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Abstract

We consider estimation of a parameter defined by moment restrictions on a target population character-

ized by the missingness of monotonically missing at random data. Attrition or dropout to an absorbing state

from a, say, R-period study/survey typically generates such data. In this case, a generic target is the under-

lying population of the sample units dropping out in contiguous periods a, . . . , b where a ≤ b ∈ {1, . . . , R}.

The semiparametric efficiency bound and the efficient influence function are obtained for the parameter of in-

terest from the generic target nesting the well-known special cases with (a = 1, b = R) or (R = 2, a = b = 1).

Our results, however, differ fundamentally from the existing literature in that the consideration of a

generic target beyond those special cases provides new insights on the usability and contribution of the sam-

ple units toward efficient estimation. Efficient estimation turns out to be standard MINPIN estimation with

asymptotic properties directly following from the well-known existing results. Further desirable properties

follow since the concerned MINPIN estimating functions are also doubly robust to parametric misspeci-

fications of their nonparametric nuisance components. A Monte Carlo study demonstrates all these nice

properties of the efficient estimator and the t-test based on it. An empirical illustration using the Project

STAR data demonstrates substantive improvement in precision over the standard but inefficient estimators.
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1 Introduction

Estimation based on monotonically missing data has received special attention in the missing data

literature; see, e.g., the textbooks by Little and Rubin (2002), Tsiatis (2006), etc. Since the

pioneering work of Robins et al. (1994, 1995), Robins and Rotnitzky (1995), Rotnitzky and Robins

(1995), Holcroft et al. (1997), etc., efficient estimation in such cases has generally been considered

under the missing at random, i.e., a selection on observables, assumption.

In the econometrics literature, the study of monotone missingness under selection on observables

is primarily focused on attrition in panel data. See Fitzgerald et al. (1996), Nicoletti (2006),

Wooldridge (2002), Wooldridge (2010) (pages 840-845), etc., for influential studies. Hence, although

our presentation and results apply more generally — e.g., they directly apply to the well-known

pattern mixture models of Glynn et al. (1986), Little (1993, 1994), etc. thanks to an equivalence

result of Molenberghs et al. (1998) (Theorem 1) — we will focus on attrition/drop-outs to fix ideas.1

Accordingly, as a running example, consider attrition to an absorbing state in an R-period

study/survey where the decision to leave at the end of any period depends on the variables observed

until then, which is what drives the selection on observables. The variables that should have been

observed in periods a+1, . . . , R are missing for the sample units who leave at the end of a period, say,

a ∈ {1, . . . , R}. Due to the selection on observables, the underlying population, call it population a,

of these sample units is generally different from that of the full-population, which is the underlying

population of the full set of sample units who started in period 1 before any attrition occurred.

Our paper focuses on these different populations for the sample units. Without loss of generality,

we maintain that all sample units have to leave by the end of period R. Thus, the populations

a, b ∈ {1, . . . , R} and their unions are sub-populations of the full-population that is equivalently

defined as the underlying population of the units who leave at the end of any period 1, 2, . . . , R.

In this paper, we consider efficient estimation of parameters defined by the joint distribution

of the variables in unions of contiguous sub-populations [a, b] := a, . . . , b where a ≤ b ∈ {1, . . . , R}.

This includes the full-population (a = 1, b = R) and the individual sub-populations (a = b) as

special cases. Our main contribution is to obtain the efficient influence functions and the efficiency

bounds for all such cases under a unified framework and make their novel implications explicit.

Our results enable us to design an efficient estimator for the parameters of interest such that:

(i) it only involves routine MINPIN computations, and (ii) its asymptotic properties follow directly

1As in Diggle et al. (2007), we do not distinguish between attrition (subsequent outcomes unobserved) and dropouts
(subsequent outcomes, but not the intended ones, observed), and treat both as attrition (c.f. footnote 1 in Heckman
et al. (1998)). The distinction is important in many cases, but we abstract from it since it is already well understood.
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from well-known results; e.g., Andrews (1994), Newey (1994), Chen et al. (2003). Further desirable

properties follow since the underlying estimating function for this estimator has an augmented-

inverse-probability-weighted (AIPW) structure that is doubly robust to parametric misspecification

of its nonparametric nuisance components as in Robins et al. (1994), Scharfstein et al. (1999), Bang

and Robins (2005), Tsiatis (2006), Tan (2007), Cattaneo (2010), Rothe and Firpo (2016), etc.

All these properties hold quite convincingly even in the small-sample setup of our Monte Carlo

study where this efficient estimator easily outperforms other types of estimators in every aspect.

The same conclusion on the superiority of this efficient estimator also holds in our illustration

with a real life example, the Project STAR data, where we consider estimation of parameters such

as the expected counterfactual math and reading scores in grade 3 for students who left Project

STAR from small and non-small classes respectively in grades 1, 2, etc., had they not left.

The practical relevance of these results in our paper is derived from the fact that attrition

necessarily entails loss in data that makes it imperative to use any available information to increase

the precision of the estimates of interest without introducing (much) bias. The asymptotically

unbiased efficient estimator in our paper is able to do this by reaching the benchmark efficiency.

As demonstrated in our empirical illustration, this increased precision often helps to shrink

the confidence intervals for various empirically interesting parameters by ruling out economically

implausible (large) values that could not otherwise be ruled out at the conventional levels by other

estimators such as the less precise IPW-type estimators considered in Fitzgerald et al. (1996),

Wooldridge (2002), Wooldridge (2010), etc. Thus, our contribution could be seen as a step forward

in the context of this related literature in econometrics on attrition with selection on observables.2

When considered in the context of the broader literature on missing (at random) data beyond

econometrics, our contribution is precisely to focus and obtain the efficiency results on a variety

of empirically interesting sub-populations. These results are new to our knowledge, and provide

important insights on the usability and contribution of the sample units toward efficient estimation.

It must be noted that Hahn (1998) and Chen et al. (2008) also obtain efficiency results for

sub-populations in the case a = b = 1, R = 2 (roughly speaking, focusing on the average treatment

effect on the treated). Chaudhuri (2017) allows for R > 2 and obtains efficiency results on sub-

populations either by assuming that the probabilities related to the selection on observables are

2There is a vast (old and new) literature on attrition with selection on unobservables in econometrics. Identification
in such contexts is typically achieved by the existence of instruments, refreshment samples, etc.; and without these
additional information it is typically not possible to distinguish between selection on observables and unobservables
from the data itself. Our paper does not contribute to this literature. See Wooldridge (2010) for a textbook
presentation of the relative and practical merits of selection on observables versus unobservables in similar contexts.
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known, or by enforcing a dimension-reduction assumption on the unknown probabilities. However,

as we will demonstrate, the new insights are gained precisely when we consider R > 2 and a > 1

and do not impose either the known probability or the dimension-reduction assumption, i.e., when

we consider the most realistic setup for multi-period attrition. Our efficiency results, thus obtained,

turn out to be substantively different from the aforementioned existing results, even qualitatively.

Our paper proceeds as follows. Section 2 establishes and extensively discusses our main result.

Section 3 sketches the relevant MINPIN estimation and heuristically discusses the asymptotic prop-

erties of the estimator by referring to the well-known results. Section 4 is a small-scale simulation

study of the finite-sample properties. Section 5 presents an empirical illustration using the Project

STAR data. Section 6 concludes. Appendices A-D contain technical and supplemental materials.

2 The efficiency bound and the efficient influence function

2.1 Framework:

Let Z := (Z ′
1, . . . , Z

′
R)

′ where Zr is a dr × 1 random vector and
∑R

r=1 dr is finite. Following

Tsiatis (2006), let C be a random variable with support {1, . . . , R} and TC(Z) a transformation

defined as Tr(Z) := (Z ′
1, . . . , Z

′
r)

′ with dimension (
∑r

s=1 ds) × 1 for r = 1, . . . , R. In the context

of the attrition example, Zr are the variables specific to period r, while Tr(Z) are all the variables

observed for a unit that leaves at the end of period r, i.e., with C = r, for r = 1, . . . , R. Formally,

let O := (C, T ′
C(Z))

′ denote what is observed for a unit in the sample.

We maintain a general selection on observables, i.e., a missing at random (MAR), assumption:

P (C = r|Z) ≡ P (C = r|TR(Z)) = P (C = r|Tr(Z)) for r = 1, . . . , R. (1)

This is the MAR assumption as in, e.g., Robins and Rotnitzky (1995), Tsiatis (2006), etc. in the

sense of Rubin (1976). It is important to recognize that (1) implies that for any r = 2, . . . , R:

P (C ≥ r|Z) = 1−
r−1∑
j=1

P (C = j|Tj(Z)) = 1−
r−1∑
j=1

P (C = j|Tr−1(Z)) = P (C ≥ r|Tr−1(Z)) (2)

only depends on Tr−1(Z). This does not mean P (C = r|Tr(Z)) = P (C = r|Tr−1(Z)) unless r = R.

Under the selection on observables condition in (1), we consider sub-populations [a, b], equiva-

lently, (a ≤ C ≤ b), for a ≤ b and a, b ∈ {1, . . . , R}. If a = b = r then, in the attrition example,

this is the underlying sub-population from which the units who left at the end of period r can be

4



viewed as randomly drawn. If a < b, then this is the sub-population for the units who left in the

periods a, a+ 1, . . . , b. Thus, if a = 1 and b = R, then this is the full-population.

The distributions of Z, denote them by FZ|(a≤C≤b)(z), in these sub-populations are typically

different. We will define the parameter of interest as a finite dimensional feature of FZ|(a≤C≤b)(z).

Accordingly, consider a function m(Z;β) : Support(Z) × B 7→ Rdm , β ∈ B ⊂ Rdβ where dβ ≤ dm,

and, then, for a given a, b ∈ {1, . . . , R} (a ≤ b), define the parameter value of interest β0 as:

E[m(Z;β) | a ≤ C ≤ b] = 0 for β ∈ B if and only if β = β0. (3)

We also maintain the following standard assumptions as in Tsiatis (2006) and Chen et al. (2008).

Assumption A:

(A1) The observed sample units {Oi := (Ci, T
′
Ci
(Zi))

′}ni=1 are i.i.d. copies of O := (C, T ′
C(Z))

′.

(A2) P (C = r|TR(Z)) > 0 for r = 1, . . . , R − 1 and P (C = R|TR(Z)) ≥ p almost surely in TR(Z)

for some fixed p ∈ (0, 1).

(A3) The Jacobian M := ∂
∂β′E

[
m(Z;β0)|a ≤ C ≤ b

]
is a dm× dβ finite matrix of full column rank.

Remark: (A1) rules out dependence and heterogeneity across sample units once they are viewed

as random draws from O. (A2) ensures that the efficiency bound is finite. (A3) allows for m(Z;β)

to be non-differentiable in β, but does require that its expectation be differentiable.

2.2 The main result:

The key quantity to describe the efficient influence function and the efficiency bound for β0 is:

φ(O;β) :=
R∑

r=b+1

I(C ≥ r)

P (C ≥ r | Tr)
P (a ≤ C ≤ b | Tb)
P (a ≤ C ≤ b)

(E[m(TR;β) | Tr]− E[m(TR;β) | Tr−1])

+
b∑

r=a+1

I(C ≥ r)

P (C ≥ r | Tr)
P (a ≤ C ≤ r − 1 | Tr−1)

P (a ≤ C ≤ b)
(E[m(TR;β) | Tr]− E[m(TR;β) | Tr−1])

+

b∑
r=a

I(C = r)

P (a ≤ C ≤ b)
E[m(TR;β) | Tr]. (4)

In (4) and onward we use these equivalent notation exchangeably: I(C ≥ R) ≡ I(C = R), Tr ≡

Tr(Z) (where TR ≡ Z), and m(Z;β) ≡ E[m(TR;β) | TR]. If b = R, then the indices (e.g., in the

sums) running from b+ 1 to R are void. If a = b then similar indices running from a+ 1 to b are

void, and those running from a to b contain only one term and it corresponds to a (equivalently b).
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Proposition 1 Let (1) hold but with a restriction on dimension reduction that P (C = r|Z) ̸=

P (C = r|Ts) for any s < r = 2, . . . , R− 1 unless P (C = r|Z) = P (C = r) for all r = 1, . . . , R− 1.

Let (3) and assumption A hold. Let the dm × dm matrix V := V ar(φ(O;β0)) be finite and positive

definite where β0 and φ(O;β) are as defined in (3) and (4) respectively. Then the asymptotic vari-

ance lower bound for
√
n(β̂−β0) of any regular estimator β̂ for β0 is given by Ω := (M ′V −1M)−1.

An estimator β̂ whose asymptotic variance equals Ω has the asymptotically linear representation:

√
n(β̂ − β0) = −ΩM ′V −1 1√

n

n∑
i=1

φ(Oi;β
0) + op(1).

2.3 Discussion of the main result:

2.3.1 Relation of Proposition 1 with the well-known literature on missing data:

The following special cases of this general result are already well-known in the literature.

(i) Taking R = 2 and a = b = 1 gives the result of Case (1) in Theorem 1 of Chen et al. (2008):

φ(O;β) =
I(C = 2)

P (C = 2|T1)
P (C = 1|T1)
P (C = 1)

(m(T2;β)− E[m(T2;β)|T1]) +
I(C = 1)

P (C = 1)
E[m(T2;β)|T1].

(ii) R = 2, a = 1 and b = 2 give Case (2) in Theorem 1 of Chen et al. (2008) (also see Robins et al.

(1994)):

φ(O;β) =
I(C = 2)

P (C = 2|T1)
(m(T2;β)− E[m(T2;β)|T1]) + E[m(T2;β)|T1].

(iii) On the other hand, taking a general R and setting a = 1, b = R give [see Appendix A.1]:

φ(O;β) =

R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)
(E[m(TR;β)|Tr]− E[m(TR;β)|Tr−1]) + E[m(TR;β)|T1],

the well-known result for the full-population under monotone missing at random data as in Robins

and Rotnitzky (1995), Rotnitzky and Robins (1995), Holcroft et al. (1997). Also see Tsiatis (2006).

2.3.2 Proposition 1 applied to individual sub-populations, i.e., a = b:

On the other hand, if we focus on any generic individual sub-population, i.e., a = b, then for a

general R, the corresponding φ(O;β) becomes:

R∑
r=a+1

I(C ≥ r)

P (C ≥ r|Tr)
P (C = a|Ta)
P (C = a)

(E[m(TR;β)|Tr]− E[m(TR;β)|Tr−1]) +
I(C = a)

P (C = a)
E[m(TR;β)|Ta].
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Thus, φ(O;β) = I(C = R)m(TR;β)/P (C = R) in the special case when a = b = R. Considering

the generic individual sub-population a = b in the context of attrition, it is now clear that only

those sample units who did not already leave before period a contribute to this efficient estimation.

2.3.3 Proposition 1 contrasted with dimension-reduction assumptions:

As we just noted, the terms involving E[m(Z;β)|Tr] for r < a do not appear in the expression for

φ(O;β) in (4). (This fact is immaterial if a = 1 as in Section 2.3.1(i).) This is because Proposition

1 imposes a restriction on dimension-reduction in (1): We do not allow P (C = r|Z) = P (C = r|Ts)

for any s < r = 2, . . . , R − 1. Such dimension-reductions would generally be unrealistic in cases

of attrition and hence are not incorporated in Proposition 1. Roughly speaking, we do not let the

most recent past become irrelevant to the selection process conditional on the less recent past.

To contrast, consider an extreme dimension-reduction assumption: P (C = r|Z) = P (C = r|T1)

that pins the selection to period 1, i.e., the baseline. Under this, Proposition 9 in Chaudhuri (2017)

establishes that the corresponding φ(O;β) for the target sub-population (a ≤ C ≤ b) is:

φ†
[a,b](O;β) =

R∑
r=2

I(C ≥ r)

P (C ≥ r|T1)
P (a ≤ C ≤ b|T1)
P (a ≤ C ≤ b)

(E[m(Z;β)|Tr]− E[m(Z;β)|Tr−1])

+
I(a ≤ C ≤ b)

P (a ≤ C ≤ b)
E[m(Z;β)|T1]. (5)

Hence, under this dimension-reduction, all E[m(Z;β)|Tr] (r = 1, . . . , R) are usable irrespective of

a, b except if a = 2, b = R. It is also noteworthy that the terms E[m(Z;β)|Tr] (r = a, . . . , b), i.e.,

those corresponding to the sub-populations of interest, contribute differently in this dimension-

reduction case than in (the last two lines of) (4) unless a = 1, b = R, i.e., unless interest lies in the

full-population. So, Proposition 9 in Chaudhuri (2017) is not a special case of our Proposition 1.

Of course, the above considerations are moot under the so-called missing completely at random

(MCAR) assumption, i.e., when P (C = r|Z) = P (C = r) for r = 1, . . . , R. Under this case, all the

sub-populations have the same distribution FZ(z) for Z, i.e., there is no “selection” as far as the

moment restrictions in (3) are concerned. Naturally, then the target of interest is a = 1, b = R. In

this case, our Proposition 1 and Chaudhuri (2017)’s Proposition 9 both give the same result:

φ(O;β) = φ†
[1,R](O;β) =

R∑
r=2

I(C ≥ r)

P (C ≥ r)
(E[m(Z;β)|Tr]− E[m(Z;β)|Tr−1]) + E[m(Z;β)|T1].

It is also possible to obtain efficiency results for less extreme dimension-reductions (our Propo-
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sition 1 represents no reduction). However, as evident from the discussion above, this needs to be

done on a case by case basis since the entire structure of the efficient influence function changes

depending on the specific dimension-reduction assumption made and the target [a, b] of interest.

2.3.4 Proposition 1 contrasted with planned missingness assumptions:

This observation on dimension-reduction is in direct contrast to the case of planned missingness in

the data. To see it let MAR in (1) hold, i.e., P (C = r|Z) = P (C = r|Tr) for r = 1, . . . , R. In this

context, by planned missingness we mean that P (C = r|Tr) is known for r = 1, . . . , R. Under this,

Proposition 1 in Chaudhuri (2017) establishes that the corresponding φ(O;β) for (a ≤ C ≤ b) is:

φ∗
[a,b](O;β)=

R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)

(
E

[
P (a ≤ C ≤ b|TR)
P (a ≤ C ≤ b)

m(TR;β)

∣∣∣∣Tr]− E

[
P (a ≤ C ≤ b|TR)
P (a ≤ C ≤ b)

m(TR;β)

∣∣∣∣Tr−1

])
+E

[
P (a ≤ C ≤ b|TR)
P (a ≤ C ≤ b)

m(TR;β)

∣∣∣∣T1] . (6)

Thus, under planned missingness, nesting of the conditions {P (C = r|Z) = P (C = r|Ts) : s ≤ r}

(along with MCAR) is automatic in the sense that all E[m(Z;β)|Tr] (r = 1, . . . , R) are always usable

irrespective of whether dimension-reduction is allowed or not. Hence, while Chaudhuri (2017) also

contrasts unplanned and planned missingness under P (C = r|Z) = P (C = r|T1), as evident from

(4) and (6), the same contrast in our paper is more prominent in terms of usability of the sample

units since we maintain P (C = r|Z) = P (C = r|Tr) without allowing for dimension-reduction.

2.3.5 Proposition 1 as a weighted average:

As evident from (5) and (6), in Chaudhuri (2017), we have that:

φ†
[a,b](O;β) =

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
φ†
[j,j](O;β) and φ∗

[a,b](O;β) =

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
φ∗
[j,j](O;β),

which reflect the standard relationship among the moment restrictions in (3) that:

E[m(Z;β)|a ≤ C ≤ b] =

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
E[m(Z;β)|C = j].

This same weighted average representation also holds for φ(O;β) defined in (4) [see Appendix A.2

for details]. This is intuitively appealing, and it presents a way of combining the efficient estimators

for the individual sub-populations to obtain the efficient estimator for their contiguous unions.
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2.3.6 Proposition 1 and double-robustness:

φ(O;β) defined in (4) contains two sets of unknown nuisance parameters (NP)/ functions:

NP1. The conditional probabilities P (a ≤ C ≤ r|Tr) (=
∑r

j=a P (C = j|Tj) by (1)) for r = a, . . . , b−

1, and P (C ≥ r|Tr) (= 1− P (C ≤ r − 1|Tr−1) by (2)) for r = a+ 1, . . . , R.

NP2. The conditional expectations E[m(TR;β)|Tr] for r = a, . . . , R− 1.

Interestingly, as shown in Appendix A.3, provided that the expectation exists, the expectation of

φ(O;β0) is still zero when either NP1 or NP2 is replaced in φ(O;β0) by any function of Tr of

conformable dimesion. That is, φ(O;β) is doubly robust in the sense of Scharfstein et al. (1999)

to parametric misspecifications of its nonparametric components NP1 and NP2. This leads to

desirable properties for the estimator of β0 based on the estimating function φ(O;β) when NP1

and NP2 are estimated parametrically or nonparametrically; see Robins et al. (1994), Robins and

Ritov (1997), Bang and Robins (2005), Tan (2007), Cao et al. (2009), Rothe and Firpo (2016), etc.

3 Efficient estimator of β, and estimation of asymptotic variance

Informed by Proposition 1 and Section 2.3.6, we use φ(O;β) as the moment vector for the efficient

GMM estimation of β0. This requires preliminary estimation of NP1 and NP2 parametrically

or nonparametrically; hence, MINPIN.3 It is attractive since its computation and the derivation

of its asymptotic properties are standard in all respect. Hence, for brevity, we discuss these only

heuristically by referring to well-known results from (a rather incomplete set of) relevant references.

For notational brevity, denote generically the parameters in NP1 and NP2 by p(.) and q(.;β) re-

spectively, their true values by p0(.) and q0(.;β) respectively, and their estimators by p̂(.) and q̂(.;β)

respectively. Note by inspecting (4) and Section 2.3.6 that the estimation of any given individual

element of p(.) and q(.;β) is only required when its arguments, i.e., the conditioning variables Tr

(as appropriate for that individual element), are observed. Hence, no issue of infeasibility arises.

Let g(O, p(.), q(.;β);β) be φ(O;β) from (4) with p0(.) and q0(.;β) in φ(O;β) replaced by the

generic functions p(.) and q(.;β). That is, g(O, p(.), q(.;β);β) is a function of O, β, p(.) and q(.;β)

such that at the true values p0(.) and q0(.;β) of p(.) and q(.;β) we have g(O, p0(.), q0(.;β);β) =

φ(O;β). Now, define the average moment vector as:

ḡn(β, p(.), q(.;β)) :=
1

n

n∑
i=1

g(Oi, p(.), q(.;β);β).

3The unknown P (a ≤ C ≤ b) in φ(O;β) can be replaced by an estimator
∑n

i=1 I(a ≤ Ci ≤ b)/n without any cost.
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Given p̂(.) and q̂(.;β), and a dm× dm weighting matrix Wn, define the GMM estimator β̂n(Wn) as:

β̂n(Wn) ≈ argmin
β∈B

ḡn(β, p̂(.), q̂(.;β))
′ Wn ḡn(β, p̂(.), q̂(.;β)). (7)

3.1 When p̂(.) and q̂(.; β) are parametric estimators:

This is the strategy most commonly employed in practice. Appendix C contains a step-by-step

description of the computation involved in the estimation of β̂n(Wn) and its asymptotic variance.

Standard extension of Holcroft et al. (1997) gives sufficient conditions for consistency and

asymptotic normality of β̂n(Wn). The double-robustness property from Section 2.3.6 ensures that

β̂n(Wn)
P−→ β0 if the parametric model for either p(.) or q(.;β) is correctly specified and, subse-

quently, the standard conditions for the convergence of their corresponding maximum likelihood

and nonlinear least squares estimations hold. Consistency of β̂n(Wn) for β
0 generally does not hold

when models for p(.) or q(.;β) are both parametrically misspecified, and the asymptotic properties

can be poor (see Kang and Schafer (2007)) as is typical in cases of two-step parametric estimation.

β̂n(Wn) is asymptotically efficient with asymptotic variance Ω, as in Proposition 1, if both

parametric models are correctly specified and if the weighting matrix is efficient, i.e., ifWn
P−→ V −1.

When both these parametric models are correctly specified and Wn is efficient, the asymptotic

variance of β̂n(Wn) can be estimated in the standard way. In particular, since (1) implies that:

E

[
P (a ≤ C ≤ b|TR)
P (a ≤ C ≤ b)

I(C = R)

P (C = R|TR)
m(TR;β)

]
= E[m(TR;β)|a ≤ C ≤ b],

one could, by virtue of (A3), estimate M by taking the (possibly numerical) derivative of

1

n

n∑
i=1

P̂ (a ≤ C ≤ b|TR(Zi))

P̂ (a ≤ C ≤ b)

I(Ci = R)

P̂ (C = R|TR(Zi))
m(TR(Zi);β) (8)

with respect to β at β̂n(Wn). On the other hand, V can be estimated by averaging the outer product

of g(Oi, p̂(.), q̂(.; β̂n(Wn)); β̂n(Wn)) while ignoring that p̂(.) and q̂(.;β) are actually estimated.

Ω is not the correct asymptotic variance when any of these parametric models is misspecified

(although consistency of β̂n(Wn) for β
0 only requires that at least one parametric model is correctly

specified). Then, for the estimation of V one should take the estimation of p̂(.) and q̂(.;β) into

account as in Theorem 6.1 of Newey and McFadden (1994), and instead use the modification for

two-step estimators as described in Section 6.3 of Newey and McFadden (1994). On the other hand,
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(8) is not consistent for M when p(.) is misspecified. Generally, it is safer to take the more tedious

route that estimates M by directly taking the (possibly numerical) derivative of ḡn(β, p̂(.), q̂(.;β))

with respect to β. Section 2.3.6 implies that under standard conditions this estimator is doubly

robust, i.e., the estimator is consistent for M if at least one parametric model is correctly specified.

We provide a working description of the computation of β̂n(Wn) and its asymptotic variance in

Appendix C. The computations in our empirical illustration (Section 5) follow this description.

3.2 When p̂(.) and q̂(.; β) are nonparametric estimators:

If nonparametric estimators p̂(.) and q̂(.;β) are used then consistency of β̂n(Wn) (for β0) and its

asymptotic normality follow under the generic conditions of Theorems 1 and 2 of Chen et al. (2003).

Chen et al. (2003) also provide the sufficient conditions under which the estimation of p̂(.) and q̂(.;β)

has no effect on the asymptotic variance of β̂n(Wn). Conditions similar to Theorems 6 and 7 of

Cattaneo (2010) give consistency of the asymptotic variance estimator obtained based on averaging

the outer product of g(Oi, p̂(.), q̂(.; β̂n(Wn)); β̂n(Wn)) and using a possibly numerical derivative-

based estimate of M . But also see Ackerberg et al. (2012) for important practical matters related

to the estimation of the asymptotic variance. As usual, Wn
P−→ V −1 gives efficiency of β̂n(Wn). See

Rothe and Firpo (2016) for a discussion of how the double-robustness of the estimating equations,

as discussed in Section 2.3.6 and Appendix A.3, leads to nice higher-order properties of β̂n(Wn).

4 Monte Carlo Experiment

We consider a setup reflecting the decision to stay or leave dynamically over periods in the context of

programs (e.g., smoking cessation, weight loss), school, employment, experiments, surveys, market,

etc. (The selection mechanism considered below may reverse in some cases.) Hence, it also provides

a plausible motivation for the empirical illustration with the Project STAR data in Section 5.

4.1 Simulation design:

The design and the data generating process (DGP) considered are as follows. For t = 1, . . . , T , let:

Yt =
1

2
Yt−1 +

1

4
Yt−2 +

1

4
Xt + et, where Xt = Xt−1 + vt. (9)

et and vt are the model errors. Take X0, Y−1, Y0 independently N(1, 1) as the initial state. (We

will not define the parameters of interest conditional on the initial state, but this could be done.)
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Define R := T . For r = 1, . . . , R, let Yr be the outcome from staying until the end of the r-th

period in the program, and Xr the other variables for the r-th period.

Let the individual’s expectation for the outcome in the r-th period be Y ∗
r . Suppose that the

individual decides to leave the program at the end of the r-th period, conditional on staying until

then, provided that the actual outcome exceeds the expectation, i.e., Y ∗
r < Yr. More precisely, let:

I(C = r) = I(Y ∗
r < Yr)

r−1∏
j=1

I(Y ∗
j ≥ Yj) for r = 1, . . . , R− 1, while I(C = R) = 1−

R−1∑
r=1

I(C = r).

(10)

We take R = 3. The analyst observes C but not Y ∗
r . In our notation, this means: Z1 =

(Y−1, Y0, Y1, X−1, X0, X1)
′, Z2 = (Y2, X2)

′ and Z3 = (Y3, X3)
′. So, the observables are T1 = Z1,

T2 = (Z ′
1, Z

′
2)

′ and T3 = (Z ′
1, Z

′
2, Z

′
3)

′ for those with (C = 1), (C = 2) and (C = 3) respectively.

Let et and vt be i.i.d. N(0, 1) for all t, while ur := Y ∗
r − Yr is i.i.d. N(0, (2.5)2) for all r. (1) is

imposed by maintaining that et, vt, ur, X0, Y−1, Y0 are mutually independent for all t, r. This results

in roughly 50% of the individuals with C = 1, 26% with C = 2, and 24% with C = 3.

To define β0, we take the moment function in (3) as m(Z;β) = Y3 − β, and consider the six

different target sub-populations [a, b] with, respectively, (a = 1, b = 3), (a = b = 1), (a = b = 2),

(a = b = 3), (a = 1, b = 2) and (a = 2, b = 3) giving six different parameters of interest. The first

parameter is the average period 3 outcome for all the units. The second parameter is the average

period 3 outcome for those who left at the end of period 1 had they instead continued till the end of

period 3. And, so on for the other parameters. The last parameter is the average period 3 outcome

for those who left at the end of period 2 or 3 had those who left at the end of period 2 instead

continued till the end of period 3. We compute the “true value” of these parameters numerically

by generating data from the above DGP with sample size 10 million, estimating the mean of Y3 for

each sub-population, and then averaging each mean over 10,000 Monte Carlo trials. Accordingly,

the six different “true values”, i.e., β0’s are: 1, 1.1709, .9617, .6858, 1.0994 and .8291 respectively.

As evident from Table 1, the error in the above approximation is of a rather small order to seriously

affect our subsequent analysis that is conducted with far smaller (than 10 million) sample size.

4.2 Simulation results:

We study the efficient estimation of the β0’s under this setup for sample sizes n = 100, 200 and 500

(also n = 1000 in Table 2). All results are reported below based on 10,000 Monte Carlo trials.

The efficient GMM estimator in (7) is computed ignoring the weighting matrix Wn since dm =
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Target Descriptive Statistics
Population Mean Std Median IQR Min Max
[a, b] for β = 10−3×
a = 1, b = 3 1 .4860 1 .0007 .9982 1.0017
a = b = 1 1.1709 .6841 1.1709 .0009 1.1682 1.1735
a = b = 2 .9617 .9430 .9617 .0013 .9581 .9648
a = b = 3 .6858 .9769 .6858 .0013 .6817 .6895
a = 1, b = 2 1.0994 .5536 1.0994 .0007 1.0975 1.1012
a = 2, b = 3 .8291 .6800 .8291 .0009 .8265 .8316

Table 1: The “true” parameter value β0 is approximated (column 2) for different target populations
(column 1) based on averaging over 10,000 Monte Carlo trials the target-sample means obtained
by using the same DGP and with sample size 10 million. Columns 3-7 list the standard deviation
(Std), interquartile range (IQR), minimum (Min) and maximum (Max) of the estimator.

dβ(= 1). The nuisance parameters, i.e., the conditional expectations (of Y3) and the conditional

probabilities are estimated by least squares and probit regressions respectively. For both, we specify

the regression function as linear in the conditioning variables and do not include interactions.

The parameter β for the sub-population [a, b] with (a = b = 3) is not interesting for our

purpose since the complete-case GMM estimator
∑n

i=1 I(Ci = 3)Y3i/
∑n

j=1 I(Cj = 3) already

estimates it consistently and, by virtue of Proposition 1, efficiently (see Section 2.3.2). Table 2

briefly summarizes the performance of the complete-case GMM estimator, and, as expected, this

is poor and misleading for all the target sub-populations except for the one with (a = b = 3).

Target n = 100 n = 200 n = 500 n = 1000
Population Std = .3140 Std = .2207 Std = .1386 Std = .0994
[a, b] for β Bias Size Bias Size Bias Size Bias Size

a = 1, b = 3 -.3148 16.8 -.3151 29.8 -.3155 62.5 -.3148 88.7
a = b = 1 -.4857 33.5 -.4860 59.1 -.4864 93.8 -.4857 99.8
a = b = 2 -.2765 14.1 -.2768 24.1 -.2772 51.9 -.2765 79.7
a = b = 3 -.0006 5.3 -.0009 5.2 -.0013 5.2 -.0006 4.8
a = 1, b = 2 -.4142 25.7 -.4145 46.8 -.4149 84.9 -.4142 98.7
a = 2, b = 3 -.1439 7.7 -.1442 9.9 -.1446 18.1 -.1439 30.8

Table 2: Results for the complete-case estimator are reported based on 10,000 Monte Carlo trials.
Bias stands for the mean bias. The only representative population for the complete-case estimator is
(a = b = 3). Std stands for the Monte Carlo standard deviation, and since the estimator is identical
for all sub-populations (and hence the bias for the other targets), there is only a single Std reported
for each sample size n. Size stands for the empirical size of the asymptotic 5% two-sided t-test.

For the other five parameters, the results for the efficient GMM estimator from (7) are presented

in Table 3. In each Monte Carlo trial, we obtain the estimate for each β and subtract it from its

“true value” given in Table 1. Then we average the mean, median, minimum and maximum of

this difference over all the 10,000 trials and report them as Bias, MedBias, MinBias and MaxBias
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respectively. The average of the absolute value of this difference is reported as AbsBias, the Monte

Carlo standard deviation as Std, the average of the standard deviation based on the asymptotic

variance formula as AStd, and the empirical size of the t-test based on Std and the asymptotic

variance formula as Size and ASize respectively. The efficient GMM estimator performs quite well

in all aspects and for all the target sub-populations even for relatively smaller sample sizes.

Target n = 100
[a, b] for β Bias MedBias MinBias MaxBias AbsBias Std AStd Size ASize

a = 1, b = 3 -.0037 -.0102 -1.4862 2.5896 .2544 .3254 .2512 5.3 13.8
a = b = 1 -.0041 -.0149 -2.6509 3.3278 .3177 .4092 .3336 5.1 11.8
a = b = 2 -.0068 -.0132 -2.4474 2.2725 .3484 .4501 .3986 5.3 8.2
a = 1, b = 2 -.0056 -.0147 -1.9473 2.8004 .2896 .3727 .2893 5.1 13.4
a = 2, b = 3 -.0034 -.0050 -1.6282 1.4262 .2492 .3187 .2803 5.1 8.5

n = 200
Bias MedBias MinBias MaxBias AbsBias Std AStd Size ASize

a = 1, b = 3 -.0005 -.0042 -.9553 1.0449 .1650 .2078 .1884 5.1 8.1
a = b = 1 -.0009 -.0077 -1.7499 1.6389 .2015 .2551 .2436 5.0 6.4
a = b = 2 .0006 -.0021 -1.7145 3.1583 .2211 .2832 .2816 4.9 4.9
a = 1, b = 2 -.0009 -.0065 -1.2391 1.3064 .1836 .2321 .2139 4.9 7.5
a = 2, b = 3 .0001 -.0013 -.9836 1.7208 .1659 .2101 .2045 5.0 5.7

n = 500
Bias MedBias MinBias MaxBias AbsBias Std AStd Size ASize

a = 1, b = 3 -.0020 -.0039 -.6830 .4939 .1009 .1269 .1208 5.0 6.7
a = b = 1 -.0024 -.0045 -.5654 .6081 .1225 .1540 .1546 5.0 5.3
a = b = 2 -.0015 -.0026 -1.6263 .7290 .1313 .1668 .1753 5.1 4.1
a = 1, b = 2 -.0023 -.0040 -.8461 .5669 .1103 .1392 .1358 5.2 6.0
a = 2, b = 3 -.0014 -.0016 -.9141 .4623 .1024 .1288 .1299 4.8 4.8

Table 3: Results for the efficient GMM estimator are reported based on 10,000 Monte Carlo trials.
Bias, MedBias, MinBias, MaxBias and AbsBias stand for the mean, median, minimum, maximum
and average absolute value respectively of the difference between the efficient estimator and the
corresponding β0. Std and AStd stand for the standard deviation based on Monte Carlo and the
asymptotic variance formula respectively. Size and ASize stand for the empirical size of the asymp-
totic 5% two-sided t-test using the Monte Carlo and asymptotic standard deviation respectively.
Roughly 50% of the individuals correspond to C = 1, 26% to C = 2, and 24% to C = 3.

To put the performance of the efficient GMM estimator into context, we report in Table 4 the

same (except AStd and Asize) for the Horvitz and Thompson (1952)-type IPW estimator:

n∑
i=1

I(Ci = 3)

P̂ (C = 3|T3i)
P̂ (a ≤ Ci ≤ b|Tbi)∑n
j=1 I(a ≤ Cj ≤ b)

Y3i. (11)

The related literature in econometrics on attrition under selection of observables typically takes

the full-population as the target and employs estimators of this genre (see, e.g., Fitzgerald et al.

(1996), Wooldridge (2010), etc.). Our specifications for the conditional probabilities nests the truth.
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Hence, this IPW estimator is also consistent and asymptotically unbiased by virtue of (1). This is

reflected by the shrinking Bias and also the shrinking variability (AbsBias, Std) of the estimator.

Target n = 100
[a, b] for β Bias MedBias MinBias MaxBias AbsBias Std Size

a = 1, b = 3 -.0449 -.0823 -1.5733 7.9008 .3080 .4278 3.7
a = b = 1 -.0593 -.1386 -2.2333 16.3040 .4159 .6143 3.2
a = b = 2 -.0579 -.1168 -4.5318 6.3902 .3987 .5611 4.1
a = 1, b = 2 -.0589 -.1184 -2.0413 10.6195 .3653 .5187 3.5
a = 2, b = 3 -.0305 -.0469 -1.9653 3.8259 .2743 .3678 4.2

n = 200
Bias MedBias MinBias MaxBias AbsBias Std Size

a = 1, b = 3 -.0143 -.0338 -1.2238 3.4379 .2006 .2701 4.0
a = b = 1 -.0209 -.0606 -1.1614 4.6535 .2697 .3698 4.1
a = b = 2 -.0141 -.0421 -2.0402 10.4536 .2611 .3839 3.4
a = 1, b = 2 -.0189 -.0505 -1.4550 4.4394 .2345 .3223 3.8
a = 2, b = 3 -.0075 -.0174 -1.2727 6.0802 .1840 .2527 3.6

n = 500
Bias MedBias MinBias MaxBias AbsBias Std Size

a = 1, b = 3 -.0044 -.0088 -.5559 1.0035 .1192 .1527 4.6
a = b = 1 -.0060 -.0213 -.6293 1.3960 .1610 .2084 4.5
a = b = 2 -.0041 -.0180 -.9816 2.4238 .1542 .2016 4.7
a = 1, b = 2 -.0056 -.0152 -.6295 1.2874 .1377 .1779 4.7
a = 2, b = 3 -.0027 -.0061 -.5498 1.3350 .1116 .1417 4.8

Table 4: Results for the IPW estimator are reported based on 10,000 Monte Carlo trials. Bias,
MedBias, MinBias, MaxBias, IQRBias and AbsBias stand for the mean, median, minimum, maxi-
mum and average absolute value respectively of the difference between the IPW estimator and the
corresponding β0. Std stands for the standard deviation based on Monte Carlo. Size stands for
the empirical size of the asymptotic 5% two-sided t-test using the Monte Carlo standard deviation.
Roughly 50% of the individuals correspond to C = 1, 26% to C = 2, and 24% to C = 3.

The efficiency gain due to the use of the efficient GMM estimator instead of the IPW estimator

is large. Defining the gain as the difference between the Std of the IPW estimator and the efficient

GMM estimator divided by the Std of the latter, it is evident from Tables 3 and 4 that the gain

varies from 10% to 50% (averaging around 30%). Indeed, a comparison of the other dispersion-

related characteristics clearly demonstrates that the efficient GMM estimator is much less dispersed

than the IPW estimator in all aspects and for all sample sizes considered in our experiment.

5 Empirical Illustration with the Project STAR data

Tennessee’s Student/Teacher Achievement Ratio experiment, also known as Project STAR, has

been extensively studied to analyze the effect of small class size (student/teacher ratio) on various

future outcomes for the students; see, among many others, Hanushek (1999), Krueger (1999), and
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Ding and Lehrer (2010). In Project STAR, students enrolling in the kindergarten (grade K) of 80

participating schools in the 1985-1986 school year were randomly assigned to three types of classes:

small classes (13-17 students per teacher), regular classes (22-25 students per teacher), and regular

classes with a full-time teacher’s aide (22-25 students per teacher).

In this section, we use the data from Project STAR, downloaded from the textbook-webpage

https://economics.mit.edu/faculty/angrist/data1/mhe/krueger, for the purpose of an empirical il-

lustration of the efficiency gains that can be obtained by the use of the efficient estimator in (7).

The data set contains characteristics of the schools, the teachers, demographic and socioeco-

nomic characteristics of the students and their standardized math and reading scores from grade

K up to grade 3 or up to a lower grade until which they stayed with a participating school.

Unfortunately, a sizable number of students did not stay in the participating schools until the

end of grade 3. See Table 5. See the descriptive statistics by class types in Tables 8-9 (Appendix

D) for an idea on the selection induced by attrition on the variables of our concern. Note that, we

will hereafter refer to the class types — regular and regular with aide — jointly as non-small class.

The consequences of this attrition on the identification of various effects of interest related to

the Project STAR have been studied in Krueger (1999), Ding and Lehrer (2010), etc. The latter,

in particular, works under the selection on observables framework of Fitzgerald et al. (1996) (we do

the same) and employs the IPW-principle of Horvitz and Thompson (1952) as in (11). However,

since (11) does not use all available information in the sample, IPW is not efficient in general and,

indeed, it is often far from being efficient as evident from our Monte Carlo experiment (Section 4).

This raises the question whether employing the efficient GMM estimator in (7) would result in

substantive efficiency gain over the IPW estimator in the context of the Project STAR data.

We find the answer to be positive. We demonstrate this gain for a set of empirically relevant

parameters. Since, ultimately, the quantities of interest in the related studies are sub-population

means or their differences, for this empirical illustration we focus on the following parameters.

These are the mean math and reading scores in grade 3 for students who enrolled in grade K of

a participating Project STAR school in 1985-1986 but left the participating school at the end of:

(a) grade K (b) grade 1
(c) grade 2 (d) never left (i.e., continued until the end of grade 3)
(e) grade K or grade 1 (f) grade 1 or two
(g) grade 2 or never left (h) grade K or grade 1 or grade 2
(i) grade 1 or grade 2 or never left (j) grade K or grade 1 or grade 2 or never left,

if instead they had stayed in their initially assigned small or non-small class till the end of grade 3.
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5.1 Estimation setup:

Therefore, we have 40 (= 2× 2× 10) parameters of interest: mean scores on 2 subjects (math and

reading), for 2 class types (small and non-small), and for the 10 attrition categories (a)-(j).

(e) is the super-population of (a) and (b); (f) of (b) and (c); (g) of (c) and (d); (h) of (a), (b)

and (c); (i) of (b), (c) and (d); and (j) of (a)-(d) (and, for that matter, of (a)-(i)). Indeed, given

the initial randomization, (j) is not only the underlying population of those randomized to a small

(respectively, non-small) class, but also that of the broader population of all students enrolled in

grade K (small or non-small) of a Project STAR participating school in the 1985-1986 school year.

Given these parameters of interest, naturally, we drop the students who enrolled in a partici-

pating school only after grade K. See Ding and Lehrer (2010) for other reasons for not considering

these students. We also drop those few students who switched between class types in any given

grade. This is potentially problematic, and we would have preferred to avoid it. However, since the

proportion (as well as the actual number) of switchers is very small — ranging from 1.8% to 5.7%

of the eligible students (see Table 5) — it is difficult to systematically and explicitly take them into

account in our analysis whose validity ultimately depends on the asymptotic theory.

Randomized to small class Randomized to non-small class
After Stayed Left STAR Switched Stayed Left STAR Switched
grade in small school to non-small in non-small school to small

K 1017 409 79 2241 1047 201
1 811 188 18 1682 484 75
2 683 105 23 1395 200 87

Table 5: Number of students by their switching or leaving dynamics at the end of each grade after
they were initially randomized to small or non-small classes in grade K.

Finally, note that, only the parameters for (d) (i.e., never left) do not correspond to a counter-

factual (sub-)population. Hence, they are trivially estimable by the complete-case estimator as the

averages of the observed relevant grade 3 scores for these students. Indeed, for (d), the efficient

GMM and IPW estimators in (7) and (11) are identical to the complete-case estimator (see Section

2.3.2). Hence, from Section 2.3.5, we know that (a), (b), and (c) (i.e., left at the end of grade K,

1, and 2 respectively) are the key quantities to be estimated (along with the variance-covariance

matrix of the estimators) since the estimators for (e)-(j) are weighted averages of those for (a)-(d).

We estimate all these 40 parameters following the description presented in Appendix C. All

estimators (except for (d)) involve preliminary estimation of nuisance parameters — the conditional

probabilities NP1 and the conditional expectations NP2 — and we account for this to obtain the
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standard deviations of the corresponding efficient GMM and IPW estimators. We posit parametric

models for NP1 and NP2. In particular, considering the observed history of: (i) the student’s scores

relative to those in their school, and (ii) the student’s socioeconomic status, we posit that:

NP1. The hazard of leaving at the end of any grade j = K, 1, 2 conditional on the observables until

the end of grade j is logit with an index that is linear in the following three types of dummy

variables for each grade prior to and including grade j. First, whether the student qualified

for free lunch in school. Second (respectively, third) whether the student’s total (math +

reading) score exceeded the mean total score for all the students in the same grade in small

(respectively, non-small) classes in the student’s school. Thus, besides the intercept, there are

three, six, and nine dummies entering the logit when j = K, 1, and 2 respectively.

NP2. The expectation of the counterfactual math and reading scores in grade 3 conditional on the

observables until the end of grade j = K, 1, 2 is linear in the following five types of dummy vari-

ables for each grade prior to and including grade j. First, whether the student qualified for free

lunch in school. Second/fourth (respectively, third/fifth) whether the student’s math/reading

score exceeded the mean of the same for all the students in the same grade in small (respec-

tively, non-small) classes in the student’s school. Thus, besides the intercept, there are five,

ten, and fifteen dummies entering the specification when j = K, 1, and 2 respectively.

Irrespective of the students’ own class type, NP1 and NP2 include comparison of their grades with

students in both small and non-small classes in their school. These models are motivated by the

framework laid out in Section 4. It is worth noting that the goal of these models is not to obtain

the best possible fit but rather to allow us to control for the selection induced by attrition. Tables

10-12 (Appendix D) contain the results of the preliminary estimation of these nuisance parameters.

5.2 Estimation results:

Table 6 presents the estimates of the 40 parameters of interest: 4 parameters (2 class types and 2

subjects) for each of the 10 attrition categories (a)-(j) defined above.

The estimates of the parameters for (a), (b), and (c) are quite close and are lower than that

for (d). This reflects the pattern induced by the attrition behavior on the descriptive statistics of

the observed scores (e.g., in grade K) in Tables 8-9. However, the differences of our estimates for

(d) with that for (a), (b), and (c) are actually lower than what simple (e.g., linear), unconditional

extrapolations of these descriptive statistics of scores would suggest. The estimates for the other
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parameters, including that for the full-population, i.e., (j), are weighted averages of those for (a)-(d).

The Eff and IPW estimates are very similar to each other, and this holds in all cases (a)-(j).

The minimum p-value for the 20 Hausman tests (2 subjects and 10 attrition categories) comparing

the differences between Eff and IPW estimates is .285 for small class and .215 for non-small class.4

Randomized to small class Randomized to non-small class
Left STAR school grade 3 math score grade 3 read score grade 3 math score grade 3 read score
at the end of grade Eff IPW Eff IPW Eff IPW Eff IPW

(a) K 616.93 617.59 619.95 620.28 611.85 610.43 609.90 608.44
(1.30) (1.84) (1.11) (1.83) (0.74) (1.26) (0.69) (1.11)

(b) 1 614.82 615.97 617.54 618.40 607.11 605.58 605.29 603.70
(2.09) (2.82) (1.78) (2.54) (1.14) (1.56) (1.02) (1.40)

(c) 2 616.08 619.91 617.71 621.47 614.29 616.67 612.69 614.00
(2.72) (3.68) (2.33) (3.30) (1.85) (2.39) (1.77) (2.25)

(d) 3 (never left) 633.44 633.44 632.62 632.62 626.56 626.56 623.68 623.68
(1.52) (1.52) (1.43) (1.43) (1.05) (1.05) (0.97) (0.97)

(e) K or 1 616.27 617.08 619.19 619.69 610.35 608.88 608.44 606.95
(1.22) (1.94) (1.08) (1.92) (0.70) (1.26) (0.64) (1.13)

(f) 1 or 2 615.27 617.38 617.60 619.50 609.21 608.78 607.45 606.71
(1.71) (2.68) (1.49) (2.45) (1.00) (1.51) (0.93) (1.38)

(g) 2 or 3 631.13 631.64 630.63 631.13 625.03 625.32 622.30 622.46
(1.38) (1.55) (1.30) (1.46) (0.96) (1.06) (0.88) (0.97)

(h) K or 1 or 2 616.24 617.50 618.97 619.95 610.80 609.78 608.93 607.76
(1.19) (2.00) (1.07) (1.97) (0.69) (1.27) (0.63) (1.14)

(i) 1 or 2 or 3 627.98 628.62 628.11 628.68 620.85 620.71 618.34 618.10
(1.21) (1.64) (1.13) (1.54) (0.80) (1.09) (0.74) (1.00)

(j) K or 1 or 2 or 3 624.72 625.36 625.70 626.20 617.84 617.27 615.51 614.86
(0.99) (1.56) (0.92) (1.53) (0.62) (1.07) (0.58) (0.96)

Table 6: The efficient GMM and IPW estimates from (7) and (11) of the expected grade 3 math
and reading score by class types that the students were initially randomized to and their attrition
period (grade). 40 parameters of interest are estimated. Standard deviations are inside parentheses.

Now, we turn to our main focus: the precision of estimates. Recall from Section 3.1 that Eff

is not necessarily efficient unless assumption (1), and specifications NP1-NP2 are all correct; and

this cannot be ensured or tested with real life data (see footnote 4). Nevertheless, comparing the

standard deviations (inside parentheses) in Table 6, it is clear that Eff is much more precise than

4Four technical remarks are in order regarding these similarities before we can turn to the discussion of precision
of the estimates. First, it is important to note that the underlying null hypothesis for each Hausman test is that the
corresponding probability limits (assuming they exist) for the Eff and IPW estimators are the same. Second, even if
all these null hypotheses were true, it does not necessarily imply that our selection on observables assumption (1),
and our specifications NP1-NP2 are all correct. Therefore, Eff may not be efficient under these nulls, and hence the
variance estimator in the Hausman tests is not simply the difference in the estimated variances of the IPW and the
Eff estimators. Third, however, thanks to the double-robustness property of Eff (see Section 2.3.6), the results of
these Hausman tests at least indicate that if NP2 and (1) were correct, then we cannot reject the correctness of NP1.
Fourth, and finally, it would have been preferable to discuss the precision of estimates with the benefit of having even
larger minimum p-values for such null hypotheses. The reason for this will be evident later in footnote 6 when we
discuss the nesting behavior of the Eff and IPW confidence intervals while comparing their widths. Roughly speaking,
the features that would have led to larger p-values would have also ensured the nesting of the Eff intervals by IPW.
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IPW. Indeed, the efficiency gain that results from the use of Eff is substantive by most practical

standards. Excluding the four parameters for (d) where Eff and IPW are necessarily identical, this

efficiency gain, as defined below Table 4 in Section 4.2, is never less than 9.9%, between 25-50%

for fourteen parameters, between 50-75% for twelve parameters, and over 75% for six parameters.

This substantive efficiency gain due to Eff is also useful for comparing between sub-populations

of small and non-small classes to find the effect of small class on the students’ performance. Al-

though this section is only intended as an illustration of the increased precision and is not remotely

a serious study of the effect of small class, let us now demonstrate the efficiency gains due to Eff

in this context since such comparisons are of empirical interest and are routinely done in practice.

To get a sense of the magnitude of the differences between small and non-small classes, it is a

common practice to scale the scores. We use the standard deviation (std), 40.11 and 37.13, of the

observed grade 3 math and reading scores respectively as the scale in the respective comparisons.

In terms of the columns of Table 6, all the comparisons considered below will be between:

1. For math: columns 2 and 6 in the case of Eff, and columns 3 and 7 in the case of IPW.

2. For reading: columns 4 and 8 in the case of Eff, and columns 5 and 9 in the case of IPW.

Typically, interest lies in the comparison of the parameters for (j) (i.e., full-population). Under

our assumptions, the effect of attrition has been corrected for in the concerned estimates. Hence,

the initial randomization would imply that the difference for (j) is the effect on the average grade

3 scores of being in a small class as opposed to a non-small class in consecutive grades from K to 3.

Using Eff and IPW, we find a 95% confidence interval of this effect on the math (reading) score

to be [.11, .23] and [.11, .29] math std ([.22, .33] and [.21, .40] reading std) respectively. See Table

7, row (j). Not only are these Eff intervals nested in the IPW intervals, but also they help to

substantially narrow the range of estimates at the upper end of the intervals by ruling out very

large effects. The IPW interval is 61% and 66% wider than the Eff interval for math and reading.

Similar comparisons in Table 7 between small and non-small classes by the other attrition

categories (a)-(i) reveal similar effectiveness of the Eff confidence intervals in terms of its narrowness

both in absolute (unit: math std or reading std) and percentage terms.5 (Of course, Eff and IPW

intervals are necessarily identical for (d).) While the lower bound of an Eff interval can be a little

smaller in many cases than that of the corresponding IPW interval (by a maximum of 2% of math

5We do not interpret the differences for (a),. . .,(i) as “effects” since these are conditional on the attrition (i.e.,
post randomization) behavior. Instead, we consider them as descriptive comparisons between counterfactuals and
interpret them, e.g., in the case of (a) as the difference between what would have been the average grade 3 math
(reading) scores of students who were initially randomized to small and non-small classes respectively but left the
participating school at the end of grade K, had they instead continued in their initially assigned class until grade 3.
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or reading std), the upper bound of the Eff interval is always much smaller — frequently by 10% of

math or reading std — than that of IPW.6 It is indeed noteworthy that Eff, but not IPW, can rule

out these wide regions of economically large changes in scores at the upper end of the intervals.

Left STAR school grade 3 math score (standardized) grade 3 read score (standardized)
at the end of grade Eff IPW % wider Eff IPW % wider

(a) K [0.05, 0.20] [0.07, 0.29] 49.08 [0.20, 0.34] [0.21, 0.43] 64.55
(b) 1 [0.08, 0.31] [0.10, 0.42] 35.01 [0.22, 0.44] [0.24, 0.55] 41.56
(c) 2 [−0.12, 0.21] [−0.13, 0.30] 33.51 [−0.02, 0.29] [−0.01, 0.41] 36.66
(d) 3 (never left) [0.08, 0.26] [0.08, 0.26] 0 [0.15, 0.33] [0.15, 0.33] 0
(e) K or 1 [0.08, 0.22] [0.09, 0.32] 63.85 [0.22, 0.36] [0.23, 0.46] 77.08
(f) 1 or 2 [0.05, 0.25] [0.06, 0.36] 55.00 [0.18, 0.37] [0.20, 0.49] 60.39
(g) 2 or 3 [0.07, 0.23] [0.07, 0.25] 11.45 [0.14, 0.31] [0.14, 0.33] 11.98
(h) K or 1 or 2 [0.07, 0.20] [0.08, 0.31] 72.06 [0.20, 0.34] [0.21, 0.45] 82.99
(i) 1 or 2 or 3 [0.11, 0.25] [0.10, 0.29] 35.54 [0.19, 0.33] [0.19, 0.38] 36.36
(j) K or 1 or 2 or 3 [0.11, 0.23] [0.11, 0.29] 61.35 [0.22, 0.33] [0.21, 0.40] 65.62

Table 7: 95% confidence intervals using Eff and IPW for the expected difference in the counterfac-
tual math and reading scores between small and non-small classes by attrition category. “% wider”
stands for the percentage by which an IPW interval is wider than the corresponding Eff interval.

6 Conclusion

The demonstrations in Sections 4 and 5 based on simulated and real (Project STAR) data re-

spectively provided a remarkably encouraging picture for the overall performance of the efficient

GMM estimator. As noted in Section 3, this estimator falls under the class of the well-known dou-

bly robust AIPW estimators that have been extensively studied in the biostatistics, epidemiology,

statistics and (recent) econometrics literatures. Importantly, this estimator and the estimator of its

asymptotic variance do not pose any new theoretical or computational challenge to the practitioner.

On the other hand, our main result Proposition 1 showed that this estimator is actually semi-

parametrically efficient for a wide variety of target populations characterized by the missingness of

monotonically missing at random data. The discussion in Section 2 showed that these targets nest

those for which similar estimators have long been proposed and also fruitfully employed in practice.

Hence, we hope that our main result, its implications, and the demonstration in our paper would

encourage the use of the efficient GMM estimation in the broader setting of missing data, including

pattern mixture models, i.e., for any target population that falls under the premise of our paper.

6The small margins at the lower end that prevent the nesting of the Eff intervals by the IPW intervals arise for the
following reason. Although the Eff and IPW estimates are individually similar, Eff is a little smaller than IPW for
small classes and a little larger (except for (c) and (g)) for non-small classes. Since the confidence intervals here are
based on the differences between the concerned Eff (or IPW) estimates for small and non-small classes, these little
dissimilarities with opposite signs now accumulate making the Eff estimates typically about .05 std smaller than the
IPW estimates. So, the centers of the intervals are not aligned. The larger variance of IPW in this illustration is not
sufficient to ensure the nesting of Eff by fully offsetting the nonaligned centers, albeit what is not offset is very small.
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Appendix A: Technical endnotes for Section 2

A.1 The expression of φ(O;β) in (4) when a = 1, b = R [see Section 2.3.1]:

φ(O;β) =

R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)
P (C ≤ r − 1|Tr−1) (E[m(TR;β)|Tr]− E[m(TR;β)|Tr−1])

+

R∑
r=1

I(C = r)E[m(TR;β)|Tr]

=
R∑

r=2

I(C ≥ r)

P (C ≥ r|Tr)
(E[m(TR;β)|Tr]− E[m(TR;β)|Tr−1])

−
R∑

r=2

I(C ≥ r)

P (C ≥ r|Tr)
P (C ≥ r|Tr−1) (E[m(TR;β)|Tr]−E[m(TR;β)|Tr−1])

+
R∑

r=1

I(C = r)E[m(TR;β)|Tr]

=

R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)
(E[m(TR;β)|Tr]− E[m(TR;β)|Tr−1])

−
R∑

r=2

I(C ≥ r) (E[m(TR;β)|Tr]−E[m(TR;β)|Tr−1]) [by using (2)]

+
R∑

r=1

I(C = r)E[m(TR;β)|Tr]

=

R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)
(E[m(TR;β)|Tr]− E[m(TR;β)|Tr−1])

−

{
R∑

r=2

I(C = r)E[m(TR;β)|Tr]− I(C ≥ 2)E[m(TR;β)|T1]

}
+

R∑
r=1

I(C = r)E[m(TR;β)|Tr]

=

R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr)
(E[m(TR;β)|Tr]− E[m(TR;β)|Tr−1]) + E[m(TR;β)|T1].

A.2 The weighted average of sub-population φ(O;β)’s as discussed in Section 2.3.5:

Write E[m(TR;β)|Tr] as qr for all r for brevity. Denote φ(O;β) when a = b = j by φ[j,j](O;β)

(see Section 2.3.2). Then, the weighted average with weights ωj := P (C = j)/P (a ≤ C ≤ b) is:

b∑
j=a

ωjφ[j,j](O;β) =
b∑

j=a


R∑

r=j+1

I(C ≥ r)

P (C ≥ r|Tr)
P (C = j|Tj)
P (a ≤ C ≤ b)

(qr − qr−1) +
I(C = j)

P (a ≤ C ≤ b)
qj


=

R∑
r=b+1

I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(qr − qr−1)

b∑
r=a

I(C = r)

P (a ≤ C ≤ b)
qr

+
b∑

j=a

b∑
r=j+1

I(C ≥ r)

P (C ≥ r|Tr)
P (C = j|Tj)
P (a ≤ C ≤ b)

(qr − qr−1)
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where the first term follows by (1). Matching the first two terms with the terms on lines one and

three of (4), the demonstration will be complete if the third term is equal to the term on the second

line of (4). This follows by interchanging the order of the summations (allowed) and noting that:

b∑
j=a

b∑
r=j+1

I(C ≥ r)

P (C ≥ r|Tr)
P (C = j|Tj)
P (a ≤ C ≤ b)

(qr − qr−1)

=

b∑
r=a+1

r−1∑
j=a

I(C ≥ r)

P (C ≥ r|Tr)
P (C = j|Tj)
P (a ≤ C ≤ b)

(qr − qr−1)

=
b∑

r=a+1

I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
(qr − qr−1) ,

where the last line follows by (1). This expression is equal to the term on the second line of (4).

A.3 Double-robustness of the expression of φ(O;β) in (4) [see Section 2.3.6]:

To see this, first replace the unknown P (a ≤ C ≤ r|Tr) for r = a+1, . . . , b and 1/P (C ≥ r|Tr) for

r = a+1, . . . , R in (4) by any integrable scalar functions of Tr, and then note that E[φ(O;β0)] = 0

by (3) applied to the last line of (4).

On the other hand, rearranging the terms in (4) gives φ(O;β) alternatively as:

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

[
I(C ≥ R)

P (C ≥ R|TR)
m(TR;β)

+

R−1∑
r=b+1

(
I(C ≥ r)

P (C ≥ r|Tr)
− I(C ≥ r + 1)

P (C ≥ r + 1|Tr+1)

)
E[m(TR;β)|Tr]

]

+

b∑
r=a

{(
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
− I(C ≥ r + 1)

P (C ≥ r + 1|Tr+1)

P (a ≤ C ≤ r|Tr)
P (a ≤ C ≤ b)

)
+

I(C = r)

P (a ≤ C ≤ b)

}
E[m(TR;β)|Tr].

(In terms of the notation in this equation, {a ≤ C ≤ a− 1} should be considered a null event.)

Now, replacing in the above equation the unknown E[m(TR;β)|Tr] by any dm × 1 integrable

functions of Tr for r = 1, . . . , R− 1, it still follows by (1) and (3) that E[φ(O;β0)] = 0.

Therefore, taken together, we have now shown that E[φ(O;β0)] = 0 even if either NP1 or NP2,

i.e., any one set of nuisance parameters but not both, is misspecified inside the function φ(O;β).

This unbiasedness of φ(O;β0) for 0 leads to the doubly-robust estimating function.
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Appendix B: Proof of Proposition 1

Notation: f and F denote the density and distribution functions, with the concerned random

variables specified inside parentheses. Their conditional counterparts are denoted similarly. Let

L2
0(F ) denote the space of mean-zero, square integrable functions with respect to F .

We follow the three steps as in, e.g., Chen et al. (2008) to prove Proposition 1. Step 1 character-

izes the tangent set for all regular parametric sub-models satisfying the semiparametric assumptions

on the observed data. Step 2 obtains the efficient influence function for a given rotation of m(Z;β).

Step 3 obtains the optimal rotation and, thereby, gives the efficiency bound as the expectation of

the outer product of the efficient influence function.

STEP - 1: Consider a regular parametric sub-model indexed by a parameter θ for the distri-

bution of the observed data O = (C ′, T ′
C(Z))

′. The log of the distribution is:

log fθ(O) = log fθ(Z1)+
R∑

r=2

I(C ≥ r) log fθ(Zr|Z1, . . . , Zr−1)+
R∑

r=1

I(C = r) logPθ(C = r|Z1, . . . , Zr)

in terms of (C,Z ′)′. Let θ0 be the unique value of θ such that fθ0(O) equals the true f(O), and

accordingly for all the quantities. Then, the score function with respect to θ is:

Sθ(O) = sθ(Z1) +

R∑
r=2

I(C ≥ r)sθ(Zr|Z1, . . . , Zr−1) +

R∑
r=1

I(C = r)
Ṗθ(C = r|Z1, . . . , Zr)

Pθ(C = r|Z1, . . . , Zr)

where sθ(Z1) :=
∂
∂θ log fθ(Z1), sθ(Zr|Z1, . . . , Zr−1) :=

∂
∂θ log fθ(Zr|Z1, . . . , Zr−1) for r = 2, . . . , R,

and Ṗθ(C = r|Z1, . . . , Zr) :=
∂
∂θPθ(C = r|Z1, . . . , Zr) for r = 1, . . . , R. For Step-2, it is useful to

note from (1) and (2) that for any r = 2, . . . , R:

Ṗθ(C ≥ r|Z) = −Ṗθ(C ≤ r − 1|Z1, . . . , Zr−1) = Ṗθ(C ≥ r|Z1, . . . , Zr−1). (12)

The tangent set is the mean square closure of all dβ dimensional linear combinations of Sθ(O) for

all such smooth parametric sub-models, and it can be generically defined as:

T := ν1(Z1) +

R∑
r=2

I(C ≥ r)νr(Z1, . . . , Zr) +

R∑
r=1

I(C = r)ωr(Z1, . . . , Zr), (13)

where ν1(Z1) ∈ L2
0(F (Z1)) and νr(Z1, . . . , Zr) ∈ L2

0(F (Zr|Z1, . . . , Zr−1)) for r = 2, . . . , R, and

ωr(Z1, . . . , Zr) is any square integrable function of Z1, . . . , Zr for r = 1, . . . , R.
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STEP - 2: For brevity we write m(Z;β0) as m, and drop the subscript θ from all quantities

evaluated at θ0. The moment conditions in (3) for a given a, b are equivalent to the requirement

that for any dβ × dm matrix A, the following just-identified system of moment conditions holds:

AE[m|a ≤ C ≤ b] = AE

[
P (a ≤ C ≤ b|Z)
P (a ≤ C ≤ b)

I(C = R)

P (C = R|Z)
m

]
= 0

where the first equality follows from (1). Differentiating with respect to θ under the integral gives:

0 = AM
∂β0(θ0)

∂θ′
+AE

[
m

{
s(Z)′ +

Ṗ (a ≤ C ≤ b|Z)′

P (a ≤ C ≤ b|Z)
− Ṗ (a ≤ C ≤ b)′

P (a ≤ C ≤ b)

}∣∣∣∣∣ a ≤ C ≤ b

]

where s(Z) := s(Z1 +
∑R

r=2 s(Zr|Z1, . . . , Zr−1) and Ṗ (a ≤ C ≤ b) := ∂
∂θPθ0(a ≤ C ≤ b). Taking a

full row rank A along with (1), (3) and assumption (A3), gives:

∂β0(θ0)

∂θ′
= −(AM)−1A

{
E
[
ms(Z)′|a ≤ C ≤ b

]
+

b∑
r=a

E

[
m
Ṗ (C = r|Z1, . . . , Zr)

′

P (a ≤ C ≤ b)

]}
.

Now we establish that for this given A, −(AM)−1Aφ(O;β0) is the efficient influence function by

showing that E[−(AM)−1Aφ(O;β0)S(O)′] = ∂β0(θ0)
∂θ′ and that (AM)−1Aφ(O;β0) ∈ T defined in

(13).

For this purpose, note by using (4) (and switching to the notation Tr for (Z1, . . . , Zr) when it

helps brevity) that we can write E[φ(O;β0)S(O)′] =
∑3

i=1

∑2
j=1Bij where:

B11 :=

R∑
r=b+1

E

[
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])D
′
]
,

B12 :=
R∑

r=b+1

E

[
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
R∑

k=1

I(C = k)
Ṗ (C = k|Tk)′

P (C = k|Tk)

]
,

B21 :=

b∑
r=a+1

E

[
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
(E[m|Tr]− E[m|Tr−1])D

′
]
,

B22 :=

b∑
r=a+1

E

[
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
(E[m|Tr]−E[m|Tr−1])

R∑
k=1

I(C = k)
Ṗ (C = k|Tk)′

P (C = k|Tk)

]
,

B31 :=
b∑

r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]D′

]
,

B32 :=

b∑
r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]

R∑
k=1

I(C = k)
Ṗ (C = k|Tk)′

P (C = k|Tk)

]
,

D := s(Z1) +

R∑
k=2

I(C ≥ k)s(Zk|Tk−1).
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As noted above Proposition 1, we proceed with the understanding that if b = R then B11 = B12 = 0,

and if a = b then B21 = B22 = 0. Also, for notational brevity define T0 as any constant, so that

s(Z1) ≡ s(Z1|T0). First, note that:

B11 =
R∑

r=b+1

r∑
k=1

E

[
I(C ≥ r)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)
′
]

+

R∑
r=b+1

R∑
k=r+1

E

[
I(C ≥ k)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)
′
]

=

R∑
r=b+1

r∑
k=1

E

[
P (C ≥ r|Tr−1)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)
′
]

+
R∑

r=b+1

R∑
k=r+1

E

[
P (C ≥ k|Tk−1)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)
′
]

=

R∑
r=b+1

E

[
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

E[m|Tr]s(Zr|Tr−1)
′
]
+ 0

= E

[
I(a ≤ C ≤ b)

P (a ≤ C ≤ b)
ms(ZR, . . . , Zb+1|Tb)′

]
= E

[
ms(ZR, . . . , Zb+1|Tb)′|a ≤ C ≤ b

]
(14)

where the third and fourth lines follow by (2); the fifth line follows by noting that for all k =

1, . . . , r−1: E [(E[m|Tr]− E[m|Tr−1])s(Zk|Tk−1)
′] = E [E[(E[m|Tr]− E[m|Tr−1])s(Zk|Tk−1)

′|Tr−1]] =

0 while for k ≥ r+1: E [E[m|Tr]s(Zk|Tk−1)
′] = E [E[m|Tr]E[s(Zk|Tk−1)

′|Tk−1]] = 0; and the sixth

(last) line follows by (1) and the definition of score.

Second, it now follows that:

B21 =

b∑
r=a+1

E

[
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
E[m|Tr−1]s(Zr|Tr−1)

′
]

exactly following the steps that led to the fifth line in the expression forB11 in (14) above. Therefore,

B21 =

b∑
r=a+1

r−1∑
k=a

E

[
P (C = k|Tk)
P (a ≤ C ≤ b)

ms(Zr|Tr−1)
′
]

=
b∑

r=a+1

r−1∑
k=a

E
[
ms(Zr|Tr−1)

′|C = k
] P (C = k)

P (a ≤ C ≤ b)

=

b−1∑
k=a

E

[
m

b∑
r=k+1

s(Zr|Tr−1)
′

∣∣∣∣∣C = k

]
P (C = k)

P (a ≤ C ≤ b)

=

b−1∑
k=a

E
[
ms(Zb, . . . , Zk+1|Tk)′|C = k

] P (C = k)

P (a ≤ C ≤ b)
(15)
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where the first line follows by (1); the second line follows by the same steps that gave the sixth line

in (14); the third line follows by interchanging the order of summations (which is allowed here);

and the fourth (last) line follows by the definition of score.

Third, we consider B31 and note that using the definition of score in the first line below and

the same argument as before in the second (last) line below:

B31 =

b∑
r=a

r∑
k=1

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]s(Zk|Tk−1)

′
]
=

b∑
r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]s(Tr)′

]

=

b∑
r=a

E
[
ms(Tr)

′|C = r
] P (C = r)

P (a ≤ C ≤ b)
. (16)

Now, we consider the terms B12, B22 and B32 respectively. Accordingly, first note that:

B12 =

R∑
r=b+1

R∑
k=r

E

[
I(C = k)

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
Ṗ (C = k|Tk)′

P (C = k|Tk)

]

=

R∑
r=b+1

E

[
1

P (C ≥ r|Tr)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])

R∑
k=r

Ṗ (C = k|Tk)′
]

=
R∑

r=b+1

E

[
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]−E[m|Tr−1])
Ṗ (C ≥ r|Tr−1)

′

P (C ≥ r|Tr−1)

]
= 0 (17)

where the second line follows by (1); the third follows line by (1), (2) and (12); and the fourth

(last) line follows by taking expectation conditional on Tr−1 for the r-th term inside the summation.

Exactly following the same steps as in the above (recall the analogy with B11 and B12) we obtain:

B22 = 0. (18)

Lastly, as before, note that:

B32 =

b∑
r=a

E

[
I(C = r)

P (C = r|Tr)
E[m|Tr]Ṗ (C = r|Tr)′

P (a ≤ C ≤ b)

]
= E

[
m

b∑
r=a

Ṗ (C = r|Tr)′

P (a ≤ C ≤ b)

]
. (19)

Therefore, (14)-(19) imply that E[−(AM)−1Aφ(O;β0)S(O)′] = ∂β0(θ0)
∂θ′ . Finally, by matching the

first set of terms in −(AM)−1Aφ(O;β0) (i.e., those that correspond to line one in (4)) to the terms

corresponding to νb+1(Z1, . . . , Zb+1), . . . , νR(Z1, . . . , ZR) in T ; the second set of terms (i.e., those

that correspond to line two in (4)) to the terms corresponding to νa(Z1, . . . , Za), . . . , νb(Z1, . . . , Zb)
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in T ; and the third set of terms (i.e., those that correspond to line three in (4)) to the terms

corresponding to ωa(Z1, . . . , Za), . . . , ωb(Z1, . . . , Zb) in T ; while matching zeros with the remaining

terms in T , it follows that −(AM)−1Aφ(O;β0) is the efficient influence function given A.

STEP - 3: Standard arguments give that A∗ := arg infA V ar((AM)−1Aφ(O;β0)) = M ′V −1.

Thus (A∗M)−1A∗φ(O;β0) is the efficient influence function, and Ω is the efficiency bound.

Appendix C: Working description for estimation and inference

Sort the units in the sample such that first n1 units correspond to C = 1, the next n2 units to

C = 2, . . ., while the last nR units to C = R. For its relevance in practice, we focus on parametric

estimation of the nuisance parameters in this discussion by assuming parametric models for the

unknown conditional expectations and conditional probabilities (or hazards). Accordingly, let:

PM-NP1: For each j = 1, . . . , R−1, let there exist (i) a dγj×1 vector γ0j ∈ Γj where Γj is a compact

subset of Rdγj , and (ii) a scalar function pj(Tj ; γj) such that P (C = j|Tj , C ≥ j) = pj(Tj ; γ
0
j ) for

all j = 1, . . . , R − 1. Let ∇jpj(Tj ; γj) := ∂pj(Tj ; γj)/∂γj exist and satisfy standard regularity

conditions as in Newey and McFadden (1994). In the context of our Section 5:

pj(Tj ; γj) =
exp(T ′

jγj)

1 + exp(T ′
jγj)

giving ∇jpj(Tj ; γj) = pj(Tj ; γj)(1− pj(Tj ; γj))Tj .

PM-NP2: For each j = 1, . . . , R − 1, let there exist (i) a dδj × 1 vector δ0j ∈ ∆j where ∆j

is a compact subset of Rdδj , and (ii) a dm × 1 function qj(Tj ; δj , β) such that E[m(Z;β0)|Tj ] =

qj(Tj ; δ
0
j , β

0) for all j = 1, . . . , R−1. Let ∇jqj(Tj ; δj , β) := ∂qj(Tj ; δj , β)
′/∂δj and ∇βqj(Tj ; δj , β) :=

∂qj(Tj ; δj , β)
′/∂β exist and satisfy standard conditions as in Newey and McFadden (1994). In

Section 5, where β and Z are additively separable inside m(Z;β), we take:

qj(Tj ; δj , β) = T ′
jδj − β, giving ∇jqj(Tj ; δj , β) = Tj and ∇βqj(Tj ; δj , β) = −1.

Note that, using the relation between hazard and probability mass functions, PM-NP1 gives:

P (C = 1|T1) = p1(T1; γ
0
1),

P (C = j|Tj) = pj(Tj ; γ
0
j )

j−1∏
r=1

(
1− pr(Tr; γ

0
r )
)

for j = 2, . . . , R− 1, (20)

P (C = R|TR) = 1−
R−1∑
r=1

P (C = r|Tr) =
R−1∏
r=1

(
1− pr(Tr; γ

0
r )
)
,
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and thereby giving its derivatives, denoted by ∇kP (C = j|Tj) := ∂
∂γk

P (C = j|Tj) for all k =

1, . . . , R− 1 and j = 1, . . . , R, as:

∇kP (C = j|Tj) = 0 for k = j + 1, . . . , R− 1 and j = 1, . . . , R− 1,

∇1P (C = 1|T1) = ∇1p1(T1; γ
0
1),

∇jP (C = j|Tj) =
(
∇jpj(Tj ; γ

0
j )
) j−1∏
r=1

(
1− pr(Tr; γ

0
r )
)

for j = 2, . . . , R− 1,

∇kP (C = j|Tj) = −
(
∇kpk(Tk; γ

0
k)
)
pj(Tj ; γ

0
j )

j−1∏
r=1

1− pr(Tr; γ
0
r )

1− pk(Tk; γ
0
k)

for k = 1, . . . , j − 1 and j = 2, . . . , R− 1,

∇kP (C = R|TR) = −
(
∇kpk(Tk; γ

0
k)
)R−1∏

r=1

1− pr(Tr; γ
0
r )

1− pk(Tk; γ
0
k)

for k = 1, . . . , R− 1.

It is also useful to note from these relationships that for r = 2, . . . , R:

P (C ≥ r|Tr) = 1− P (C ≤ r − 1|Tr−1) = 1−
r−1∏
j=1

(1− pj(Tj ; γ
0
j )),

and hence ∇kP (C ≥ r|Tr) = 0 for k = r, . . . , R− 1, (21)

∇kP (C ≥ r|Tr) =
(
∇kpk(Tk; γ

0
k)
) r−1∏
j=1

1− pj(Tj ; γ
0
j )

1− pk(Tk; γ
0
k)

for k = 1, . . . , r − 1.

Now, consider the estimation of the nuisance parameters. The quasi-maximum likelihood esti-

mator γ̂j for γ
0
j for j = 1, . . . , R−1 solves the score equations 0 =

∑n
i=1 Sn,j,i(γj) where, i = 1, . . . , n,

Sn,j,i(γj) := I(Ci ≥ j)
I(Ci = j)− pj(Tj(Zi); γj)

pj(Tj(Zi); γj)(1− pj(Tj(Zi); γj))
∇jpj(Tj(Zi); γj).

Let Hn,j := (∂/∂γ)
∑n

i=1 Sn,j,i(γj)
′/(n− n̄j−1) at γ̂j , and let n̄j =

∑j
i=1 ni for j = 1, . . . , R−1. Let

Hn be the block-diagonal matrix with Hn,j as the j-th diagonal block for j = 1, . . . , R− 1.

The nonlinear least squares estimator δ̂j for δ0j for j = 1, . . . , R − 1 is δ̂j := δ̂j(β̂) where β̂ is

the GMM estimator (to be defined below) while δ̂j(β) is the solution of the estimating equations

0 =
∑n

i=1 Ln,j,i(δj , β) where, for j = 1, . . . , R− 1 and i = 1, . . . , n:

Ln,j,i(δj , β) := I(Ci = R) (∇jqj(Tj(Zi); δj , β))Bn,j (m(Zi;β)− qj(Tj(Zi); δj , β)) .

For simplicity, we take the weighting matrix Bn,j = Idm in the nonlinear least squares. Let An,j :=

(∂/∂δj)
∑n

i=1 Ln,j,i(δ̂j , β̂)
′/nR at δ̂j and β̂. Let An be a block-diagonal matrix with An,j as its j-th

diagonal block for j = 1, . . . , R− 1.
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Now, consider the estimation of the actual parameter of interest, β. Note from Sections 2.3.5

and 3 that a consideration of the individual sub-populations is sufficient because the estimating

equation for their contiguous unions is simply a weighted average of that for the individual sub-

populations where the weight for sub-population j ∈ {a, . . . , b} can be estimated as nj/(n̄b− n̄a−1).

Furthermore, to focus on the essential idea, abstract from the weighting matrix Wn in (7) by

considering a just-identified system, i.e, dm = dβ. Then, using the result from Section 2.3.2, note

that, for the sub-population j: β̂ is the solution of 0 = ḡn(β, p̂(.), q̂(.;β)) (see (7)), more precisely,

0 =
R∑

r=j+1

n

nj

n∑
i=n̄r−1+1

P̂ (C = j|Tj(Zi))

P̂ (C ≥ r|Tr(Zi))

(
Ên[m(Z;β)|Tr(Zi)]− Ên[m(Z;β)|Tr(Zi)]

)

+
n

nj

n̄j∑
i=n̄j−1+1

Ên[m(Z;β)|Tj(Zi)],

where: Ên[m(Z;β)|Tr(Zi)] := qr(Tr(Zi), δ̂r(β), β) for r = 1, . . . , R−1, while Ên[m(Z;β)|TR(Zi)] :=

m(Zi;β) by convention. On the other hand, P̂ (C = j|Tj(Zi)) and P̂ (C ≥ r|Tr(Zi)) are obtained

by (20) and (21) respectively with the corresponding γ0s ’s replaced by γ̂s’s defined above for the

appropriate s = 1, . . . , R − 1. To write these estimating equations for β more explicitly, stack the

two sets of nuisance parameters as γ = (γ′1, . . . , γ
′
R−1)

′ and δ = (δ′1, . . . , δ
′
R−1)

′, and then define:

ψi(β, γ, δ) :=
n

nj

pj(Tj(Zi); γj)
∏j−1

r=1 (1− pr(Tr(Zi); γr))∏R−1
k=1 (1− pk(Tk(Zi); γk))

(m(Zi;β)− qR−1(TR−1(Zi), δR−1, β))

+
n

nj

R−1∑
r=j+1

pj(Tj(Zi); γj)
∏j−1

r=1 (1− pr(Tr(Zi); γr))

1−
∏r−1

k=1(1− pk(Tk(Zi); γk))
(qr(Tr(Zi), δr, β)− qr−1(Tr−1(Zi), δr−1, β))

+
n

nj
qj(Tj(Zi), δj , β) for i = 1, . . . , n.

Now, write the above estimating equations for β equivalently as: 0 = ψ̄n(β̂, γ̂, δ̂) where ψ̄n(β, γ, δ) :=∑n
i=1 ψi(β, γ, δ)/n. Let Ψn,γ := (∂/∂γ)ψ̄n(β̂, γ̂, δ̂)

′, Ψn,δ := (∂/∂δ)ψ̄n(β̂, γ̂, δ̂)
′ and Ψn,β := (∂/∂β)ψ̄n(β̂, γ̂, δ̂)

′.

Define εn,i(γ, δ, β) := (Sn,1,i(γ1)
′, . . . , Sn,R−1,i(γR−1)

′, Ln,1,i(δ1, β)
′, . . . , Ln,R−1,i(δR−1, β)

′, ψi(β, γ, δ)
′)′

by stacking the estimating functions for (γ′, δ′, β′)′. Let Υ =
∑n

i=1 εn,i(γ̂, δ̂, β̂)εn,i(γ̂, δ̂, β̂)
′/n. Then,

the estimator of the asymptotic variance for β̂ is the lower-right dβ × dβ block of the matrix:


Hn 0 0

0 An 0

Ψn,γ Ψn,δ Ψn,β


−1′

Υ


Hn 0 0

0 An 0

Ψn,γ Ψn,δ Ψn,β


−1

.
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From small class From non-small class
Left STAR school at the end of grade

Explanatory variables K 1 2 K 1 2

free lunch in K 14.85 3.63 2.28 18.86 4.80 3.58
(2.77) (3.81) (3.80) (1.93) (2.75) (2.79)

math in K > mean math in K(small) 13.59 7.54 5.18 9.84 6.04 3.63
(3.67) (3.33) (3.17) (2.62) (2.36) (2.27)

math in K > mean math in K(non-small) 9.93 3.52 1.63 12.91 6.75 5.29
(3.69) (3.35) (3.18) (2.56) (2.32) (2.21)

read in K > mean read in K(small) 16.30 9.00 7.26 14.59 7.05 4.71
(3.94) (3.54) (3.36) (2.65) (2.44) (2.34)

read in K > mean read in K(non-small) 6.85 0.60 -1.51 3.98 -2.39 -4.11
(3.92) (3.52) (3.35) (2.56) (2.36) (2.26)

free lunch in grade 1 12.67 7.22 14.90 13.46
(3.80) (4.24) (2.77) (3.02)

math in 1 > mean math in 1(small) 16.14 6.13 15.61 10.76
(3.43) (3.44) (2.25) (2.18)

math in 1 > mean math in 1(non-small) 12.74 7.51 6.94 4.91
(3.42) (3.37) (2.41) (2.31)

read in 1 > mean read in 1(small) 18.17 15.15 12.60 6.94
(3.55) (3.38) (2.28) (2.25)

read in 1 > mean read in 1(non-small) -2.39 -5.08 8.78 3.74
(3.50) (3.45) (2.45) (2.44)

free lunch in 2 5.58 0.62
(3.97) (2.84)

math in 2 > mean math in 2(small) 11.27 11.25
(3.32) (2.26)

math in 2 > mean math in 2(non-small) 9.13 6.39
(3.41) (2.43)

read in 2 > mean read in 2(small) 13.19 9.33
(3.35) (2.30)

read in 2 > mean read in 2(non-small) 2.62 6.24
(3.35) (2.38)

Intercept 594.49 582.89 580.36 593.44 583.23 581.53
(3.05) (2.95) (2.82) (1.93) (1.83) (1.77)

Number of Observations 683.00 683.00 683.00 1395.00 1395.00 1395.00

Adjusted R2 0.25 0.41 0.47 0.24 0.39 0.45

Table 11: Coefficients and standard deviation (in parentheses) of the explanatory variables in
the linear model for the expectation of the counterfactual grade 3 math score conditional on the
variables observed until leaving the participating STAR school at the end of grade K, 1 and 2.
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From small class From non-small class
Left STAR school at the end of grade

Explanatory variables K 1 2 K 1 2

free lunch in grade K 11.53 2.59 -0.11 18.03 4.83 1.57
(2.72) (3.83) (3.79) (1.76) (2.48) (2.44)

math in grade K > mean math in 10.57 5.28 4.20 6.02 3.64 1.15
grade K(small) (3.61) (3.35) (3.16) (2.40) (2.13) (1.98)
math in grade K > mean math in 12.94 5.55 3.07 10.53 4.43 3.12
grade K(non-small) (3.63) (3.37) (3.17) (2.34) (2.09) (1.93)
read in grade K > mean read in 7.79 1.76 0.38 7.63 1.80 0.94
grade K(small) (3.87) (3.56) (3.35) (2.42) (2.20) (2.05)
read in grade K > mean read in 6.98 1.85 -0.45 13.40 4.51 1.25
grade K(non-small) (3.86) (3.54) (3.34) (2.34) (2.13) (1.98)

free lunch in grade 1 8.73 3.36 13.54 10.17
(3.82) (4.23) (2.49) (2.64)

math in grade 1 > mean math in 5.36 -1.14 6.20 2.55
grade 1(small) (3.45) (3.44) (2.02) (1.91)
math in grade 1 > mean math in 21.54 15.18 11.36 8.89
grade 1(non-small) (3.44) (3.36) (2.18) (2.02)
read in grade 1 > mean read in 8.94 6.86 7.49 3.32
grade 1(small) (3.57) (3.38) (2.05) (1.97)
read in grade 1 > mean read in 5.78 -1.25 16.95 7.77
grade 1(non-small) (3.52) (3.44) (2.20) (2.14)

free lunch in grade 2 7.89 4.62
(3.97) (2.48)

math in grade 2 > mean math in 5.07 1.98
grade 2(small) (3.32) (1.98)
math in grade 2 > mean math in 14.65 10.19
grade 2(non-small) (3.40) (2.12)
read in grade 2 > mean read in 2.80 6.64
grade 2(small) (3.34) (2.01)
read in grade 2 > mean read in 13.30 16.34
grade 2(non-small) (3.35) (2.08)
Intercept 601.62 592.12 589.38 592.80 583.20 581.21

(3.00) (2.97) (2.82) (1.77) (1.65) (1.54)

Number of Observations 683.00 683.00 683.00 1395.00 1395.00 1395.00

Adjusted R2 0.18 0.33 0.41 0.24 0.41 0.50

Table 12: Coefficients and standard deviation (in parentheses) of the explanatory variables in the
linear model for the expectation of the counterfactual grade 3 reading score conditional on the
variables observed until leaving the participating STAR school at the end of grade K, 1 and 2.
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