature (LeRoy and Steigerwald (1995), for example), but until

recently no formal results along these lines had been provided.2

Cochrane (2008) proposed addressing the size-power tradeoff head on. He

concluded from simulations conducted using data generated by an estimated

1Statistical issues were raised about the conclusion that returns are forecastable. In
particular, the apparently dramatic difference between the outcome of short-horizon and
long-horizon return forecastability tests was convincingly criticized by Boudoukh et al.
(2006), who showed that in efficient markets sampling variation alone should be expected
to result in estimated forecasting coefficients that increase approximately in proportion as
the horizon is more distant. This occurs because return forecasts over varying horizons
are highly correlated when the explanatory variable (usually the dividend yield) is highly
persistent.

2Campbell (2001) is an exception. That paper investigates the power advantages of
long-horizon return regressions, over short-horizon regressions, using approximate slope,
a measure of asymptotic power, as a guide. It finds that long-horizon regressions have
higher approximate slope, suggestive of higher power. Monte Carlo simulations indicate
that the higher approximate slope translates to power advantages in small samples.
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model that the evidence against efficiency provided by returns forecastability

alone is of marginal statistical significance. However, he noted that there ex-

ist alternative tests of market efficiency. To be consistent with the observed

high level of price volatility either returns or dividend growth must be signif-

icantly forecastable. Under market efficiency returns are nonforecastable by

assumption, implying that efficiency can be tested by determining whether

dividend forecastability is sufficient to explain price volatility. Cochrane as-

serted that the test based on dividend forecastability has higher power than

that based on return forecastability.

Although Cochrane’s stated purpose was to argue for the greater power

of one test relative to the other, his discussion centered almost exclusively

on the behavior of test statistics under the null hypothesis of market effi-

ciency. In this paper we address the same problem as Cochrane, but do

so directly rather than taking a detour dealing with extensive analysis of

estimator properties under the null hypothesis.

We find using Cochrane’s model that his conclusion in favor of greater

power of dividend forecastability tests in his model is correct. This is so be-

cause, based on a normal approximation, the estimated coefficient of return

forecastability has greater variance than that of dividend growth forecasta-

bility. This explanation bears no close relation to Cochrane’s discussion.

Without the normal approximation the power advantage of dividend fore-

castability tests over return foreastability tests still occurs (in fact, appears

to be even greater), suggesting that intuition based on the normal approx-

imation carries over to settings where normality is not a particularly close

assumption, as in Cochrane’s setting.

1 The Model

We use the same log-linear model as Cochrane: log returns rt+1, log dividend

growth ∆dt+1 and next-period log dividend yield dt+1− pt+1 depend linearly
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on the current log yield dt − pt:

rt+1 = ar + βr(dt − pt) + εrt+1 (1)

∆dt+1 = ad + βd(dt − pt) + εdt+1 (2)

dt+1 − pt+1 = adp + ϕ(dt − pt) + εdpt+1. (3)

The errors are normal with mean zero and are independent over time. At

date t the variances and covariances of the error terms are denoted σ2
r , σrd,

etc. As Cochrane noted, the Campbell and Shiller (1988) log-linearization of

the definition of the rate of return,

rt+1 = ρ(pt+1 − dt+1) + ∆dt+1 − (pt − dt), (4)

where ρ is the constant of linearization, implies that any one of the equations

(1), (2) and (3) is redundant given the others. It follows that the coefficients

obey the restriction

βr = 1− ρϕ+ βd, (5)

and the errors obey the restriction

εrt+1 = εdt+1 − ρε
dp
t+1. (6)

Both restrictions play a major role in the discussion below.

1.1 The Null and Alternative Hypotheses

The null hypothesis of market efficiency is generated by setting βr = 0, so

that returns are not forecastable in the population.

The alternative hypothesis is generated by setting βr and βd equal to the

values Cochrane estimated from the real-world data. Thus returns have a

forecastable component under the alternative. In going from the alternative
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to the null the parameter redundancy (5) implies that setting βr equal to

zero must be accompanied by a corresponding intervention on at least one of

the other parameters. Until Section 4 we follow Cochrane in specifying the

null hypothesis so that βd is changed from the value estimated from the data

to the value that satisfies (5). The parameter ϕ and the covariances of the

errors are the same under the null and the alternative.

2 Asymptotic Properties

Market efficiency can be tested either directly by determining whether βr

equals 0 or indirectly by determining whether βd equals ρφ − 1, the value

implied by (5) when βr is set equal to 0. These tests have the same null and

alternative hypotheses, but generally not the same size-power tradeoff. The

asymptotic size-power tradeoff serves as a useful benchmark when evaluating

the finite sample size-power tradeoff of the two tests.

2.1 Short-Horizon Tests

The asymptotic properties of OLS estimators β̂r, β̂d and φ̂ follow from a

version of the central limit theorem; see Proposition 11.1 in Hamilton (1994)

for a detailed discussion. As the number of observations goes to infinity, T →
∞, the distribution of each OLS estimate approaches a normal distribution

with mean equal to the population value of the corresponding parameter. The

asymptotic variances of the estimators follow the standard OLS formula. For

β̂r and β̂d, we have

T Var(β̂i) =
σ2
i (1− φ2)

σ2
dp

; i ∈ {r, d} (7)

where σ2
i is the date-t variance of the shock εit, and σ2

dp/(1−φ2) is the variance

of log dividend yield. For the estimate of the dividend-yield autocorrelation,
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we have T Var(ϕ̂) = 1− ϕ2. These expressions for the variances are derived

in Appendix A.

How do the asymptotic distributions change as we move from the null to

the alternative? The alternative hypothesis consists of a modification in the

parameters βr and βd from their values under the null, with the remaining

parameters remaining unchanged. Therefore, as we move from the null to

the alternative, the asymptotic distribution of β̂r shifts to reflect the change

in the mean from 0 to the value under the alternative, which we specified

to equal the value estimated from real-world data. The covariances remain

unchanged. Similarly, the distribution of β̂d shifts to reflect the value of the

parameter under the alternative.

With knowledge of the asymptotic distributions of the OLS estimates

under the null and the alternative, we can compare the size-power tradeoff of

return and dividend forecastability tests of market efficiency. The following

proposition provides a simple way to determine the relative power of the two

tests.

Proposition 1 For a given size, market efficiency tests based on dividend

growth forecastability are asymptotically more powerful than return forecasta-

bility tests if and only if σd < σr.

The size-power tradeoff depends on the relative asymptotic variances of

the OLS estimators. Because, from (7), the asymptotic variances inherit the

variances of the underlying error terms, the asymptotic power of the tests

depends on the error variances. If σd < σr, the variance of β̂d is lower than

that of β̂r, implying that the dividend test is more powerful. The opposite is

true if σd > σr. The two tests have identical size-power tradeoffs if σd = σr.

The intuition behind Proposition 1 is demonstrated in Figure 1. Because

the estimates β̂r and β̂d are asymptotically bivariate normal, the level curves

under the null and the alternative are ellipses. The alternative hypothesis is

a 45 degree translation of the null in the β̂r – β̂d space. Therefore the ellipse
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Figure 1: Level curves under the null and the alternative

representing the level curve under the alternative hypothesis is the same as

that of the null hypothesis, but translated along a 45-degree line.

The ellipses are flat, reflecting the fact that the variance of β̂d is less

than the variance of β̂r. Together, the flatness and translation along the

45 degree line imply that the null and the alternative populations are more

easily distinguished based on the β̂d coordinate than the β̂r coordinate. This

fact implies that for given size the power of a market efficiency test based on

β̂d is greater than one based on β̂r. This result is demonstrated formally in

Appendix B.

Numerical values for the size-power tradeoff are presented and discussed

below.
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2.2 Long-Horizon Tests

Cochrane also investigated the power of long-horizon forecastability of re-

turns and dividend growth. He identified these with

βlhr = βr/(1− ρφ) (8)

and βlhd = βd/(1−ρφ). The coefficient βr/(1−ρφ) is relabeled βlhr because it is

the forecastability coefficient associated with long-horizon returns
∑

j ρ
jrt+j,

and similarly for the dividend growth coefficient. Eq. (8) implies that βlhr =

1 + βlhd , from which it follows that the long-run return forecastability and

dividend-growth forecastability tests are equivalent (and, in particular, have

the same power for given size). Cochrane noted and discussed this result.

Consequently it is sufficient to compare the size-power tradeoff for β̂lhr with

that for β̂r, which we now do.

The size-power tradeoff for long-horizon tests depends on the asymptotic

distributions of β̂lhr under the null hypothesis and the alternative, so we begin

by determining those distributions. This is done in Appendix A. As T →∞,

the distribution of β̂lhr converges to a normal distribution with mean βlhr . The

asymptotic variance of β̂lhr is given by

T Var(β̂lhr ) =
1− φ2

(1− ρφ)2

(
σ2
r

σ2
dp

+
2ρβr

1− ρφ
σr,dp
σ2
dp

+
ρ2β2

r

(1− ρφ)2

)
. (9)

It is seen that the asymptotic variance of β̂lhr depends on the population

value of βr. The presence of βr in (9) implies that the asymptotic variance

of β̂lhr is generally different under the null and the alternative. Proposition

1 connecting the power of β̂r and β̂d tests with the volatilities of β̂r and β̂d

depended on these variances being equal under the null and the alternative,

implying that Proposition 1 does not apply directly to β̂lhr . Calculating the

asymptotic size-power tradeoff, while still possible, is more involved.

Under the null hypothesis of unforecastable returns, βr = 0, the variance
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of the long-horizon estimator is the variance of the short-horizon estimator

scaled up. We have

T Var(β̂lhr )

∣∣∣∣
NULL

=
1

(1− ρφ)2
T Var(β̂r), (10)

from eqs. (7) and (9). The variance of the long-horizon estimator under

the alternative hypothesis is greater than or less than its variance under the

null, depending on the contribution of the terms in (9) involving βr. The

term ρ2β2
r/(1− ρφ)2 is strictly positive. The sign of remaining term depends

on the correlation between return shocks and dividend-yield shocks, denoted

ηr,dp. If that correlation is positive, σr,dp is positive and the variance under

the alternative is greater than the variance under the null. If the correlation

is strongly negative, the variance under the alternative is lower than that

under the null. Formally, there exists a threshold η, which is negative, such

that the asymptotic variance of β̂lhr under the null is equal to its variance

under the alternative when ηr,dp = η. We have

η = −ρ βr,ALT
1− ρφ

σdp
2σr

.

If ηr,dp < η (as will be the case in the data), the variance under the alternative

is lower than the variance under the null. The opposite would be true if

ηr,dp > η.

The following two propositions show that the correlation ηr,dp plays an

important role in determining how the power of long-horizon tests compares

to the power of β̂r tests.

Proposition 2 For a given size, long-horizon tests and short-horizon return

forecastability tests have equal asymptotic power if ηr,dp = η.

The intuition for Proposition 2 is simple: when ηr,dp = η the asymptotic

distribution of β̂lhr is the same as the distribution of a scalar multiple of β̂r, so
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Figure 2: Why long-horizon tests have higher power than short-horizon tests

the two tests have equal power. Asymptotically, the means of the estimators

β̂lhr and β̂r equal their population values βlhr and βr, respectively. Therefore,

the mean of β̂lhr is the mean of β̂r scaled up by 1/(1−ρφ), under both the null

and the alternative. When ηr,dp = η, the variance of β̂lhr under the alternative

equals its variance under the null. By (10), the standard deviation of β̂lhr ,

equal under the null and the alternative, is the standard deviation of β̂r scaled

by 1/(1 − ρφ). Because the two estimators are normally distributed under

the null and the alternative, the asymptotic distribution of β̂lhr is the same

distribution as that of a scalar multiple of β̂r. It follows that tests involving

β̂lhr and β̂r have equal power when ηr,dp = η.

Now assume that ηr,dp < η as the data indicate; the conclusions reported

below would be reversed for ηr,dp > η. The asymptotic distribution of β̂lhr

under the null continues to be the same as the distribution of β̂r scaled by
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1/(1 − ρφ), but the variance under the alternative is lower than under the

null.

The following proposition shows that for ηr,dp < η the specification of the

alternative hypothesis determines which test is more powerful.

Proposition 3 Suppose ηr,dp < η. For a given size, let βr denote the critical

value of the short-horizon return forecastability test. Given the size,

1. long-horizon tests are more powerful than short-horizon return tests if

and only if βr,ALT > βr. Short-horizon tests are more powerful if and

only if the opposite inequality holds.

2. The two tests have equal power if βr,ALT = βr.

To develop intuition for Proposition 3 multiply β̂lhr by (1 − ρφ) to undo

the scale effect. The asymptotic distribution of β̂lhr (1−ρφ) is identical to the

distribution of β̂r under the null: normal with mean zero and variance given

by (7). Under the alternative, the two estimators are normally distributed

with equal means, but not equal variances. Which test is more powerful

depends on whether it is easy to distinguish the alternative from the null;

this is the case when the alternative is far away from the null. In that

case, the test with the lower variance has greater power because it generates

more values close to the alternative, and therefore far away from the null.

Conversely, suppose that the alternative is close to the null, making it difficult

to distinguish between the two. In that case, the test with the higher variance

has greater power because it generates more values that are farther away

from the null. To see this, consider the case in which the variance of β̂lhr is

extremely low. In that setting the probability of accepting the null if the

data are generated under the alternative would be high, possibly higher than

would occur if the data were generated under the null.

The threshold that determines whether or not its easy to distinguish the

null and the alternative is the critical value βr. If βr,ALT > βr it is easy
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to distinguish the null and the alternative. Therefore the long-horizon test,

having lower variance than the short-horizon test, provides the more powerful

test. If βr,ALT < βr the short-horizon test is more powerful. If βr,ALT = βr, we

obtain a knife-edge result: the power of both the tests equals 0.5. The relative

variance of the estimators does not matter in that case. The correlation ηr,dp

plays no role in determining which test is more powerful.

The fact that the relative power of short-horizon vs. long-horizon tests

depends on the critical value of the short-horizon test means that the power

ordering may be different depending on whether one is consider a 1%, 5%

or 10% rejection probability. We will see below that the long-horizon test

has higher power than the short-horizon test under 5% or 10% rejection

probabilities, but lower power in the 1% case.

Figure 2 shows why the power of the long-horizon test relative to the

short-horizon test depends on whether βr,ALT is greater than or less than βr.

2.3 Likelihood Ratio Tests

There is no reason to focus on efficiency tests based on either β̂r or β̂d to the

exclusion of the other, as we have done. We can also conduct a likelihood

ratio test, so that for any specified probability of Type I error the boundary

between the acceptance and rejection regions consists of pairs β̂r, β̂d that have

equal likelihood ratios. In the case of the bivariate normal the boundaries

separating these regions consist of straight lines traveling from northwest

to southeast. The Neyman-Pearson lemma states that likelihood ratio tests

have maximal power for given size.

3 Empirical Implementation

The asymptotic distribution may not be a good approximation of the finite

sample distribution. In real-world data, the dividend yield is highly auto-

correlated, which reduces the effective sample size for the estimation. Given
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that we only have about 80 years of real-world data, with the lower effective

sample size the central limit theorem might turns out to yield only a coarse

approximation of the finite sample distribution.

In this section we report the application of Monte Carlo simulations to

compute both the size-power tradeoffs in both the asymptotic case and the

finite-sample case. In the asymptotic case the simulations were used to esti-

mate the parameters that determine power, as discussed in Section 2. In the

finite-sample case we directly estimated power from the simulated regression

coefficients. The two sets of results differ because in the latter case there

is no appeal to normality, and the relevant distributions exhibit departures

from normality. The computed power estimates are shown in Table 1.

We set the values of parameters used to generate the simulations to match

estimates of their counterparts in the data. To facilitate comparison between

our paper and Cochrane’s, we take the empirical estimates from Cochrane

(2008), instead of re-estimating the model using the latest available data.

The Monte Carlo exercise consists of 50,000 draws with each draw consisting

of 80 dates, agreeing with the length of the dataset for Cochrane’s real world

estimation.

The constant of log-linearization is ρ = 0.9638, calculated from mean log

dividend yield in the data.3 In each run, we draw two time series {εdt } and

{εdpt } and impute the value of {εrt} using (6). The shocks are drawn from a

bivariate normal distribution with mean zero and variance-covariance matrix

given by  σ2
d

σdp,d σ2
dp

 =

0.01960

0.00161 0.02341

 . (11)

Having obtained the time series of shocks, we created time series of log

returns, log dividend growth and log dividend yield using (1)-(3). The au-

tocorrelation φ of the log dividend yield is equal to 0.941 in both the null

and the alternative hypotheses. As noted, the coefficients βr and βd depend

3We have ρ = eE(p−d)/(1 + eE(p−d)).
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on whether the we assume null or the alternative hypothesis holds in the

simulated data. If the null of market efficiency holds, then we have βr = 0.

Under the alternative, we have βr = 0.097. The corresponding values of the

dividend forecastability coefficient follow from (4). We have βd = −0.0931

and βd = 0.0039 in the null and the alternative, respectively.

For each run, we obtained the OLS estimates β̂r and β̂d. For the β̂r test

we computed the 95% critical value as the value βr of β̂r such that 5% of the

50,000 simulated values of β̂r are greater than βr. Power was then computed

as the proportion of draws under the alternative that are greater than βr.

The calculation for β̂d was similar. We also computed 10% and 1% critical

values and the corresponding figures for power.

The conclusions follow:

• We find that dividend-growth forecastability is more powerful than re-

turn forecastability in testing market efficiency. We already knew that

this would be true in the asymptotic case from the fact that the volatil-

ity of return shocks exceeds the volatility of dividend-growth shocks.

The fact that the finite-sample results support a similar conclusion

suggests that the outcome does not depend critically on the normality

assumption.

• The power advantage of the dividend growth tests is much more pro-

nounced in the finite-sample case than in the asymptotic case. This

probably reflects the fact that the simulated distribution of β̂r is skewed,

whereas the simulated distribution of β̂d is not. Figure 3 shows these

distributions under the null and the alternative. It also displays the

1%, 5% and 10% critical values. The figure makes clear why skewness

results in a loss of power.

As discussed in Stambaugh (1999), the finite-sample distribution of

the OLS estimator depends on whether or not shocks to the predictor

variable (dividend-yield) are correlated with shocks to the regressand
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(returns or dividend-growth). If the shocks are correlated, then the

finite-sample distribution is skewed. In our setting, shocks to returns

are highly negatively correlated with shocks to dividend yield, which

generates the skewness observed in β̂r. In contrast, shocks to dividend-

growth are close to being uncorrelated, which is why the distribution

of β̂d does not exhibit skewness.

• For the most part power is much higher in the asymptotic case than

in the finite-sample case. This is as expected: finite-sample variability

results in high critical values, implying higher probability of acceptance

of the null when data are generated under the alternative. However,

the long-horizon tests are an exception: power is about the same in the

asymptotic and finite-sample cases. This may reflect the fact, shown

in Figure 4, that skewness is much lower for long-horizon returns than

short-horizon returns.

• As expected from the Neyman-Pearson lemma, the likelihood-ratio

tests have greater power than any of the other tests, both asymptoti-

cally and in finite samples.

• The asymptotic dividend tests have power that is only slightly lower

than the likelihood ratio tests. This results from the fact that the

critical values of the two tests are very close, so the two tests have

almost exactly the same rejection regions. Similarly, the finite-sample

dividend growth forecastability tests have about the same power as the

likelihood ratio tests (except in the case of the 1% test), again because

the critical lines of the two tests are close. This is illustrated in Figure

5.

• As noted in Section 2, asymptotically the long-horizon test has higher

power under the 5% and 10% tests, but lower power under the 1% test,

compared to the returns test. The fact that these differences are not
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pronounced corresponds to the analysis of Boudoukh et al. (2006), also

based on asymptotic distributions, that the two test statistics are highly

correlated due to the high persistence of dividend yields. Proposition

3 helps us understand this relationship between size and power for the

two tests. We have that the threshold η equals −0.39. Because ηr,dp =

−0.70 in the benchmark parameterization, we have that ηr,dp < η. As

Proposition 3 showed, the asymptotic power of the long-horizon test

depends on whether the critical value of the βr test is greater than or

less than βr,ALT = 0.097. The critical value of the 10% and 5% βr tests

are 0.074 and 0.095. Therefore the long-horizon test has higher power

than the βr test. The critical value of the 1% βr test is 0.135 > 0.097,

and therefore the 1% βr has higher asymptotic power.

• The finite-sample long-horizon test has much higher power than the

finite-sample short-horizon returns test. Cochrane reported the same

result. Again, this appears to reflect the fact that the long-run coef-

ficient has lower skewness than the short-run returns coefficient (see

Figure 4).

The power differences between the asymptotic test of return fore-

castability and the corresponding long-horizon tests are small, so we

conclude that the two tests have about the same power. This finding

connects with the demonstration of Boudoukh et al. (2006) that the

two tests are very close to being equivalent due to the high correlation

of short-horizon and long-horizon test statistics when the explanatory

variable is highly autocorrelated. However, in the finite-sample case

the long-horizon tests have considerably higher power.
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Figure 3: Simulated distributions of β̂r and β̂d. The distribution under the
null is shown in blue, while the distribution under the alternative is in red.
The vertical black lines indicate 10%, 5% and 1% critical values.
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Figure 4: Simulated distribution of β̂lhr . The distribution under the null is
shown in blue, while the distribution under the alternative is in red. The
vertical black lines indicate 10%, 5% and 1% critical values.
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Asymptotic Finite Sample

Size β̂r β̂d β̂lhr LR test β̂r β̂d β̂lhr LR test

1% 0.378 0.686 0.326 0.689 0.065 0.328 0.371 0.437
5% 0.641 0.875 0.690 0.877 0.258 0.675 0.647 0.693

10% 0.766 0.935 0.841 0.936 0.444 0.805 0.775 0.807

Table 1: A comparison of statistical power of various asset pricing tests.

4 Tests Involving Price Volatility

It follows from (3) that the dividend yield (the reciprocal of which is the level

of stock prices divided by dividends) is generated by the same equation with

the same parameter values under the null and the alternative. This means

that the assumed model and test specification imply that price volatility is

the same whether or not markets are efficient. Thus the present setting can

shed no light on the question of whether volatility tests have greater power

than return forecastability tests in more general settings, as discussed in the

introduction.

One way to alter the test so as to render it relevant to the size-power com-

parison of volatility and return forecastability tests would be to assume that

the intervention setting βr to the forecastable value is offset by an alteration

in ϕ rather than βd. Doing so implies that an efficiency test based on yield

forecastability would replace the test based on dividend growth forecastabil-

ity. However, there exists a critical problem with this proposed modification:

a value setting βr equal to zero is consistent with (5) only if ϕ is set equal

to a value greater than 1, so that dividend yields are nonstationary. There

is some empirical evidence for nonstationarity of dividend yields—see Craine

(1993), and Welch and Goyal (2007), for example—but without stationar-

ity the log-linearization underlying our size-power calculations is inaccurate.

Thus the present framework does not apply.
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Figure 5: Scatter showing 1000 pairs of β̂d and β̂r with critical regions for
the returns test, dividend growth test, long-horizon test and likelihood-ratio
test. The critical regions were computed using all the 50,000 draws. The red
triangle indicates the null hypothesis (br = 0). The red square indicates the
alternative hypothesis (br = 0.097).

5 Conclusion

Cochrane concluded that tests based on dividend growth forecastability pro-

vide stronger evidence against market efficiency than those based on return

forecastability. By this he meant that the test statistic for the dividend

growth parameter was farther out on the tail of its distribution under mar-

ket efficiency than that of returns. Our approach, in contrast, involves de-

termining whether tests based on the dividend growth parameter are more

likely than tests based on returns forecastability to detect departures from
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market efficiency if they exist. Determining this consists of ascertaining how

the size-power tradeoffs of the two tests differ, and why. Our finding is that

the size-power tradeoff favors the dividend growth test. Our most important

contribution here is to provide a definitive explanation: dividend growth tests

are more powerful asymptotically because returns have higher volatility than

dividend growth. Our conclusion is the counterpart in our framework of

Cochrane’s conclusion that dividend growth tests provide stronger evidence

than returns tests against market efficiency. To the extent that our conclu-

sions correspond to those of Cochrane, our findings can be interpreted as

supporting his.

A large literature is devoted to demonstrating that the appearance of re-

turn forecastability can occur even under the null due to a variety of econo-

metric issues related to sampling variability. These issues apply as much

to our simulations as to econometric tests based on real-world data. That

being so, they are taken into account in simulations in determining critical

values for market efficiency tests. It is, in fact, likely that the low power of

finite-sample return forecastability tests reflects the fact that econometric bi-

ases result in high critical values for the return forecastability parameter. It

appears that similar problems with the dividend-growth forecastability tests,

if they exist at all, are less severe. However, our asymptotic tests, which by

definition are not subject to the finite-sample issues under discussion, im-

ply that the higher power of dividend growth forecastability tests cannot be

attributed entirely to these issues.

We believe that our analysis gives strong support to Cochrane’s con-

tention that regressions of future returns on currently-observable variables

do not provide the strongest evidence for return predictability. Rather, as

Cochrane asserted, the best evidence comes from comparison of the behav-

ior of dividends and stock prices: the volatility of stock prices dramatically

exceeds the volatility level consistent with dividend behavior under efficient

markets. This was exactly the conclusion reported in the variance bounds
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tests. However, there is a critical difference: the variance bounds tests took

dividend volatility to be the determinant of stock price volatility, whereas

in Cochrane’s paper and here the relevant determinant is dividend growth

predictability. This difference, if anything, greatly strengthens the evidence

from the variance bounds literature for excessive stock price volatility rel-

ative to the efficient markets prediction: dividend growth forecastability is

essentially zero, implying that price volatility should also be essentially zero

under efficient markets.
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A Appendix: Asymptotic Distribution of Es-

timators

In this section we derive the asymptotic distribution of b̂r, b̂d and φ̂. We do

so using Proposition 11.1 in Hamilton (1994). For completeness, we restate

the proposition below.

Proposition 4 Let

yt = c+ θ1yt−1 + θ2yt−2 + · · ·+ θpyt−p + εt (12)

where εt is independent and identically distributed with mean 0, variance Ω,

and E(εitεjtεltεmt) <∞ for all i, j, l,m and where the roots of∣∣∣∣In − θ1z − θ2z2 − · · · − θpzp = 0

∣∣∣∣
lie outside the unit circle. Let k ≡ np+ 1 and let x

′
t be the 1× k vector

x
′

t ≡ [1 y
′

t−1 y
′

t−2 . . . y
′

t−p].

Let π̂T = vec(Π̂T ) denote the (nk × 1) vector of coefficients resulting from

OLS regressions of each of the elements of yt on xt for a sample of size T :

π̂T =



π̂1,T

π̂2,T

...

π̂n,T


where

π̂i,T =

[
T∑
t=1

xtx
′

t

]−1 [ T∑
t=1

xtyit

]
;
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and let π denote the (nk× 1) vector of corresponding population coefficients.

Finally, let

Ω̂T =
1

T

T∑
t=1

ε̂tε̂
′

t,

where

ε̂
′

t = [ε̂1t ε̂2t . . . ε̂nt]

ε̂it = yit − x
′

tπ̂i,T .

Then

1. (1/T )
∑T

t=1 xtx
′
t

p−→ Q where Q = E(xtx
′
t);

2. π̂T
p−→ π;

3. Ω̂T
p−→ Ω;

4.
√
T (π̂T − π)

L−→ N(0, (Ω ⊗ Q−1)), where ⊗ denotes the Kronecker

product.

We verify that the conditions required for Proposition 4 hold in the model

presented here. We have

y′t = [rt ∆dt dpt]

It follows that n = 3. The error terms are drawn from a multivariate normal

distribution with variance-covariance matrix (11). The vector of coefficients

θ1 is given by

θ1 =

0 0 br

0 0 bd

0 0 φ


The first two columns have zeros because the regressand is dpt−1. The coef-

ficients on all lags greater than one are zero.
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The condition E(εitεjtεltεmt) <∞ for all i, j, l,m is satisfied because the

error terms are normally distributed. The condition that the roots lie outside

the unit circle is satisfied because br, bd and φ are less than unity.

Because we are not regressing on past values of rt and ∆dt, we redefine

k and xt accordingly. We have k = 1 + 1 = 2. The vector x′t is given by

x′t = [1 dpt]

The matrix ΠT is given by

ΠT =

 ar br

ad bd

adp φ


The vector πT ≡ vec(ΠT ) follows.

We can now calculate Q ≡ E(xtx
′
t). We have

Q = E(xtx
′
t) =

[
1 0

0 σ2
dp/(1− φ2)

]

where, WLOG, we have assumed dpt is mean-zero. Because Q is a diagonal

matrix, it is easy to invert. We have

Q−1 =

[
1 0

0 (1− φ2)/σ2
dp

]

We can calculate Ω = E(εtε
′
t). We have

Ω =


σ2
r σr,d σr,dp

σr,d σ2
d σd,dp

σr,dp σd,dp σ2
dp
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The Kronecker product Ω ⊗ Q−1 follows. In particular, we note the

asymptotic variance of
√
T (̂br−br) is given by σ2

r/σ
2
dp(1−φ2). It follows that

avar(̂br) =
1

T

σ2
r(1− φ2)

σ2
dp

Similarly,

avar(̂bd) =
1

T

σ2
d(1− φ2)

σ2
dp

avar(φ̂) =
1

T
(1− φ2)

It should be noted that the expressions for the asymptotic variance are iden-

tical to the standard OLS expressions.

A.1 Asymptotic variance of β̂lhr

We find the asymptotic variance of β̂lhr using the multivariate delta method.

Let h(β̂r, φ̂) ≡ β̂lhr = β̂r/(1− ρφ̂). The delta method uses the Taylor approx-

imation to derive the asymptotic distribution of h(β̂r, φ̂) from knowledge of

the asymptotic joint distribution of β̂r and φ̂. We have

√
T

β̂r − βr
φ̂− φ

 d−→ N

0

0

 ,Σ
 (13)

where Σ denotes the 2 × 2 variance-covariance matrix. The delta method

implies

√
T [h(β̂r, φ̂)− h(βr, φ)]

d−→ N (0, [∇h(βr, φ)]′Σ∇h(βr, φ)) (14)
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where ∇h(βr, φ) denotes the gradient of h evaluated at the mean (βr, φ), and

prime denotes transpose. We have

∇h(βr, φ) =

 1
1−ρφ

ρβr
(1−ρφ)2

 (15)

It follows that

[∇h(βr, φ)]′Σ∇h(βr, φ)

=
[

1
1−ρφ

ρβr
(1−ρφ)2

] γ2r γr,dp

γr,dp γ2dp

 1
1−ρφ

ρβr
(1−ρφ)2


=

1− φ2

(1− ρφ)2

(
σ2
r

σ2
dp

+
2ρβr

1− ρφ
σr,dp
σ2
dp

+
ρ2β2

r

(1− ρφ)2

)
(16)

The asymptotic variance of the long-horizon estimator depends on the value

of βr. Therefore it is different under the null and the alternative hypotheses.

Weighted cumulative return regressions. The delta method can also

be used to derive the asymptotic distribution of cumulative return regressions

that are commonly employed in the literature.

Geometrically declining weights.—Consider the regression in which future

returns are weighted using ρ, with the weights declining geometrically. We

have
τ∑
j=0

ρjrt+1+j = a(τ)r + β(τ)
r (dt − pt) + εrt+1,t+1+τ (17)

Let g(β̂r, ϕ̂) ≡ β̂
(τ)
r . We have that

g(β̂r, ϕ̂) = β̂r(1 + ϕ̂+ ϕ̂2 + · · ·+ ϕ̂τ) = β̂r

(
1− (ρϕ̂)τ+1

1− ρϕ̂

)

We compute ∇g(β̂r, ϕ̂), and evaluate the resulting gradient at the asymp-
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totic means of the estimates. We have

∇g(βr, φ) =

 1−(ρϕ)τ+1

1−ρφ

ρβr
(1−ρφ)2 (1− (ρϕ)τ(1 + τ(1− ρϕ)))

 (18)

It follows that

[∇g(βr, ϕ)]′Σ∇g(βr, ϕ)

=
1− ϕ2

(1− ρϕ)2

[ (
1− (ρϕ)τ+1

)( σ2
r

σ2
dp

+
2σr,dp
σ2
dp

ρβr
1− ρϕ

[
1− (ρϕ)τ(1 + (1− ρϕ)τ)

])

+
ρ2β2

r

(1− ρϕ)2
[
1− (ρϕ)τ(1 + (1− ρϕ)τ)

]2]
(19)

The long-horizon regression corresponds the limiting case τ → ∞. In that

case, the variance expression in (19) reduces to (16).

Equal weights.— We can also consider regressions with equal weights on

future returns

τ∑
j=0

rt+1+j = ã(τ)r + β̃(τ)
r (dt − pt) + ε̃ rt+1,t+1+τ (20)

In that case, the asymptotic variance of the
√
T (β̂

(τ)
r − βτ

r ) is given by,

1− ϕ2

(1− ϕ)2

((
1− ϕτ+1

)( σ2
r

σ2
dp

+
2σr,dp
σ2
dp

βr
1− ϕ

[1− ϕτ(1 + (1− ϕ)τ)]

)

+
β2
r

(1− ϕ)2
[
1− ϕτ(1 + (1− ϕ)τ)

]2)
(21)
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B Appendix: Derivation of Power

Consider two estimators β̂1 and β̂2 that are asymptotically distributed as

bivariate normal. Suppose that they satisfy β̂1

β̂2

 ∼ BN

 µ1,N

µ2,N

 ,
 γ21,N

γ12,N

γ12,N

γ22,N

 . (22)

under the null hypothesis, and β̂1

β̂2

 ∼ BN

 µ1,A

µ2,A

 ,
 γ21,A

γ12,A

γ12,A

γ22,A

 . (23)

under the alternative. Define βi as the critical value of β̂i for a one-tailed

test of the null hypothesis with probability of Type-I error 0.05. Under the

null hypothesis we have

N
(
βi − µi,N
γi,N

)
= 0.95, for i = 1, 2 (24)

where N is the CDF of the standard univariate normal distribution. The

power of test i equals the probability that β̂i ≥ βi under the alternative, or

power of β̂i test = 1−N
(
βi − µi,A
γi,A

)

= 1−N
(
N−1(0.95)

γi,N
γi,A

+
µi,N − µi,A

γi,A

)
. (25)

Here N−1 is the inverse of N (note that for µi,A = µi,N and γi,N = γ1,A we

have power = 0.05, as expected). It follows that test 2 is more powerful than

test 1 if and only if

N−1(0.95)
γ2,N
γ2,A

+
µ2,N − µ2,A

γ2,A
≤ N−1(0.95)

γ1,N
γ1,A

+
µ1,N − µ1,A

γ1,A
(26)
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We can use (26) to compare the power of various asset pricing tests.

Consider the tests involving β̂r and β̂d. Under the null hypothesis, the mean

of [β̂r; β̂d] is equal to [0; µd,A − µr,A]. Under the alternative hypothesis, the

mean is [µr,A; µd,A]. The variance-covariance matrix of the estimators β̂r and

β̂d is the same under the null and the alternative, so we do not distinguish

between the two cases and denote the estimator variances as γ2r and γ2d . From

(26), the β̂d test has greater power than the β̂r test if and only if γd < γr.

This result holds for any values of the parameters in (22) and (23); in the

text we specified the parameter values to be those estimated by Cochrane.

Under those parameter values, we have γd < γr. Therefore the power of the

test based on β̂d is higher than that based on β̂r.

Now consider tests involving β̂r and β̂lhr . Under the null hypothesis, the

mean of [β̂r; β̂
lh
r ] is equal to [0; 0]. Under the alternative hypothesis, the

mean is [µr,A; µlhr,A], where µlhr,A = µr,A/(1− ρφ). The variance of β̂r does not

change as we go from the null to the alternative. However, the variance of

β̂lhr changes as we move from the null to alternative. We denote the variances

of the long-horizon test under the null and the alternative as γ2lh,N and γ2lh,A.

From (25), we have that the long-horizon test has greater power than the β̂r

test if and only if,

N−1(0.95)

(
γlh,N
γlh,A

− 1

)
+

0− µlhr,A
γlh,A

≤ 0− µr,A
γr

(27)

This inequality holds under the benchmark parameter values, so the long-

horizon test is more powerful than the β̂r test.
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