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Abstract

This paper studies asymmetric auctions for a generalized class of
bidders’ utility functions. We characterize all Bayesian equilibria of
a first-price auction game under weaker assumptions. The necessary
conditions of an equilibrium are strict monotonicity, continuity and
pure strategy. Next, we establish a revenue ranking for the first-price
and second-price auction. Finally, the bidders’ preferences of the two
auction mechanisms are compared for different types of absolute risk
aversion.
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1 Introduction
We study asymmetric auctions without resale for a generalized class of bid-
ders’ utility functions. Two asymmetric bidders play an auction game with
incomplete information for an indivisible object. The probability distribu-
tions of their types are independently distributed and are common knowledge
among bidders and the seller. The bidders’ von-Neumann-Morgenstern util-
ity function is continuous, strictly increasing and concave on the real line.
The bidder with the highest bid wins the object and pays the amount ac-
cording to the underlying auction mechanism.

In auction literature, the key assumptions are (a) symmetric bidders,
(b) independent and private types, (c) risk neutrality, (d) no collusion, and
(e) the bidder with highest bid wins the object. Vickrey [16], Riley and
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Samuelson [15] and Myerson [13] study auction by considering assumptions
(a)-(e). Holt [4], Riley and Samuelson [15] and Maskin and Riley [11] relax
assumption (c). While Plum [14], Lebrun [6] and Maskin and Riley [10] relax
assumption (a). We relax assumptions (a) and (c) simultaneously and study
auctions with weaker assumptions.

Consider a risk neutral seller who conducts a first-price auction. Lebrun
[6] characterizes all Bayesian equilibria of a first-price auction with asym-
metric bidders having risk neutral preferences. He shows that no equilibrium
exists in non-increasing, discountinuous and mixed strategies. Maskin and
Riley [10] show that if one bidder is “strong” and the other is “weak”, the
weak bidder bids more aggressively and produces a “weaker bid distribution”
than the strong bidder. Lebrun [7] shows that if the distribution function of
a bidder changes “stochastically”, then the bidder will produce a “stronger
bid distribution”. We extend their results for a generalized class of bidders’
utility functions.

In Theorem 1 of this paper we characterize all Bayesian equilibria of a
first-price auction for a generalized class of bidders’ utility functions. The
presumption of a continuous and a monotone pure strategy equilibrium has
not been made while characterizing the equilibria. A priori, we just assume
that a mixed strategy equilibrium exists which may be discontinuous and
non-increasing. We show that the necessary conditions of an equilibrium are
continuity, monotonicity and pure strategy.

In section 3 and henceforth, we assume that one bidder is “strong” and the
other is “weak”. In Proposition 1 and 2, we show that the weak bidder bids
more aggressively and produces a weaker bid distribution than the strong
bidder. In Proposition 3, we show that the strong (resp. weak) bidder bids
more (resp. less) aggressively when playing against a strong (resp. weak)
bidder than against a (resp. strong) weak bidder. Moreover, the strong
(resp. weak) bidder produces a stronger (resp. weaker) bid distribution than
the weak (resp. strong) bidder when both are playing against a strong (resp.
weak) bidder. We also show a comparative result in Proposition 4.

An auction mechanism is “efficient” if the winner of the auction is the bid-
der with highest type. It is well known in the literature that, with symmetric
bidders and risk neutral or risk averse preferences, any auction mechanism
in which the bidder with the highest bid wins the auction is efficient. On the
contrary, this is not generally true with asymmetric bidders. In asymmetric
auctions, the winner of the object may not be the bidder with the highest
type. More often, the sole motive of an auction is to maximize the expected
revenue of the seller. Moreover, there is a trade-off between efficiency and
revenue. Myerson [13] and Riley and Samuelson [15] independently show
that revenue equivalence theorem holds if the assumptions (a)-(e) (as stated
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above) are satisfied. If any of the above condition is not satisfied, the rev-
enue equivalence theorem may fail to hold. It is worthwhile to note that
the revenue equivalence theorem does not rely on the payment structure.
This means if all the conditions are satisfied, then the theorem holds for all
types of auction mechanism such as first-price auction, second-price auction,
third-price auction, all-pay auction, etc. Holt [4], Riley and Samuelson [15]
and Maskin and Riley [11] show that, if the assumption of risk neutrality is
not satisfied, the revenue equivalence theorem fails to hold. More specifically,
they show that with risk averse bidders, the expected revenue generated from
a first-price auction is more than from a second-price auction. Maskin and
Riley [10] study revenue ranking by relaxing the assumption of symmetric
bidders. They show that, in general, the rankings of the revenues cannot be
established. Moreover, with the assumption of conditional stochastic domi-
nance and “shifted” or “stretched” distribution functions, the revenue from
a first-price auction exceeds that of a second-price auction. We extend the
result by Maskin and Riley [10] for a generalized class of bidders’ utility
functions.

In Proposition 5, we show that the revenue generated from a first-price
auction is more than from a second-price auction.

For symmetric bidders and different types of absolute risk aversion, the
bidders’ preferences for the two auction mechanisms has been compared by
Matthews [12]. He shows, with increasing (resp. decreasing) absolute risk
aversion, bidders prefer the first-price (resp. second-price) auction mecha-
nism, and with constant absolute risk aversion, the bidders are indifferent
between the two auction mechanisms. We compare the bidders’ preferences
over the two mechanisms when they are asymmetric. In Proposition 6, we
show, with increasing (resp. decreasing) absolute risk aversion, the weak
(resp. strong) bidder prefers first-price (resp. second-price) auction mech-
anism and, with constant absolute risk aversion, the weak (resp. strong)
bidder prefers first-price (resp. second-price) auction mechanism.

The outline of the paper is as follows. In section 2, we formalize the model
and characterize all Bayesian equilibria. In section 3, we study the bidding
behavior and other properties of equilibrium. In section 4, we compute the
general expression for seller’s expected revenue and show a revenue ranking
result. In section 5, we compare the bidders’ preferences for different types
of absolute risk aversion. We conclude the paper in section 6.
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2 The model and characterization of equilib-
ria

Consider an indivisible object for sale. There are two asymmetric bidders
with risk neutral or risk averse preferences. Let N = {1, 2} denote the set of
bidders. Let Ti = [0, ai] ⊂ < be the type space of bidder i and ti ∈ Ti be his
type. Assume ai 6= aj.1 Let T = T1 × T2 be the product type space. Nature
draws a type profile t ∈ T and privately informs ti to bidder i, i.e., bidder i
knows ti and not tj for every j 6= i. Let Bi ⊆ <+ be the action (or bidding)
space of bidder i and bi ∈ Bi be his bid. Let B = B1 × B2 be the product
action space. The von-Neumann-Morgenstern utility function for both the
bidders is u : <+ → < with u(0) = 0, u′ > 0 and u′′ ≤ 0.2

The structure of the game is as follows. The seller of the object conducts
a first-price auction. All the bidders submit their bids simultaneously in
a sealed envelope. The bidder with the highest bid is the winner of the
auction and pays his own bid. Whereas the loser of the auction does not pay
anything. In case of a tie, the seller chooses the winner by a fair lottery. All
the bidders are utility maximizers. Assume that the seller is risk neutral,
i.e., he maximizes the expected profits. For simplicity, the reservation utility
of the seller is assumed to be zero. The payoff function πi : Ti × B → < for
bidder i is defined as

πi(ti, bi, bj) =


u(ti−bi)
|Z| ; i ∈ Z

u(0) ; i /∈ Z

where Z = {i|maxi bi} and |Z| is the cardinality of Z.
Formally, a Bayesian game is defined as

Γ = {N, ((Ti, Ti, µi), (Bi,Bi), πi)i∈N} (1)

N is the set of bidders, the triplet (Ti, Ti, µi) is a measure space, the pair
(Bi,Bi) is a measurable space and πi is the payoff function. Assume that
the measure µi is absolutely continuous on [0, ai] for every i ∈ N . The
probability measures on types are assumed to be independently distributed
are common knowledge among the bidders and the seller. Let Fi be the

1In auction literature, the distribution functions on type spaces like Ti are known as
“stretched” distributions.

2Alternatively, in a more general framework, ui = u(b, ti) such that ui is monotonic
and weakly supermodular. In our framework, the assumption of strictly increasing and
concave is equivalent to the assumption of monotonicity and weak supermodularity in a
more general framework.
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distribution function of the type such that Fi(0) = 0 and Fi(ai) = 1. Assume
that Fi is twice continuously differentiable and strictly concave on (0, ai]. We
also assume that the distribution function has no mass point and the density
function DFi ≡ fi is locally bounded away from zero, i.e., fi > 0.

We define the bidding strategy for the bidders. Let ψi : Ti×Bi → < be a
transition function (or regular conditional distribution). Then, by definition
ψi(., Ai) : Ti → < is Ti-measurable function for every Ai ∈ Bi; and ψi(ti, .) :
Ti → < is a probability measure for every ti ∈ Ti. The transition function
ψi(ti, Ai) is the probability that bi ∈ Ai given his type is ti ∈ Ti. Moreover,
given a type ti, ψi(ti, Ai) is the interim probability measure of the bid or the
behavioral strategy of bidder i.

The strategy ψi is said to be pure if for every ti ∈ Ti, ψi(ti, {bi}) = 1 for
some bi ∈ Ti and ψi(ti, {b′i}) = 0 for every b′i ∈ Ti such that b′i 6= bi. With
abuse of notation, if ψi(ti, {bi}) = 1, we write ψi(ti) = bi.

Let the space of transition functions ψi be ∆(Bi). Consider Pi ∈ Ti and
Qi ∈ Bi. Then, Pi × Qi is a measurable rectangle. Let the space of all
measurable rectangles be Ei. Ti⊗Bi is a product σ-algebra and (Ti×Bi, Ti⊗
Bi) is a product measurable space. A product measure ϕi : Ti ⊗ Bi → < is
defined as

ϕi(Pi ×Qi) :=
∫
Pi

µi(dti)ψi(ti, Qi)

for every Pi×Qi ∈ Ti⊗Bi. Note Pi ⊆ Ti and Qi ⊆ Bi. The product measure
ϕi(Pi ×Qi) is the probability that ti ∈ Pi and bi ∈ Qi.

The measure βi : Bi → < defined as βi(Qi) := ϕi(Ti, Qi) for every Qi ∈ Bi
is the marginal of the measure ϕi on Ti. It is interpreted as the ex-ante
probability measure of the bid or the mixed strategy of bidder i. So, the
triplet (Bi,Bi, βi) is a measure space. Whereas the marginal of ϕi on Bi is
µi(Pi) = ϕi(Pi, Bi).

The interim expected payoff Ui : ∆(Bi) × ∆(Bj) × Ti → < for bidder
i ∈ N is

Ui(ψi, ψj, ti) =
∫
Bi×Tj×Bj

ψi(ti, dbi)⊗ ϕj(dtj, dbj)πi(ti, bi, bj)

for every ti ∈ Ti.
Definition 1. A profile of functions (ψi, ψj) is a Bayesian equilibrium if for
every i ∈ N , ti ∈ Ti and ψ′i ∈ ∆(Bi),

Ui(ψi, ψj, ti) ≥ Ui(ψ′i, ψj, ti).

Suppose (ψi, ψj) is a Bayesian equilibrium. Let a correspondence Σi :
Ti ⇒ Bi be defined as

Σi(ti) = {bi ∈ Bi|Ui(ψi, ψj, ti) = Ui(bi, ψj, ti)}
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Let the functions Λi : Ti → Bi and Ωi : Ti → Bi be defined as

Λi(ti) = inf Σi(ti), and
Ωi(ti) = sup Σi(ti)

for every i ∈ N . By the definition of a Bayesian equilibrium, Ui(ψi, ψj, ti)
is the maximum expected payoff generated by bidder i given that bidder j
follows ψj. Given a type ti, Σi(ti) is the set of all those bids which bidder i
bids with positive probability. Furthermore, Λi(ti) and Ωi(ti) are the infimum
and supremum of all those bids respectively. Thus, by the definition of a
mixed equilibrium, the sets Λi(ti) and Ωi(ti) are non-empty for every ti ∈ Ti
and i ∈ N .

Consider a measure space (Bi,Bi, βi). Let gi : Bi → < be a Bi-measurable
function. Then, βi is the ex-ante probability measure of the function gi. The
function gi is the bid made by bidder i. The co-domain of the function gi
represents the set of “effective” bids when i follows a mixed strategy βi.

Let {(Bi,Bi, ψi(ti, .))|ti ∈ Ti} be a family of measure spaces. Consider
a type ti and a measure space (Bi,Bi, ψi(ti, .)). Let hi(ti) : Bi → < be a
Bi-measurable function. Let {hi(ti)|i ∈ N} be the family of Bi-measurable
functions. Then, ψi(ti, .) is the interim probability measure of the function
hi. The function hi(ti) is the bid made by bidder i. The co-domain of the
function gi(ti) represents the set of bids that bidder i bids with positive
probability when the behavioral strategy ψi(ti, .) is implemented.

We state the characterization of all Bayesian equilibria.

Theorem 1 (Characterization of equilibria). The profile of transition func-
tions (ψi, ψj) is a Bayesian equilibrium if and only if for every i ∈ N , ψi is
pure, strictly increasing, continuous and solves the following pair of differen-
tial equations

Fi ◦ ψ−1
i (b)

DFi ◦ ψ−1
i (b)

=
u(ψ−1

j (b)− b)
u′(ψ−1

j (b)− b)
(2)

with boundary conditions ψi(0) = 0 and ψj(ai) = b̄ such that b̄ ∈ <++.

Proof. Appendix A �

The above theorem states that the necessary conditions of an equilibrium
are continuity, strict monotonicity and pure strategy. This means we presume
that an equilibrium may exists in mixed, discontinuous and non-decreasing
strategy. We then show that if an equilibrium exists, it has to be in pure,
continuous and strictly increasing strategy.

The proof of the above theorem is long and involved (The complete proof
is given in Appendix A). The structure of the “if” part of the theorem is as
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follows. The idea is to show that the correspondence Σi is a function. This
means that the functions Λi and Ωi are identical. It then follows that Λi or
Ωi is indeed a pure strategy equilibrium.

To show Σi is a function requires some work. In Lemma A.1, we show
that Ui(ψi, ψj, ti) > 0 for every ti > 0 and i ∈ N . In Lemma A.2, we show
that Λi(0) = Ωi(0) = 0 for every i. In Lemma A.3, we show that Pr(i wins|ti)
is non-decreasing in ti. In Lemma A.4, we show that Λi(t′i) ≥ Ωi(ti) such
that t′i > ti. This means that the infimum of Σi(t′i) for a higher type t′i
is at least as large as the supremum of Σi(ti) for a lower type ti (Recall
that for a given type ti, Σi(ti) is the set of all those bids that bidder i bids
with positive probability). We then show that Λi(ti) and Ωi(ti) are non-
decreasing in ti. In Lemma A.5, we show that Λi(ti) > 0 and Ωi(ti) > 0
for every ti ∈ Ti − {0} and i ∈ N . In Lemma A.7, we show that Λi is left
continuous and Ωi is right continuous. As Λi is left continuous, it follows if
Λi is continuous, then Λi(ti) = Ωi(ti) for every ti ∈ Ti and i ∈ N . Similarly,
as Ωi is right continuous, it follows if Ωi is continuous, then Ωi(ti) = Λi(ti)
for every ti ∈ Ti and i ∈ N . Therefore, to show Σi is a function, we need to
show Λi and Ωi are indeed continuous. In Lemma A.8, we show that Λi(ti)
and Ωi(ti) are strictly increasing in ti. In Lemma A.9, we show that Λi and
Ωi are continuous. Hence, we conclude that Σi is a function.

We need to show that ψi is pure, strictly increasing and continuous. It
suffices to show that Λi and Ωi are identical, strictly increasing and con-
tinuous. As Σi is a function, it follows that ψi is pure. As Λi and Ωi are
strictly increasing and continuous, it follows that ψi is strictly increasing and
continuous. Rest of the proof is routine.

The “only if” part of the proof requires to show that it is not profitable
for any bidder to deviate.

3 Properties of an equilibrium
In this section and henceforth, we assume that bidder 1 is a “weak” bidder
(w) and bidder 2 is a “strong” bidder (s). If the distribution function of
bidder i “conditional stochastically dominates” that of bidder j, then we
say i is strong and j is weak. So, the set of bidders can be re-written as
N = {s, w}. We assume as > aw and the distribution function is twice
continuously differentiable and strictly concave on (0, ai]. We also assume
that the distribution function has no mass point and the density function
DFi ≡ fi is locally bounded away from zero, i.e., fi > 0. Fi is said to
be first-order stochastically dominant to Fj if Fi(x) < Fj(x) for every x ∈
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<. Whereas Fi is said to be conditional stochastically dominant3 to Fj if
Fi(x)/Fj(x) < Fi(y)/Fj(y) for every x, y ∈ < such that x < y. It is easy
to check that conditional stochastic dominance implies first-order stochastic
dominance (in general, the converse is not true). We make the following
assumption on the distribution functions of the bidders:

Assumption 1. Fs is conditional stochastically dominant to Fw.

The above assumption states that, given any two arbitrary types t1 and
t2 such that t1 < t2, the relative probability of the strong bidder of getting a
type higher than t1 is more than the relative probability of the strong bidder
of getting a type higher than t2. In other words, the relative distribution
function of the strong bidder is increasing in types.

In subsection 3.1, we study the bidding behavior when bidders are asym-
metric. In subsection 3.2, we compare the bidding behavior of symmetric
and asymmetric bidders. In subsection 3.3, we study comparative statics.

3.1 Bidding behavior of asymmetric bidders
Suppose (ψi, ψj) is a Bayesian equilibrium. By Theorem 1, ψi is pure, strictly
increasing and continuous; ψi(0) = 0; and there exists b̄ ∈ <++ such that
ψi(ai) = b̄ for every i ∈ N . Let B̄ = [0, b̄]. Note that Ti and B̄ are compact
and connected sets. Also, Bi = B̄ for every i ∈ N . Since ψi is pure, from now
on we shall refer to the equilibrium bidding strategy as a measurable function
ψi : Ti → B̄. As ψi is strictly increasing and continuous, it follows that the
inverse exists and it is also strictly increasing and continuous. We shall
denote the equilibrium inverse bidding strategy by a measurable function
θi : B̄ → Ti. It is noteworthy that the measurable functions ψi and θi are
bijective.

Consider a bid b ∈ B̄. Suppose bidder i with type ti bids b and bidder j
follows his equilibrium bidding strategy ψj with equilibrium inverse bidding
strategy θj. It is more convenient to work with inverse bidding strategies
rather than the bidding strategies. Bidder i wins if and only if tj < θj(b).
So, i wins the auction with probability Fj ◦ θj(b) and thereby incurs a payoff
of u(ti − b). While he loses the auction with probability 1 − Fj ◦ θj(b) and
payoff u(0) = 0. Hence, the expected payoff of bidder i is

Ui(b, ψj, ti) = Fj ◦ θj(b)u(ti − b) (3)
3In auction literature, the assumption of conditional stochastic dominance was first

used by Maskin and Riley [10]. In statistics literature, conditional stochastic dominance
is known as monotone probability ratio.
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So, the maximization problem of bidder i is maxb Ui(b, ψj, ti). Differentiating
w.r.t. b, we get

DbUi(b, ψj, ti) = DFj ◦ θj(b)u(ti − b)− Fj ◦ θj(b)u′(ti − b)

As bidder i follows ψi in equilibrium, the first-order condition4 can be written
as

Fj ◦ θj(b)
DFj ◦ θj(b)

= u(θi(b)− b)
u′(θi(b)− b)

(4)

The system of differential equations given by (4) along with the boundary
conditions

θi(0) = 0 and θi(b̄) = ai (5)
characterize the equilibrium inverse bidding strategies. Later in this subsec-
tion, we shall characterize the equilibrium bidding strategies.

(4) can be re-written as

Dθj(b) = Fj ◦ θj(b)
fj ◦ θj(b)

u′(θi(b)− b)
u(θi(b)− b)

(6)

and
D logFj ◦ θj(b) = u′(θi(b)− b)

u(θi(b)− b)
(7)

(6) and (7) shall be used later. We compare the equilibrium bidding strategy
of the two bidders.

Proposition 1. Suppose the profile of measurable functions (ψi, ψj) is a
Bayesian equilibrium and Assumption 1 is satisfied. Then, ψw(t) > ψs(t)
holds for every t ∈ Tw − {0}. (Equivalently, θw(b) < θs(b) holds for every
b ∈ B̄ − {0}.)

Proof. Appendix B �

The above result states that the weak bidder bids more aggressively than
the strong bidder, i.e., for a given type the weak bidder bids more than the
strong bidder.

In the next result, we compare the equilibrium bid distributions.

Proposition 2. Suppose the profile of measurable functions (ψi, ψj) is a
Bayesian equilibrium and Assumption 1 is satisfied. Then,

Fs ◦ θs(b) < Fw ◦ θw(b)

holds for every b ∈ B̄ − {0, b̄}.
4As Fj and u both are concave, the first-order condition is both necessary and sufficient.
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Proof. Appendix B �

It can be easily verified that at b ∈ {0, b̄}, Fs ◦ θs(b) = Fw ◦ θw(b). The
above result states that, in equilibrium, weak bidder produces a more aggres-
sive bid distribution than the strong bidder. In other words, the equilibrium
probability of winning for the strong bidder is more than that for the weak
bidder.

We now characterize the equilibrium bidding strategy of the bidders. Sup-
pose (ψi, ψj) is a Bayesian equilibrium. Let ζj : Ti → Tj be defined as

ζj(ti) = θj ◦ ψi(ti) (8)

for every j ∈ N . ζj(ti) is interpreted as the type required by bidder j to bid
the same as bidder i bids when his type is ti. It is noteworthy that ζj(0) = 0
and ζj(ai) = aj. Moreover, it follows ζs(tw) > tw and Fs ◦ ζs(tw) < Fw(tw)
from Proposition 1 and 2 respectively. Differentiating (8) w.r.t. ti and using
(4), we have

Dζj(ti) = Fj ◦ ζj(ti)
fj ◦ ζj(ti)

fi(ti)
Fi(ti)

u(ζj(ti)− ψi(ti))
u′(ζj(ti)− ψi(ti))

u′(ti − ψi(ti))
u(ti − ψi(ti))

(9)

Similarly,
Dψi(ti) = fi(ti)

Fi(ti)
u(ζj(ti)− ψi(ti))
u′(ζj(ti)− ψi(ti))

(10)

for ti ∈ Ti − {0, ai} and for every i ∈ N .
The system of differential equations given by (9) and (10) along with the

boundary conditions
ζj(0) = 0 and ζj(ai) = aj (11)

characterize the equilibrium bidding strategies. It is wothwhile to note that
the system of differential equations given by (4) along with the boundary
conditions given by (5) is equivalent to the system of differential equations
given by (9) and (10) along with the boundary conditions given by (11).
The characterization of equilibrium bidding strategies will be useful when we
derive the expression of the expected revenue for the seller in section 4.

3.2 Comparison of bidding behavior for symmetric and
asymmetric bidders

We say the bidders are symmetric if both the bidders are either weak or both
strong. The main goal of this subsection is to compare the bidding behavior
of symmetric and asymmetric bidders.
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Suppose both the bidders are either strong or both weak. Let the equi-
librium bidding strategies be (ξk, ξk) with inverse bidding strategies (λk, λk)
for k ∈ N . Then, by Theorem 1, the following holds: (a) ξk is pure, strictly
increasing and continuous, (b) ξk(0) = 0 and there exists b̄k ∈ <++ such that
ξk(b̄k) = ak, and (c) the following differential equation holds

Fk ◦ λk(b)
DFk ◦ λk(b)

= u(λk(b)− b)
u′(λk(b)− b)

≡ w(λk(b)− b) (12)

The above condition can be re-written as

Dλk(b) = Fk ◦ λk(b)
fk ◦ λk(b)

1
w(λk(b)− b)

(13)

The differential equation given by (12) along with the boundary conditions

λk(0) = 0 and λk(b̄k) = ak (14)

characterize the equilibrium inverse bidding strategies.
We now characterize the equilibrium bidding strategies. Let B̄k = [0, b̄k].

Consider a representative bidder i with type t who bids according to ξk(s).
Suppose the other bidder j bids according to his equilibrium bidding strategy.
Then, the expected payoff of bidder i is

Vk(ξk(s), ξk(t), t) = Fk(t)u(t− ξk(s))

Differentiating w.r.t. t, we get

DVk(ξk(s), ξk(t), t) = fk(s)u(t− ξk(s)−)Fk(s)u′(t− ξk(s))Dξk(s)

Since bidder i follows ξk(t) in equilibrium, the first-order condition is

Dξk(t) = fk(t)
Fk(t)

w(t− ξk(t)) (15)

The differential equation given by (15) along with the boundary conditions

ξk(0) = 0 and ξk(ak) = b̄k (16)

characterize the equilibrium bidding strategies. It is noteworthy that the
differential equation given by (12) along with the boundary conditions given
by (14) is equivalent to the differential equation given by (15) along with the
boundary conditions given by (16).

We compare the equilibrium bidding strategy of weak symmetric bidders
and strong symmetric bidders.
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Corollary 1. Suppose the profiles of measurable functions (ξw, ξw) and (ξs, ξs)
are a Bayesian equilibrium when both the bidders are weak and strong respec-
tively, and Assumption 1 is satisfied. Then,
(A) ξw(t) < ξs(t) for every t ∈ Tw − {0} (Equivalently, λw(b) > λs(b) for
every b ∈ B̄w − {0, b̄w}),
(B) Fs ◦ λs(b) < Fw ◦ λs(b) for every b ∈ B̄w − {0, b̄w}.

Proof. Appendix B �

The above result states that bidders bid aggressively and produce a
weaker bid distribution when they are strong as compared to when they
are weak.

In the next result we compare the bidding behavior of symmetric and
asymmetric bidders.

Proposition 3. Suppose the profile of measurable functions (ψw, ψs) is a
Bayesian equilibrium when one bidder is weak and the other is strong. Sup-
pose the profiles of measurable functions (ξw, ξw) and (ξs, ξs) are a Bayesian
equilibrium when both the bidders are weak and strong respectively. If As-
sumption 1 is satisfied, then
(A) ψs(t) < ξs(t) for every t ∈ Ts−{0} (Equivalently, θs(b) > λs(b) for every
b ∈ B̄s − {0, b̄s}),
(B) ψw(t) > ξw(t) for every t ∈ Tw − {0} (Equivalently, θw(b) < λw(b) for
every b ∈ B̄ − {0, b̄}),
(C) Fw ◦ θw(b) > Fs ◦ λs(b) for every b ∈ B̄s − {0, b̄s},
(D) Fs ◦ θs(b) < Fw ◦ λw(b) for every b ∈ B̄ − {0, b̄}.

Proof. Appendix B �

The above result states that the strong (resp. weak) bidder bids more
(resp. less) aggressively when playing against a strong (resp. weak) bidder
than a (resp. strong) weak bidder. Moreover, the strong (resp. weak) bidder
produces a weaker (resp. stronger) bid distribution than the weak (resp.
strong) bidder when both are playing against a strong (resp. weak) bidder.

3.3 Comparative statics
Consider a bidder j. Suppose the distribution function of j changes to F̂j such
that F̂j is conditional stochastically dominant to Fj. Furthermore, F̂j satisfies
all the assumptions satisfied by Fj. As before, when distribution functions
are (Fi, Fj), the equilibrium bidding strategies and equilibrium inverse bid-
ding strategies are denoted by (ψi, ψj) and (θi, θj) respectively. When the
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distribution functions are (Fi, F̂j), let the equilibrium bidding strategies and
the equilibrium inverse bidding strategies be denoted by (ψ̂j, ψ̂j) and (θ̂i, θ̂j)
respectively. From Theorem 1, ψ̂i(0) = ψ̂j(0) = 0 and there exists b̂ such
that ψ̂i(ai) = ψ̂j(0) = b̂.

When distribution functions are (Fi, Fj), the expected payoff of i is given
by (3) with first-order condition given by (4). The expected payoff of j and
the first-order condition is analogous to (3) and (4) respectively.

When distribution functions are (Fi, F̂j), the expected payoff of bidder i
is

Ûi(b, ψ̂j, ti) = F̂j ◦ θ̂j(b)u(ti − b)
and the expected payoff of bidder j is

Ûj(b, ψ̂i, tj) = Fi ◦ θ̂i(b)u(tj − b)

The first-order conditions for i and j are

F̂j ◦ θ̂j(b)
DF̂j ◦ θ̂j(b)

= u(θ̂i(b)− b)
u′(θ̂i(b)− b)

(17)

and
Fi ◦ θ̂i(b)

DFi ◦ θ̂i(b)
= u(θ̂j(b)− b)
u′(θ̂j(b)− b)

(18)

respectively.
We compare the bidding behavior due to a change in the distribution

function of one bidder.

Proposition 4. Suppose the profiles of measurable functions (ψi, ψj) and
(ψ̂i, ψ̂j) are a Bayesian equilibrium when the distribution functions are (Fi, Fj)
and (Fi, F̂j) respectively such that F̂j conditional stochastically dominates Fj.
Then,
(A) ψ̂i(ti) > ψi(ti) for every ti ∈ Ti − {0},
(B) F̂j ◦ θ̂j(b) < Fj ◦ θj(b) for every b ∈ B̄ − {0}.

Proof. Appendix B �

The above result states that due to a change in the distribution function
of bidder j, (a) bidder i bids more aggressively than before, and (b) bidder
j produces a weaker bid distribution than before.

When the distribution functions are (Fi, Fj), the interim expected payoff
functions of i and j are

Ui(ti, ψi, ψj) = max
b
Fj ◦ θj(b)u(ti − b)
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and
Uj(ti, ψi, ψj) = max

b
Fi ◦ θi(b)u(tj − b)

respectively. When the distribution functions are (Fi, F̂j), the interim ex-
pected payoff functions of i and j are

Ûi(ti, ψ̂i, ψ̂j) = max
b
F̂j ◦ θ̂j(b)u(ti − b)

and
Ûj(ti, ψ̂i, ψ̂j) = max

b
Fi ◦ θ̂i(b)u(tj − b)

respectively.
In the next result, we compare the expected payoff of the bidders due to

a change in the distribution function of one bidder.

Corollary 2. Suppose the profiles of measurable functions (ψi, ψj) and (ψ̂i, ψ̂j)
are a Bayesian equilibrium when the distribution functions are (Fi, Fj) and
(Fi, F̂j) respectively such that F̂j conditional stochastically dominates Fj.
Then, Ûi(ti, ψ̂i, ψ̂j) < Ui(ti, ψi, ψj) and Ûj(tj, ψ̂i, ψ̂j) < Uj(tj, ψi, ψj) for every
ti ∈ Ti − {0} and tj ∈ Tj − {0}.

Proof. Appendix B �

The above corollary states that due to a change in the distribution func-
tion of one bidder, both the bidders are worse-off .

4 Revenue ranking
In this section, we compare the seller’s expected revenue in a first-price auc-
tion and a second-price auction. We make the following assumption on the
density functions of the types:

Assumption 2. Fs = ρFw for 0 < ρ < 1 and fw(tw) ≥ fs(ts) for every
tw ∈ [0, aw] and ts ∈ [aw, as]

Suppose (ψi, ψj) is a Bayesian equilibrium of Γ. Consider b ∈ B̄ and the
weak bidder. Given b, the expected revenue of the seller is b times the winning
probability of the weak bidder, i.e., bFs◦θs(b). Summing this expression over
the bidding space B̄, we get the ex-ante expected revenue of the seller as

Pw =
∫ b̄

0
Fw ◦ θw(db)bFs ◦ θs(b)

14



Integrating by-parts, we get

Pw =
∫ b̄

0
{(1− Fw ◦ θw(b))D(bFs ◦ θs(b))}db

Using (4), we get

D(bFs ◦ θs(b)) = Dθs(b)fs ◦ θs(b)
(
b+ u(θw(b)− b)

u′(θw(b)− b)

)

Using the above equation in the expression of Pw, we get

Pw =
∫ b̄

0

{
(1− Fw ◦ θw(b))fs ◦ θs(b)

(
b+ u(θw(b)− b)

u′(θw(b)− b)

)
Dθs(b)

}
db

Recall that ζj(ti), given by (8), is the type required by bidder j to match
bidder i’s bid with type ti. So, ζs ◦ θw(b) = θs ◦ θ−1

w ◦ θw(b) = θs(b). Using
this in the expression of Pw, we get

Pw =
∫ aw

0

{
(1− Fw(tw))

(
ψw(tw) + u(tw − ψw(tw))

u′(tw − ψw(tw))

)
DFs ◦ ζs(tw)

}
dtw

Integrating by-parts, we get the ex-ante expected revenue from the weak
bidder

Pw =
∫ aw

0
(1− Fs ◦ ζs(t))D

{
(1− Fw(t))

(
ψw(t) + u(t− ψw(t))

u′(t− ψw(t))

)}
dt (19)

We now compute the ex-ante expected revenue for the seller generated by
the strong bidder. Applying symmetry to (19), we have

Ps =
∫ b̄

0

{
(1− Fs ◦ θ(b))

(
b+ u(θs(b)− b)

u′(θs(b)− b)
DFw ◦ θw(b)

)}
db

We know ζs ◦ θw(b) = θs(b). So, the expression for ex-ante expected revenue
from the strong bidder is

Ps =
∫ aw

0

{
(1− Fs ◦ ζs(t))fw(t)

(
ψw(t) + u(ζs(t)− ψw(t))

u′(ζs(t)− ψw(t))

)}
dt (20)

The expressions given by (19) and (20) are the general expressions of ex-ante
expected revenue of the seller in a first-price auction generated from the weak
and strong bidder respectively. Since, these expressions will be quite useful,
we state them in the following lemma.
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Lemma 1. Suppose the profile of measurable functions (ψi, ψj) is a Bayesian
equilibrium of Γ. Then, the expressions for ex-ante expected revenue of the
seller in a first-price auction generated by the weak and strong bidder are
given by (19) and (20) respectively.

The ex-ante expected revenue of the seller in a first-price auction is

P = Pw + Ps

=
∫ aw

0
(1− Fs ◦ ζs(t))

{
fw(t)

(
u(ζs(t)− ψw(t))
u′(ζs(t)− ψw(t)) −

u(t− ψw(t))
u′(t− ψs(t))

)

+ (1− Fw(t))D
(
ψw(t) + u(t− ψw(t))

u′(t− ψw(t))

)}
dt

(21)

We now compute the expression of ex-ante expected revenue for the seller
in a second-price auction. Recall that, it is a weakly dominant strategy to
bid its own type in a second-price auction. Consider the weak bidder with
type tw. Given tw, the expected revenue of the seller is the probability that
the type of strong bidder is less than tw times ts, i.e.,

∫ tw
0 Fs(dts)ts. Summing

this expression over the type space of the weak bidder, we get the ex-ante
expected revenue of the seller as

Qw =
∫ aw

0

∫ tw

0
Fs(dts)Fw(dtw)ts

Integrating by-parts, we have

Qw =
∫ aw

0
(1− Fw(tw))twdtw

Integrating by-parts again, we have

Qw =
∫ aw

0
(1− Fs(tw))D(tw(1− Fw(tw)))dtw (22)

Applying symmetry, the ex-ante revenue of the seller generated from the
strong bidder is

Qs =
∫ aw

0
(1− Fs(tw))twdtw (23)

The ex-ante expected revenue of the seller in a second-price auction is

Q = Qw +Qs

=
∫ aw

0
(1− Fw(t))(1− Fs(t))dt

(24)
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Therefore, the general expression of the seller’s expected revenue generated
from a second-price auction is given by (24).5

The difference between the seller’s ex-ante expected revenue generated
from a first-price auction and a second-price auction is

P −Q =
∫ aw

0
{(1− Fs ◦ ζs(t))fw(t)W (ζs(t), ψw(t), t) + (1− Fs ◦ ζs(t))

(1− Fw(t))DtY (ψs(t), t)− (1− Fw(t))(1− Fs(t))}dt
(25)

where
W (ζs(t), ψw(t), t) = u(ζs(t)− ψw(t))

u′(ζs(t)− ψw(t)) −
u(t− ψw(t))
u′(t− ψw(t))

and,
Y (ψw(t), t) = ψw(t) + u(t− ψw(t))

u′(t− ψw(t))
Note that as u′ > 0 and u′′ ≤ 0, it follows DtY (ψw(t), t) ≥ 1. (25) can be
re-written as

P −Q =
∫ aw

0
(1− Fs ◦ ζs(t))W (ζs(t), ψw(t), t)(1− Fw(t))

{
fw(t)

1− Fw(t)

+ DtY (ψw(t), t)
W (ζs(t), ψw(t), t) −

1− Fs(t)
(1− Fs ◦ ζs(t))W (ζs(t), ψw(t), t)

}
dt

≥
∫ aw

0
(1− Fs ◦ ζs(t))W (ζs(t), ψw(t), t)(1− Fw(t))

{
fw(t)

1− Fw(t)

− Fs ◦ ζs(t)− Fs(t)
(1− Fs ◦ ζs(t))W (ζs(t), ψw(t), t)

}
dt

>
∫ aw

0
W (ζs(t), ψw(t), t)(1− Fw(t))

{
fw(t)− Fs ◦ ζs(t)− Fs(t)

W (ζs(t), ψw(t), t)

}
dt

The last inequality follows from the fact that ζs(t) > t (Proposition 1) and
Fs ◦ ζs(t) < Fw(t) (Proposition 2).

We state the revenue ranking result.

Proposition 5. Suppose (ψi, ψj) is a Bayesian equilibrium of Γ and As-
sumptions 1 and 2 are satisfied. Then, the ex-ante expected revenue of the
seller generated from a first-price auction is more than from a second-price
auction.

5The expression for the expected revenue in a second-price auction is same as in the
linear utilities framework as computed by Maskin and Riley [10]. This is because, in a
second-price auction with generalized utility functions, it is still a dominant strategy to
bid your own type.
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Proof. Appendix B �

The above result states that for the generalized class of utility functions,
the expected revenue generated from a first-price auction is more than from
a second-price auction.

5 Different types of risk aversion
We compare the bidders’ preferences of first-price auction and second-price
auction under different types of absolute risk aversion, i.e., increasing ab-
solute risk aversion, constant absolute risk aversion and decreasing absolute
risk aversion. In this section, we assume that the von-Neumann-Morgenstern
utility is strictly increasing and strictly concave. Furthermore, we assume
that the reserve price of r ∈ <++ is exogeneously given.

The Arrow-Pratt measure of absolute risk aversion is defined as R(x) =
−u′′(x)/u′(x) for every x ∈ <. The utility function u has increasing absolute
risk aversion if DR(x) > 0, has constant absolute risk aversion if DR(x) = 0,
and has decreasing absulute risk aversion if DR(x) < 0.

Suppose (ψi, ψj) is a Bayesian equilibrium of a first-price auction. Recall
that the equilibrium bidding strategy ψi with inverse bidding strategy θi are
strictly increasing and continuous. Suppose bidder j follows his equilibrium
bidding strategy. The maximization problem of bidder i is

Vi(ti) = max
b
Fj ◦ θj(b)u(ti − b)

Suppose b∗ solves the above maximization problem. Then,

b∗ ∈ arg max
b
Fj ◦ θj(b)u(ti − b)

So, the value function can be re-written as

Vi(ti) = Fj ◦ θj(b∗)u(ti − b∗) (26)

Using Envelope theorem, we have

DVi(ti) = Fj ◦ θj(b∗)u′(ti − b∗) (27)

Recall that, in a second-price auction, it is a dominant strategy to bid
your own type. Let the equilibrium bidding strategy and equilibrium inverse
bidding strategy be denoted by ηi and υi respectively. Note that ηi(ti) = ti
and υi(b) = b. Suppose (ηi, ηj) be a Bayesian equilibrium of a second-price
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auction. Suppose bidder j follows his equilibrium bidding strategy. The
maximization problem of bidder i is

Ki(ti) = max
b
Fj ◦ υj(b)

∫ b

0
Fj(dtj)u(ti − tj)

As η(ti) = ti, we have

ti ∈ arg max
b
Fj ◦ υj(b)

∫ b

0
Fj(dtj)u(ti − tj)

So, the value function can be re-written as

Ki(ti) = Fj(ti)
∫ ti

0
Fj(dtj)u(ti − tj) (28)

Using Envelope theorem, we have

DKi(ti) = Fj(ti)
∫ ti

0
Fj(dtj)u′(ti − tj) (29)

Consider x, y ∈ <+. It can be proved that with increasing (resp. de-
creasing) absolute risk aversion, u(x− y) = Eŷ(u(x− ŷ)) implies u′(x− y) >
(resp. <)Eŷ(u′(x− ŷ)) and with constant absolute risk aversion, u(x− y) =
Eŷ(u(x− ŷ)) implies u′(x− y) = Eŷ(u′(x− ŷ)).6

We state the following result.

Proposition 6. Suppose (ψi, ψj) is a Bayesian equilibrium of a first-price
auction and Assumption 1 is satisfied. Suppose (ηi, ηj) is a Bayesian equilib-
rium of a second-price auction. Then,
(A) With increasing (resp. decreasing) absolute risk aversion, the weak (resp.
strong) bidder prefers a first-price (resp. second-price) auction over a second-
price (resp. first-price) auction.
(B) With constant absolute risk aversion, the weak (resp. strong) bidders
prefers first-price (resp. second-price) auction over (resp. first-price) second-
price auction.

Proof. Appendix B �

The above result holds for ti > r for every i ∈ N . It states that the weak
bidder prefers first-price auction over second-price auction under increas-
ing and constant absolute risk aversion. Whereas the strong bidder prefers
second-price auction over first-price auction under constant and decreasing
absolute risk aversion.

6The proof of the above result can be found in Lemma 1 of Maskin and Riley [9].
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6 Conclusion
We have characterized all Bayesian equilibria in a first-price auction under
weaker assumptions. The presumption of a continuous and a monotone pure
strategy equilibrium has not been made while characterizing the equilibria.
We have shown that the necessary conditions for an equilibrium are continu-
ity, strict monotonicity and pure strategy.

By considering one weak and one strong bidder, we have shown that the
weak bidder bids more aggressively and produces a weaker bid distribution
than the strong bidder. Next, we have compared the bidding behavior of
symmetric and asymmetric bidders and shown that the strong (resp. weak)
bidder bids more (resp. less) aggressively when playing against a strong (resp.
weak) bidder than against a (resp. strong) weak bidder. Moreover, the strong
(resp. weak) bidder produces a weaker (resp. stronger) bid distribution than
the weak (resp. strong) bidder when both are playing against a strong (resp.
weak) bidder.

We have computed the general expression for seller’s expected revenue
and established a revenue ranking for the first-price and second-price auc-
tion. The revenue from a first-price auction is more than from a second-price
auction when one bidder is weak and the other is strong.

Finally, we have shown that with increasing (resp. decreasing) absolute
risk aversion, the weak (resp. strong) bidder prefers first-price (resp. second-
price) auction and; with constant absolute risk aversion, the weak (resp.
strong) bidder prefers first-price (resp. second-price) auction.

A Appendix: Proof of Theorem 1
Lemma A.1. Suppose the profile of transition functions (ψi, ψj) is a Bayesian
equilibrium. Then, Ui(ψi, ψj, ti) > 0 and Pr(i wins|ti) > 0 for every ti ∈
Ti − {0} and i ∈ N .

Proof. Consider any i with ti > 0 such that Ui(ψi, ψj, ti) = 0. Then,
Pr(i wins|ti, bi) = 0. This implies Pr(bj > ti) = 1. As Pr(tj < ti) > 0, it
follows Uj(ψi, ψj, tj) < 0 which is a contradiction. Hence, Ui(ψi, ψj, ti) > 0
for every ti ∈ Ti − {0}. As Ui(ψi, ψj, ti) > 0, it follows Pr(i wins|ti) > 0 for
every ti ∈ Ti − {0} and i ∈ N . �

Lemma A.2. Suppose the profile of transition functions (ψi, ψj) is a Bayesian
equilibrium. Then, Λi(0) = Ωi(0) = 0 and there exists b̄ such that Λi(ai) =
Ωi(ai) = b̄ for every i ∈ N .
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Proof. Let g
i

= inf{gi} and g = max{g
i
, g

j
}. We show g

i
= 0 for every

i ∈ N . We show by contradiction. Suppose g > 0. Without loss of generality,
assume g = g

i
. Then, for ti ∈ (0, g), Pr(i wins|ti) > 0 and Ui(ψi, ψj, ti) < 0

which contradicts Lemma A.1. Hence, g
i

= 0 for every i ∈ N . As g
i

= 0, is
follows Λi(0) = Ωi(0) = 0 for every i ∈ N .

Let ḡi = sup{gi} and ḡ = max{ḡi, ḡj}. We show there exists b̄ such
that ḡi = b̄. We show by contradiction. Suppose ḡi 6= ḡj. Without loss of
generality, suppose ḡ = ḡi > b̄. Then, Pr(i wins|ti = ai, bi = ḡ) = 1. This
implies there exists ε > 0 such that Ui(ḡ − ε, ψj, ai) > Ui(ḡ, ψj, ai), which is
a cntradiction to Definition 1. Hence, gi = b̄ for every i ∈ N . �

Lemma A.3. Suppose the profile of transition functions (ψi, ψj) is a Bayesian
equilibrium. Then, Pr(i wins|ti) is non-decreasing in ti.

Proof. Consider ti, t′i ∈ Ti such that t′i > ti. Then, by the definition of a
Bayesian equilibrium, it follows

Ui(ψi(ti, .), ψj, ti) =
∫
ψi(ti, dbi)⊗ ϕj(dtj, dbj)πi(ti, bi, bj) ≥

Ui(ψi(t′i, .), ψj, ti) =
∫
ψi(t′i, dbi)⊗ ϕj(dtj, dbj)πi(ti, bi, bj)

As u(.) is strictly increasing and concave, it follows u(ti − bi) ≥ u(t′i − bi)−
u(t′i− ti). This implies πi(ti, bi, bj) ≥ πi(t′i, bi, bj)− Iiu(t′i− ti) such that Ii =
1/|Z| if i ∈ Z and Ii = 0 if i /∈ Z. As Ui(ψi(ti, .), ψj, ti) ≥ Ui(ψi(t′i, .), ψj, ti)
and πi(ti, bi, bj) ≥ πi(t′i, bi, bj)− Iiu(t′i − ti), it follows that∫
ψi(ti, dbi)⊗ ϕj(dtj, dbj)πi(ti, bi, bj) ≥

∫
ψi(t′i, dbi)⊗ ϕj(dtj, dbj)πi(t′i, bi, bj)

− u(t′i − ti)Ii
∫
ψi(t′i, dbi)⊗ ϕj(dtj, dbj)

This implies

Ui(ψi(ti, .), ψj, ti) ≥ Ui(ψi(t′i, .), ψj, t′i)− u(t′i − ti) Pr(i wins|t′i)

Interchanging the roles of ti and t′i, we get

Ui(ψi(t′i, .), ψj, t′i) ≥ Ui(ψi(ti, .), ψj, ti) + u(t′i − ti) Pr(i wins|ti)

The above two inequalities imply Pr(i wins|t′i) ≥ Pr(i wins|ti). �

Lemma A.4. Suppose the profile of transition functions (ψi, ψj) is a Bayesian
equilibrium. Then, Λi(ti) and Ωi(ti) are non-decreasing in ti for every ti ∈ Ti
and i ∈ N .
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Proof. We show Λi(t′i) ≥ Ωi(ti) such that t′i > ti. We show by contradiction.
Suppose there exists some i such that Ωi(ti) > Λi(t′i). Consider two sequences
(bn)∞n=1 and (b′n)∞n=1 such that bn ↓ Ωi(ti) and b′n ↑ Λi(t′i) for every n ∈ N. By
Definition 1, we have

Ui(bn, ψj, ti) = Pr(i wins|bn)u(ti−bn) ≥ Pr(i wins|b′n)u(ti−b′n) = Ui(b′n, ψj, ti)

and,

Ui(b′n, ψj, t′i) = Pr(i wins|t′i)u(t′i−b′n) ≥ Pr(i wins|t′i)u(t′i−bn) = Ui(bn, ψj, t′i)

Adding the above two inequalities, we get

Pr(i wins|b′n){u(t′i− b′n)− u(ti− b′n)} ≥ Pr(i wins|bn){u(t′i− bn)− u(ti− bn)}

As u(t′i − b′n)− u(ti − b′n) ≤ u(t′i − bn)− u(ti − bn), it follows Pr(i wins|b′n) ≥
Pr(ı wins|bn). As bn > b′n, it follows from Lemma A.3 that Pr(i winsbn) ≥
Pr(i wins|b′n). As Pr(i wins|b′n) ≥ Pr(i wins|bn) and Pr(i wins|bn) ≥
Pr(i wins|b′n), it follows Pr(i wins|bn) = Pr(i wins|b′n). As Ui(bn, ψj, ti) ≥
Ui(b′n, ψj, t′i), it follows u(ti − bn) ≥ u(ti − b′n), which is a contradiction.
Hence, Λi(t′i) ≥ Ωi(ti).

We show that Λi(ti) and Ωi(ti) are non-decreasing in ti. As Ωi(t′i) ≥
Λi(ti), Λi(ti) ≤ Ωi(ti) and Λi(t′i) ≤ Ωi(t′i), it follows Λi(t′i) ≥ Λi(ti) and
Ωi(t′i) ≥ Ωi(ti) for every ti, t′i ∈ Ti such that t′i > ti, i ∈ N . �

Lemma A.5. Suppose the profile of transition functions (ψi, ψj) is a Bayesian
equilibrium. Then, Λi(ti) > 0 and Ωi(ti) > 0 for every ti ∈ Ti − {0} and
i ∈ N .

Proof. We show by contradiction. Suppose Λi(ti) = 0 for some i ∈ N .
Consider a sequence (bn)∞n=1 such that bn ↑ Λi(ti) for every n ∈ N. Then,
Ui(bn, ψj, ti) = u(ti − bn) Pr(i wins|bn) for every n ∈ N. As limn→∞
Ui(bn, ψj, ti) > 0, it follows that limn→∞ Pr(i wins|ti, bn) > 0. As Λi(ti) = 0,
it follows from Lemma A.4 that Λi(t′i) = 0 for every t′i ∈ (0, ti). As Ωi(t′i) ≤
Λi(ti) (from Lemma A.4), it follows Ωi(ti) = 0. As limn→∞ Pr(i wins|ti, bn) >
0, it follows that there is a strictly positive probability of a tie. This implies
Ui(ε, ψj, t′i) > Ui(0, ψj, t′i) for a small enough ε > 0 and for every t′i ∈ (0, ti),
which is a contradiction. Hence, Λi(ti) > 0 and Ωi(ti) > 0 for every ti ∈
Ti − {0} and i ∈ N . �

Lemma A.6. Suppose the profile of transition functions (ψi, ψj) is a Bayesian
equilibrium. Then, βi({b}) = 0 and Pr(i wins|bi) is continuous in every
bi ∈ Bi and i ∈ N .
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Proof. Suppose ϕi(Ti, {b}) > 0 for some i ∈ {s, w} and for every b > 0. We
show that for every ε > 0, ϕj(Tj, (b − ε, b]) > 0. We show by contradiction.
Suppose there exists a ε > 0 such that ϕj(Tj, (b−ε, b]) = 0. As ϕi(Ti, {b}) > 0,
it follows Ui(ψi, ψj|ti, b) > 0. As ϕj(Tj, (b − ε, b]) = 0, it follows that there
exists some ε′ such that Ui(b′, ψj, ti) > Ui(b, ψj, ti) for every b′ ∈ (b− ε+ ε′, b),
which is a contradiction. Hence, for every ε > 0, ϕj(Tj, (b− ε, b]) > 0.

Suppose ϕi(Ti, (b − ε, b]) > 0 for some i ∈ N, b > 0 and for every ε > 0.
We show ϕj(Tj, (b−ε, b]) = 0. We show by contradiction. Suppose ϕj(Tj, (b−
ε, b]) > 0. Consider a set Wε ∈ B(Ai) such that Pr(hi(ti) ∈ (b − ε, b]) > 0
for every ε > 0 and ti ∈ Wε. Then, ε′ > ε implies Wε ⊂ W ′

ε . We show there
exists a ε̂ > 0 such that ε̂ < b and ti > ε̂ + b for every ti ∈ Wε̂. We show
by contradiction. Suppose, for every Wn such that n ∈ N, there exists some
tin ∈ Wn such that tin ≤ n + b. It can be verified that tin > n − b for every
tin ∈ Wn and n ∈ N. As Ui(ψi, ψj, ti) = Ui(ψi, ψj, ti|hi(ti) ∈ (b − ε, b]), it
follows Ui(ψi, ψj, tin) ≤ u(2n). As n− b ≤ tin ≤ n + b, n approaches to zero
implies tin approaches b. Then, limn→0 Ui(ψi, ψj|tin) ≤ limn→0 u(2n). This
implies Ui(ψi, ψj, b) = 0, which is a contradiction, as Ui(ψi, ψj, ti) > 0 for
every ti > 0. Hence, such a ε̂ exists. Consider ε > 0 and δ > 0 such that
ε < ε̂ and

δ < ε̂− u−1
(
u(ε)βj ◦ (0, b) + 0.5βj ◦ {b}

βj ◦ (0, b]

)
As ε→ 0, it follows such a δ exists. Then,

Ui(ψi, ψj|ti, gi(ti) ∈ (b− ε, b]) ≤ u(ti − (b− ε))(βj ◦ (0, b) + 0.5βj ◦ {b})
< u(ti − (b+ δ))βj ◦ (0, b]
= Ui(ψi, ψj|ti, b+ δ)

which is a contradiction. Hence, ϕj(Tj, (b− ε, b]) = 0.
We show βi({b}) = 0 for every b > 0 and i ∈ N . Suppose βi({b}) > 0

for some i ∈ N . Then, ϕj(Ti, (b − ε, b]) > 0 for every ε > 0. This implies
ϕi(Ti, {b}) = 0, which is a contradiction. Hence, βi({b}) = 0 for every b > 0
and i ∈ N .

We show Pr(i wins|bi) is continuous in every bi ∈ Bi. We know Pr(i wins|
bi) = βj ◦ (0, bi]. As βj ◦ {bi} = 0 (from Lemma A.2) for every bi, it follows
that βj ◦ (0, bi] is continuous in every bi. Hence, Pr(i wins|bi) is continuous
in every bi ∈ Bi. �

Lemma A.7. Suppose the profile of transition functions (ψi, ψj) is a Bayesian
equilibrium. Then, Λi(ti) is left continuous and Ωi(ti) is right continuous.

Proof. We show Λi(ti) = limt′i↑ti Ωi(t′i) and Ωi(ti) = limt′i↓ti Λi(t′i) for ev-
ery t′i ∈ (0, ai]. As Ωi is non-decreasing in ti, it follows limt′i↑ti Ωi(t′i) =
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supt′i<ti Ωi(t′i). Then, limt′i↑ti Ωi(t′i) ≤ Λi(ti). Consider a sequence (tin)∞n=1
such that tin ↑ ti and limn→∞Ωi(tin) = supt′i<ti Ωi(t′i) for every n ∈ N. Then,
Ui(Ωi(tin), ψj, tin) = u(tin − Ωi(tin)) Pr(i wins|Ωi(tin)) for every n ∈ N. As
n→∞, we get Ui(ψi, ψj, ti) = u(ti−supt′i<ti Ωi(t′i)) Pr(i wins| supt′i<ti Ωi(t′i)).
Then, Λi(ti) = inf supt′i<ti Ωi(t′i). This implies Λi(ti) ≤ supt′i<ti Ωi(t′i). As
Λi(ti) ≥ supt′i<ti Ωi(t′i) and Λi(ti) ≤ supt′i<ti Ωi(t′i), it follows Λi(ti) = supt′i<ti
Ωi(t′i) for every t′i ∈ (0, ai]. Hence, Λi(ti) = limt′i↑ti Ωi(t′i). Similarly, it can be
shown Ωi(ti) = limt′i↓ti Λi(t′i) for every t′i ∈ (0, ai]. As Λi is left continuous,
it follows if Λi is continuous, then Λi(ti) = Ωi(ti) for every ti ∈ Ti. As Ωi is
right continuous, it follows if Ωi is continuous, then Λi(ti) = Ωi(ti) for every
ti ∈ Ti. �

Lemma A.8. Suppose the profile of transition functions (ψi, ψj) is a Bayesian
equilibrium. Then, Λi(ti) and Ωi(ti) are strictly increasing in ti for every
i ∈ N .

Proof. We show by contradiction. Suppose Λi and Ωi are not strictly in-
creasing. From Lemma A.4, Λi(ti) and Ωi(ti) are non-decreasing in ti. Sup-
pose Ωi(ti) = c for all ti ∈ Wi ⊂ Ti. Then, Λi(ti) = Ωi(ti) for every ti ∈ Wi.
But, βi ◦ {Λi(ti)} = 0 for some ti ∈ Wi, which contradicts Lemma A.6.
Therefore, Λi(ti) and Ωi(ti) are strictly increasing in ti for every ti ∈ Ti and
i ∈ N . �

Lemma A.9. Suppose the profile of transition functions (ψi, ψj) is a Bayesian
equilibrium. Then, Λi(ti) and Ωi(ti) are continuous for every ti ∈ Ti and
i ∈ N .

Proof. We show that Λi is right continuous. We show by contradiction.
Suppose Λi is not right continuous at some ti ∈ Ti. Then, for small enough
ε > 0, Pr(bi ∈ (Λi(ti),Λi(ti + ε)) = 0. This implies Pr(bj ∈ (Λi(ti),Λi(ti +
ε)) = 0. As Pr(bj ∈ (Λi(ti),Λi(ti + ε)) = 0, it follows Ui(Λi(ti), ψj, ti) >
Ui(Ωi(ti), ψj, ti), which is a contradiction. Hence, Λi is right continuous at ti.
Therefore, Λi(ti) is continuous for every ti ∈ Ti and i ∈ N . As Λi(ti) = Ωi(ti)
if Λi is continuous, it follows that Ωi is continuous in every ti ∈ Ti and
i ∈ N . �

Proof of Theorem 1. Suppose the profile of transition functions (ψi, ψj)
is a Bayesian equilibrium. From Lemma A.9, it follows Λi(ti) = Ωi(ti) for
every ti ∈ Ti and i ∈ N . As Σi is a function (Lemma A.9) and, Λi and Ωi are
continuous, it follows that ψi is pure and continuous. As Λi and Ωi are strictly
increasing (Lemma A.8), it follows ψi is strictly increasing. From Lemmas
A.2 and A.9, it follows ψi(0) = 0 and there exists b̄ such that ψi(ai) = b̄ for
every i ∈ N .
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As ψi is pure, strictly increasing and continuous, it follows the inverse of
ψi exists and is strictly increasing and continuous. Suppose bidder j follows
his equilibrium strategy. Then, the maximization problem of bidder i is
maxb Fj ◦ ψ−1

j (b)u(ti − b). The first-order condition implies (3).
Conversely, suppose ψi(0) = 0, ψi(ai) = b̄ and the system of differential

equations given by (3) are satisfied for every i ∈ N . Suppose bidder j follows
ψj. We show that the best response for bidder i is ψi. Suppose bidder i with
type ti bids b. The expected utility of bidder i is Ui(ti, b) = Fj◦ψ−1

i (b)u(ti−b).
Using the monotonic transformation Vi(ti, b) = logUi(ti, b), the expected
utility of bidder i is Vi(ti, b) = logFj ◦
psi−1

j (b) + log u(ti − b). The first-order derivative is

DbVi(ti, b) = DFj ◦ θj(b)
Fj ◦ ψ−1

j (b)
− u′(ti − b)
u(ti − b)

The expected utility of bidder i gets maximized when Db(ti, b) = 0, that
is,

Fj ◦ ψ−1
j (b)

DFj ◦ ψ−1
j (b)

= u(ψ−1
i (b)− b)

u′(ψ−1
i (b)− b)

Suppose bidder i over-bids by bidding b′ such that ψ−1
i (b′) > ti. As ψ−1

i (b′) >
ti, it follows u′(ti − b′)/u(ti − b′) > u′(ψ−1

i (b′)− b′)/u(ψ−1
i (b′)− b′). Then,

Db′Vi(ti, b′) =
DFj ◦ ψ−1

j (b′)
Fj ◦ ψ−1

j (b′)
− u′(ti − b′)
u(ti − b′)

<
DFj ◦ ψ−1

j (b′)
Fj ◦ ψ−1

j (b′)
− u′(ψ−1

i (b′)− b′)
u(ψ−1

i (b′)− b′)
= 0

So, it is not profitable for bidder i to over-bid. Suppose, on the other hand,
bidder i under-bids by bidding b′ such that θi(b′) < ti. Then,

Db′Vi(ti, b′) =
DFj ◦ ψ−1

j (b′)
Fj ◦ ψ−1

j (b′)
− u′(ti − b′)
u(ti − b′)

>
DFj ◦ ψ−1

j (b′)
Fj ◦ ψ−1

j (b′)
− u′(ψ−1

i (b′)− b′)
u(ψ−1

i (b′)− b′)
= 0

So, it is not profitable for bidder i to under-bid. Hence, it is optimal for
bidder i to choose θi(b′) = ti. Therefore, ψ is a Bayesian equilibrium. �
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B Appendix: Proofs of Proposition 1-6 and
Corollary 1-2

Proof of Proposition 1. We prove by contradiction. Suppose θw(b) ≮
θs(b) for every b ∈ [0, b̄]. As θw(b̄) < θs(b̄) (by assumption), it follows that
there exists some ε > 0 such that θw(b̄− ε) < θs(b̄− ε). As θw(b) ≮ θs(b) for
every b ∈ [0, b̄] and θw(b̄) < θs(b̄), it follows that there exists some b∗ such
that θw(b∗) = θs(b∗) and θw(b) < θs(b) for every b ∈ (b∗, b̄]. At b = b∗, from
(4), we have

Fw ◦ θw(b)
DFw ◦ θw(b) = Fs ◦ θs(b)

DFs ◦ θs(b)
Equivalently,

Fs ◦ θs(b)
fs ◦ θs(b)

Dθw(b) = Fw ◦ θw(b)
fw ◦ θw(b) Dθs(b)

From the assumption of conditional stochastic dominance, at b = b∗, it follows
that Dθw(b) > Dθs(b). Then, there exists a δ > 0 such that θw(b∗ + δ) >
θs(b∗ + δ), which is a contradiction. Hence, no such b∗ exists. Therefore,
θw(b) < θs(b) for every b ∈ [0, b̄]. �

Proof of Proposition 2. From Proposition 1, we know that θw(b) < θs(b).
As u′ > 0 and u′′ < 0, we have u(θw(b)−b) < u(θs(b)−b) and u′(θw(b)−b) >
u′(θs(b)− b). From (1.2), it follows that

Fs ◦ θs(b)
DFs ◦ θs(b)

<
Fw ◦ θw(b)

DFw ◦ θw(b)

This implies

D
(
Fs ◦ θs(b)
Fw ◦ θw(b)

)
> 0

As Fs ◦ θs(b̄) = Fw ◦ θw(b̄) = 1 and D(Fs ◦ θs(b)/Fw ◦ θw(b)) > 0, it follows
that (Fs ◦ θs(b)/Fw ◦ θw(b)) < 1. Therefore, Fs ◦ θs(b) < Fw ◦ θw(b) for every
b ∈ (0, b̄). �

Proof of Corollary 1. (A) Suppose ξs(t) < ξw(t) for every Tw−{0}. Then,
by (15), it follows Dξs(t) > Dξw(t). This implies there exists ε > 0 such that
ξs(t+ ε) > ξw(t+ ε), which is a contradiction. Hence, ξw(t) < ξs(t) for every
t ∈ Tw − {0}.
(B) As λw(b) > λs(b) for every b ∈ (0, b̄w), it follows from (12)

Fw ◦ λw(b)
DFw ◦ λw(b) >

Fs ◦ λs(b)
DFs ◦ λs(b)
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This implies
D Fs ◦ λs(b)
Fw ◦ λw(b) > 0

As Fs ◦ λs(b̄s) = Fw ◦ λw(b̄w) = 1, it follows Fs ◦ λs(b) < Fw ◦ λw(b). �

Proof of Proposition 3. We prove (A) and (C). The proof of (B) and (D)
are analogous to (A) and (C) respectively.
(A) As D2θs(0) > D2λs(0) (Lemma C.1), it follows that there exists ε > 0
such that θs(b) > λs(b) for every b ∈ (0, ε). It suffices to show if θs(b) = λs(b)
implies Dθs > Dλs(b), then θs(b) > λs(b) for every b > 0. Suppose θs(b) =
λs(b). Then, from (6), (13) and Proposition 1, it follows Dθs(b) > Dλs(b).
Hence, θs(b) > λs(b).
(C) As θs(b) > λs(b), from (4) and (12), it follows

Fw ◦ θw(b)
DFw ◦ θw(b) >

Fs ◦ λs(b)
DFs ◦ λs(b)

This implies
D Fs ◦ λs(b)
Fw ◦ θw(b) > 0

As Fw ◦ θw(b̄) = Fs ◦ λs(b̄s) = 1, it follows Fw ◦ θw(b) > Fs ◦ λs(b). �

Proof of Proposition 4. Suppose θi(c) ≤ θ̂i(c) and θj(c) ≤ θ̂j(c) for every
c ∈ (0,min{b̄, b̂}). We show that there exists ε > 0 such that θi(b) < θ̂i(b)
and

Fj ◦ θj(b)
F̂j ◦ θ̂j(b)

<
Fj ◦ θ̂j(c)
F̂j ◦ θ̂j(c)

≡ π(c) (30)

for every b ∈ [c− ε, c). As θj(c) ≤ θ̂j(c), it follows Fj ◦ θj(b) < Fj ◦ θ̂j(c) for
every b < c. Dividing both sides by F̂j ◦ θ̂j(b), we get

Fj ◦ θj(b)
F̂j ◦ θ̂j(b)

<
Fj ◦ θ̂j(c)
F̂j ◦ θ̂j(b)

Case 1: θi(c) < θ̂i(c) and θj(c) < θ̂j(c)
It is straightforward to see that there exists ε > 0 such that θi(b) < θ̂i(b) and

Fj ◦ θj(b)
F̂j ◦ θ̂j(b)

<
Fj ◦ θ̂j(c)
F̂j ◦ θ̂j(c)

≡ π(c)
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for every b ∈ [c− ε, c).

Case 2: θi(c) = θ̂i(c) and θj(c) < θ̂j(c)
From (4), Dθi(c) is strictly decreasing in θj(c). This implies Dθi(c) > Dθ̂i(c).
Then, there exists ε > 0 such that θi(b) < θ̂i(b) and

Fj ◦ θj(b)
F̂j ◦ θ̂j(b)

<
Fj ◦ θ̂j(c)
F̂j ◦ θ̂j(c)

≡ π(c)

for every b ∈ [c− ε, c).

Case 3: θi(c) < θ̂i(c) and θj(c) = θ̂j(c)
It is straightforward to see that there exists ε > 0 such that θi(b) < θ̂i(b) and

Fj ◦ θj(b)
F̂j ◦ θ̂j(b)

<
Fj ◦ θ̂j(c)
F̂j ◦ θ̂j(c)

≡ π(c)

for every b ∈ [c− ε, c).

Case 4: θi(c) = θ̂i(c) and θj(c) = θ̂j(c)
From (6), Dθi(c) = Dθ̂i(c) and the assumption of conditional stochastic dom-
inance, it follows Dθj(c) > Dθ̂j(c). From (7), D2 logFi ◦ θi(c) is strictly de-
creasing in Dθj(c). This implies D2 logFi ◦ θi(c) < D2 logFi ◦ θ̂i(c). So, there
exists ε > 0 such that θi(b) < θ̂i(b) and

Fj ◦ θj(b)
F̂j ◦ θ̂j(b)

<
Fj ◦ θ̂j(c)
F̂j ◦ θ̂j(c)

≡ π(c)

for every b ∈ [c− ε, c).
Define ϑ = inf{g ∈ [0, c − ε] | θi(b) < θ̂i(b) and Fj ◦ θ̂j(b) < π(c)Fj ◦

θ̂j(b) for every b ∈ (g, c)}. We show ϑ = 0. We show by contradiction.
Suppose ϑ > 0. Then, either θi(ϑ) = θ̂i(ϑ) or Fj ◦ θ̂j(ϑ) = π(c)Fj ◦ θ̂j(c). As
θi(b) < θ̂i(b) for every b ∈ [ϑ, c), it follows from (4) and (17) that

Fj ◦ θj(b)
DFj ◦ θj(b)

<
F̂j ◦ θ̂j(b)
DF̂j ◦ θ̂j(b)

This implies D logFj ◦ θj(b) > D log(π(c)F̂j ◦ θ̂j(b)). Then, as ϑ < c − ε, it
follows log(Fj ◦θj(c−ε))− logFj ◦θj(ϑ) > log(π(c)F̂j ◦ θ̂j(c−ε))− log(π(c)F̂j ◦
θ̂j(ϑ)). Rearranging the terms, we get log(π(c)F̂j ◦ θ̂j(ϑ))− logFj ◦ θj(ϑ) >
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log(π(c)F̂j ◦ θ̂j(c − ε)) − log(Fj ◦ θj(c − ε)). From the definition of ϑ, it
follows that log(π(c)F̂j ◦ θ̂j(c − ε)) − log(Fj ◦ θj(c − ε)) > 0. This implies
log(π(c)F̂j ◦ θ̂j(ϑ)) − logFj ◦ θj(ϑ) > 0. Taking exponential both sides, we
get π(c)F̂j ◦ θ̂j(ϑ) > Fj ◦ θj(ϑ). So, θi(ϑ) = θ̂i(ϑ) must be the case. As
Fj ◦ θj(ϑ) < π(c)F̂j ◦ θ̂j(ϑ) and ϑ < c, it follows from the assumption of
conditional stochastic dominance that

Fj ◦ θj(ϑ)
F̂j ◦ θ̂j(ϑ)

<
Fj ◦ θ̂j(c)
F̂j ◦ θ̂j(c)

<
Fj ◦ θ̂j(ϑ)
F̂j ◦ θ̂j(ϑ)

This implies Fj ◦ θj(ϑ) < Fj ◦ θ̂j(ϑ), or equivalently θj(ϑ) < θ̂j(ϑ). As
θi(ϑ) = θ̂i(ϑ) and θj(ϑ) < θ̂j(ϑ), it follows from (6) that Dθi(ϑ) > Dθ̂i(ϑ).
This implies that there exists δ > 0 such that θi(ϑ + δ) > θ̂i(ϑ + δ), which
is a contradiction. Hence, ϑ = 0. Therefore, θi(b) < θ̂i(b) and Fj ◦ θi(b) <
π(c)F̂j ◦ θ̂j(b) for every b ∈ (0, c).

We show that θi(c) ≤ θ̂i(c) and θj(c) ≤ θ̂j(c) cannot hold simultaneously.
We show by contradiction. Suppose there exists c ∈ (0, b̄) such that θi(c) ≤
θ̂i(c) and θj(c) ≤ θ̂j(c). As θi(c) ≤ θ̂i(c) and θj(c) ≤ θ̂j(c), it follows that
θi(b) < θ̂i(b) and Fj ◦ θj(b) < π(c)F̂j ◦ θ̂j(b) for every b ∈ (0, c). Taking the
limits b ↓ 0, we have Fj(0) < π(c)F̂j(0). As F̂j/Fj is strictly increasing, it
follows Fj(0) > π(c)F̂j(0), which is a contradiction. Therefore, θi(c) ≤ θ̂i(c)
and θj(c) ≤ θ̂j(c) cannot hold simultaneously.

We show that b̂ > b̄. We show by contradiction. Suppose b̂ ≤ b̄. Then,
θi(b̂) ≤ θ̂i(b̂) and θj(b̂) ≤ θ̂j(b̂), a contradiction. Hence, b̂ > b̄.

We show θi(b) > θ̂i(b) for every b ∈ [0, b̄]. We show by contradiction.
Suppose θi(b) ≯ θ̂i(b) for every b ∈ [0, b̄]. As θi(b̄) > θ̂i(b̄), it follows that
there exists ε > 0 such that θi(b̄ − ε) > θ̂i(b̄ − ε). As θi(b) ≯ θ̂i(b) for every
b ∈ [0, b̄] and θi(b̄) > θ̂i(b̄), it follows that there b∗ such that θi(b∗) = θ̂i(b∗) and
θi(b) > θ̂i(b) for every b ∈ (b∗, b̄]. As θi(b∗) = θ̂i(b∗) implies θj(b∗) > θ̂j(b∗),
at b = b∗, it follows from (4) and (17) that

F̂j ◦ θ̂j(b)
DF̂j ◦ θ̂j(b)

= Fj ◦ θj(b)
DFj ◦ θj(b)

Equivalently, at b = b∗,
F̂j ◦ θ̂j(b)

DF̂j ◦ θ̂j(b)
Dθi(b) = Fj ◦ θj(b)

DFj ◦ θj(b)
Dθ̂i(b)

From the assumption of conditional stochastic dominance, at b = b∗, Dθ̂j(b) >
Dθj(b). Then, there exists δ > 0 such that θ̂j(b∗ + δ) > θj(b∗ + δ), which is a
contradiction. Hence, θi(b) > θ̂i(b) for every b ∈ [0, b̄].
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We show F̂j ◦ θ̂j(b) < Fj ◦ θj(b) for every b ∈ (0, b̄). We will use the
fact that θi(b) > θ̂i(b) for every b ∈ [0, b̄]. As u′ > 0 and u′′ < 0, we have
u(θi(b)− b) > u(θ̂i(b)− b) and u′(θi(b)− b) < u′(θ̂i(b)− b). As θi(b) > θ̂i(b),
it follows from (4) and (17) that

Fj ◦ θj(b)
DFj ◦ θj(b)

>
F̂j ◦ θ̂j(b)

DF̂j ◦ θ̂j(b)

This implies

D
(
F̂j ◦ θ̂j(b)
Fj ◦ θj(b)

)
> 0

As Fj ◦ θj(b̄) = 1 = F̂j ◦ θ̂j(b̂), it follows F̂j ◦ θ̂j(b) < Fj ◦ θj(b). �

Proof of Corollary 2. As F̂j ◦ θ̂j(b) < Fj ◦ θj(b) for every b ∈ (0, b̄), it
follows that Ûj(tj, ψ̂i, ψ̂j) < Uj(tj, ψi, ψj). As θ̂i(b) < θi(b) for every b ∈ (0, b̄),
it follows that Ûi(ti, ψ̂i, ψ̂j) < Ui(ti, ψi, ψj). �

Proof of Propostion 5. We show that

fw(t)− Fs ◦ ζs(t)− Fs(t)
W (ζs(t), ψw(t), t) ≥ 0

As ζs(t) > t, u′ > 0 and u′′ ≤ 0, it follows W (ζs(t), ψw(t), t) ≥ ζs(t) − t. It
suffices to show

fw(t)− Fs ◦ ζs(t)− Fs(t)
ζs(t)− t

≥ 0

A ζs(t) > t, it follows from the mean value theorem that there exists a
t̂ ∈ (t, ζs(t)] such that

Fs ◦ ζs(t̂)− Fs(t̂)
ζs(t̂)− t̂

= fs(t̂)

It suffices to show fw(t) ≥ fs(t̂). Suppose t̂ > aw. Then, fw(t) ≥ fs(t̂) follows
from Assumption 2. Suppose t̂ < aw. Then,

fs(t̂)
Fs(t̂)

= fw(t̂)
Fw(t̂)

<
fw(t)
Fw(t)

The first inequality follows from Assumption 1. The second inequality follows
from the fact that F is concave. As t̂ ≤ ζs(t), it follows from Proposition 2
Fs(t̂) ≤ Fs ◦ ζs(t) < Fs(t). Hence fw(t) > fs(t̂). Therefore P > Q. �
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Proof of Proposition 6. We prove for increasing absolute risk aversion.
Consider the weak bidder. Remark that Vw(r) = 0 = Kw(r). We show
Vw(tw) > Kw(tw) for every tw > r. It suffices to show if Vw(tw) = Kw(tw),
then DVw(tw) > DKw(tw) for every tw > r.

Suppose Vw(tw) = Kw(tw). Then, from (27) and (29), DVw(tw) > DKw(tw).
Hence, the weak bidder prefers first-price auction over second-price auction.
A similar proof holds for constant and decreasing absolute risk aversion. �

C Appendix: Some results
Lemma C.1. Suppose the profile of measurable functions (ψw, ψs) is a Bayesian
equilibrium when one bidder is weak and the other is strong. Suppose the pro-
files of measurable functions (ξw, ξw) and (ξs, ξs) are a Bayesian equilibrium
when both the bidders are weak and strong respectively. If Assumption 1 is
satisfied, then D2θs(0) > D2λs(0) and D2θw(0) < D2λw(0).

Proof. Let
yi(t) = t

fi(t)
Fi(t)

Then,
yi(0) = 1, y′i(0) = f ′i(0)

2fi(0) and f ′s(0)
fs(0) >

f ′w(0)
fw(0) (31)

And,
yi ◦ θi(b) = θi(b)

fi ◦ θi(b)
Fi ◦ θi(b)

Using (4), we have

Dθi(b)yi ◦ θi(b) = θi(b)
w(θj(b)− b)

(32)

Similarly,
Dλi(b)yi ◦ λi(b) = λi(b)

w(λi(b)− b)
(33)

Taking the limit of b at 0, we have

Dθw(0) = Dθs(0) = Dλw(0) = λw(0) = 1 + 1
w′(0) (34)

Taking logarithms both sides of (32) and differentiating w.r.t. b, we have

D2θi(b)
Dθi(b)

+ y′i ◦ θi(b)
yi ◦ θi(b)

Dθi(b) = Dθi(b)
θi(b)

− w′(θj(b)− b)
w(θj(b)− b)

(Dθj(b)− 1)
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Using (32) and solving, we have

w′(0)
w(0) + 1D2θi(0) + w′(0)D2θj(0) = −w

′(0) + 1
w′(0)

f ′i(0)
fi(0) −

w′′(0)
(w′(0))2

Using analogy, we have

w′(0)
w(0) + 1D2θj(0) + w′(0)D2θi(0) = −w

′(0) + 1
w′(0)

f ′j(0)
fj(0) −

w′′(0)
(w′(0))2

Solving the above two equations, we get

D2θi(0) = (w′(0) + 1)2

(w′(0))3

{
f ′i(0)
fi(0) − (w′(0) + 1)

f ′j(0)
fj(0)

}
(35)

and
D2θj(0) = (w′(0) + 1)2

(w′(0))3

{
f ′j(0)
fj(0) − (w′(0) + 1)f

′
i(0)
fi(0)

}
(36)

Similarly,
D2λi(0) = (w′(0) + 1)2

(w′(0))2
f ′i(0)
fi(0) (37)

Comparing the above equations, we get the desired results. �
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